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Based on the reported literature and commonly used metrics in the realm of solar forecasting, a new methodology is
developed for estimating a metric called forecastability (F). It reveals the extent to which solar radiation time series
can be forecasted and provides the crucial context for judging the inherent difficulty associated to a particular forecast
situation. Unlike the score given by the standard smart Persistence model, the F' metric which is bounded between 0%
and 100% is easier to interpret hence making comparisons between forecasting studies more consistent. This approach
uses the Monte Carlo method and estimates F' from the standard error metric RMSE and the Persistence predictor.
Based on the time series of solar radiation measured at 6 very different locations (with optimized clear sky model) from
a meteorological point of view, it is shown that F varies between 25.5% and 68.2% and that it exists a link between
forecastability and errors obtained by machine learning prediction methods. The proposed methodology is validated for
3 parameters that may affect the F estimation (time horizon, temporal granularity and solar radiation components) and

for 50 time series relative to McClear web service and to the central archive of Baseline Surface Radiation Network.

I. INTRODUCTION

The intermittent nature of the solar resource and conse-
quently the difficulty of its prediction constitutes a limiting
factor for a greater integration of solar power generation in
the energy field!. In the solar forecasting community, many
researchers use different metrics in order to assess the diffi-
culty in generating good forecasts for different climates®. One
first possibility is to estimate the solar variability embodied in
the solar time series. Variability is devoted to the quantifica-
tion of the lack of consistency and gives a way to describe
to which extent data sets vary>. This type of metric is used
to compare the data at hand to other sets of data. Some au-
thors, like Marquez and Coimbra?, Perez and Hoff> or Blaga
and Paulescu® have endeavoured to describe mathematically
this variability while most of the others researchers consid-
ered this characteristic of the solar irradiance time series as a
basic assumption and have made efforts to implement predic-
tive strategies of increasing complexity’. As often in physics,
the description and especially the understanding of phenom-
ena that are causing a problem (i.e., the difficulty of predicting
solar irradiance/irradiation or the solar radiation components)
leads to a better characterization of the situation?.

Variability of global horizontal solar irradiation (GHI) is
due to two terms. The first one originates from the predictable
geometric trajectory of the sun while the second unpredictable
component is due to effects induced by the atmosphere and
the clouds. These unpredictable effects are captured by the
clear sky index k; defined as the ratio of the global horizontal
irradiation GHI to GHI. (GHI under clear sky conditions). In
Perez and Hoff> and Marquez and Coimbra*, ki is the key

Y Also at hospital of Castelluccio - Radiotherapy Unit, Ajaccio, Corsica,
France.; Electronic mail: voyant_c @univ-corse.fr
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parameter used to calculate the variability. In the first paper,
for a specific time scale A¢ of the time series, variability is
given by the standard deviation of the changes in the clear sky
index denoted by o (Ak;,,) while the second one proposes to
evaluate variability by computing the magnitude of the ramp
rates (i.e. changes in the clear sky index). Other authors like
Fouilloy ef al. ' and Voyant et al. '! estimated the variability
of the solar irradiation time series by quantifying the mean
absolute log return. Although the results were interesting, the
lack of theoretical consistency (passing through the L1 norm)
and the absence of normalization militate for a proposition of
a new approach.

As mentioned above, the variability metrics computed at
different time scales can be used as proxys to estimate the dif-
ficulty in forecasting in some particular sites. However, these
kind of metrics are independent of the forecasting time hori-
zon and consequently are not suited for a detailed evaluation
of the intrinsic difficulty related to a specific forecasting con-
text.

Furthermore, and as stated by Pedro and Coimbra 2, it
would be interesting to have an idea of the expected perfor-
mance of the prediction models prior to their implementation
and performance evaluation. To the best of our knowledge, in
the realm of solar forecasting, Pedro and Coimbra? were the
first to propose a combination of two metrics in order to assess
the forecasting performance one may expect before any fore-
casts are generated for a particular site. The authors defined
such as an a priori assessment as the forecastability. The two
proposed metrics (computed for each forecast horizon) are re-
spectively the density of large irradiance ramps (i.e. the den-
sity of changes in k) and a statistical metric called the time
series determinism. Unfortunately, the combination of the two
metrics to assess forecastability seems quite complicated and
makes interpretation of the results difficult.

Before going further, it must be emphasized that the term
predictability instead of forecastability is also used by some
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authors like Yang'?. In this work, and based on a biblio-
graphic survey, we opt for the notion of forecastability. Based
on a rather general bibliographic survey, the next subsection
tries to shed some light on the difference between predictabil-
ity (P)'3 and forecastability (F)'.

A. Difference between forecastability and predictability

One of the first references about the forecastability and the
time series formalism is the result of the work of the co-
recipient of the Nobel Prize Clive W.J. Granger'>. Authors
define it as the variance of the optimal forecast divided by the
unconditional variance of the time series. This definition and
the resulting Q parameter (forecastability quotient) were ex-
tensively studied in economics, gradually giving way to new
kind tools as sample and approximate entropy'®, correlation
and mutual information metrics!”.

These two notions (P and F) are conceptually very close: if
the predictability (P)'® studies how trajectories of the true sys-
tem diverge!?, the forecastability (F) describes how a model
trajectory diverges from a true system trajectory'*. A common
explanation is that a predictable process is able to be predicted
while a forecastable one is able of being forecasted. With this
last definition, the concept of modelling appears, thereby a
forecastable system is necessarily predictable but the opposite
is not true 1. The predictability term which is often used with
dynamic processes, is closely related to notions like causality
21 or chaos (i.e. failure of predictability®?), found for example,
in all weather series and where the typical predictable times
(or barriers) concerns the prediction horizons smaller than 1
or 5 days?3. In the context of the present study (nowcasting or
very short term), the chaotic aspect is not directly studied, so,
the term forecastability seems more suitable than predictabil-
ity one even if, to the best of our knowledge, there isn’t any
consensus on that.

Note that other concepts could have been detailed here (ob-
servability and detection reliability>*) but they do not have
much sense in the study of solar radiation given the quantities
involved are directly measurable and the associated uncertain-
ties are very low.

B. Framework of the study

As has been done for wind speed forecasting?, one may
also use the performance'?°. of the Persistence (P) model
which is, in this work, related to a persistent clear sky index

! In this paper, authors assume that “forecastability is not the same thing as
predictability”

ii Kumar and Chen 2% highlight this difference stating inherent predictability
being the upper bound of forecastability”

iii The performance of deterministic forecasting models are also usually re-
ported by the root mean square error (RMSE) and its normalized counter-
part (nRMSE) obtained by dividing the RMSE by the mean of the irradia-
tion values

118

kf. More precisely, the nRMSE obtained by this reference
model can be used to gauge the forecastability of a particu-
lar site. However, although this method is feasible, it would
not provide the same type of information. Indeed, a Persis-
tence forecast with an nRMSE equal to 20 % is not sufficient
to consider if the site is related to a high or a low forecastabil-
ity. It depends on the kind of solar component (direct, diffuse,
global), on the forecast horizon, on the latitude, on the to-
pographic relief, on the nebulosity, etc. For instance, for GHI
hourly data and 4-hour forecast horizon, a Persistence forecast
with an nRMSE equal to 20% could be an indication of a high
forecastability, but for GHI data with a 5-min granularity and
for a 5-min forecast horizon, certainly not. Put differently, the
main drawback of using the score of the reference Persistence
model is that it is not bounded by an upper limit.

In this work, the objective is to propose a forecastability
metric (denoted hereafter ') which is easy to compute and
easy to interpret. In other words, this new metric should pro-
vide users a global reference in order to assess the inherent
difficulty to issue forecasts for a specific site and consequently
if it makes sense to add an extra effort to build more and more
complex forecasting models. Additionally, it would be de-
sirable to relate in a simple way this (ex-ante) forecastability
metric with the (ex-post) skill score metric defined by Mar-
quez and Coimbra®. Hence, the F metric should be helpful
in comparing the numerous forecasting methods proposed by
the community.

To compute the F' metric, the user will need to compute the
RMSE of the Persistence model V. Moreover, as it will be dis-
cussed in section III C, this approach will allow adapting the
forecastability with the forecast horizon and with the different
components of the solar radiation.

The rest of the manuscript is structured in four sections.
The first one (section II) presents the mathematical formula-
tion of the forecastability F. In section III, the sensitivity of
F to various parameters is evaluated while in section IV is
proposed an estimate of F concerning 50 time series of GHI.
Finally, Section V gives some conclusions and some perspec-

tives.
Il. ESTIMATION PROPOSAL FOR F

Before proposing a new method to estimate the forecasta-
bility F, it is important to understand why in the existing for-
malism of the solar radiation time series, some elements could
be improved. As discussed in the introduction, in the time se-
ries domain, the variability (V) is often estimated by comput-
ing the variance®. In the context of solar radiation, the time
series data are very particular in the sense that the underlying
trend is periodic and easily quantifiable using robust models
validated by the community.

These models are denoted clear sky models?’ and they cor-
respond to the solar irradiation estimated under clear sky con-
ditions (GH1,) and computed from the sun position and vari-

¥ Which does not require any additional effort and calculation since the
RMSE of the reference Persistence model is systematically computed in
the solar forecasting studies (e.g., for skill score calculation).
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FIG. 1. Intuitive relationship between forecastability (F) and vari-
ability (V)

ous meteorological parameters characterizing the atmosphere
state. Among others, one can cite the Kasten, Bird, ESRA,
Solis, McClear, SMART S, etc. models. The clear sky models
are extensively used in the literature’®?° to build increasingly
powerful predictive models and thus it is essential to use this
specificity in our turn to quantify the forecastability.

A. The use of the specifics of solar radiation time series

Figure 1 permits to intuitively introduce the notion of fore-
castability. Figure 1(a) presents a Gaussian noise signal. In
this non-periodic case, one can assume that the forecastability
and the variability are strongly linked (F >~ 1 — V). In other
words, when the variance of the signal increases, the fore-
castability decreases. Conversely, for a periodic time series
data, the conclusion is different as shown in Figure 1(b) with
a cosine function. Even if the variability is important, one can
not conclude that forecastability is low (F % 1 — V) if there is
a way to estimate the trend and seasonality present in the time
series. In the present case, the prediction becomes easy using
a simple trigonometric function.

In the case of the global solar irradiation, if one attempts to
estimate the forecastability of the GHI time series, it must
certainly rely on a clear sky modeling of the global hori-
zontal irradiation. With this assumption, a methodology to
estimate F' based on a detrending of the GHI time series
or rather on a seasonal adjustment like the clear sky index
(kf(r) = GHI(t)/GHI,(t)) is proposed hereafter.

B. Interest of the normalization in computing F'

In statistics, normalization is a very frequently used tech-
nique which refers to the creation of shifted and scaled ver-
sions of certain variables (see normalization of scores pro-
posed by Dobson3?). The primary intent of this change is
that these normalized values promote the comparison of a cer-
tain effect for different data sets in a way that eliminates the
effects of certain gross influences.

In order to exemplify the interest to make use of the nor-
malization in the calculation of F, Figure 2 shows one day
of modelled GHI, for two sites with different solar potential.

236
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FIG. 2. Clear sky modeling vs noisy data for two sites with different
solar potential

Figure 2 plots also a synthetic time series (denoted here noisy
data) built from the sum of an uniform white noise (same level
of noise for the left and right parts of the figure) plus 80% of
the GHI, values. Although this example covers only one day,
it highlights phenomena that occur annually for two sites with
high and low solar energy potential or for one site when it
is studied during two different periods of the year (summer
and winter for instance). When a prediction is performed and
when an usual relative error metric like the normalized root
mean squared error (nRMSE) is computed, the impact of the
noise is more detrimental in the left case. The nRMSE re-
lated to the left part of the Figure 2 is 65.6% (49.2% with
nighttime filtering) while for the right part it is 45.9% (39.8%
with nighttime filtering). With an estimate of F that does not
take into account the solar potential of the site, these two GHI
curves could be characterized by an identical F' given that the
two signals are constructed in the same way. This problem-
atic prompts us to propose a normalized formulation of F' that
takes into account the studied site and its characteristics (in-
cluding the data filtering process) as we will see in the follow-
ing subsection.

Again, it may seem tempting to quantify the forecastabil-
ity relying solely on the interpretation of the nRMSE of the
Persistence forecast. But, as already stated in the introduc-
tion, this way of proceeding does not make it possible to rule
on the forecastability regarding particular forecast horizons or
time scales present in the data. Finally, we explain in Annex
A why the normalization can’t be operated by a simple use of
the mean of GH]I,.

C. Mathematical formalism for calculating F

In what follows, we detail the mathematical formalism us-
ing the GHI. This formalism can be derived for the other solar
radiation components but will not be given here.

The most used model as naive or reference predictor in
the solar forecasting community is the so-called Persistence
model ¥ defined in this work by the Persistence of the clear

¥ Naive forecasts serve as a placebo in evaluating the performance of fore-
casting processes
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large set of historical data®'. Note that recent studies have
highlighted the use of “improved” Persistence model such
as an optimal convex optimization of Persistence on k; and
climatology'?. As currently this type of model is not yet a
common used model in the solar forecasting studies, it will
be not tested in this study. In addition, using this kind of
“smart” Persistence instead of the classical persistence would
marginally impact the evaluation of the inherent difficulty of
a forecast situation provided by the F metric.

The Persistence model is also considered as the ref-
erence for calculating the forecast skill score SS = 1 —
RMSE /RMSEp*? where RMSE?® is the root mean square er-
ror related to the studied model and RMSEp is the score of the
Persistence model. The error metric RMSE computed for the
time index set T reads as (circumflex for the prediction):

2
1 & —
RMSE = \/ Z (GHI(I) — HI(t)) ,VneT. (1)
=
The Persistence forecast estimates at the time 7+ 1 (i.e.

—

GHI(t+1)) uses the clear sky modelling value (GHI.) and
is given by Equation 2.

o —

HI(t+1
GHI(t+1) = GHI(r) x CHL(t+1)

GHI.(t) @

Given the RMSE score obtained by the Persistence predic-
tor (RMSEp), the formulation of F is based on a normaliza-
tion involving an estimation of the maximum and minimum
values that the RMSE can reach (respectively RMSE,,,, and
RMSE,,;,) for a particular site. Hence, Equation 3 defines F.

RMSE 0 — RMSEp
RMSE pax — RMSE in

F = 100% x 3)

With this metric, when RMSEp = RMSE,,;, (the lowest ac-
ceptable value) F' = 100% and when RMSEp = RMSE, 4, (the
highest allowable value) FF = 0%. The F score is therefore
between 0% and 100%. RMSE,,;, is reached when the fore-
castability is maximum i.e. cloudless sky and clear sky condi-
tions with GHI(t) = GHI,(t). In this case, k; is always equal
to 1 and the Persistence model is an ideal predictor inducing
RMSE,i, ~ 0 (not really observable in practice but it is a nec-
essary theoretical condition for the presented methodology)*'.
According to this simplification, the updated version of F is
as follows:

RMSEp

- 4)
RMSE, .«

F ~ 100% x <1

Vi inducing 2 assumptions: there are no clouds and the clear sky is perfectly
defined. Unfortunately, neither is physically realistic, if the first hypothesis
is rarely established (except in desert regions and not yet, during the whole
year), the second one is dependent on modeling, and as it will be visible in
Section III B, the errors of the clear sky can vary between 1% and 5%
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diction is not possible thus when the predictability becomes
too low for a model to be relevant. For example, on Ajaccio
within the framework of an hourly study of the GHI, what-
ever the method used, its RMSE will be between RMSE,,;;,
(= OWh/m?) and RMSE 4, (= 249.7Wh/m?). This last limit
case occurs when there is no link (in the sense of statistical de-
pendence) between the future elements of the time series and
the present ones. We artificially generated a k' time series
with elements governed by a random process and an uniform
probability distribution (£(¢), between 0 and 1 - See Equation
5 below). This is equivalent to uniformly distribute GHI(r)
between 0 and GHI,(1).

This approach obviously excludes the phenomenon of over-
irradiance® (i.e. k' > 1). However, when the granularity of
the GHI time series is greater than a few minutes, we assume
that these phenomena are rare enough to consider values of k;
greater than 1 as unsignificant events. Moreover, for example
in Ajaccio, the values of measured k; maximum (time gran-
ularity of 14 and horizon 14) fluctuate considering the year
used as a basis for the calculation (between 1.76 in 2000 and
2.08 in 1999). So considering the available years, the value of
F (which depends indirectly on the value of the k; maximum
if the latter is not taken equal to 1) would fluctuate a lot. Con-
sequently, and in order to keep the methodology as simple as
possible, we limit the generation of random k; between 0 and
1.

Figure 3 shows the methodology used to estimate F
for a specific site using pseudo-random numbers generator
(Matlab®)**. The methodology, although different from what
is usually the goal of a Monte Carlo method??, is based on a
computational algorithm that relies on repeated random sam-
pling to obtain numerical results®.

From the definitions of the RMSE (Equation 1) and the
Persistence model (Equation 2), it is possible to calculate the
RMSE, . score in relation with the GHI,(¢) value and pseudo-
random numbers series denoted by £(¢). Posing &/ (z) = €(¢)
and k7 (r — 1) = €(r — 1), it is possible to integrate these val-
ues in Equation 1 considering that GHI(t) = k;(t).GHI,(t).
Therefore, RMSE,,,, reads as:

RMSE iy =

2
lz <GHIC(t) X (8(1‘) —e(t— 1))) (5)

3

Obviously, the approach set out here is only possible if the
number n of random samples in Equation 5 is large enough. In
practice, more than 1000 samples"' are necessary to obtain a
fairly estimate of F. As a consequence, more than 1000 pairs
of forecast/measurement are necessary to compute the score
of the Persistence model in Equation 4.

It is easy to notice in Equation 5 that RMSE,,,, depends
on a variable with a physical meaning namely GHI,(¢). As a

Vil byt the higher the number #, the better the estimate of F'.
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FIG. 3. Methodology to estimate the forecastability (F)

consequence, two sites with the same clear sky characteristics
will exhibit the same RMSE,,,, score. Two possibilities exist
(Figure 3), either to use random numbers (the most efficient
method, see Algorithm 1 for RMSE!%"%) or to make hy-
potheses (which we will detail in the following RM SEdnalticy
and use an analytical version of the parameter F'. For the sec-
ond way, as a first approximation, it is not necessary to take
into account all the parameters needed to compute the clear
sky model.

Algorithm 1: Calculate RMSEc%"l
Require: clear sky time series GHI,

forallr €T do

generate £(¢)* € (0,1)

GHI(t) + GHI (1) x €(¢)

return G/I-Tl(t) «~ GHI(t—1)
end for -
return RMSE!""' = RMSE(GHI — GHI)

2 See Eq 5

With the Solis model!!, the main parameter influencing the
RMSEN yalue is the latitude which is linked to the solar
position in the sky. The RMSEX™ (which is a purely the-
oretical and statistical parameter without real physical sense)
is, thereby, assumed equivalent for Sahara desert, Caribbean,
coastal Mexico, south east Asia, ...i.e. countries or regions
along the same latitude band. This is of course a strong as-
sumption but which is necessary if one wants to use the clear
sky modeling (operated by the most of the researchers in the
solar forecasting community) in simulations and not the ex-
traterrestrial irradiation or the solar elevation. In this case,
other setting parameters induce only slight uncertainties in the
observed results (only verified for the tested sites in this study
but certainly quite simply transposable to most sites that do
not have extreme characteristics).

375

376

377

378

Even if all existing clear sky models were not checked, this
conclusion seems to be generalizable. Anyway, this assump-
tion can be easily verified for all clear sky models used by
the researchers. In the current case, an uncertainty of £3.7%
was found when the Aerosol Optical Depth (AOD monthly
updated in the study) varies between 0.1 and 0.2 (these lat-
ter values are very small compared to exceptional observa-
tions in desert climates) or +=0.5% when the altitude fluctu-
ates between 0 and 1000m. Note that in Ajaccio, the arrivals
of ferries boats add a systematic pollution and the measure-
ment of “AOD” exhibits strong intraday fluctuations which
are not taken into account in the simulations. The estimated
RMSEXAD"C versus the latitude computed using the Solis
model is plotted in Figure 4. For each latitude, monthly and
yearly values are given. They allow to know the magnitudes of

the approximate RMSE™ according to the latitude and the
periods during which solar radiation measurements are avail-
able (month, season or overall year). A filtering process was
applied, all data with solar elevation 2 < 1° (nocturnal values)
are deleted because during these periods, the k; values are
not defined. With another limit of filtering, the curves are no
longer usable; hence, it is considered that the validity interval
of the solar elevation filtering for the proposed curves of Fig-
ure 4, is between 0° and 5° (corresponding to a RMSESic

difference of +1%).

In Figure 4, it must be noted that RMSEX“"" values used
to estimate the forecastability of the considered site has been
computed with an uncertainty close to +5%. In the annual
case (red line), a Gaussian fit (see Equation 6) with a slight dif-
ference related to latitudes close to 0° can be used (goodness-
of-fit of analytical method close to R* = 0.999):

) 6)
) 2

lat+1.088
79.86

RMSESabtic — 305 9o~ 2

max

RMSEp

lat+-1.088
79.86

= F =100% x (1 —
325.9e7(
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General model Gauss :
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FIG. 4. The magnitudes of the RMSE®*"" versus the latitude. Monthly and yearly values are given.

D. Link between F' and forecast skill (skill score S'S)

Currently, most of the forecasting studies evaluate the per-
formance of the models in terms of forecast skill. As men-
tioned in the introduction, it would be desirable to simply re-
late the forecastability metric to a skill score. As the fore-
castability is computed from the Persistence forecasts, it is
straightforward to establish the link between the skill score
$SS=1- 151\%55 ) and F. Considering Equations 4 and Algo-
rithm 1, Equation 7 related to the link between F and SS can
be established as:

RMSE

S§=1-
(1— 55) x RMSE}carto

)

For example, in Ajaccio (Corsica island) with Latitude
41.9°, F = 68.2% and RMSE!"<¢"> = 249.7W h/m?, Equation
7 becomes a simple relationship between the skill score SS
and the RMSE of the studied forecasting method i.e. SS ~

1— RMSE/79.

Ill.  FACTORS INFLUENCING F

Some parameters influence the factor F such as the site lo-
cation, the solar radiation component (global, beam and dif-
fuse), the prediction horizon and the time granularity (this list
is not intended to be exhaustive).

A. F variation with location

The F value quantifies the difficulty to predict the solar ra-
diation components. Table I lists the F values for 6 locations
(see also Figure 5): Ajaccio (Corsica island, France), Nancy
(East of France), Odeillo (mountainous site, Pyrenées Orien-
tales, France), Tilos (Greek island), Saint Pierre (Reunion is-

EIE 92
Nancy

T L& = Lol
™ Odeillo % A
Y A ey bl

g r~ . ¢ ¢ Ajaccio

® Le Raizet

4,

St pierré

FIG. 5. The 6 locations used to estimate F'

.11 land, France), Le Raizet (Guadeloupe archipelago, France).
412 Those stations are not enough to prove the generalization of
the forecastability. In section IV, it will be tested on 50 sta-
tions spread all over the globe. Here the solar radiation com-
ponent of interest is the GHI and the forecast horizon and the
time granularity is 1 hour for all sites.

As shown by Table I, the higher the forecastability (F), the
lower the error metric (nRMSE) related to predictions gener-
ated by a multilayer perceptron (MLP'%383%). The relation-
ship between these two metrics is not obvious to estimate.
However, it must be stressed that factors such as the quality of
the measurements as well as the concordance of the measure-
ments with the clear sky model may complicate the interpreta-
tion. This table validates what has been widely demonstrated
in the literature i.e. mountainous regions (Odeillo) and conti-
nental climates (Nancy) are more difficult to apprehend than
coastal areas (Ajaccio and Tilos). With this table, it is inter-
esting to realize that the SS alone does not allow to judge the
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TABLE I. Values of F' and nRMSE for 6 locations

Site  Koppen class®’ Latitude F?* nRMSE® SS°
Ajaccio Csa 41°55'N 68.2% 18.3% 0.04
Tilos Csa 36°25'N 64.7% 19.6% 0.02
St Pierre Aw 21°20'S 62.4% 21.1% 0.01
Le Raizet Af 16°26'N 58.2% 25.9% 0.07
Nancy Cfb 48°41'N 50.2% 27.4% 0.05
Odeillo Ctb 42°30'N 25.5% 29.9% 0.19

2 See Equation 4
b Related to the MLP predictions

TABLE II. Value of F for the 3 radiation components and nRMSE*!
in Odeillo site

Radiation Components F? nRMSE ® 55°
Global 25.5% 29.9% 0.19
Beam 13.4% 38.2% 0.02
Diffuse 12.1% 40.9% 0.35

4 See Equation 4
b Related to the MLP predictions

forecastability of a site. Indeed, it only indicates the degree of
improvement that the predictive methodology generates (M LP
in this case) with respect to persistence. By reasoning simply,
two totally different phenomena can be characterized by the
same SS. It is that one observes with a constant (thus persis-
tent) phenomenon, F = 100% logically but SS = 0 also be-
cause one cannot do better than a forecast by persistence. In
the same way, a white noise with F = 0% is also characterized
by SS = 0 because here again it will not be possible to do bet-
ter than a simple persistence. Therefore, SS cannot be a good
indicator of forecastability.

B. F evolution with the solar radiation components

The methodology used to compute F can be applied to the
3 components of solar radiation (global, beam and diffuse)*.
The only prerequisite is to estimate the clear sky solar value
corresponding to each component. Table II gives the F values
and the prediction errors for Odeillo (the site with the most
important variability, for a forecast horizon and a time granu-
larity of 1 hour!%3%).

As shown by Table II, the other solar radiation components
(beam and diffuse) exhibit lower F values than the one esti-
mated for the GHI. Conversely to global irradiation, the clear
sky modelling for the beam and diffuse components is less
efficient. As an illustration, the values obtained with the sim-
plified Solis version are within 1% for the global component,
2% for the beam component and 5% for the diffuse component
(read Ineichen*? for details). In this subsection, the conclu-
sion is similar than the one stated in subsection III A that is
nRMSE trend is a bijective function of F but the relationship
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FIG. 6. Forecastability and prediction horizons (F computed from
RMSEp found in!0-38:41)

between F and nRMSE is non-linear. However, the difference
in forecastability between Beam and Diffuse components is
close to 1% while the nRMSE fluctuates by more than 2 per-
centage points. Consequently, it must be stressed that the pro-
posed methodology for estimating F will not be relevant if
the clear sky model related to the solar radiation component
of interest lacks precision.

C. F evolution with the forecast time horizon

Intuitively, it makes sense to think that the longer the fore-
cast horizon, the lower the forecastability. This fact is verified
for all the locations depicted in Figure 6 and particularly for
Ajaccio with GHI time series of 1 hour time granularity. The
F factor is halved in value when the lead time goes from 1h to
6h for all the locations. The related prediction errors nRMSE
generated by the MLP3 predictor in Ajaccio are respectively
18.3%, 29.5%, 31.2%, 33.0%, 33.8% and 34.5%. It can be
noted that between the 5 and 6 hours horizons, the estimates of
F are not significantly different for most of the studied cities.

D. F variation with time granularity

In Table III, it can be seen that for Tilos (the only site where
10 minutes data were available), when we realized global irra-
diation forecasts (MLP3%) for horizons of respectively, 1 hour,
15 minutes and 10 minutes'?, the conclusion follows the logic
observed so far that is F' and nRMSE are strongly statistically
dependent and when one increases the other decreases.

E. Conclusion about the F' estimation

This section showed the link between the F' factor com-
puted from Equation 4 and some parameters frequently used
in studies related to the prediction of global irradiation or so-
lar radiation components through the time series formalism.
In Figure 7, this link can be estimated by comparison be-
tween the forecastability value and the prediction error related
to MLP forecasts. For each kind of parameters (respectively



TABLE III. Value of F' according to the time granularity and nRMSE
realated to MLP prediction'® in Tilos island

Time Granularity F? nRMSE ® Ssb
1 hour 64.7% 19.6% 0.02

15 minutes 82.5% 15.6% 0.06

10 minutes 87.4% 12.8% 0.04

? See Equation 4
b Related to the MLP predictions

60
X Location
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Z40 ® Time horizon
= N A Time granularity
7 30
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FIG. 7. Relationship between F and prediction error nRMSE. Linear
fits are provided in order to better highlight the monotonic relation-
ship between F' and nRMSE.

the location, radiation component, the time granularity and the
lead time) the link between nRMSE and F is monotonic and
when F increases the error metrics decreases. The relation-
ship is not linear and certainly depends on the predictor used
(MLP in our case). What is verified is that when the forecasta-
bility is good (in the sense of a high value of F) the forecast
so0 becomes easier.

IV. RMSE!<“" AND F CALCULATED FROM 50 TIME
SERIES OF GHI

In order to not limit the conclusions of this study to the only
time series studied in the previous simulations, we propose

here to estimate RMSEA™€  RMSE™<4"0 and F from data
directly provided by large consortia working in the field of
acquisition, processing and modeling of solar radiation (year

2015, 1h time granularity and horizon).

A. Comparison between RM SE““D" and RM S Ercarlo
using McClear time series

In this section, we propose to estimate RMSE,,,, from Mc-
Clear web service series. The calculation methodologies pre-
viously developed and based from random number generation
(Cf RMSE™<arlo i section IIC) and based solely on the lati-

max

tude (RMSEL" computed from Eq 6) are compared. The
characteristics of the time series are available in Appendix B
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FIG. 8. Ratio = RMSE"<%"!0 JRMSES considering elevation
and latitude. 82% of ratio value are comprised between 0.9 and 1.1.

(Table IV). The way of calculating the forecastability from
random numbers (Figure 3) is synthesized by Algorithm 1,
which can be applied from anywhere on the surface of the
globe, as long as a clear sky radiation estimate (GHI.) is
known but above all optimized to be as reliable as possible.
Figure 8 makes it possible to quantify the difference be-
tween a direct calculation (RMSE,’,’[C“’Z" described by Algo-

ax
rithm 1) and the use of Equation 6 (RMSEXD" ). We can
appreciate a good match between these two ways of operat-
ing. However, stations abbreviated as (see Table IV) COC,
DOM, FLO, GAN, GOB, GUR, HOW, ISH, TIR are the sta-
tions with more than 10% of difference between the two meth-
ods (the mean of ratio is 0.95). There are several ways for
understanding these discrepancies, such as considering only
the latitude in Equation 6 or the fact that no post-processing
was performed with the McClear model. This model is un-
doubtedly one of the best performing model at the present, but
there are some uncertainties relating to certain locations that
have been reported in the literature. For example, Laguarda
et al.® reported errors related to the use of McClear model
close to 5% in average and which can reach more than 10%
some particular periods.

As a synthesis, we cannot therefore make an objective de-
cision as to the quality of the forecastability calculation based
solely on the latitude of the site. However, we can think that
this way of proceeding is not in total contradiction with the
direct calculation (Algorithm 1), which is relatively simple to
implement and it is certainly preferable to undertake it if one
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wants precise results.

B. F calculation concerning 50 BSRN stations

In this section we propose F estimates (Equation 4) from
RMSE!"<r!o computed with McCLear model and Algorithm
1. The measurements (BSRN data) are kindly provided by the
renowned World Radiation Monitoring Center (Annex B and
Table IV). The distributions of the F and RMSE!"%"! values
can be seen in Figure 9 (average respectively close to 60%
and 250 Wh/m?). The interpretation of the results should be
taken lightly, because, as we have seen before, the determi-
nation of the RMSE,’,’Z;}”I” depends strongly on the clear sky
model used. During these simulations, there was no post-
processing to improve the reliability of the model contrary to
what was done during the simulations relating to the sections
IIT A to I D. Moreover, sometimes long acquisition periods
were unusable making the calculation of forecastability cer-
tainly irrelevant for certain series. As could be expected, it is
nevertheless possible to notice a large dispersion of the values
of F (from 25% to 82%). The site with the lowest variability
is in Japan (SAP) and the site with the highest, in Antarctica
(DOM). Note that latitude is not a sufficient factor to judge
forecastability. Indeed, two sites with the same latitude like
IZA and GUR may have the same F value while others like
DRA and E13 may have totally different F' values. With this
study we must valid that forecastability does not allow to pose
whether a meteorological phenomenon will be easily or to-
tally predictable (the role of predictability; see introduction
part I A). The forecastability can be seen as the efforts to be
implemented to carry out a forecast not of a meteorological
phenomenon (such as cloudiness because it is indirectly what
is done when modelling the GHI) but of the measurement of
the latter under certain constraints (clear sky quality, horizon,
time step, component, inclination, etc.).

V. CONCLUSIONS AND PERSPECTIVES

In the solar energy forecasting community, it is common to
read more and more papers proposing increasingly complex
forecasting methodologies and whose conclusions are limited
to state that the proposed new method outperforms the previ-
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ous ones without any consideration of forecastability or pre-
dictability. However, the inherent difficulty related to a par-
ticular forecasting situation should be studied prior the im-
plementation and testing of a forecasting model. Put differ-
ently, statements regarding the quality of the generated fore-
casts must account for the forecastability of the variable of
interest.

In this paper, a simple new methodology based on the
RMSE metric and the Persistence model was presented to
estimate the forecastability F' of the solar radiation compo-
nents. This F metric is defined like a percentage between
0 and 100% and is very easy to interpret. The formalism
used is reminiscent of what has been proposed in the litera-
ture over the past 10 years but with some small modifications
and a normalization process based on a Monte Carlo approach
(RMSE, ;). Two ways of doing so were proposed: calculate

RMSE!!% or make an analytical approximation of the latter

by calculating RMSES™  Even if the latter method gives
good results, the first one, while being very easy to imple-
ment, is preferable and we recommend it. The results of the
simulations validate the proposed theoretical framework and
it appears that it is quite simple to quantify the forecastability
(see Equation 6 and Algorithm 1) regardless the studied site.
The real difficulty in using this methodology is that that the
clear sky model must be reliable and carefully tuned. Other-
wise, the methodology presented here becomes inappropriate.
It is this prerequisite which led to less convincing results when
we estimated F' for the diffuse and solar radiation components.
This point is important, because besides being used for esti-
mating F, the clear sky modelling is becoming increasingly
important for the derivation of the forecasting methods found
in the literature'. The prediction results (and especially those
related to the skill scores) can strongly diverge in case of in-
correct tuning of the clear sky model. This phenomenon is
not so highlighted in the other forecasting disciplines because,
contrary to the solar radiation time series, it is not possible to
estimate the underlying trend with the help of a physical-based
parametric model like a clear sky model.

The methodology proposed in this work is based on the
clear sky index. Nonetheless, in order to overcome the un-
certainties related to the modeling of the different interactions
in the atmosphere (which are the basis of the clear sky models
elaboration)®, a future work will be devoted to the derivation
of the F metric based on the clearness index (ratio of the irra-
diation or irradiance to the extraterrestrial irradiation).

However, it should be noted that the uncertainties related
to time-stamping and poor measurement-model synchroniza-
tion can still affect the F estimation. Consequently, even with
these other possible methodologies, it would not be possible
to propose a ’true” objective F estimation. This is a critical
issue that deserves careful attention.

In addition to this essential point, the next objective of this
study will be to propose a reliability index based on the vari-
ation of the intra-annual forecastability. Indeed, it is possible
to compute F from a sliding window (100 hours taken here as
example) and thus to simply estimate the reliability of a pre-
diction from the computed forecastability. As shown by Fig-
ure 10, in summer (center of the hours axis), predictions are
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reliable with F' ~ 85% which is not the case at the extremities
(winter; F ~ 60%). Following the methodology developed
by Fliess, Join, and Voyant**, the next step in this research
will be to enrich deterministic forecasts with predictions in-
tervals that will take into account both the forecastability and
the volatility of the solar radiation time series.

Finally, the idea of characterizing F' over a large area (or a
whole country) will quickly become essential. While the esti-
mation of F for meteorologically homogeneous or regular ar-
eas should be straightforward, it will be not possibly the case
for inhomogenous regions such as for instance Corsica island
or the Pyrénées mountains. In these areas, forecastability can
vary up to 20% under a distance of 2 or 3 km. To characterize
such inhomogenous areas, many time series would be neces-
sary and it may be necessary to use satellite-derived irradiance
such as HelioClim-3 solar radiation database in real time.

Appendix A: Why not normalize F' with the mean of GH I,
as we do with error metrics (RMSE vs nRMSE)?

At a first glance, it would seem attractive to propose a nor-
malization based on the average value of GHI, rather than
using a more complicated Monte Carlo type approach. In this
appendix, we show that these two types of normalization are
roughly equivalent. More precisely, we demonstrate that the
first one is an approximate of the second one (under certain
assumptions).

Considering a time series €(¢) built with a sampling from
an uniform distribution (between 0 and 1 equivalent to an ar-
tificial clear sky index (CSI), see section I1 C), it is possible to
compute the RMSE,,,, related to Persistence forecasting. In
the next, we denote this parameter RMSESS! so as not to be
mistaken with the RMSE,,,, relating to the GHI. Indeed, the
MSES3! is given by the well known relation Al (in which the

mean of the signal € has been added and then subtracted).

)

t=1

(AL)

max —

MsESS = 1
n

<8(t) —E+E—¢g(t— 1))2.

This algebraic identity can be simplified as shown in Equation

A2:
<s(t 1) é>2

(A2)

ln
L

t=1

2
MSESST = <£(t) - é) +1 i
n

t=1

—iti <8(t) —é) (8(t— 1) —é).

The first two terms of the right member of this equation cor-
respond to the variance of the signal (67), and in the case of
an uniform law with values between 0 and 1 (and with n large
enough), we know that*>:

i(g(t)—é)zzi <s(t—1)_g;>2:n682: n

(A3
P 12

Regarding the last term of the Equation A2, as the elements
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constituting the series € are completely independent (€(¢) and
€(r — 1) are independent random variables), their covariance

is thereby zero®.

The above considerations allow rewriting Equation Al as
MSESS! = 1/6 and consequently RMSESSL = 1/+/6.

max

If, in the case of random number between 0 and 1, the the-

oretical approach is possible, it is not the case for the MSE,

related to the GHI (between 0 and GH1,) given that the latter

fluctuates. In this case, the Monte Carlo approach is the only
one really effective but an approximation can be made.

Assuming that the nRMSESS! related to CSI gives the
same error estimation than the nRMSE,, . related to the GHI,
we obtain (posing € = 1/2) nRMSESS! = 2/1/6 leading to
RMSE,.. = (2/7/6)GHI, with GHI, the mean value of GHI,.
This approximate is valid only if a filtering is operated and
if the data related to the night are not taken into account.
So RMSE,;,,, could be computed only from GHI. but under
certain conditions and accepting some uncertainty. For in-
stance, in Ajaccio (latitude of 41°56') the RMSE,,,, read in
the Figure 4 is 249.7Wh.m~2. For this same site GHI, is
467.3Wh.m~? inducing a RMSE,,; equal to 381.2Wh.m~2
(using RMSE,., = (2/v/6)GHI,). The difference between the
two methodologies is greater than 40% (381.2 versus 467.3).
There are certainly special cases for which this simple ap-
proach gives good results but in all cases it is preferable to
use the methodology on the generation of Monte-Carlo type
random numbers.

Appendix B: McCLear and BSRN studied sites

One can see the studied sites in the table IV. The interesting
McClear model estimates clear sky radiation for any point on
the globe*®. Developed by the Centre O.LE. - MINES Paris-
Tech/ARMINES, it uses the results of the numerical meteoro-
logical model of chemistry - transport of the European MACC
projects*’. BSRN is a project of the Panel on Data and As-
sessments of the Global Energy and Water Cycle Experiment
(GEWEX) under the World Climate Research Programme
(WCRP) and, as such, aims to detect significant changes in
the radiation field at the Earth’s surface that may be related to
climate change. This group offers free quality GHI series at a
wide range of sites*S.

Data availability

The data that support the findings of this study are available
on request from the corresponding author. The data are not
publicly available due privacy restrictions.
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TABLE IV. Characteristics of the locations related to the 50 McCLear*” and BSRN*® time series (1h time granularity and horizon; 2015). NA
when less than 1000 data are available

Station Koppen®’ Location Lat (°) Long(°) Elev(m) RMSERSro(Wh/m?) F(%)
Alice Springs (ASP) Bwh Australia -23,8 133,9 547 291.1 48.7
Bermuda (BER) Af USA 32,3 -64,7 8 253.1 NA
Billings (BIL) Dfa USA 36,6 -97.5 317 2427 38.1
Bondville (BON) Cfa USA 40,1 -88.4 213 236.4 52.8
Boulder (BOS) BSk USA 40,1 -105,2 1689 252.3 55.7
Brasilia (BRB) Aw Brazil -15,6  -47,7 1023 290.9 43.9
Cabauw (CAB) Cfb Netherlands 52.0 4,9 0 200.4 64.5
Camborne (CAM) Cfb United Kingdom 50,2 -5,3 88 208.1 61.9
Cener (CNR) Cfb Spain 42,8 -1,6 471 229.1 NA
Cocos Island (COC) Aw Australia -12,2 96,8 6 282.4 NA
De Aar (DAA) BSk South Africa -30,7  24.0 1287 279.0 NA
Concordia Station (DOM) EF Antarctica -75,1 123,4 3233 164.0 81.6
Desert (DRA) BWh USA 36,6 -116,0 1007 2579 29.1
Darwin Met Office (DWN) Aw Australia -12,4  130,9 32 285.9 79.9
Southern Great Plains (E13) BSk USA 36,6 97,5 318 285.4 69.2
Florianopolis (FLO) Cfa Brazil, 27,6 -48,5 11 267.3 50.8
Fort Peck (FPE) BSk USA 48,3 -105,1 634 216.2 46.1
Fukuoka (FUA) Cwa Japan 33,6 130,4 3 247.3 68.0
Gandhinagar (GAN) BSh India 23,1 72,6 65 240.8 39.9
Goodwin Creek (GCR) Cfa USA 34,3 -89,9 98 281.0 58.1
Gobabeb (GOB) Csb Namibia -23,6 15,0 407 2473 70.1
Gurgaon (GUR) BSh India 28,4 77,2 259 238.9 78.3
George von Neumayer (GVN) EFs Antarctica -70,6  -8,2 42 151.3 69.8
Howrah (HOW) Aw India 22,5 88,3 51 243.1 53.9
Ishigaki jima (ISH) Cfa Japan 243 124,2 5,7 259.9 36.3
Izana (IZA) BWh Spain 28,3 -16,5 2373 300.7 78.4
Kwajalein (KWA) Af Marshall Islands 8,7 167,7 10 294.6 54.1
Lauder (LAU) Cfb New Zealand -45,0 169,7 350 236.2 NA
Lerwick (LER) Cfb United Kingdom 60,1 -1,2 80 172.8 48.5
Lindenberg (LIN) Cfb Germany 52,2 14,1 125 199.9 62.6
Lulin (LLN) Cfa Taiwan 23,5 120,9 2862 293.3 NA
Langley (LRC) Cfb USA 37,1 -76,4 3 239.1 68.2
Minamitorishima (MNM) Cfa Japan 24,3 154.0 7 267.3 68.5
Ny-Alesund (NYA) ET Norway 79.0 11,9 11 117.9 64.8
Huancayo (OHY) Cwb Peru -12,0  -75,3 3314 328.7 NA
Palaiseau (PAL) Cfb France 48,7 2,2 156 205.7 33.5
Payerne (PAY) Cfb Switzerland 46,8 6,9 491 219.8 67.2
Rock Springs (PSU) BSk USA 40,7 -77,9 376 237.5 62.4
Petrolina (PTR) BSh Brazil 9,1 -40,3 387 295.2 31.6
Sapporo (SAP) Difb Japan 43,1 141,3 17 227.3 24.9
Sao Martinho da Serra (SMS) Cfa Brazil -294  -53.8 489 259.6 48.5
Sonnblick (SON) Dfb Austria 47,1 13.0 3109 246.1 49 4
Sioux Falls (SXF) Dfa USA 43,7 -96,6 473 231.8 53.4
Syowa (SYO) EF Antarctica -69,0 39,6 18 161.2 73.1
Tamanrasset (TAM) Csa Algeria 22.8 5.5 1385 286.2 70.6
Tateno (TAT) Dfb Japan 36,1 140,1 25 236.4 66.3
Tiksi (TIK) Dfd Russia 71,6 128.9 48 136.3 64.5
Tiruvallur (TIR) Aw India 13,1 80.0 36 2779 46.0
Toravere (TOR) Dfb Estonia 58,2 26,5 70 175.7 NA

Yushan Station (YUS) Cwa Taiwan 23,5 121.0 3858 298.5 NA
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FIG. 10. Intra-annual variation of F. F is estimated from hourly GHI time series acquired at Ajaccio and for a 1h forecast horizon.
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