Albert Gräf
email: dr.graef@t-online.de

Creating LV2 Plugins with Faust

Keywords: Faust, LV2, plugins, audio, MIDI

The faust-lv2 project aims to provide a complete set of LV2 plugin architectures for the Faust programming language. It currently implements generic audio and MIDI plugins with some interesting features such as Faust MIDI controller mapping, polyphonic instruments with automatic voice allocation and support for the MIDI tuning standard. You can use these architectures to quickly turn Faust programs into working LV2 audio eects and instrument plugins, ready to be run with LV2-capable DAWs such as Ardour and Qtractor. The plugin architectures and some helper scripts are now also available in the Faust distribution, and the Faust online compiler supports these as well.

Introduction

Most Linux audio users will be familiar with David Robillard's LV2 [4], the successor of the venerable LADSPA plugin standard. LV2 has been supported by major Linux DAWs such as Ardour and Qtractor for quite some time, and version 1.0 of the standard has been released in 2012, so that LV2 host and plugin authors now have a stable specication to base their work on. LV2 is much more complex than LADSPA, but it is also much more capable. In particular, it supports both audio and MIDI plugins and can thus be used to develop audio eects as well as software instruments. One of LV2's strong points is that it is extensible, so that new extensions for various special needs can be developed and deployed in LV2 hosts with (relative) ease. This makes LV2 very exible. A number of both open source and proprietary suites of LV2 plugins have been developed or ported over to LV2, such as Calf, CAPS, TAL, drowAudio, Loomer and linuxDSP, so that Linux audio users now have a variety of high-quality plugins available to them. Nevertheless, compared to other plugin standards such as Steinberg's VST, the number of available plugins is still quite small.

The goal of the faust-lv2 project is to bring LV2 to Faust, Grame's funtional DSP programming language [3], so that LV2 plugins can be developed more easily. The interface is implemented in terms of corresponding LV2 architectures for Faust. At present two architecture (C++) les are provided, one for ordinary audio (eect type) plugins and one for polyphonic MIDI (instrument type) plugins.

We should note here that this is not the rst time that LV2 has been targeted by Faust developers; projects such as Sampo Savolainen's Foo YC-20 organ emulation [5] or the Guitarix tube amplier simulation by Hermann Meyer and others [1] utilize Faust as well. However, the goal of faust-lv2 is dierent.

The architectures provided by faust-lv2 are completely generic and thus allow you to compile any Faust source and get a working LV2 plugin from it.

There is a growing collection of Faust programs • If the dsp denes any controls with corresponding MIDI mappings (midi:ctrl attributes in the Faust source), the plugin also provides an LV2 MIDI input port and interprets incoming MIDI controller messages accordingly.

• Plugin name, description, author and license information provided as metadata in the Faust source are translated to the corresponding elds in the LV2 manifest of the plugin.

The architectures also recognize the following Faust control metadata and set up the LV2 control port properties accordingly. Note that some of these properties rely on extensions which may not be supported by all LV2 hosts. Please refer to the LV2 documentation for a closer description of these options.

• The unit attribute (e.g., [unit:Hz]) in the Faust source is translated to a corresponding LV2 unit attribute. The host may then display this information in its GUI rendering of the plugin controls.

• LV2 scale points can be set with the lv2:scalePoint (or lv2:scalepoint) attribute on the Faust side. The value of this attribute in the Faust source takes the form of a list of pairs of descriptive labels and corresponding values, for instance: toggle = button("trigger [lv2:scalepoint on 1 off 0]");

The host may then display the given scale points with a descriptive label in its GUI.

• The lv2:integer attribute in the Faust source is translated to the lv2:integer LV2 port property, so that the control may be shown as an integer-only eld in the host's GUI.

• The lv2:hidden or lv2:notOnGUI attribute maps to the LV2 notOnGUI port property, so that hosts honoring this property may suppress the display of this control in their GUI.

It is worth noting here that the special treatment of MIDI controllers and metadata in the Besides all of the features of the audio plugins described above, plugins created with the lv2synth architecture also provide the necessary logic to drive a polyphonic synth with automatic voice allocation. To make this work, the Faust dsp must be able to function as a monophonic synth which provides controls named freq, gain and gate to set the pitch (as a frequency in Hz), velocity (as a normalized value in the range 0...1) and gate (as a binary 0 or 1 value) of a note, respectively; the example below illustrates how this is done. The desired maxi-mum number of voices can be congured with the --nvoices option (when using the faust-lv2 source package) or by setting the NVOICES macro in the lv2synth.cpp le accordingly. The plugin will manage at most that many instances of the Faust dsp. The actual number of voices can be changed dynamically from 1 to NVOICES with a special Polyphony control provided by the plugin.

This kind of plugin always provides a MIDI input port and interprets incoming MIDI note and pitch bend messages, as well as a number of General MIDI standard controller and system exclusive (sysex) messages, as detailed below.

By default, the synth units have a pitch bend range of ±2 semitones (General MIDI default) and are tuned in equal temperament with A4 at 440 Hz. These defaults can be adjusted as needed using some of the controller and sysex messages described below.

• The all notes o (123) and all sounds o (120) MIDI controllers stop sounding notes on the corresponding MIDI channel.

• The all controllers o (121) MIDI controller resets the current RPN (registered parameter number) and data entry controllers on the corresponding MIDI channel (see below).

• Compiling the plugin works as with audio plugins, using faust2lv2synth in lieu of faust2lv2: faust2lv2synth organ.dsp

You'll get an organ.lv2 folder which you simply copy to your LV2 library directory to have the plugin recognized. In addition to the target-specic options recognized by faust2lv2, faust2lv2synth also lets you specify the desired maximum number of voices with the -nvoices option which takes the desired number of voices as its argument (the default is 16). In principle, any positive integer can be specied here, but the feasible range will of course depend on how much cpu power you have to spare.

Figure 3 shows the organ.lv2 instrument along with some other Faust-generated LV2 plugins running in Qtractor.

Special features and limitations

In this section we discuss some notable features and limitations of the Faust LV2 implementation. The generated plugins should work with any LV2 1.0 compatible host which supports either the urid or the older uri-map extension (most if not all LV2 hosts will have this). MIDI input requires a host capable of delivering MIDI events through LV2's event extension. faust-lv2 also supports the dynmanifest extension (see Section 4.2 below), but this is an optional feature which is by no means required for proper operation of the plugins.

MIDI tunings

The MTS support of instrument plugins mentioned in the previous section calls for a more detailed explanation. The general format of the supported MTS messages is as follows (using hexadecimal notation): f0 7f/7e id 08 08/09 bb bb bb tt ... tt f7

Note that the f0 7f and f0 7e headers are used to denote a universal realtime and nonrealtime sysex message, respectively, and thenal f7 byte terminates the message. Both types of messages will take eect immediately, but the realtime form will also change the frequencies of already sounding notes. The device id can be any 7-bit value from 00 to 7f and will be ignored, so that the unit will always respond to these messages, no matter which device id is specied. The following 08 id denotes an MTS message, followed either by the 08 subid to denote 1-byte, or the 09 subid to denote 2-byte encoding (see below).

The lv2synth architecture keeps track of separate tunings for dierent MIDI channels. The three bb bytes together specify the bitmask of MIDI channels the message applies to, most signicant byte rst; the bitmask 03 7f 7f thus sets the tuning for all MIDI channels, while the declare name "organ"; declare description "a simple additive synth"; declare author "Albert Graef"; declare version "1.0"; import("music.lib");

// control variables vol = hslider("vol", 0.3, 0, 10, 0.01); // % pan = hslider("pan [midi:ctrl 10]", 0.5, 0, 1, 0.01); // % attack = hslider("attack", 0.01, 0, 1, 0.001); // sec decay = hslider("decay", 0.3, 0, 1, 0.001); // sec sustain = hslider("sustain", 0.5, 0, 1, 0.01); // % release = hslider("release", 0.2, 0, 1, 0.001); // sec freq = nentry ("freq", 440, 20, 20000, 1); // Hz gain = nentry("gain", 0.3, 0, 10, 0.01); // % gate = button("gate"); // 0/1 // relative amplitudes of the different partials amp(1) = hslider("amp1", 1.0, 0, 3, 0.01); amp(2) = hslider("amp2", 0.5, 0, 3, 0.01); amp(3) = hslider("amp3", 0.25, 0, 3, 0.01);

// additive synth: 3 sine oscillators with adsr envelop partial(i) = amp(i+1) * osc((i+1) * freq); process = sum(i, 3, partial(i))

* (gate : vgroup("1-adsr", adsr(attack, decay, sustain, release))) * gain : vgroup("2-master", * (vol) : panner(pan)); (Qtractor allows you to enter the sysex messages in its Buses dialog. Ardour 3 doesn't support editing sysex messages yet, but it is still under development, so there is hope that this will be xed before the nal release.) A large repository of historical and contemporary microtonal tunings is available on the website of the Scala program; writing a little script to convert the Scala tuning les to binary sysex les in one of the formats described above should be a fun exercise for Linux audio developers.

Dynamic manifests

Plugins created with faust-lv2 support the LV2 dynamic manifest extension, so that all requisite information about the plugin's name, author, ports, etc. can also be included in the plugin module (.so le) itself. This also cuts down the compilation time since the manifest doesn't have to be generated from the plugin executable • Add improvements for smoother playback.

In particular, the polyphony control provided by lv2synth.cpp is fairly disruptive right now, as it simply resets all voices each time the control changes.

• Add custom plugin GUIs which honor the hierarchical GUI layout dened in the Faust source. Corresponding code is readily available in other Faust architectures such as jack-gtk and jack-qt, but would need to be integrated with the LV2 architectures and the LV2 GUI extension.

• Update the architectures so that they employ the new atom-based interface for MIDI input instead of the older (and now deprecated) LV2 Event extension.

• Add support for the new LV2 Time extension, which provides transport information such as the current position, tempo and time signature to a plugin.

• Implement MIDI output for passive Faust controls. It's unclear if and how existing LV2 hosts would process such data, however, so there's still some research to be done there.

Besides these, LV2's extensible nature might call for completely new plugin types in the future.

While the audio and instrument plugin types implemented by faust-lv2 seem to cover the requirements of the current generation of DAWs, it is good to know that Faust's and LV2's modular nature will make it easy to support new types of audio applications when they emerge.

Faust

 source can also be turned o, either with corresponding waf congure options (when using the faust-lv2 source package) or by disabling corresponding conditional compilation symbols in the lv2.cpp le.For instance, consider the chorus.dsp example in the faust-lv2 source (cf. Fig.1).

Figure 1 :

 1 Figure 1: Faust program chorus.dsp.

 also fully supports instrument plugins a.k.a. software synthesizers, which can be employed as the head of the synth-eects chain in a MIDI track of your DAW. These are implemented by a separate lv2synth architecture.

•

 The registered parameters (RPNs) 0 (pitch bend range), 1 (channel ne tuning) and 2 (channel coarse tuning) can be used to set the pitch bend range and ne/coarse master tuning on the corresponding MIDI channel in the usual way, employing a combination of the RPN (101, 100) and data entry controller pairs (6 and 38, as well as 96 and 97). Please check the MIDI specication for details. Universal realtime and non-realtime scale/octave tuning messages following the MIDI Tuning Standard (MTS), Section MIDI Tuning Scale/Octave Extensions, can be used to set the synth to a given octave-based tuning specied as cent osets relative to equal temperament, which is repeated in every octave of the MIDI note range 0...127. Please check Section 4.1 below for further details.For instance, consider the organ.dsp example from the faust-lv2 distribution (cf. Fig.2).Note the freq, gain and gate controls which turn this Faust dsp into a monophonic synthesizer. Polyphony with automatic allocation of up to NVOICES voices is implemented in the plugin architecture. Also note the midi:ctrl 10 attribute in the label of the pan control. This is Faust control metadata which denotes that MIDI controller 10 (the MIDI pan position controller) should be associated with this control value. The plugin architecture will add a MIDI input port and the required MIDI controller processing to the plugin in order to implement this.(Whether your LV2 host actually passes such MIDI controller messages to the plugin depends on the host, though.)

Figure 2 :

 2 Figure 2: Faust program organ.dsp.

Figure 3 :

 3 Figure 3: faust-lv2 plugins running in Qtractor.