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Based on the reported literature and commonly used metrics in the realm of solar forecasting, a new methodology is
developed for estimating a metric called forecastability (F). It reveals the extent to which solar radiation time series
can be forecasted and provides the crucial context for judging the inherent difficulty associated to a particular forecast
situation. Unlike the score given by the standard smart Persistence model, the F metric which is bounded between 0%
and 100% is easier to interpret hence making comparisons between forecasting studies more consistent. This approach
uses the Monte Carlo method and estimates F from the standard error metric RMSE and the Persistence predictor.
Based on the time series of solar radiation measured at 6 very different locations (with optimized clear sky model) from
a meteorological point of view, it is shown that F varies between 25.5% and 68.2% and that it exists a link between
forecastability and errors obtained by machine learning prediction methods. The proposed methodology is validated for
3 parameters that may affect the F estimation (time horizon, temporal granularity and solar radiation components) and
for 50 time series relative to McClear web service and to the central archive of Baseline Surface Radiation Network.

I. INTRODUCTION10

The intermittent nature of the solar resource and conse-11

quently the difficulty of its prediction constitutes a limiting12

factor for a greater integration of solar power generation in13

the energy field1. In the solar forecasting community, many14

researchers use different metrics in order to assess the diffi-15

culty in generating good forecasts for different climates2. One16

first possibility is to estimate the solar variability embodied in17

the solar time series. Variability is devoted to the quantifica-18

tion of the lack of consistency and gives a way to describe19

to which extent data sets vary3. This type of metric is used20

to compare the data at hand to other sets of data. Some au-21

thors, like Marquez and Coimbra 4 , Perez and Hoff 5 or Blaga22

and Paulescu 6 have endeavoured to describe mathematically23

this variability while most of the others researchers consid-24

ered this characteristic of the solar irradiance time series as a25

basic assumption and have made efforts to implement predic-26

tive strategies of increasing complexity7. As often in physics,27

the description and especially the understanding of phenom-28

ena that are causing a problem (i.e., the difficulty of predicting29

solar irradiance/irradiation or the solar radiation components)30

leads to a better characterization of the situation8,9.31

Variability of global horizontal solar irradiation (GHI) is32

due to two terms. The first one originates from the predictable33

geometric trajectory of the sun while the second unpredictable34

component is due to effects induced by the atmosphere and35

the clouds. These unpredictable effects are captured by the36

clear sky index k∗t defined as the ratio of the global horizontal37

irradiation GHI to GHIc (GHI under clear sky conditions). In38

Perez and Hoff 5 and Marquez and Coimbra 4 , k∗t is the key39

a)Also at hospital of Castelluccio - Radiotherapy Unit, Ajaccio, Corsica,
France.; Electronic mail: voyant_c@univ-corse.fr

parameter used to calculate the variability. In the first paper,40

for a specific time scale ∆t of the time series, variability is41

given by the standard deviation of the changes in the clear sky42

index denoted by σ(∆k∗t ∆t ) while the second one proposes to43

evaluate variability by computing the magnitude of the ramp44

rates (i.e. changes in the clear sky index). Other authors like45

Fouilloy et al. 10 and Voyant et al. 11 estimated the variability46

of the solar irradiation time series by quantifying the mean47

absolute log return. Although the results were interesting, the48

lack of theoretical consistency (passing through the L1 norm)49

and the absence of normalization militate for a proposition of50

a new approach.51

As mentioned above, the variability metrics computed at52

different time scales can be used as proxys to estimate the dif-53

ficulty in forecasting in some particular sites. However, these54

kind of metrics are independent of the forecasting time hori-55

zon and consequently are not suited for a detailed evaluation56

of the intrinsic difficulty related to a specific forecasting con-57

text.58

Furthermore, and as stated by Pedro and Coimbra 2 , it59

would be interesting to have an idea of the expected perfor-60

mance of the prediction models prior to their implementation61

and performance evaluation. To the best of our knowledge, in62

the realm of solar forecasting, Pedro and Coimbra 2 were the63

first to propose a combination of two metrics in order to assess64

the forecasting performance one may expect before any fore-65

casts are generated for a particular site. The authors defined66

such as an a priori assessment as the forecastability. The two67

proposed metrics (computed for each forecast horizon) are re-68

spectively the density of large irradiance ramps (i.e. the den-69

sity of changes in k∗t ) and a statistical metric called the time70

series determinism. Unfortunately, the combination of the two71

metrics to assess forecastability seems quite complicated and72

makes interpretation of the results difficult.73

Before going further, it must be emphasized that the term74

predictability instead of forecastability is also used by some75
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authors like Yang 12 . In this work, and based on a biblio-76

graphic survey, we opt for the notion of forecastability. Based77

on a rather general bibliographic survey, the next subsection78

tries to shed some light on the difference between predictabil-79

ity (P)13 and forecastability (F)14i.80

A. Difference between forecastability and predictability81

One of the first references about the forecastability and the82

time series formalism is the result of the work of the co-83

recipient of the Nobel Prize Clive W.J. Granger15. Authors84

define it as the variance of the optimal forecast divided by the85

unconditional variance of the time series. This definition and86

the resulting Q parameter (forecastability quotient) were ex-87

tensively studied in economics, gradually giving way to new88

kind tools as sample and approximate entropy16, correlation89

and mutual information metrics17.90

These two notions (P and F) are conceptually very close: if91

the predictability (P)18 studies how trajectories of the true sys-92

tem diverge19, the forecastability (F) describes how a model93

trajectory diverges from a true system trajectory14. A common94

explanation is that a predictable process is able to be predicted95

while a forecastable one is able of being forecasted. With this96

last definition, the concept of modelling appears, thereby a97

forecastable system is necessarily predictable but the opposite98

is not true ii. The predictability term which is often used with99

dynamic processes, is closely related to notions like causality100
21 or chaos (i.e. failure of predictability22), found for example,101

in all weather series and where the typical predictable times102

(or barriers) concerns the prediction horizons smaller than 1103

or 5 days23. In the context of the present study (nowcasting or104

very short term), the chaotic aspect is not directly studied, so,105

the term forecastability seems more suitable than predictabil-106

ity one even if, to the best of our knowledge, there isn’t any107

consensus on that.108

Note that other concepts could have been detailed here (ob-109

servability and detection reliability24) but they do not have110

much sense in the study of solar radiation given the quantities111

involved are directly measurable and the associated uncertain-112

ties are very low.113

B. Framework of the study114

As has been done for wind speed forecasting25, one may115

also use the performanceiii26. of the Persistence (P) model116

which is, in this work, related to a persistent clear sky index117

i In this paper, authors assume that ”forecastability is not the same thing as
predictability”

ii Kumar and Chen 20 highlight this difference stating ”inherent predictability
being the upper bound of forecastability”

iii The performance of deterministic forecasting models are also usually re-
ported by the root mean square error (RMSE) and its normalized counter-
part (nRMSE) obtained by dividing the RMSE by the mean of the irradia-
tion values

k∗t . More precisely, the nRMSE obtained by this reference118

model can be used to gauge the forecastability of a particu-119

lar site. However, although this method is feasible, it would120

not provide the same type of information. Indeed, a Persis-121

tence forecast with an nRMSE equal to 20 % is not sufficient122

to consider if the site is related to a high or a low forecastabil-123

ity. It depends on the kind of solar component (direct, diffuse,124

global), on the forecast horizon, on the latitude, on the to-125

pographic relief, on the nebulosity, etc. For instance, for GHI126

hourly data and 4-hour forecast horizon, a Persistence forecast127

with an nRMSE equal to 20% could be an indication of a high128

forecastability, but for GHI data with a 5-min granularity and129

for a 5-min forecast horizon, certainly not. Put differently, the130

main drawback of using the score of the reference Persistence131

model is that it is not bounded by an upper limit.132

In this work, the objective is to propose a forecastability133

metric (denoted hereafter F) which is easy to compute and134

easy to interpret. In other words, this new metric should pro-135

vide users a global reference in order to assess the inherent136

difficulty to issue forecasts for a specific site and consequently137

if it makes sense to add an extra effort to build more and more138

complex forecasting models. Additionally, it would be de-139

sirable to relate in a simple way this (ex-ante) forecastability140

metric with the (ex-post) skill score metric defined by Mar-141

quez and Coimbra 4 . Hence, the F metric should be helpful142

in comparing the numerous forecasting methods proposed by143

the community.144

To compute the F metric, the user will need to compute the145

RMSE of the Persistence model iv. Moreover, as it will be dis-146

cussed in section III C, this approach will allow adapting the147

forecastability with the forecast horizon and with the different148

components of the solar radiation.149

The rest of the manuscript is structured in four sections.150

The first one (section II) presents the mathematical formula-151

tion of the forecastability F . In section III, the sensitivity of152

F to various parameters is evaluated while in section IV is153

proposed an estimate of F concerning 50 time series of GHI.154

Finally, Section V gives some conclusions and some perspec-155

tives.156

II. ESTIMATION PROPOSAL FOR F157

Before proposing a new method to estimate the forecasta-158

bility F , it is important to understand why in the existing for-159

malism of the solar radiation time series, some elements could160

be improved. As discussed in the introduction, in the time se-161

ries domain, the variability (V ) is often estimated by comput-162

ing the variance6. In the context of solar radiation, the time163

series data are very particular in the sense that the underlying164

trend is periodic and easily quantifiable using robust models165

validated by the community.166

These models are denoted clear sky models27 and they cor-167

respond to the solar irradiation estimated under clear sky con-168

ditions (GHIc) and computed from the sun position and vari-169

iv Which does not require any additional effort and calculation since the
RMSE of the reference Persistence model is systematically computed in
the solar forecasting studies (e.g., for skill score calculation).
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FIG. 1. Intuitive relationship between forecastability (F) and vari-
ability (V )

ous meteorological parameters characterizing the atmosphere170

state. Among others, one can cite the Kasten, Bird, ESRA,171

Solis, McClear, SMART S, etc. models. The clear sky models172

are extensively used in the literature28,29 to build increasingly173

powerful predictive models and thus it is essential to use this174

specificity in our turn to quantify the forecastability.175

A. The use of the specifics of solar radiation time series176

Figure 1 permits to intuitively introduce the notion of fore-177

castability. Figure 1(a) presents a Gaussian noise signal. In178

this non-periodic case, one can assume that the forecastability179

and the variability are strongly linked (F ' 1−V ). In other180

words, when the variance of the signal increases, the fore-181

castability decreases. Conversely, for a periodic time series182

data, the conclusion is different as shown in Figure 1(b) with183

a cosine function. Even if the variability is important, one can184

not conclude that forecastability is low (F 6' 1−V ) if there is185

a way to estimate the trend and seasonality present in the time186

series. In the present case, the prediction becomes easy using187

a simple trigonometric function.188

In the case of the global solar irradiation, if one attempts to189

estimate the forecastability of the GHI time series, it must190

certainly rely on a clear sky modeling of the global hori-191

zontal irradiation. With this assumption, a methodology to192

estimate F based on a detrending of the GHI time series193

or rather on a seasonal adjustment like the clear sky index194

(k∗t (t) = GHI(t)/GHIc(t)) is proposed hereafter.195

B. Interest of the normalization in computing F196

In statistics, normalization is a very frequently used tech-197

nique which refers to the creation of shifted and scaled ver-198

sions of certain variables (see normalization of scores pro-199

posed by Dobson 30 ). The primary intent of this change is200

that these normalized values promote the comparison of a cer-201

tain effect for different data sets in a way that eliminates the202

effects of certain gross influences.203

In order to exemplify the interest to make use of the nor-204

malization in the calculation of F , Figure 2 shows one day205

of modelled GHIc for two sites with different solar potential.206

FIG. 2. Clear sky modeling vs noisy data for two sites with different
solar potential

Figure 2 plots also a synthetic time series (denoted here noisy207

data) built from the sum of an uniform white noise (same level208

of noise for the left and right parts of the figure) plus 80% of209

the GHIc values. Although this example covers only one day,210

it highlights phenomena that occur annually for two sites with211

high and low solar energy potential or for one site when it212

is studied during two different periods of the year (summer213

and winter for instance). When a prediction is performed and214

when an usual relative error metric like the normalized root215

mean squared error (nRMSE) is computed, the impact of the216

noise is more detrimental in the left case. The nRMSE re-217

lated to the left part of the Figure 2 is 65.6% (49.2% with218

nighttime filtering) while for the right part it is 45.9% (39.8%219

with nighttime filtering). With an estimate of F that does not220

take into account the solar potential of the site, these two GHI221

curves could be characterized by an identical F given that the222

two signals are constructed in the same way. This problem-223

atic prompts us to propose a normalized formulation of F that224

takes into account the studied site and its characteristics (in-225

cluding the data filtering process) as we will see in the follow-226

ing subsection.227

Again, it may seem tempting to quantify the forecastabil-228

ity relying solely on the interpretation of the nRMSE of the229

Persistence forecast. But, as already stated in the introduc-230

tion, this way of proceeding does not make it possible to rule231

on the forecastability regarding particular forecast horizons or232

time scales present in the data. Finally, we explain in Annex233

A why the normalization can’t be operated by a simple use of234

the mean of GHIc.235

C. Mathematical formalism for calculating F236

In what follows, we detail the mathematical formalism us-237

ing the GHI. This formalism can be derived for the other solar238

radiation components but will not be given here.239

The most used model as naive or reference predictor in240

the solar forecasting community is the so-called Persistence241

model v defined in this work by the Persistence of the clear242

v Naive forecasts serve as a placebo in evaluating the performance of fore-
casting processes
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sky index k∗t . It has the advantage to be quickly implemented243

without resorting to a learning phase nor having access to a244

large set of historical data31. Note that recent studies have245

highlighted the use of “improved” Persistence model such246

as an optimal convex optimization of Persistence on k∗t and247

climatology12. As currently this type of model is not yet a248

common used model in the solar forecasting studies, it will249

be not tested in this study. In addition, using this kind of250

“smart” Persistence instead of the classical persistence would251

marginally impact the evaluation of the inherent difficulty of252

a forecast situation provided by the F metric.253

The Persistence model is also considered as the ref-254

erence for calculating the forecast skill score SS = 1 −255

RMSE/RMSEP
32 where RMSE26 is the root mean square er-256

ror related to the studied model and RMSEP is the score of the257

Persistence model. The error metric RMSE computed for the258

time index set T reads as (circumflex for the prediction):259

RMSE =

√
1
n

n

∑
t=1

(
GHI(t)− ĜHI(t)

)2

,∀n ∈ T. (1)

The Persistence forecast estimates at the time t + 1 (i.e.260

̂GHI(t +1)) uses the clear sky modelling value (GHIc) and261

is given by Equation 2.262

̂GHI(t +1) = GHI(t)× GHIc(t +1)
GHIc(t)

(2)

Given the RMSE score obtained by the Persistence predic-263

tor (RMSEP), the formulation of F is based on a normaliza-264

tion involving an estimation of the maximum and minimum265

values that the RMSE can reach (respectively RMSEmax and266

RMSEmin) for a particular site. Hence, Equation 3 defines F .267

F = 100%× RMSEmax−RMSEP

RMSEmax−RMSEmin
(3)

With this metric, when RMSEP = RMSEmin (the lowest ac-268

ceptable value) F = 100% and when RMSEP = RMSEmax (the269

highest allowable value) F = 0%. The F score is therefore270

between 0% and 100%. RMSEmin is reached when the fore-271

castability is maximum i.e. cloudless sky and clear sky condi-272

tions with GHI(t) = GHIc(t). In this case, k∗t is always equal273

to 1 and the Persistence model is an ideal predictor inducing274

RMSEmin ' 0 (not really observable in practice but it is a nec-275

essary theoretical condition for the presented methodology)vi.276

According to this simplification, the updated version of F is277

as follows:278

F ≈ 100%×
(

1− RMSEP

RMSEmax

)
(4)

vi inducing 2 assumptions: there are no clouds and the clear sky is perfectly
defined. Unfortunately, neither is physically realistic, if the first hypothesis
is rarely established (except in desert regions and not yet, during the whole
year), the second one is dependent on modeling, and as it will be visible in
Section III B, the errors of the clear sky can vary between 1% and 5%

RMSEmax (purely theoretical parameter defined over the de-279

sired period: months, years, etc.) is reached when the pre-280

diction is not possible thus when the predictability becomes281

too low for a model to be relevant. For example, on Ajaccio282

within the framework of an hourly study of the GHI, what-283

ever the method used, its RMSE will be between RMSEmin284

(= 0Wh/m2) and RMSEmax (= 249.7Wh/m2). This last limit285

case occurs when there is no link (in the sense of statistical de-286

pendence) between the future elements of the time series and287

the present ones. We artificially generated a k∗t time series288

with elements governed by a random process and an uniform289

probability distribution (ε(t), between 0 and 1 - See Equation290

5 below). This is equivalent to uniformly distribute GHI(t)291

between 0 and GHIc(t).292

This approach obviously excludes the phenomenon of over-293

irradiance33 (i.e. k∗t > 1). However, when the granularity of294

the GHI time series is greater than a few minutes, we assume295

that these phenomena are rare enough to consider values of k∗t296

greater than 1 as unsignificant events. Moreover, for example297

in Ajaccio, the values of measured k∗t maximum (time gran-298

ularity of 1h and horizon 1h) fluctuate considering the year299

used as a basis for the calculation (between 1.76 in 2000 and300

2.08 in 1999). So considering the available years, the value of301

F (which depends indirectly on the value of the k∗t maximum302

if the latter is not taken equal to 1) would fluctuate a lot. Con-303

sequently, and in order to keep the methodology as simple as304

possible, we limit the generation of random k∗t between 0 and305

1.306

Figure 3 shows the methodology used to estimate F307

for a specific site using pseudo-random numbers generator308

(Matlab®)34. The methodology, although different from what309

is usually the goal of a Monte Carlo method35, is based on a310

computational algorithm that relies on repeated random sam-311

pling to obtain numerical results36.312313

From the definitions of the RMSE (Equation 1) and the314

Persistence model (Equation 2), it is possible to calculate the315

RMSEmax score in relation with the GHIc(t) value and pseudo-316

random numbers series denoted by ε(t). Posing k∗t (t) = ε(t)317

and k∗t (t− 1) = ε(t− 1), it is possible to integrate these val-318

ues in Equation 1 considering that GHI(t) = k∗t (t).GHIc(t).319

Therefore, RMSEmax reads as:320

RMSEmax =

√√√√1
n

n

∑
t=1

(
GHIc(t)×

(
ε(t)− ε(t−1)

))2

(5)

Obviously, the approach set out here is only possible if the321

number n of random samples in Equation 5 is large enough. In322

practice, more than 1000 samplesvii are necessary to obtain a323

fairly estimate of F . As a consequence, more than 1000 pairs324

of forecast/measurement are necessary to compute the score325

of the Persistence model in Equation 4.326

It is easy to notice in Equation 5 that RMSEmax depends327

on a variable with a physical meaning namely GHIc(t). As a328

vii but the higher the number n, the better the estimate of F .
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FIG. 3. Methodology to estimate the forecastability (F)

consequence, two sites with the same clear sky characteristics329

will exhibit the same RMSEmax score. Two possibilities exist330

(Figure 3), either to use random numbers (the most efficient331

method, see Algorithm 1 for RMSEmcarlo
max ), or to make hy-332

potheses (which we will detail in the following RMSEanalytic
max )333

and use an analytical version of the parameter F . For the sec-334

ond way, as a first approximation, it is not necessary to take335

into account all the parameters needed to compute the clear336

sky model.337

Algorithm 1: Calculate RMSEmcarlo
max

Require: clear sky time series GHIc
for all t ∈ T do

generate ε(t)a ∈ (0,1)
GHI(t)← GHIc(t)× ε(t)
return ĜHI(t)← GHI(t−1)

end for
return RMSEmcarlo

max = RMSE(GHI− ĜHI)

a See Eq 5

With the Solis model11, the main parameter influencing the338

RMSEanalytic
max value is the latitude which is linked to the solar339

position in the sky. The RMSEanalytic
max (which is a purely the-340

oretical and statistical parameter without real physical sense)341

is, thereby, assumed equivalent for Sahara desert, Caribbean,342

coastal Mexico, south east Asia, . . . i.e. countries or regions343

along the same latitude band. This is of course a strong as-344

sumption but which is necessary if one wants to use the clear345

sky modeling (operated by the most of the researchers in the346

solar forecasting community) in simulations and not the ex-347

traterrestrial irradiation or the solar elevation. In this case,348

other setting parameters induce only slight uncertainties in the349

observed results (only verified for the tested sites in this study350

but certainly quite simply transposable to most sites that do351

not have extreme characteristics).352

Even if all existing clear sky models were not checked, this353

conclusion seems to be generalizable. Anyway, this assump-354

tion can be easily verified for all clear sky models used by355

the researchers. In the current case, an uncertainty of ±3.7%356

was found when the Aerosol Optical Depth (AOD monthly357

updated in the study) varies between 0.1 and 0.2 (these lat-358

ter values are very small compared to exceptional observa-359

tions in desert climates) or ±0.5% when the altitude fluctu-360

ates between 0 and 1000m. Note that in Ajaccio, the arrivals361

of ferries boats add a systematic pollution and the measure-362

ment of “AOD” exhibits strong intraday fluctuations which363

are not taken into account in the simulations. The estimated364

RMSEanalytic
max versus the latitude computed using the Solis365

model is plotted in Figure 4. For each latitude, monthly and366367

yearly values are given. They allow to know the magnitudes of368

the approximate RMSEanalytic
max according to the latitude and the369

periods during which solar radiation measurements are avail-370

able (month, season or overall year). A filtering process was371

applied, all data with solar elevation h < 1◦ (nocturnal values)372

are deleted because during these periods, the k∗t values are373

not defined. With another limit of filtering, the curves are no374

longer usable; hence, it is considered that the validity interval375

of the solar elevation filtering for the proposed curves of Fig-376

ure 4, is between 0◦ and 5◦ (corresponding to a RMSEanalytic
max377

difference of ±1%).378

In Figure 4, it must be noted that RMSEanalytic
max values used379

to estimate the forecastability of the considered site has been380

computed with an uncertainty close to ±5%. In the annual381

case (red line), a Gaussian fit (see Equation 6) with a slight dif-382

ference related to latitudes close to 0◦ can be used (goodness-383

of-fit of analytical method close to R2 = 0.999):384

RMSEanalytic
max = 325.9e−(

lat+1.088
79.86 )2

⇒ F = 100%×

(
1− RMSEP

325.9e−
(

lat+1.088
79.86

)2

)
(6)
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FIG. 4. The magnitudes of the RMSEanalytic
max versus the latitude. Monthly and yearly values are given.

D. Link between F and forecast skill (skill score SS)385

Currently, most of the forecasting studies evaluate the per-386

formance of the models in terms of forecast skill. As men-387

tioned in the introduction, it would be desirable to simply re-388

late the forecastability metric to a skill score. As the fore-389

castability is computed from the Persistence forecasts, it is390

straightforward to establish the link between the skill score391

(SS = 1− RMSE
RMSEP

) and F . Considering Equations 4 and Algo-392

rithm 1, Equation 7 related to the link between F and SS can393

be established as:394

SS = 1− RMSE
(1− F

100 )×RMSEmcarlo
max

(7)

For example, in Ajaccio (Corsica island) with Latitude =395

41.9◦, F = 68.2% and RMSEmcarlo
max = 249.7Wh/m2, Equation396

7 becomes a simple relationship between the skill score SS397

and the RMSE of the studied forecasting method i.e. SS '398

1−RMSE/79.399

III. FACTORS INFLUENCING F400

Some parameters influence the factor F such as the site lo-401

cation, the solar radiation component (global, beam and dif-402

fuse), the prediction horizon and the time granularity (this list403

is not intended to be exhaustive).404

A. F variation with location405

The F value quantifies the difficulty to predict the solar ra-406

diation components. Table I lists the F values for 6 locations407

(see also Figure 5): Ajaccio (Corsica island, France), Nancy408

(East of France), Odeillo (mountainous site, Pyrenées Orien-409

tales, France), Tilos (Greek island), Saint Pierre (Reunion is-410

FIG. 5. The 6 locations used to estimate F

land, France), Le Raizet (Guadeloupe archipelago, France).411

Those stations are not enough to prove the generalization of412

the forecastability. In section IV, it will be tested on 50 sta-413

tions spread all over the globe. Here the solar radiation com-414

ponent of interest is the GHI and the forecast horizon and the415

time granularity is 1 hour for all sites.416417

As shown by Table I, the higher the forecastability (F), the418

lower the error metric (nRMSE) related to predictions gener-419

ated by a multilayer perceptron (MLP10,38,39). The relation-420

ship between these two metrics is not obvious to estimate.421

However, it must be stressed that factors such as the quality of422

the measurements as well as the concordance of the measure-423

ments with the clear sky model may complicate the interpreta-424

tion. This table validates what has been widely demonstrated425

in the literature i.e. mountainous regions (Odeillo) and conti-426

nental climates (Nancy) are more difficult to apprehend than427

coastal areas (Ajaccio and Tilos). With this table, it is inter-428

esting to realize that the SS alone does not allow to judge the429
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TABLE I. Values of F and nRMSE for 6 locations

Site Köppen class37 Latitude F a nRMSE b SS b

Ajaccio Csa 41◦55′N 68.2% 18.3% 0.04
Tilos Csa 36◦25′N 64.7% 19.6% 0.02

St Pierre Aw 21◦20′S 62.4% 21.1% 0.01
Le Raizet Af 16◦26′N 58.2% 25.9% 0.07

Nancy Cfb 48◦41′N 50.2% 27.4% 0.05
Odeillo Cfb 42◦30′N 25.5% 29.9% 0.19

a See Equation 4
b Related to the MLP predictions

TABLE II. Value of F for the 3 radiation components and nRMSE41

in Odeillo site

Radiation Components F a nRMSE b SS b

Global 25.5% 29.9% 0.19
Beam 13.4% 38.2% 0.02

Diffuse 12.1% 40.9% 0.35

a See Equation 4
b Related to the MLP predictions

forecastability of a site. Indeed, it only indicates the degree of430

improvement that the predictive methodology generates (MLP431

in this case) with respect to persistence. By reasoning simply,432

two totally different phenomena can be characterized by the433

same SS. It is that one observes with a constant (thus persis-434

tent) phenomenon, F = 100% logically but SS = 0 also be-435

cause one cannot do better than a forecast by persistence. In436

the same way, a white noise with F = 0% is also characterized437

by SS = 0 because here again it will not be possible to do bet-438

ter than a simple persistence. Therefore, SS cannot be a good439

indicator of forecastability.440

B. F evolution with the solar radiation components441

The methodology used to compute F can be applied to the442

3 components of solar radiation (global, beam and diffuse)40.443

The only prerequisite is to estimate the clear sky solar value444

corresponding to each component. Table II gives the F values445

and the prediction errors for Odeillo (the site with the most446

important variability, for a forecast horizon and a time granu-447

larity of 1 hour10,39).448

As shown by Table II, the other solar radiation components449

(beam and diffuse) exhibit lower F values than the one esti-450

mated for the GHI. Conversely to global irradiation, the clear451

sky modelling for the beam and diffuse components is less452

efficient. As an illustration, the values obtained with the sim-453

plified Solis version are within 1% for the global component,454

2% for the beam component and 5% for the diffuse component455

(read Ineichen 42 for details). In this subsection, the conclu-456

sion is similar than the one stated in subsection III A that is457

nRMSE trend is a bijective function of F but the relationship458

FIG. 6. Forecastability and prediction horizons (F computed from
RMSEP found in10,38,41)

between F and nRMSE is non-linear. However, the difference459

in forecastability between Beam and Diffuse components is460

close to 1% while the nRMSE fluctuates by more than 2 per-461

centage points. Consequently, it must be stressed that the pro-462

posed methodology for estimating F will not be relevant if463

the clear sky model related to the solar radiation component464

of interest lacks precision.465

C. F evolution with the forecast time horizon466

Intuitively, it makes sense to think that the longer the fore-467

cast horizon, the lower the forecastability. This fact is verified468

for all the locations depicted in Figure 6 and particularly for469

Ajaccio with GHI time series of 1 hour time granularity. The470

F factor is halved in value when the lead time goes from 1h to471

6h for all the locations. The related prediction errors nRMSE472

generated by the MLP39 predictor in Ajaccio are respectively473

18.3%, 29.5%, 31.2%, 33.0%, 33.8% and 34.5%. It can be474

noted that between the 5 and 6 hours horizons, the estimates of475

F are not significantly different for most of the studied cities.476477

D. F variation with time granularity478

In Table III, it can be seen that for Tilos (the only site where479

10 minutes data were available), when we realized global irra-480

diation forecasts (MLP39) for horizons of respectively, 1 hour,481

15 minutes and 10 minutes10, the conclusion follows the logic482

observed so far that is F and nRMSE are strongly statistically483

dependent and when one increases the other decreases.484485

E. Conclusion about the F estimation486

This section showed the link between the F factor com-487

puted from Equation 4 and some parameters frequently used488

in studies related to the prediction of global irradiation or so-489

lar radiation components through the time series formalism.490

In Figure 7, this link can be estimated by comparison be-491

tween the forecastability value and the prediction error related492

to MLP forecasts. For each kind of parameters (respectively493
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TABLE III. Value of F according to the time granularity and nRMSE
realated to MLP prediction10 in Tilos island

Time Granularity F a nRMSE b SS b

1 hour 64.7% 19.6% 0.02
15 minutes 82.5% 15.6% 0.06
10 minutes 87.4% 12.8% 0.04

a See Equation 4
b Related to the MLP predictions

FIG. 7. Relationship between F and prediction error nRMSE. Linear
fits are provided in order to better highlight the monotonic relation-
ship between F and nRMSE.

the location, radiation component, the time granularity and the494

lead time) the link between nRMSE and F is monotonic and495

when F increases the error metrics decreases. The relation-496

ship is not linear and certainly depends on the predictor used497

(MLP in our case). What is verified is that when the forecasta-498

bility is good (in the sense of a high value of F) the forecast499

becomes easier.500

IV. RMSEmcarlo
max AND F CALCULATED FROM 50 TIME501

SERIES OF GHI502

In order to not limit the conclusions of this study to the only503

time series studied in the previous simulations, we propose504

here to estimate RMSEanalytic
max , RMSEmcarlo

max and F from data505

directly provided by large consortia working in the field of506

acquisition, processing and modeling of solar radiation (year507

2015, 1h time granularity and horizon).508

A. Comparison between RMSE
analytic
max and RMSEmcarlo

max509

using McClear time series510

In this section, we propose to estimate RMSEmax from Mc-511

Clear web service series. The calculation methodologies pre-512

viously developed and based from random number generation513

(Cf RMSEmcarlo
max in section II C) and based solely on the lati-514

tude (RMSEanalytic
max computed from Eq 6) are compared. The515

characteristics of the time series are available in Appendix B516

FIG. 8. Ratio = RMSEmcarlo
max /RMSEanalytic

max considering elevation
and latitude. 82% of ratio value are comprised between 0.9 and 1.1.

(Table IV). The way of calculating the forecastability from517

random numbers (Figure 3) is synthesized by Algorithm 1,518

which can be applied from anywhere on the surface of the519

globe, as long as a clear sky radiation estimate (GHIc) is520

known but above all optimized to be as reliable as possible.521

Figure 8 makes it possible to quantify the difference be-522

tween a direct calculation (RMSEmcarlo
max described by Algo-523

rithm 1) and the use of Equation 6 (RMSEanalytic
max ). We can524

appreciate a good match between these two ways of operat-525

ing. However, stations abbreviated as (see Table IV) COC,526

DOM, FLO, GAN, GOB, GUR, HOW, ISH, TIR are the sta-527

tions with more than 10% of difference between the two meth-528

ods (the mean of ratio is 0.95). There are several ways for529

understanding these discrepancies, such as considering only530

the latitude in Equation 6 or the fact that no post-processing531

was performed with the McClear model. This model is un-532

doubtedly one of the best performing model at the present, but533

there are some uncertainties relating to certain locations that534

have been reported in the literature. For example, Laguarda535

et al. 43 reported errors related to the use of McClear model536

close to 5% in average and which can reach more than 10%537

some particular periods.538

As a synthesis, we cannot therefore make an objective de-539

cision as to the quality of the forecastability calculation based540

solely on the latitude of the site. However, we can think that541

this way of proceeding is not in total contradiction with the542

direct calculation (Algorithm 1), which is relatively simple to543

implement and it is certainly preferable to undertake it if one544
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FIG. 9. Boxplots concerning RMSEmcarlo
max and F computed from Mc-

Clear and BSRN data

wants precise results.545

B. F calculation concerning 50 BSRN stations546

In this section we propose F estimates (Equation 4) from547

RMSEmcarlo
max computed with McCLear model and Algorithm548

1. The measurements (BSRN data) are kindly provided by the549

renowned World Radiation Monitoring Center (Annex B and550

Table IV). The distributions of the F and RMSEmcarlo
max values551

can be seen in Figure 9 (average respectively close to 60%552

and 250 Wh/m²). The interpretation of the results should be553

taken lightly, because, as we have seen before, the determi-554

nation of the RMSEmcarlo
max depends strongly on the clear sky555

model used. During these simulations, there was no post-556

processing to improve the reliability of the model contrary to557

what was done during the simulations relating to the sections558

III A to III D. Moreover, sometimes long acquisition periods559

were unusable making the calculation of forecastability cer-560

tainly irrelevant for certain series. As could be expected, it is561

nevertheless possible to notice a large dispersion of the values562

of F (from 25% to 82%). The site with the lowest variability563

is in Japan (SAP) and the site with the highest, in Antarctica564

(DOM). Note that latitude is not a sufficient factor to judge565

forecastability. Indeed, two sites with the same latitude like566

IZA and GUR may have the same F value while others like567

DRA and E13 may have totally different F values. With this568

study we must valid that forecastability does not allow to pose569

whether a meteorological phenomenon will be easily or to-570

tally predictable (the role of predictability; see introduction571

part I A). The forecastability can be seen as the efforts to be572

implemented to carry out a forecast not of a meteorological573

phenomenon (such as cloudiness because it is indirectly what574

is done when modelling the GHI) but of the measurement of575

the latter under certain constraints (clear sky quality, horizon,576

time step, component, inclination, etc.).577

V. CONCLUSIONS AND PERSPECTIVES578

In the solar energy forecasting community, it is common to579

read more and more papers proposing increasingly complex580

forecasting methodologies and whose conclusions are limited581

to state that the proposed new method outperforms the previ-582

ous ones without any consideration of forecastability or pre-583

dictability. However, the inherent difficulty related to a par-584

ticular forecasting situation should be studied prior the im-585

plementation and testing of a forecasting model. Put differ-586

ently, statements regarding the quality of the generated fore-587

casts must account for the forecastability of the variable of588

interest.589

In this paper, a simple new methodology based on the590

RMSE metric and the Persistence model was presented to591

estimate the forecastability F of the solar radiation compo-592

nents. This F metric is defined like a percentage between593

0 and 100% and is very easy to interpret. The formalism594

used is reminiscent of what has been proposed in the litera-595

ture over the past 10 years but with some small modifications596

and a normalization process based on a Monte Carlo approach597

(RMSEmax). Two ways of doing so were proposed: calculate598

RMSEmcarlo
max or make an analytical approximation of the latter599

by calculating RMSEanalytic
max . Even if the latter method gives600

good results, the first one, while being very easy to imple-601

ment, is preferable and we recommend it. The results of the602

simulations validate the proposed theoretical framework and603

it appears that it is quite simple to quantify the forecastability604

(see Equation 6 and Algorithm 1) regardless the studied site.605

The real difficulty in using this methodology is that that the606

clear sky model must be reliable and carefully tuned. Other-607

wise, the methodology presented here becomes inappropriate.608

It is this prerequisite which led to less convincing results when609

we estimated F for the diffuse and solar radiation components.610

This point is important, because besides being used for esti-611

mating F , the clear sky modelling is becoming increasingly612

important for the derivation of the forecasting methods found613

in the literature10. The prediction results (and especially those614

related to the skill scores) can strongly diverge in case of in-615

correct tuning of the clear sky model. This phenomenon is616

not so highlighted in the other forecasting disciplines because,617

contrary to the solar radiation time series, it is not possible to618

estimate the underlying trend with the help of a physical-based619

parametric model like a clear sky model.620

The methodology proposed in this work is based on the621

clear sky index. Nonetheless, in order to overcome the un-622

certainties related to the modeling of the different interactions623

in the atmosphere (which are the basis of the clear sky models624

elaboration)6, a future work will be devoted to the derivation625

of the F metric based on the clearness index (ratio of the irra-626

diation or irradiance to the extraterrestrial irradiation).627

However, it should be noted that the uncertainties related628

to time-stamping and poor measurement-model synchroniza-629

tion can still affect the F estimation. Consequently, even with630

these other possible methodologies, it would not be possible631

to propose a ”true” objective F estimation. This is a critical632

issue that deserves careful attention.633

In addition to this essential point, the next objective of this634

study will be to propose a reliability index based on the vari-635

ation of the intra-annual forecastability. Indeed, it is possible636

to compute F from a sliding window (100 hours taken here as637

example) and thus to simply estimate the reliability of a pre-638

diction from the computed forecastability. As shown by Fig-639

ure 10, in summer (center of the hours axis), predictions are640
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reliable with F ' 85% which is not the case at the extremities641

(winter; F ' 60%). Following the methodology developed642

by Fliess, Join, and Voyant 44 , the next step in this research643

will be to enrich deterministic forecasts with predictions in-644

tervals that will take into account both the forecastability and645

the volatility of the solar radiation time series.646

Finally, the idea of characterizing F over a large area (or a647

whole country) will quickly become essential. While the esti-648

mation of F for meteorologically homogeneous or regular ar-649

eas should be straightforward, it will be not possibly the case650

for inhomogenous regions such as for instance Corsica island651

or the Pyrénées mountains. In these areas, forecastability can652

vary up to 20% under a distance of 2 or 3 km. To characterize653

such inhomogenous areas, many time series would be neces-654

sary and it may be necessary to use satellite-derived irradiance655

such as HelioClim-3 solar radiation database in real time.656

Appendix A: Why not normalize F with the mean of GHIc657

as we do with error metrics (RMSE vs nRMSE)?658

At a first glance, it would seem attractive to propose a nor-659

malization based on the average value of GHIc rather than660

using a more complicated Monte Carlo type approach. In this661

appendix, we show that these two types of normalization are662

roughly equivalent. More precisely, we demonstrate that the663

first one is an approximate of the second one (under certain664

assumptions).665

Considering a time series ε(t) built with a sampling from666

an uniform distribution (between 0 and 1 equivalent to an ar-667

tificial clear sky index (CSI), see section II C), it is possible to668

compute the RMSEmax related to Persistence forecasting. In669

the next, we denote this parameter RMSECSI
max so as not to be670

mistaken with the RMSEmax relating to the GHI. Indeed, the671

MSECSI
max is given by the well known relation A1 (in which the672

mean of the signal ε̄ has been added and then subtracted).673

MSECSI
max =

1
n

n

∑
t=1

(
ε(t)− ε̄ + ε̄− ε(t−1)

)2

. (A1)

This algebraic identity can be simplified as shown in Equation674

A2:675

MSECSI
max =

1
n

n

∑
t=1

(
ε(t)− ε̄

)2

+
1
n

n

∑
t=1

(
ε(t−1)− ε̄

)2

−2
n

n

∑
t=1

(
ε(t)− ε̄

)(
ε(t−1)− ε̄

)
.

(A2)

The first two terms of the right member of this equation cor-676

respond to the variance of the signal (σ2
ε ), and in the case of677

an uniform law with values between 0 and 1 (and with n large678

enough), we know that45:679

n

∑
t=1

(
ε(t)− ε̄

)2

=
n

∑
t=1

(
ε(t−1)− ε̄

)2

= nσ
2
ε =

n
12

. (A3)

Regarding the last term of the Equation A2, as the elements680

constituting the series ε are completely independent (ε(t) and681

ε(t− 1) are independent random variables), their covariance682

is thereby zero45.683

The above considerations allow rewriting Equation A1 as684

MSECSI
max = 1/6 and consequently RMSECSI

max = 1/
√

6.685

If, in the case of random number between 0 and 1, the the-686

oretical approach is possible, it is not the case for the MSEmax687

related to the GHI (between 0 and GHIc) given that the latter688

fluctuates. In this case, the Monte Carlo approach is the only689

one really effective but an approximation can be made.690

Assuming that the nRMSECSI
max related to CSI gives the691

same error estimation than the nRMSEmax related to the GHI,692

we obtain (posing ε = 1/2) nRMSECSI
max = 2/

√
6 leading to693

RMSEmax = (2/
√

6)GHIc with GHIc the mean value of GHIc.694

This approximate is valid only if a filtering is operated and695

if the data related to the night are not taken into account.696

So RMSEmax could be computed only from GHIc but under697

certain conditions and accepting some uncertainty. For in-698

stance, in Ajaccio (latitude of 41o56′) the RMSEmax read in699

the Figure 4 is 249.7Wh.m−2. For this same site GHIc is700

467.3Wh.m−2 inducing a RMSEmax equal to 381.2Wh.m−2
701

(using RMSEmax =(2/
√

6)GHIc). The difference between the702

two methodologies is greater than 40% (381.2 versus 467.3).703

There are certainly special cases for which this simple ap-704

proach gives good results but in all cases it is preferable to705

use the methodology on the generation of Monte-Carlo type706

random numbers.707

Appendix B: McCLear and BSRN studied sites708

One can see the studied sites in the table IV. The interesting709

McClear model estimates clear sky radiation for any point on710

the globe46. Developed by the Centre O.I.E. - MINES Paris-711

Tech/ARMINES, it uses the results of the numerical meteoro-712

logical model of chemistry - transport of the European MACC713

projects47. BSRN is a project of the Panel on Data and As-714

sessments of the Global Energy and Water Cycle Experiment715

(GEWEX) under the World Climate Research Programme716

(WCRP) and, as such, aims to detect significant changes in717

the radiation field at the Earth’s surface that may be related to718

climate change. This group offers free quality GHI series at a719

wide range of sites48.720

Data availability721

The data that support the findings of this study are available722

on request from the corresponding author. The data are not723

publicly available due privacy restrictions.724
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TABLE IV. Characteristics of the locations related to the 50 McCLear47 and BSRN49 time series (1h time granularity and horizon; 2015). NA
when less than 1000 data are available

Station Köppen37 Location Lat (°) Long (°) Elev (m) RMSEmcarlo
max (Wh/m2) F(%)

Alice Springs (ASP) Bwh Australia -23,8 133,9 547 291.1 48.7
Bermuda (BER) Af USA 32,3 -64,7 8 253.1 NA
Billings (BIL) Dfa USA 36,6 -97,5 317 242.7 38.1
Bondville (BON) Cfa USA 40,1 -88,4 213 236.4 52.8
Boulder (BOS) BSk USA 40,1 -105,2 1689 252.3 55.7
Brasilia (BRB) Aw Brazil -15,6 -47,7 1023 290.9 43.9
Cabauw (CAB) Cfb Netherlands 52.0 4,9 0 200.4 64.5
Camborne (CAM) Cfb United Kingdom 50,2 -5,3 88 208.1 61.9
Cener (CNR) Cfb Spain 42,8 -1,6 471 229.1 NA
Cocos Island (COC) Aw Australia -12,2 96,8 6 282.4 NA
De Aar (DAA) BSk South Africa -30,7 24.0 1287 279.0 NA
Concordia Station (DOM) EF Antarctica -75,1 123,4 3233 164.0 81.6
Desert (DRA) BWh USA 36,6 -116,0 1007 257.9 29.1
Darwin Met Office (DWN) Aw Australia -12,4 130,9 32 285.9 79.9
Southern Great Plains (E13) BSk USA 36,6 -97,5 318 285.4 69.2
Florianopolis (FLO) Cfa Brazil, -27,6 -48,5 11 267.3 50.8
Fort Peck (FPE) BSk USA 48,3 -105,1 634 216.2 46.1
Fukuoka (FUA) Cwa Japan 33,6 130,4 3 247.3 68.0
Gandhinagar (GAN) BSh India 23,1 72,6 65 240.8 39.9
Goodwin Creek (GCR) Cfa USA 34,3 -89,9 98 281.0 58.1
Gobabeb (GOB) Csb Namibia -23,6 15,0 407 247.3 70.1
Gurgaon (GUR) BSh India 28,4 77,2 259 238.9 78.3
George von Neumayer (GVN) EFs Antarctica -70,6 -8,2 42 151.3 69.8
Howrah (HOW) Aw India 22,5 88,3 51 243.1 53.9
Ishigaki jima (ISH) Cfa Japan 24,3 124,2 5,7 259.9 36.3
Izaña (IZA) BWh Spain 28,3 -16,5 2373 300.7 78.4
Kwajalein (KWA) Af Marshall Islands 8,7 167,7 10 294.6 54.1
Lauder (LAU) Cfb New Zealand -45,0 169,7 350 236.2 NA
Lerwick (LER) Cfb United Kingdom 60,1 -1,2 80 172.8 48.5
Lindenberg (LIN) Cfb Germany 52,2 14,1 125 199.9 62.6
Lulin (LLN) Cfa Taiwan 23,5 120,9 2862 293.3 NA
Langley (LRC) Cfb USA 37,1 -76,4 3 239.1 68.2
Minamitorishima (MNM) Cfa Japan 24,3 154.0 7 267.3 68.5
Ny-Ålesund (NYA) ET Norway 79.0 11,9 11 117.9 64.8
Huancayo (OHY) Cwb Peru -12,0 -75,3 3314 328.7 NA
Palaiseau (PAL) Cfb France 48,7 2,2 156 205.7 33.5
Payerne (PAY) Cfb Switzerland 46,8 6,9 491 219.8 67.2
Rock Springs (PSU) BSk USA 40,7 -77,9 376 237.5 62.4
Petrolina (PTR) BSh Brazil -9,1 -40,3 387 295.2 31.6
Sapporo (SAP) Dfb Japan 43,1 141,3 17 227.3 24.9
São Martinho da Serra (SMS) Cfa Brazil -29,4 -53,8 489 259.6 48.5
Sonnblick (SON) Dfb Austria 47,1 13.0 3109 246.1 49.4
Sioux Falls (SXF) Dfa USA 43,7 -96,6 473 231.8 53.4
Syowa (SYO) EF Antarctica -69,0 39,6 18 161.2 73.1
Tamanrasset (TAM) Csa Algeria 22,8 5,5 1385 286.2 70.6
Tateno (TAT) Dfb Japan 36,1 140,1 25 236.4 66.3
Tiksi (TIK) Dfd Russia 71,6 128,9 48 136.3 64.5
Tiruvallur (TIR) Aw India 13,1 80.0 36 277.9 46.0
Toravere (TOR) Dfb Estonia 58,2 26,5 70 175.7 NA
Yushan Station (YUS) Cwa Taiwan 23,5 121.0 3858 298.5 NA



12

FIG. 10. Intra-annual variation of F . F is estimated from hourly GHI time series acquired at Ajaccio and for a 1h forecast horizon.
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geiger-photovoltaic climate classification and implications to worldwide839

mapping of pv system performance,” Solar Energy 191, 672 – 685 (2019).840
38P. Lauret, C. Voyant, T. Soubdhan, M. David, and P. Poggi, “A bench-841

marking of machine learning techniques for solar radiation forecasting in842

an insular context,” Solar Energy 112, 446 – 457 (2015).843
39A. Fouilloy, Comparaison de méthodes d’apprentissage automatique de844

prévision de la ressource solaire pour une application à une gestion op-845

timisée des réseaux intelligents, Theses, Université de CORSE - Pascal846

PAOLI (2019).847
40J. Kleissl, Solar Energy Forecasting and Resource Assessment (Academic848

Press, 2013) google-Books-ID: 94KI0_SPwW8C.849
41L. Benali, G. Notton, A. Fouilloy, C. Voyant, and R. Dizene, “Solar radia-850

tion forecasting using artificial neural network and random forest methods:851

Application to normal beam, horizontal diffuse and global components,”852

Renewable Energy 132, 871–884 (2019).853
42P. Ineichen, “A broadband simplified version of the solis clear sky model,”854

Solar Energy 82, 758 – 762 (2008).855
43A. Laguarda, G. Giacosa, R. Alonso-Suárez, and G. Abal, “Performance856

of the site-adapted cams database and locally adjusted cloud index models857

for estimating global solar horizontal irradiation over the pampa húmeda,”858

Solar Energy 199, 295 – 307 (2020).859
44M. Fliess, C. Join, and C. Voyant, “Prediction bands for solar energy: New860

short-term time series forecasting techniques,” Solar Energy 166, 519–528861

(2018).862
45M. Dekking, A modern introduction to probability and statistics : under-863

standing why and how (London : Springer, 2005).864
46D. Yang, “Choice of clear-sky model in solar forecasting,” Jour-865

nal of Renewable and Sustainable Energy 12, 026101 (2020),866

https://doi.org/10.1063/5.0003495.867
47M. Lefèvre, A. Oumbe, P. Blanc, B. Espinar, B. Gschwind, Z. Qu, L. Wald,868

M. Schroedter-Homscheidt, C. Hoyer-Klick, A. Arola, A. Benedetti, J. W.869

Kaiser, and J.-J. Morcrette, “Mcclear: a new model estimating down-870

welling solar radiation at ground level in clear-sky conditions,” Atmo-871

spheric Measurement Techniques 6, 2403–2418 (2013).872
48A. Driemel, J. Augustine, K. Behrens, S. Colle, C. Cox, E. Cuevas-873

Agulló, F. M. Denn, T. Duprat, M. Fukuda, H. Grobe, M. Haeffelin,874

G. Hodges, N. Hyett, O. Ijima, A. Kallis, W. Knap, V. Kustov, C. N.875

Long, D. Longenecker, A. Lupi, M. Maturilli, M. Mimouni, L. Ntsang-876

wane, H. Ogihara, X. Olano, M. Olefs, M. Omori, L. Passamani, E. B.877

Pereira, H. Schmithüsen, S. Schumacher, R. Sieger, J. Tamlyn, R. Vogt,878

L. Vuilleumier, X. Xia, A. Ohmura, and G. König-Langlo, “Baseline sur-879

face radiation network (bsrn): structure and data description (1992–2017),”880

Earth System Science Data 10, 1491–1501 (2018).881
49D. Yang and J. M. Bright, “Worldwide validation of 8 satellite-derived882

and reanalysis solar radiation products: A preliminary evaluation and883

overall metrics for hourly data over 27 years,” Solar Energy (2020),884

https://doi.org/10.1016/j.solener.2020.04.016.885
50C. Gueymard et al., SMARTS2: a simple model of the atmospheric radia-886

tive transfer of sunshine: algorithms and performance assessment (Florida887

Solar Energy Center Cocoa, FL, 1995).888
51P. Lauret, R. Perez, L. Mazorra Aguiar, E. Tapachès, H. M. Diagne, and889

M. David, “Characterization of the intraday variability regime of solar irra-890

diation of climatically distinct locations,” Solar Energy 125, 99–110 (2016).891
52R. Perez, S. Kivalov, J. Schlemmer, K. Hemker, and T. E. Hoff, “Short-term892

irradiance variability: Preliminary estimation of station pair correlation as893

a function of distance,” Solar Energy Progress in Solar Energy 3, 86, 2170–894

2176 (2012).895
53M. Lave and J. Kleissl, “Solar variability of four sites across the state of896

Colorado,” Renewable Energy 35, 2867–2873 (2010).897
54T. E. Hoff and R. Perez, “Quantifying PV power Output Variability,” Solar898

Energy 84, 1782–1793 (2010).899
55C. A. Gueymard, “Clear-sky radiation models and aerosol effects,” in Solar900

Resources Mapping: Fundamentals and Applications, edited by J. Polo,901

L. Martín-Pomares, and A. Sanfilippo (Springer International Publishing,902

Cham, 2019) pp. 137–182.903
56M. Lave, R. J. Broderick, and M. J. Reno, “Solar variability zones:904

Satellite-derived zones that represent high-frequency ground variability,”905

Solar Energy 151, 119 – 128 (2017).906
57G. Lohmann, “Irradiance variability quantification and small-scale averag-907

ing in space and time: A short review,” Atmosphere 9, 264 (2018).908


