
HAL Id: hal-03162964
https://hal.science/hal-03162964

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Faust to Web Audio: Compiling Faust to
JavaScript using Emscripten

Myles Borins

To cite this version:
Myles Borins. From Faust to Web Audio: Compiling Faust to JavaScript using Emscripten. Linux
Audio Conference (LAC-14), May 2014, Karlsruhe, Germany. �hal-03162964�

https://hal.science/hal-03162964
https://hal.archives-ouvertes.fr


From Faust to Web Audio:
Compiling Faust to JavaScript using Emscripten

Myles Borins
Center For Computer Research in Music and Acoustics

Stanford University
Stanford, California

United States,
mborins@ccrma.stanford.edu

Abstract

The Web Audio API is a platform for doing audio
synthesis in the browser. Currently it has a number
of natively compiled audio nodes capable of doing
advanced synthesis. One of the available nodes the
”ScriptProcessorNode” allows individuals to create
their own custom unit generators in pure JavaScript.
The Faust project, developed at Grame CNCM, con-
sists of both a language and a compiler and allows
individuals to deploy a signal processor to various
languages and platforms. This paper examines a
technology stack that allows for Faust to be com-
piled to highly optimized JavaScript unit generators
that synthesize sound using the Web Audio API.

Keywords

WebAudio, Faust, Emscripten, JavaScript, asm.js

1 Introduction

The Web Audio API, released in 2011, is “a
high-level JavaScript API for processing and
synthesizing audio in web applications.”1 Cur-
rently there are a number of natively compiled
audio nodes within the API capable of do-
ing various forms of synthesis and digital sig-
nal processing. One of the available nodes,
the “ScriptProcessorNode”, allows individuals
to create their own custom unit generators in
pure JavaScript, extending the Web Audio API.

While the concept of making interactive
sound synthesis environments in the browser
is quite exciting, many factors stop individu-
als from investing time into the Web Audio
platform. Ignoring the constraints of a single
threaded environment there appear to be two
primary limitations when working with web au-
dio: There has not yet been enough Signal Pro-
cessing related JavaScript code written yet, and
some signal processing concepts prove difficult
to implement efficiently in a loosely typed lan-
guage with no memory management.

1https://dvcs.w3.org/hg/audio/raw-file/tip/
WebAudio/specification.html

2 Some Context

2.1 WAAX and Flocking

There are a number of projects that are in de-
velopment abstracting over top of the Web Au-
dio API in order to extend its capabilities, cre-
ate more complicated unit generators, and al-
low for a more intuitive syntax. Projects such
as WAAX (Web Audio API eXtension)2 by
Hongchan Choi do so while using only the na-
tively compiled nodes in order to ensure opti-
mum efficiency.[H. Choi and J.Berger, 2013]

While these projects offer a wide variety of
unit generators and synthesis modules, they
cannot be used to implement all cutting edge
techniques. For example the delay node inter-
face does not offer a tap in or tap out function,
making wave guide models impossible to imple-
ment.3

The Flocking audio synthesis toolkit4 by
Colin Clark offers a unique declarative model
for doing signal processing within the browser.
Unlike WAAX, Flocking has opted to internally
manage all signal generation and using a sin-
gle “ScriptProcessorNode” to hand off precom-
puted buffers of samples.

WAAX and Flocking offer two very different
approaches to Web Audio. WAAX offers effi-
ciency, whereas Flocking offers an extensible ar-
chitecture and declarative syntax in which web
developers can write their own first-class custom
unit generators. That being said both projects
suffer from the same problem, a lack of man
hours. There are only so many individuals who
have the time and domain specific knowledge
necessary to contribute to their development.

2.2 Introduction to Faust

The Faust project offers a unique solution to
this problem; rather than write code, generate

2https://github.com/hoch/waax
3https://dvcs.w3.org/hg/audio/raw-file/tip/

WebAudio/specification.html#DelayNode-section
4http://flockingjs.org/



it. Faust, developed at Grame CNCM,“is a pro-
gramming language that provides a purely func-
tional approach to signal processing while offer-
ing a high level of performance.” [Orlarey et al.,
2009] The project is both a language and a com-
piler, offering the ability to write code once and
deploy to many different signal processing envi-
ronments.

Faust also has a community of scientists and
developers who have contributed a large amount
of code waiting to be compiled to other plat-
forms. For example Julius Smith has done a
substantial amount of research using Faust to
implement wave guide synthesis models[Smith
et al., 2010] and Romain Michon has ported the
entire STK to Faust.[Michon and Smith, 2011]

Creating an efficient compile path from Faust
to the Web Audio API would allow for all of the
available Faust code to immediately be able to
run in the browser. Further, using the archi-
tecture compilation model that Faust is famous
for we would be able to wrap the compiled Web
Audio code to be compatible with all current
libraries and frameworks such as WAAX and
Flocking.

2.3 Current Web Audio
Implementation

Currently there is an implementation done by
Stéphane Letz to compile Faust to Web Audio
directly from the Faust Intermediate Represen-
tation5. While the implementation is elegant,
any algorithms relying on integer arithmetic are
currently broken due to JavaScript representing
all Numbers as 32-bit floating point at a binary
level.

2.4 Introduction to asm.js

One way to do integer arithmetic with cross-
browser support is asm.js. The asm.js specifica-
tion6 outlines a ‘strict subset’ of JavaScript that
offers a unique programming model. Through
the use of typed arrays7 it is possible to do inte-
ger and floating-point arithmetic. This is done
with a virtual machine that gives developers ac-
cess to a heap and functions to be used to man-
age memory and perform arithmetic operations.

While it would have been possible to use
Stéphane Letz’s work as a starting point and

5http://faust.grame.fr/index.php/7-news/
73-faust-web-art

6http://asmjs.org/spec/latest/
7https://developer.mozilla.org/en-US/docs/

Web/JavaScript/Typed_arrays?redirectlocale=
en-US&redirectslug=JavaScript/Typed_arrays

extend the current WebAudio architecture to
utilize the asm.js susbset, it would require quite
a bit of overhead. Not only would integer and
floating point specific interpretation need to be
implemented, but a functional virtual machine
would need to have been developed in order to
take advantage of asm.js.

Further, we would not see any of the opti-
mization benefits that one would get from a
modern compiler such as gcc or clang. In the
spirit of this project, a search was done to find a
way to automate away the need to worry about
all of these complications.

2.5 Introduction to Emscripten

Emscripten is a project started by Alon Za-
kai from Mozilla that compiles LLVM(Low
Level Virtual Machine) assembler to JavaScript,
specifically asm.js.[Zakai, 2011] The platform is
both a compiler and a virtual machine capable
of running C and C++ code in the browser.

Emscripten gives you an interface to break
out C functions so that they can be called us-
ing JavaScript. It also provides functions for
managing memory in the virtual machine your
C code is running. These functions allow you to
allocate new memory to be operated on (in the
case of sound buffers), and the ability to manip-
ulate memory in the heap (in order to change
parameters).

Currently Faust is able to compile to a C++
file using the minimal.cpp architecture file, the
resulting file can painlessly be compiled to
asm.js with Emscripten. The upstream Faust2
branch can compile Faust to LLVM byte-code
which offers another potential compilation path.

3 Making Noise

A first approach to automating the compila-
tion process from Faust to Web Audio involves
manually implementing each step. The Faust
code needs to be compiled to C++ and have
the resulting dsp class wrapped in order to al-
low internal data and member functions to be
accessed once compiled to JavaScript. The re-
sulting C++ file then needs to be compiled
by Emscripten to asm.js. The asm.js needs to
once again be wrapped in order to provide an
intuitive JavaScript interface that will operate
on the dsp object running in the Emscripten
virtual machine. Finally an interface between
the Emscripten virtual machine and WebAudio
needs to be made to hand off samples that need
to be sonified.



As an initial proof of concept it was at-
tempted to compile the example noise.dsp that
comes shipped with Faust to JavaScript by way
of Emscripten. Noise was a prime candidate for
these initial tests due to the integer specific cal-
culations used in its algorithm.

The below sections will describe the pro-
cess used to manually implement noise in the
browser starting from a faust dsp file, and end-
ing with a working Web Audio API JavaScript
Object.

3.1 Faust Source

The noise unit generator starts as a Faust dsp
file.

random = +(12345)~*(1103515245);
noise = random/2147483647.0;
process = noise * 0.5;

In order to compile to C++ in a manner that
will be compatible with Emscripten we must use
the follow command.

faust -a minimal.cpp -i -uim \
-cn Noise dsp/noise.dsp \
-o cpp/faust-noise.cpp

This tells faust to compile the above code us-
ing the minimal.cpp architecture file, to call the
object being created Noise, and to include all
necessary header files and dependencies.

The resulting C++ code need to be wrapped
with a series of meta functions that can be called
to operate on objects living in the virtual ma-
chine. A constructor and destructor are imple-
mented in order to create objects and properly
clean them up, and a compute function is then
used to grab the latest frame of samples from
the unit generator. In order to change the state
of the unit generator after its instantiated in the
heap a number of other functions are available
to create a map of the ugen’s parameters, and
get / set values.

3.2 Emscripten & asm.js

Once the wrapper has been concatenated with
the Faust compiled C++ it can then be com-
piled by Emscripten to asm.js. This is done
with the following command

emcc cpp/faust-noise.cpp -o \
js/faust-noise-temp.js \
-s EXPORTED_FUNCTIONS="\
[’_NOISE_constructor’,\
’_NOISE_destructor’,\
’_NOISE_compute’,\
’_NOISE_getNumInputs’,\
’_NOISE_getNumOutputs’,\
’_NOISE_getNumParams’,\
’_NOISE_getNextParam’]"

Note the exported functions, which are refer-
encing the seven wrapper functions mentioned
in the previous step. This is required to stop
Emscripten from obfuscating the names of the
functions when certain optimization flags are
thrown during compilation, and to make access
to them available in the global namespace of
JavaScript.

3.3 Web Audio Api

Once the asm.js code has been compiled a
JavaScript wrapper is used to break out the
functionality of the code into JavaScript func-
tions. As well, the correct context for gener-
ating audio in the browser needs to be set up
within the Web Audio API, connecting the gen-
erated data from the Faust generated functions
to the correct Web Audio API functions in or-
der to generate sound. Again this wrapper can
be found in the source repository on GitHub



4 Results

Using the above methods a Faust compiled
WebAudio noise unit generator was successfully
created. The result can be found at:

http://thealphanerd.io/examples/
faust2webaudio/

4.1 Other Examples

This process has been repeated for a number
of other unit generators including a sine oscilla-
tor, freeverb, and a 16th order FDN reverb (in-
cluded in the Faust distribution as Reverb De-
signer). All three examples work in the browser,
although the 16th order FDN takes a few sec-
onds to get going. Once the unit generators
have been compiled to JavaScript it is quite easy
to connect them to each, and other web audio
components.

Below is an example of how to create a
noise object, and apply freeverb to its out-
put. Both of these objects have been com-
piled using Faust2WebAudio. This example can
be found online at http://thealphanerd.io/
examples/faust2webaudio/freeverb.html

var noise = faust.noise();
var freeverb = faust.freeverb();
noise.connect(freeverb);
noise.update("Volume", 0.1);
freeverb.update("Damp", 0.75);
freeverb.update("RoomSiz", 0.75);
freeverb.update("Wet", 0.75);
freeverb.play();

5 Limitations

Currently the automation layer has not yet been
completed. While the wrapper scripts have
all been generically written, hand written bash
scripts utilizing tools such as sed are currently
being used to compile individual unit genera-
tors. A next step would involve moving the
generic wrappers in to their own architecture
file and relying on the Faust build system to
handle generic compilation.

Another major limitation is that I am cur-
rently utilizing a separate instance of the Em-
scripten virtual machine for each unique unit
generator. This is an unfortunate side effect
of the current compilation method. Emscripten
includes the virtual machine at the head of every
compiled js file. There is an option to statically
link a number of compiled js files to a single

optimized file with redundancies removed, but
I am concerned about the implications of that
workflow.

A developer would be required to supply all
of the faust objects at once, and not have the
ability to swap in and out files at their leisure.
Unless their is an intuitive and fast way to com-
pile this final file, it will make it difficult for in-
dividuals to add new unit generators on the fly
as they are composing in the browser.

One solution is to utilize a JavaScript task
runner such as grunt to watch for changes in
specific directories / files and to properly com-
pile and statically link multiple files on the fly.

6 Looking Forward

While the above mentioned limitations do need
to be worked on, benchmarks should be per-
formed on the currently compiled code to en-
sure that this compilation method is in fact a
good direction.

As well, Stéphane Letz and Yann Orley have
expressed a desire to approach this problem
using their original method of going directly
from the Faust Intermediate Representation to
JavaScript. This would avoid moving from a
functional language to an object oriented lan-
guage back to a function language, which has
proven somewhat inelegant. It may prove ap-
propriate once the Emscripten method can be
benchmarked to put time in to developing this
more direct compilation path so that the results
from the two methods can be compared.

7 Conclusion

The results of this research have shown that it is
indeed possible to get compiled Faust code run-
ning properly in the browser. This is very ex-
citing, as if the benchmarks are encouraging we
will be able to use the resulting code to greatly
expand the ecosystem for digital signal process-
ing in the browser.

One of the most exciting parts of the results
are that if this process can be perfected we will
continue to see improvements in efficiency as
the various technologies we are relying on con-
tinue to improve. As JavaScript becomes more
efficient, so does the compiled code. As We-
bAudio becomes more stable, so does the com-
piled code. As asm.js optimizations improve in
the browser, we get the optimizations for free.
Simply put, even if the resulting benchmarks
prove to not be competitive with current hand
written JavaScript, it will only get better with



time while requiring minimal time maintaing
the project.

8 Code Repository

Find the source online at:
https://github.com/TheAlphaNerd/
faust2webaudio

9 Acknowledgements

I would like to thank Julius O. Smith, Stéphane
Letz, Yann Orley, and Colin Clark for their
guidance and support.

References

H. Choi and J.Berger. 2013. Waax: Web au-
dio api extension. In Proceedings of the Thir-
teenth New Interfaces for Musical Expression
Conference.

R. Michon and J. O. Smith. 2011. Faust-
stk: A set of linear and nonlinear physical
models for the faust programming language.
In Proceedings of the 14th International Con-
ference on Digital Audio Effects (DAFx-11),
pages 65–96, September.

Y. Orlarey, D. Fober, and S. Letz. 2009. Faust
: an efficient functional approach to dsp pro-
gramming. In New Computational Paradigms
for Computer Music, pages 65–96. Editions
DELATOUR FRANCE.

J. Smith, J. Kuroda abd J. Perng abd
K. V. Heusen, and J. Abel. 2010. Effi-
cient computational modeling of piano strings
for real-time synthesis using mass-spring
chains, coupled finite differences, and digi-
tal waveguide sections. In Acoustical Soci-
ety of America, Program of the 2nd Pan-
American/Iberian Meeting on Acoustics (ab-
stract and presentation), pages 65–96, Nov.

A. Zakai. 2011. Emscripten: an llvm-to-
javascript compiler. In Proceedings of the
ACM international conference companion on
Object oriented programming systems lan-
guages and applications companion. ACM.


