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I. INTRODUCTION

The intermittent nature of the solar resource and consequently the difficulty of its prediction constitutes a limiting factor for a greater integration of solar power generation in the energy field 1 . In the solar forecasting community, many researchers use different metrics in order to assess the difficulty in generating good forecasts for different climates 2 . One first possibility is to estimate the solar variability embodied in the solar time series. Variability is devoted to the quantification of the lack of consistency and gives a way to describe to which extent data sets vary 3 . This type of metric is used to compare the data at hand to other sets of data. Some authors, like Marquez and Coimbra 4 , Perez and Hoff 5 or Blaga and Paulescu 6 have endeavoured to describe mathematically this variability while most of the others researchers considered this characteristic of the solar irradiance time series as a basic assumption and have made efforts to implement predictive strategies of increasing complexity 7 . As often in physics, the description and especially the understanding of phenomena that are causing a problem (i.e., the difficulty of predicting solar irradiance/irradiation or the solar radiation components) leads to a better characterization of the situation 8,9 .

Variability of global horizontal solar irradiation (GHI) is due to two terms. The first one originates from the predictable geometric trajectory of the sun while the second unpredictable component is due to effects induced by the atmosphere and the clouds. These unpredictable effects are captured by the clear sky index k * t defined as the ratio of the global horizontal irradiation GHI to GHI c (GHI under clear sky conditions). In Perez and Hoff 5 and Marquez and Coimbra 4 , k * t is the key a) Also at hospital of Castelluccio -Radiotherapy Unit, Ajaccio, Corsica, France.; Electronic mail: voyant_c@univ-corse.fr parameter used to calculate the variability. In the first paper, As has been done for wind speed forecasting [START_REF] Zhang | Forecastability as a design criterion in wind 795 resource assessment[END_REF] , one may 115 also use the performance iii26 . of the Persistence (P) model 116 which is, in this work, related to a persistent clear sky index 117 i In this paper, authors assume that "forecastability is not the same thing as predictability" ii Kumar and Chen [START_REF] Kumar | Inherent Predictability, Requirements on 779 the Ensemble Size, and Complementarity[END_REF] highlight this difference stating "inherent predictability being the upper bound of forecastability" iii The performance of deterministic forecasting models are also usually reported by the root mean square error (RMSE) The rest of the manuscript is structured in four sections. are extensively used in the literature [START_REF] Gueymard | Clear-Sky Radiation Models and Aerosol Effects[END_REF][START_REF] Sun | Worldwide performance assessment of 75 global clear-sky irra-809 diance models using principal component analysis[END_REF] to build increasingly powerful predictive models and thus it is essential to use this specificity in our turn to quantify the forecastability.

A. The use of the specifics of solar radiation time series

Figure 1 permits to intuitively introduce the notion of forecastability. Figure 1(a) presents a Gaussian noise signal. In this non-periodic case, one can assume that the forecastability and the variability are strongly linked (F 1 -V ). In other words, when the variance of the signal increases, the forecastability decreases. Conversely, for a periodic time series data, the conclusion is different as shown in Figure 1(b) with a cosine function. Even if the variability is important, one can not conclude that forecastability is low (F 1 -V ) if there is a way to estimate the trend and seasonality present in the time series. In the present case, the prediction becomes easy using a simple trigonometric function.

In 

259 RMSE = 1 n n ∑ t=1 GHI(t) -GHI(t) 2 , ∀n ∈ T. (1)
The Persistence forecast estimates at the time t + 1 (i.e.

260 GHI(t + 1)) uses the clear sky modelling value (GHI c ) and 261 is given by Equation 2.

262

GHI(t + 1) = GHI(t) × GHI c (t + 1) GHI c (t) (2) 
Given the RMSE score obtained by the Persistence predic- Therefore, RMSE max reads as:

320 RMSE max = 1 n n ∑ t=1 GHI c (t) × ε(t) -ε(t -1) 2 (5)
Obviously, the approach set out here is only possible if the 

III. FACTORS INFLUENCING F

Some parameters influence the factor F such as the site location, the solar radiation component (global, beam and diffuse), the prediction horizon and the time granularity (this list is not intended to be exhaustive).

A. F variation with location

The F value quantifies the difficulty to predict the solar radiation components. As shown by Table I considering elevation and latitude. 82% of ratio value are comprised between 0.9 and 1.1.

(Table IV). The way of calculating the forecastability from 517 random numbers (Figure 3) is synthesized by Algorithm 1, 518 which can be applied from anywhere on the surface of the 519 globe, as long as a clear sky radiation estimate (GHI c ) is 520 known but above all optimized to be as reliable as possible. ). We can 524 appreciate a good match between these two ways of operat-525 ing. However, stations abbreviated as (see Table IV As a synthesis, we cannot therefore make an objective de-539 cision as to the quality of the forecastability calculation based 540 solely on the latitude of the site. However, we can think that 541 this way of proceeding is not in total contradiction with the 542 direct calculation (Algorithm 1), which is relatively simple to The real difficulty in using this methodology is that that the 606 clear sky model must be reliable and carefully tuned. Other-607 wise, the methodology presented here becomes inappropriate. 

  40 for a specific time scale ∆t of the time series, variability is 41 given by the standard deviation of the changes in the clear sky 42 index denoted by σ (∆k * t ∆t ) while the second one proposes to 43 evaluate variability by computing the magnitude of the ramp 44 rates (i.e. changes in the clear sky index). Other authors like ties are very low. 113 B. Framework of the study 114

150F

  The first one (section II) presents the mathematical formula-151 tion of the forecastability F. In section III, the sensitivity of 152 to various parameters is evaluated while in section IV is 153 proposed an estimate of F concerning 50 time series of GHI.154Finally, Section V gives some conclusions and some perspec-155 tives. 156 II. ESTIMATION PROPOSAL FOR F 157 Before proposing a new method to estimate the forecasta-158 bility F, it is important to understand why in the existing for-159 malism of the solar radiation time series, some elements could 160 be improved. As discussed in the introduction, in the time se-161 ries domain, the variability (V ) is often estimated by comput-162 ing the variance 6 . In the context of solar radiation, the time 163 series data are very particular in the sense that the underlying 164 trend is periodic and easily quantifiable using robust models 165 validated by the community. 166 These models are denoted clear sky models 27 and they cor-167 respond to the solar irradiation estimated under clear sky con-168 ditions (GHI c ) and computed from the sun position and vari-169 iv Which does not require any additional effort and calculation since the RMSE of the reference Persistence model is systematically computed in the solar forecasting studies (e.g., for skill score calculation).
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 1 FIG. 1. Intuitive relationship between forecastability (F) and variability (V )
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 34 FIG. 3. Methodology to estimate the forecastability (F)
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 5 FIG. 5. The 6 locations used to estimate F

  about the F estimation 486 This section showed the link between the F factor com-487 puted from Equation 4 and some parameters frequently used 488 in studies related to the prediction of global irradiation or so-489 lar radiation components through the time series formalism. 490 In Figure 7, this link can be estimated by comparison be-491 tween the forecastability value and the prediction error related 492 to MLP forecasts. For each kind of parameters (respectively 493

FIG. 7 .

 7 FIG. 7. Relationship between F and prediction error nRMSE. Linear fits are provided in order to better highlight the monotonic relationship between F and nRMSE.
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  FIG. 8. Ratio = RMSE mcarlo max /RMSE analytic max
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Figure 8

 8 Figure 8 makes it possible to quantify the difference be-522

  ) COC, 526 DOM, FLO, GAN, GOB, GUR, HOW, ISH, TIR are the sta-527 tions with more than 10% of difference between the two meth-528 ods (the mean of ratio is 0.95). There are several ways for 529 understanding these discrepancies, such as considering only 530 the latitude in Equation 6 or the fact that no post-processing 531 was performed with the McClear model. This model is un-532 doubtedly one of the best performing model at the present, but 533 there are some uncertainties relating to certain locations that 534 have been reported in the literature. For example, Laguarda 535 et al. 43 reported errors related to the use of McClear model 536 close to 5% in average and which can reach more than 10% 537 some particular periods.

  538

  FIG. 9. Boxplots concerning RMSE mcarlo max and F computed from Mc-Clear and BSRN data

578

  In the solar energy forecasting community, it is common to 579 read more and more papers proposing increasingly complex 580 forecasting methodologies and whose conclusions are limited 581 to state that the proposed new method outperforms the previ-582 ous ones without any consideration of forecastability or pre-583 dictability. However, the inherent difficulty related to a par-584 ticular forecasting situation should be studied prior the im-585 plementation and testing of a forecasting model. Put differ-586 ently, statements regarding the quality of the generated fore-587 casts must account for the forecastability of the variable of 588 interest. 589 In this paper, a simple new methodology based on the 590 RMSE metric and the Persistence model was presented to 591 estimate the forecastability F of the solar radiation compo-592 nents. This F metric is defined like a percentage between 593 0 and 100% and is very easy to interpret. The formalism 594 used is reminiscent of what has been proposed in the litera-595 ture over the past 10 years but with some small modifications 596 and a normalization process based on a Monte Carlo approach 597 (RMSE max ). Two ways of doing so were proposed: calculate 598 RMSE mcarlo max or make an analytical approximation of the latter 599 by calculating RMSE analytic max . Even if the latter method gives 600 good results, the first one, while being very easy to imple-601 ment, is preferable and we recommend it. The results of the 602 simulations validate the proposed theoretical framework and 603 it appears that it is quite simple to quantify the forecastability 604 (see Equation 6 and Algorithm 1) regardless the studied site.

  605

608

  It is this prerequisite which led to less convincing results when 609 we estimated F for the diffuse and solar radiation components. 610 This point is important, because besides being used for esti-611 mating F, the clear sky modelling is becoming increasingly 612 important for the derivation of the forecasting methods found 613 in the literature 10 . The prediction results (and especially those 614 related to the skill scores) can strongly diverge in case of in-615 correct tuning of the clear sky model. This phenomenon is 616 not so highlighted in the other forecasting disciplines because, 617 contrary to the solar radiation time series, it is not possible to 618 estimate the underlying trend with the help of a physical-based 619 parametric model like a clear sky model. 620 The methodology proposed in this work is based on the 621 clear sky index. Nonetheless, in order to overcome the un-622 certainties related to the modeling of the different interactions 623 in the atmosphere (which are the basis of the clear sky models 624 elaboration) 6 , a future work will be devoted to the derivation 625 of the F metric based on the clearness index (ratio of the irra-626 diation or irradiance to the extraterrestrial irradiation). 627 However, it should be noted that the uncertainties related 628 to time-stamping and poor measurement-model synchroniza-629 tion can still affect the F estimation. Consequently, even with 630 these other possible methodologies, it would not be possible 631 to propose a "true" objective F estimation. This is a critical 632 issue that deserves careful attention. 633 In addition to this essential point, the next objective of this 634 study will be to propose a reliability index based on the vari-635 ation of the intra-annual forecastability. Indeed, it is possible 636 to compute F from a sliding window (100 hours taken here as 637 example) and thus to simply estimate the reliability of a pre-638 diction from the computed forecastability. As shown by Fig-639 ure 10, in summer (center of the hours axis), predictions are 640 (winter; F 60%). Following the methodology developed 642 by Fliess, Join, and Voyant 44 , the next step in this research 643 will be to enrich deterministic forecasts with predictions in-644 tervals that will take into account both the forecastability and 645 the volatility of the solar radiation time series. 646 Finally, the idea of characterizing F over a large area (or a 647 whole country) will quickly become essential. While the esti-648 mation of F for meteorologically homogeneous or regular ar-649 eas should be straightforward, it will be not possibly the case 650 for inhomogenous regions such as for instance Corsica island 651 or the Pyrénées mountains. In these areas, forecastability can 652 vary up to 20% under a distance of 2 or 3 km. To characterize

  

  It depends on the kind of solar component (direct, diffuse,

	124	
	125	global), on the forecast horizon, on the latitude, on the to-
	126	pographic relief, on the nebulosity, etc. For instance, for GHI
	127	hourly data and 4-hour forecast horizon, a Persistence forecast
	128	with an nRMSE equal to 20% could be an indication of a high
	129	forecastability, but for GHI data with a 5-min granularity and
	130	for a 5-min forecast horizon, certainly not. Put differently, the
	131	main drawback of using the score of the reference Persistence
	132	model is that it is not bounded by an upper limit.
	133	In this work, the objective is to propose a forecastability
	134	metric (denoted hereafter F) which is easy to compute and
	135	easy to interpret. In other words, this new metric should pro-
		vide users a global reference in order to assess the inherent

and its normalized counterpart (nRMSE) obtained by dividing the RMSE by the mean of the irradiation values k * t . More precisely, the nRMSE obtained by this reference 118 model can be used to gauge the forecastability of a particu-119 lar site. However, although this method is feasible, it would 120 not provide the same type of information. Indeed, a Persis-121 tence forecast with an nRMSE equal to 20 % is not sufficient 122 to consider if the site is related to a high or a low forecastabil-123 ity. 136 difficulty to issue forecasts for a specific site and consequently 137 if it makes sense to add an extra effort to build more and more 138 complex forecasting models. Additionally, it would be de-139 sirable to relate in a simple way this (ex-ante) forecastability 140 metric with the (ex-post) skill score metric defined by Mar-141 quez and Coimbra 4 . Hence, the F metric should be helpful 142 in comparing the numerous forecasting methods proposed by 143 the community. 144 To compute the F metric, the user will need to compute the 145 RMSE of the Persistence model iv . Moreover, as it will be dis-146 cussed in section III C, this approach will allow adapting the 147 forecastability with the forecast horizon and with the different 148 components of the solar radiation. 149

  0W h/m 2 ) and RMSE max (= 249.7W h/m 2 ). This last limit

				285
				286	case occurs when there is no link (in the sense of statistical de-
				287	pendence) between the future elements of the time series and
				288	the present ones. We artificially generated a k * t time series
				289	with elements governed by a random process and an uniform
				290	probability distribution (ε(t), between 0 and 1 -See Equation
				291	5 below). This is equivalent to uniformly distribute GHI(t)
				292	between 0 and GHI c (t).
				293	This approach obviously excludes the phenomenon of over-
				294	irradiance 33 (i.e. k * t > 1). However, when the granularity of
				295	the GHI time series is greater than a few minutes, we assume
				296	that these phenomena are rare enough to consider values of k * t
				greater than 1 as unsignificant events. Moreover, for example
				319
	277		
	278	as follows:	
		F ≈ 100% × 1 -	RMSE P RMSE max	(4)

263 tor (RMSE P ), the formulation of F is based on a normaliza-264 tion involving an estimation of the maximum and minimum 265 values that the RMSE can reach (respectively RMSE max and 266 RMSE min ) for a particular site. Hence, Equation 3 defines F.

F = 100% × RMSE max -RMSE P RMSE max -RMSE min (3) With this metric, when RMSE P = RMSE min (the lowest ac-268 ceptable value) F = 100% and when RMSE P = RMSE max (the 269 highest allowable value) F = 0%. The F score is therefore 270 between 0% and 100%. RMSE min is reached when the fore-271 castability is maximum i.e. cloudless sky and clear sky condi-272 tions with GHI(t) = GHI c (t). In this case, k * t is always equal 273 to 1 and the Persistence model is an ideal predictor inducing 274 RMSE min 0 (not really observable in practice but it is a nec-275 essary theoretical condition for the presented methodology) vi . 276 According to this simplification, the updated version of F is vi inducing 2 assumptions: there are no clouds and the clear sky is perfectly defined. Unfortunately, neither is physically realistic, if the first hypothesis is rarely established (except in desert regions and not yet, during the whole year), the second one is dependent on modeling, and as it will be visible in Section III B, the errors of the clear sky can vary between 1% and 5% RMSE max (purely theoretical parameter defined over the de-279 sired period: months, years, etc.) is reached when the pre-280 diction is not possible thus when the predictability becomes 281 too low for a model to be relevant. For example, on Ajaccio 282 within the framework of an hourly study of the GHI, what-283 ever the method used, its RMSE will be between RMSE min 284 (= 297 in Ajaccio, the values of measured k * t maximum (time gran-298 ularity of 1h and horizon 1h) fluctuate considering the year 299 used as a basis for the calculation (between 1.76 in 2000 and 300 2.08 in 1999). So considering the available years, the value of 301 F (which depends indirectly on the value of the k * t maximum 302 if the latter is not taken equal to 1) would fluctuate a lot. Con-303 sequently, and in order to keep the methodology as simple as 304 possible, we limit the generation of random k * t between 0 and 305 1. 306 Figure 3 shows the methodology used to estimate F 307 for a specific site using pseudo-random numbers generator 308 (Matlab®) 34 . The methodology, although different from what 309 is usually the goal of a Monte Carlo method 35 , is based on a 310 computational algorithm that relies on repeated random sam-311 pling to obtain numerical results 36 . 312 313 From the definitions of the RMSE (Equation 1) and the 314 Persistence model (Equation 2), it is possible to calculate the 315 RMSE max score in relation with the GHI c (t) value and pseudo-316 random numbers series denoted by ε(t). Posing k * t (t) = ε(t) 317 and k * t (t -1) = ε(t -1), it is possible to integrate these val-318 ues in Equation 1 considering that GHI(t) = k * t (t).GHI c (t).

  , the higher the forecastability (F), theSiteKöppen class 37 Latitude F a nRMSE b SS b

	Ajaccio	Csa	41 • 55 N 68.2% 18.3% 0.04
	Tilos	Csa	36 • 25 N 64.7% 19.6% 0.02
	St Pierre	Aw	21 • 20 S 62.4% 21.1% 0.01
	Le Raizet	Af	16 • 26 N 58.2% 25.9% 0.07
	Nancy	Cfb	48 • 41 N 50.2% 27.4% 0.05
	Odeillo	Cfb	42 • 30 N 25.5% 29.9% 0.19
			418
			419	lower the error metric (nRMSE) related to predictions gener-
			420	ated by a multilayer perceptron (MLP 10,38,39 ). The relation-
			421	ship between these two metrics is not obvious to estimate.
			422	However, it must be stressed that factors such as the quality of
			423	the measurements as well as the concordance of the measure-
				ments with the clear sky model may complicate the interpreta-

424 tion. This table validates what has been widely demonstrated 425 in the literature i.e. mountainous regions (Odeillo) and conti-426 nental climates (Nancy) are more difficult to apprehend than 427 coastal areas (Ajaccio and Tilos). With this table, it is inter-428 esting to realize that the SS alone does not allow to judge the 429 TABLE I. Values of F and nRMSE for 6 locations a See Equation 4 b Related to the MLP predictions

TABLE II .

 II Value of F for the 3 radiation components and nRMSE 41 in Odeillo site

		Radiation Components	F a	nRMSE b	SS b
		Global	25.5%	29.9%	0.19
		Beam	13.4%	38.2%	0.02
		Diffuse	12.1%	40.9%	0.35
					473
					474	18.3%, 29.5%, 31.2%, 33.0%, 33.8% and 34.5%. It can be
					noted that between the 5 and 6 hours horizons, the estimates of
					476 477
					478	D. F variation with time granularity
					479	In Table III, it can be seen that for Tilos (the only site where
					480	10 minutes data were available), when we realized global irra-
					481	diation forecasts (MLP 39 ) for horizons of respectively, 1 hour,
					15 minutes and 10 minutes 10 , the conclusion follows the logic
	449	As shown by Table II, the other solar radiation components
	450	(beam and diffuse) exhibit lower F values than the one esti-
	451	mated for the GHI. Conversely to global irradiation, the clear
	452	sky modelling for the beam and diffuse components is less
		efficient. As an illustration, the values obtained with the sim-

a See Equation 4 b Related to the MLP predictions forecastability of a site. Indeed, it only indicates the degree of 453 plified Solis version are within 1% for the global component, 454 2% for the beam component and 5% for the diffuse component 455 (read Ineichen 42 for details). In this subsection, the conclu-456 sion is similar than the one stated in subsection III A that is 457 nRMSE trend is a bijective function of F but the relationship 458 FIG. 6. Forecastability and prediction horizons (F computed from RMSE P found in 10,38,41 ) between F and nRMSE is non-linear. However, the difference 459 in forecastability between Beam and Diffuse components is 460 close to 1% while the nRMSE fluctuates by more than 2 per-461 centage points. Consequently, it must be stressed that the pro-462 posed methodology for estimating F will not be relevant if 463 the clear sky model related to the solar radiation component 464 of interest lacks precision. 465 C. F evolution with the forecast time horizon 466 Intuitively, it makes sense to think that the longer the fore-467 cast horizon, the lower the forecastability. This fact is verified 468 for all the locations depicted in Figure 6 and particularly for 469 Ajaccio with GHI time series of 1 hour time granularity. The 470 F factor is halved in value when the lead time goes from 1h to 471 6h for all the locations. The related prediction errors nRMSE 472 generated by the MLP 39 predictor in Ajaccio are respectively 475 F are not significantly different for most of the studied cities.

482 observed so far that is F and nRMSE are strongly statistically 483 dependent and when one increases the other decreases.

TABLE III .

 III Value of F according to the time granularity and nRMSE realated to MLP prediction 10 in Tilos island

	Time Granularity	F a	nRMSE b	SS b
	1 hour	64.7%	19.6%	0.02
	15 minutes	82.5%	15.6%	0.06
	10 minutes	87.4%	12.8%	0.04

a See Equation

4

b Related to the MLP predictions

TABLE IV .

 IV Characteristics of the locations related to the 50 McCLear[START_REF] Lefèvre | Mcclear: a new model estimating down-870 welling solar radiation at ground level in clear-sky conditions[END_REF] and BSRN[START_REF] Yang | Worldwide validation of 8 satellite-derived 882 and reanalysis solar radiation products: A preliminary evaluation and 883 overall metrics for hourly data over 27 years[END_REF] time series (1h time granularity and horizon; 2015). NA when less than 1000 data are available Journal of Solar Energy Engineering 135 (2013), and Forest Meteorology 148, 1332 -1340 (2008). 821 33 L. R. do Nascimento, T. de Souza Viana, R. A. Campos, and R. Rüther, 822 "Extreme solar overirradiance events: Occurrence and impacts on utility-823 scale photovoltaic power plants in brazil," Solar Energy 186, 370 -381 (2019).825 34 F. Monforti, T. Huld, K. Bódis, L. Vitali, M. D'Isidoro, and R. Lacal-826 Arántegui, "Assessing complementarity of wind and solar resources for en-827 ergy production in Italy. A Monte Carlo approach," Renewable Energy 63, 35 C. K. Kim, H.-G. Kim, Y.-H. Kang, C.-Y. Yun, and S. Y. Kim, "Probabilis-830 tic prediction of direct normal irradiance derived from global horizontal 831 irradiance over the Korean Peninsula by using Monte-Carlo simulation,"

		Station	Köppen 37 Location	Lat (°) Long (°) Elev (m) RMSE mcarlo max (Wh/m 2 ) F(%)
		Alice Springs (ASP)	Bwh	Australia	-23,8	133,9	547	291.1	48.7
	828	Bermuda (BER) Billings (BIL) 576-586 (2014).	Af Dfa	USA USA	32,3 36,6	-64,7 -97,5	8 317	253.1 242.7	NA 38.1
		Bondville (BON)	Cfa	USA	40,1	-88,4	213	236.4	52.8
		Boulder (BOS)	BSk	USA	40,1	-105,2	1689	252.3	55.7
		Brasilia (BRB)	Aw	Brazil	-15,6	-47,7	1023	290.9	43.9
		Cabauw (CAB)	Cfb	Netherlands	52.0	4,9	0	200.4	64.5
		Camborne (CAM)	Cfb	United Kingdom 50,2	-5,3	88	208.1	61.9
		Cener (CNR)	Cfb	Spain	42,8	-1,6	471	229.1	NA
		Cocos Island (COC)	Aw	Australia	-12,2	96,8	6	282.4	NA
		De Aar (DAA)	BSk	South Africa	-30,7	24.0	1287	279.0	NA
		Concordia Station (DOM)	EF	Antarctica	-75,1	123,4	3233	164.0	81.6
		Desert (DRA)	BWh	USA	36,6	-116,0	1007	257.9	29.1
		Darwin Met Office (DWN)	Aw	Australia	-12,4	130,9	32	285.9	79.9
		Southern Great Plains (E13)	BSk	USA	36,6	-97,5	318	285.4	69.2
		Florianopolis (FLO)	Cfa	Brazil,	-27,6	-48,5	11	267.3	50.8
		Fort Peck (FPE)	BSk	USA	48,3	-105,1	634	216.2	46.1
		Fukuoka (FUA)	Cwa	Japan	33,6	130,4	3	247.3	68.0
		Gandhinagar (GAN)	BSh	India	23,1	72,6	65	240.8	39.9
		Goodwin Creek (GCR)	Cfa	USA	34,3	-89,9	98	281.0	58.1
		Gobabeb (GOB)	Csb	Namibia	-23,6	15,0	407	247.3	70.1
		Gurgaon (GUR)	BSh	India	28,4	77,2	259	238.9	78.3
		George von Neumayer (GVN) EFs	Antarctica	-70,6	-8,2	42	151.3	69.8
		Howrah (HOW)	Aw	India	22,5	88,3	51	243.1	53.9
		Ishigaki jima (ISH)	Cfa	Japan	24,3	124,2	5,7	259.9	36.3
		Izaña (IZA)	BWh	Spain	28,3	-16,5	2373	300.7	78.4
		Kwajalein (KWA)	Af	Marshall Islands 8,7	167,7	10	294.6	54.1
		Lauder (LAU)	Cfb	New Zealand	-45,0	169,7	350	236.2	NA
		Lerwick (LER)	Cfb	United Kingdom 60,1	-1,2	80	172.8	48.5
		Lindenberg (LIN)	Cfb	Germany	52,2	14,1	125	199.9	62.6
		Lulin (LLN)	Cfa	Taiwan	23,5	120,9	2862	293.3	NA
		Langley (LRC)	Cfb	USA	37,1	-76,4	3	239.1	68.2
		Minamitorishima (MNM)	Cfa	Japan	24,3	154.0	7	267.3	68.5
		Ny-Ålesund (NYA)	ET	Norway	79.0	11,9	11	117.9	64.8
		Huancayo (OHY)	Cwb	Peru	-12,0	-75,3	3314	328.7	NA
		Palaiseau (PAL)	Cfb	France	48,7	2,2	156	205.7	33.5
		Payerne (PAY)	Cfb	Switzerland	46,8	6,9	491	219.8	67.2
		Rock Springs (PSU)	BSk	USA	40,7	-77,9	376	237.5	62.4
		Petrolina (PTR)	BSh	Brazil	-9,1	-40,3	387	295.2	31.6
		Sapporo (SAP)	Dfb	Japan	43,1	141,3	17	227.3	24.9
		São Martinho da Serra (SMS) Cfa	Brazil	-29,4	-53,8	489	259.6	48.5
		Sonnblick (SON)	Dfb	Austria	47,1	13.0	3109	246.1	49.4
		Sioux Falls (SXF)	Dfa	USA	43,7	-96,6	473	231.8	53.4
		Syowa (SYO)	EF	Antarctica	-69,0	39,6	18	161.2	73.1
		Tamanrasset (TAM)	Csa	Algeria	22,8	5,5	1385	286.2	70.6
		Tateno (TAT)	Dfb	Japan	36,1	140,1	25	236.4	66.3
		Tiksi (TIK)	Dfd	Russia	71,6	128,9	48	136.3	64.5
		Tiruvallur (TIR)	Aw	India	13,1	80.0	36	277.9	46.0
		Toravere (TOR)	Dfb	Estonia	58,2	26,5	70	175.7	NA
		Yushan Station (YUS)	Cwa	Taiwan	23,5	121.0	3858	298.5	NA

FIG. 10. Intra-annual variation of F. F is estimated from hourly GHI time series acquired at Ajaccio and for a 1h forecast horizon. 4 R. Marquez and C. F. M. Coimbra, "Proposed Metric for Evaluation of So-732 lar Forecasting Models," 829

improvement that the predictive methodology generates (MLP 431 in this case) with respect to persistence. By reasoning simply, 432 two totally different phenomena can be characterized by the 433 same SS. It is that one observes with a constant (thus persis-434 tent) phenomenon, F = 100% logically but SS = 0 also be-435 cause one cannot do better than a forecast by persistence. In 436 the same way, a white noise with F = 0% is also characterized 437 by SS = 0 because here again it will not be possible to do bet-438 ter than a simple persistence. Therefore, SS cannot be a good 673

This algebraic identity can be simplified as shown in Equation 674A2:

The first two terms of the right member of this equation cor-

676

respond to the variance of the signal (σ 2 ε ), and in the case of 677 an uniform law with values between 0 and 1 (and with n large 678 enough), we know that 45 :

Regarding the last term of the Equation A2, as the elements