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Abstract

The tool is not a synthesizer—it is a Synth-A-Modeler!
This paper introduces the Synth-A-Modeler compiler,
which enables artists to synthesize binary DSP mod-
ules according to mechanical analog model specifica-
tions. This open-source tool promotes modular design
and ease of use. By leveraging the Faust DSP pro-
gramming environment, an output Pd, Max/MSP, Su-
perCollider, VST, LADSPA, or other external module
is created, allowing the artist to hear the sound of the
physical model in real time using an audio host appli-
cation. To show how the compiler works, the example
model “touch a resonator” is presented.

Keywords

physical modeling, virtual acoustics, Faust DSP, hap-
tic force-feedback, open source

1 Introduction

Simulating the equations of motion of acoustic
musical instruments, also known as physical mod-
eling, has been employed for decades to synthe-
size sound digitally [Smith, 2010; Smith III, 1982;
Cadoz et al., 1981]. It is an intriguing paradigm
for synthesizing sound in new media applications
because it enables sound synthesis for fictional
acoustic-like instruments that would be imprac-
tical or very labor-intensive to construct in real
life.

Physical modeling DSP algorithms incorporate
internal feedback loops, which means that an er-
ror or inaccuracy in the modeling algorithm can
cause the algorithm to become unstable. This re-
sults in a loud sound, which can be very unpleas-
ant for an artist working with a physical model.

Several tools have been packaged for imple-
menting modular physical modeling with algo-
rithms that are designed to be stable. The basic
concept is that the artist specifies an intercon-

nection of passive mechanical, acoustical, and/or
electrical elements, rather than programming any
equations. This makes it much easier for artists
to employ physical modeling to make new sounds
without needing to understand all of the details
under the hood.

However, most of these tools have not been im-
mediately available to artists, partly due to the
cost of purchasing the tools. For example, the
Modalys modal synthesis environment requires
both the purchase of Max/MSP and the IRCAM
Forum Recherche [Ellis et al., 2005]. GENESIS
is a complete modeling package and can be pur-
chased from the Association pour la Création et la
Recherche sur les Outils d’Expression [Castagne
and Cadoz, 2002]. GENESIS includes a graphi-
cal user interface, which makes it easier for artists
to specify the interconnection of the mechanical
elements.

In contrast, the BlockCompiler by Matti Kar-
jalainen is open-source; however, it is a complex
package that has been rewritten at least three
times and requires the artist to write Lisp code
to create models [Karjalainen, 2003]. Stefan Bil-
bao has written a modular environment for syn-
thesizing percussion sounds, but it runs in MAT-
LAB and so is not immediately applicable to real-
time synthesis [Bilbao, 2009]. Finally, the Syn-
thesis ToolKit (STK) has become popular due
to its MIDI capability and ability to run within
Max/MSP, Pd, and other sound synthesis envi-
ronments [Cook and Scavone, 1999].1 However,
new models can only be created in the STK by
artists who can manually write stable difference
equations in C++ for physical modeling.

For the above reasons, we decided to create a
new, free and open-source tool for modular sound

1See http://ccrma.stanford.edu/software/stk



synthesis using physical models.

2 Synth-A-Modeler

2.1 Requirements

The following requirements of the Synth-A-
Modeler project have guided the design. The
Synth-A-Modeler compiler should

• enable efficient real-time physical modeling
sound synthesis for new media applications,

• be free and open-source,

• be as modular as possible,

• be easy to extend and modify,

• serve as a platform for pedagogical explo-
ration of the physics of mechanically vibrat-
ing systems,

• be accessible to artists who may have little or
no experience in programming, digital signal
processing (DSP), or physics,

• be accessible from as many sound synthesis
host environments as possible,

• enable the development of MIDI-based syn-
thesizers, and

• be compatible with programming haptic
force-feedback systems.

2.2 Faust

To enable efficient real-time synthesis while tar-
geting as many host environments as possible,
we decided to use the Functional AUdio STream-
ing (Faust) programming language [Orlarey et al.,
2009; Barkati et al., 2011; Orlarey et al., 2002]. In
fact, some physical models had already been writ-
ten directly in Faust code [Michon and Smith III,
2011]; however, most artists would not be ready
to put in the detailed effort required to program
physical models in Faust. Hence, we planned to
extend Faust with the development of Synth-A-
Modeler.

2.3 Dataflow

Consequently, we adopted the dataflow shown
in Figure 1. The Synth-A-Modeler compiler
receives a netlist-like model specification in an
MDL file and compiles it into Faust DSP code
[Vladimirescu, 1994]. Then the Faust compiler
together with g++ can transform the code into a
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Figure 1: Dataflow for synthesizing a model with
Synth-A-Modeler

target binary format as suitable for Pd, Super-
Collider, Max/MSP, CSound, LADSPA plug-in,
VST plug-in, a generic audio application, generic
C++ code, or other host target as desired by the
artist.

2.4 Specifying MDL Files

For synthesizing sound with traditional signal
flow-based approaches such as Pure Data (pd),
Max/MSP, Simulink, or others, a user specifies
a directed graph of sound sources, processing el-
ements, and sound outputs. The signal flow is
considered to be unidirectional: from the sources
to the sinks.

However, in the case of physical modeling,
the signal flow is bidirectional among the ele-
ments. One reason for this is Newton’s third
law: “For every action, there is an equal and
opposite reaction.” Hence, in physical model-
ing, a graph with bidirectional edges describes
the signal flow. An engineer must be keenly
aware of the bidirectional signal flow between each
pair of elements; however, an artist designing a
physical model using a modular approach needs
only to understand which elements are connected
to which. For this reason, the artist can sim-
ply specify an undirected graph of virtual phys-
ical elements [Castagne and Cadoz, 2002]. For
the Synth-A-Modeler compiler, the artist speci-
fies the model in an MDL file by specifying con-
nections between elements, such as digital wave-
guides, masses, springs, dampers, ports, etc., us-
ing a netlist-like format with some extensions. Of
course the artist may also specify the physical pa-
rameters for each element.

3 Modeling Paradigm

3.1 Example Model

Consider the model shown in Figure 2, which im-
plements a very simple synthesizer with only a



single resonance frequency. The model describes
a series of mechanical elements that connect to a
user’s finger, allowing the user to “touch” a vir-
tual mechanical resonator. This model features
objects as in GENESIS and CORDIS-ANIMA,
except that the units are SI units and En-
glish names are employed [Castagne and Cadoz,
2002][Cadoz et al., 1993][Kontogeorgakopoulos
and Cadoz, 2007]. The following text specifies
the same model using an MDL model specifica-
tion file:

link(4200.0,0.001),ll,m1,g,();
touch(1000.0,0.03,0.0),tt,m1,dev1,();

mass(0.001),m1,();
ground(0.0),g,();
port( ),dev1,();

audioout,a1,m1,1000.0;

The external port named dev1 is connected by
a touch link tt to a mass m1 of 0.001 kg. The
mass resonates because the linear link ll con-
nects it to mechanical ground g, which always
remains at the position 0 m. The linear link
ll consists of the parallel combination of a spring
with stiffness 4200 N/m and damper with param-
eter 0.001 N/(m/s). The touch link tt (analogous
to the BUT element in GENESIS and CORDIS-
ANIMA) is similar to a linear link, except it only
results in a force when one of the objects is push-
ing “inside” the other one [Kontogeorgakopoulos
and Cadoz, 2007].

3.2 Inputs And Outputs

A port models a mechanical connection from
within a model to the outside. By default each
port brings an external position signal into the
model and sends a collocated force signal outside
the model. This is why a port can easily be used
to control a haptic force-feedback device [Berdahl,
2009].

In addition, the audioout object in Synth-A-
Modeler provides a simple audio output. When
applied to a mass-like object, it outputs position
(see Figure 2, right), and when applied to a link-
like object, it outputs force.

3.3 Resonator Abstraction

The generic resonator object (related to CEL in
GENESIS) could have been employed instead of

tt

ll
audiooutdev1

m1

g

Figure 2: Model for “touch a resonator”

the content within the dash-dotted box in Fig-
ure 2. Our resonator implementation in Synth-
A-Modeler allows for the frequency and damping
time of the resonator to be adjusted in real-time
while minimizing transients. Modalys might op-
erate in a similar fashion as it also allows inter-
polation of resonance frequencies in real time. In
Synth-A-Modeler, we use a state-space implemen-
tation employing a well-conditioned rotation ma-
trix [Mathews and Smith III, 2003]. Max Math-
ews employed banks of this style of resonator in
his piece Angel Phasered, which was performed
at the CCRMA Transitions Concert on Sept. 16,
2010.

4 The Synth-A-Modeler Compiler

4.1 Strategy

Although it is possible to represent any explic-
itly computable linear block diagram in Faust [Or-
larey et al., 2002], Faust’s block diagram algebra
is oriented toward signals that flow from the left to
the right. To obtain a signal flowing back from the
right to the left, it is necessary to employ Faust’s
recursive composition operator, which automat-
ically incorporates a single sample of delay. In
physical modeling, signals are bidirectional, which
means that roughly half of the signals must flow
from the right to the left. However, it is chal-
lenging to organize Faust networks in this fashion
without inserting a plethora of single-sample de-
lays, which can detract from the stability of the
models.

For example, consider the Faust code for a mass
of m [kg] with zero initial conditions and a linear
link but with stiffness k [N/m], damping factor
R [N/(m/s)], and spring centering position offset
o [m], as given in Figure 3. These equations are
similar to those in CORDIS-ANIMA and GENE-



mass(m) = (/(m*fs*fs) : ((_,_ : +) ~ _) : ((_,_ : +) ~ _));

link(k,R,o) = _ : (_-o) <: (_,_) : (*(k), (_<:(_,_):(_,mem):-:*(R*fs))) : (_,_):+:_;

Figure 3: Faust code for a mass and a linear link from physicalmodeling.lib
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Figure 4: Representation of Faust DSP code for “touch a resonator”

SIS, except that the units are SI units.

Neither the mass nor the link incorporates a
single sample of delay; however, in order to wrap
these specific elements in feedback about one an-
other, it is necessary to insert samples of delay to
make the network explicitly computable. In the
CORDIS-ANIMA equations, the delay is included
in the masses [Kontogeorgakopoulos and Cadoz,
2007], so we follow suit by having Faust’s right to
left signals emanate from the masses.

For example, Figure 4 shows the representation
of the Faust DSP code for the model depicted in
Figure 2. The mass-like objects are placed on
the right, and the link-like objects are placed fur-
ther to the left. The signals representing displace-
ments are shown in magenta, and the signals rep-
resenting net forces are shown dashed in cyan (see
Figure 4—for color see the online version of this
paper). Linear combinations are formed in or-
der to properly interconnect the mass-like objects
and link-like objects. Finally, the single-sample of
delay per feedback loop is represented on the far
right using the small red boxes as in the Faust dia-
gram notation. According to this interconnection
strategy, there is no sample of delay associated
with the link-like objects.

The single port in the model (ref. “dev1” in
Figure 2) is responsible for the position signal in-

put (see Figure 4, bottom left dash-dot-dotted in
magenta) and the force signal output (see Fig-
ure 4, bottom dashed in cyan) could be connected
to an impedance controlled haptic force-feedback
device in order to control the sound synthesis.
Alternatively, using a more conventional kind of
new media controller, the position input could be
used independently of any force output to control
the sound synthesis. Finally, the additional au-
dio output a1, which corresponds to the position
of the virtual mass, is also provided (see Figure
4, right dash-dot-dotted in magenta) as a more
sensible audio output.

4.2 Compiled Code

Applying the Synth-A-Modeler compiler to the
model specification MDL file given in Section 3.1
results in the Faust code presented in Figure 5.
The code begins by first importing the physical
modeling library, which contains Faust code de-
scribing how each of the elements works. Then
bigBlock is defined about which the feedback
paths will be wrapped. In this case, m1 is fed
back, which represents the position of mass m1,
and the ground position g is also fed back. The
letter “p” is appended to each variable fed back,
denoting previous, since the variable is delayed by
a single sample (see the small red squares on the



import("physicalmodeling.lib");

bigBlock(m1p,gp,dev1p) = (m1,g,dev1,a1) with {
// Link-like objects:
ll = (m1p - gp) : link(4200.0,0.001,0.0);
tt = (m1p - dev1p) : touch(1000.0,0.03,0.0);

// Mass-like objects:
m1 = (0.0-ll-tt) : mass(0.001);
g = (0.0+ll) : ground(0.0);
dev1 = (0.0+tt);

// Additional audio output
a1 = 0.0+m1*(1000.0);

};

process = (bigBlock)~(_,_):(!,!,_,_);

Figure 5: Compiled Faust DSP code for implementing “touch a resonator”

right-hand side of Figure 4).
The identifier for each element (e.g. ll, tt, m1,

g, dev1, and a1) is then employed as an output
variable from the element, which can only be ac-
cessed from within bigBlock. The inputs to the
elements are formed as linear combinations of the
other variables (see Figure 5).

4.3 Example Pure Data Patch

Next the Faust compiler together with g++ can
compile the Faust code into a target format as
suitable for an audio host application. We briefly
present an example of compiling our example
into a Pure Data (pd) external object called
touch a resonator~. The pd patch in Figure 6
shows how the external object can be employed
for real-time sound synthesis without requiring a
haptic force-feedback user input device. The left-
most inlet and outlet are automatically generated
by the faust2pd script,2 and we do not use them
in this example. The remaining audio inlets and
outlets (see Figure 6) are ordered in correspon-
dence with the input and outputs in Figure 4 and
in the third line of Figure 5.

The rightmost inlet corresponds to the input
position dev1. A horizontal slider GUI object
from pd is employed as a user interface. The
slider’s output is converted into an “audio” signal,

2More information is available on this inlet and outlet
[Graef, 2007].

smoothed, and fed into the dev1 position input.
The force outlet from the dev1 output (see Fig-

ure 6) is not needed in this case since there is no
mechanism to provide force feedback. The au-
dio output comes from the additional a1 audio
output that was specified in the model. Despite
having only a single resonance frequency, we find
that the quality of the user interaction with the
model is intriguing, due to our process of phys-
ically modeling as many elements as possible in
the interaction loop being simulated.

5 Conclusion

Due to its modular character, the Synth-A-
Modeler compiler enables the creation of com-
plex models for artistic applications using simple
building blocks. In some sense, it is an extension

Figure 6: Example pd patch for “touch a res-
onator”



of our own prior work, rewritten to employ Faust
for efficient DSP and to target multiple host ap-
plications [Berdahl et al., 2010].

We are currently working to add support for
digital-waveguide objects to the Synth-A-Modeler
compiler. We look forward to an open-source
platform for prototyping, developing, and releas-
ing physical modeling binaries that incorporate
the popular modeling techniques of mass and link
(i.e. mass-interaction) modeling, modal synthesis,
and digital waveguide synthesis. The implemen-
tation is simple enough that we hope other devel-
opers can easily add support for further modeling
formalisms.

Due to the open-format licensing of Synth-A-
Modeler via the GPL version 2, we believe that
Synth-A-Modeler could be especially attractive
for commercial applications for compiling opti-
mized and fine-tuned models into portable binary
modules. We hope that this way we can create a
large user base including industrial, artistic, and
scientific users.
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