
HAL Id: hal-03162963
https://hal.science/hal-03162963

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending the Faust VST Architecture with Polyphony,
Portamento and Pitch Bend

Yan Michalevsky, Julius O Smith, Andrew Best

To cite this version:
Yan Michalevsky, Julius O Smith, Andrew Best. Extending the Faust VST Architecture with
Polyphony, Portamento and Pitch Bend. Linux Audio Conference (LAC-14), May 2014, Karlsruhe,
Germany. �hal-03162963�

https://hal.science/hal-03162963
https://hal.archives-ouvertes.fr


Extending the Faust VST Architecture with Polyphony,
Portamento and Pitch Bend

Yan Michalevsky
Department of Electrical

Engineering,
Stanford University
yanm2@stanford.edu

Julius O. Smith
Center for Computer Research in
Music and Acoustics (CCRMA),

Stanford University
AES Fellow

jos@ccrma.stanford.edu

Andrew Best
Blamsoft, Inc.

andrew@blamsoft.com

Abstract
We introduce the vsti-poly.cpp architecture for
the Faust programming language. It provides sev-
eral features that are important for practical use of
Faust-generated VSTi synthesizers. We focus on
the VST architecture as one that has been used tra-
ditionally and is supported by many popular tools,
and add several important features: polyphony, note
history and pitch-bend support. These features take
Faust-generated VST instruments a step forward in
terms of generating plugins that could be used in
Digital Audio Workstations (DAW) for real-world
music production.

Keywords
Faust, VST, Plugin, DAW

1 Introduction

Faust [5] is a popular music/audio signal pro-
cessing language developed by Yann Orlarey et
al. at GRAME,1 with contributions from a com-
munity of developers. The Faust toolset en-
ables the generation of standalone synthesizers
as well as plugins for various operating systems
and environments. Considering Faust a conve-
nient tool and a fast way for prototyping and
even creating production level sound effects and
synthesizers, we would like to use Faust in com-
bination with real-world music production tools
and DAWs (Digital Audio Workstations).

We believe it is necessary to facilitate work-
ing with tools such as Cubase, Ableton or other
DAWs providing a similar level of user experi-
ence and features. In the past ten years those
tools shifted from relying on built-in PC sound-
blaster or external MIDI-controlled modules to
a plugin based architecture. Plugins are used
to generate sound and apply audio effects. Sev-
eral common plugin architectures exist: VST,
Apple’s Audio Unit (AU), LV2 (the successor
of LADSPA and DSSI under Linux OS). The

1http://faust.grame.fr

VST (Virtual Studio Technology) plugin stan-
dard was released by Steinberg GmbH (famous
for Cubase and other music and sound produc-
tion products) in 1996, and was followed by the
widespread version 2.0 in 1999 [8]. It is a partic-
ularly common format supported by many older
and newer tools.

Some of the features expected from a VST
plugin can be found in the VST SDK code.2
Examining the list of MIDI events [1] can also
hint at what capabilities are expected to be im-
plemented by instrument plugins. We also draw
from our experience with MIDI instruments and
commercial VST plugins in order to formulate
sound feature requirements.

In order for Faust to be a practical tool for
generating such plugins, it should support most
of the features expected, such as the following:

• Responding to MIDI keyboard events

• Polyphony

• Portamento

• Pitch-bending (wheel controlled)

• Arpeggio

• Other effects dependent on note occurrence
history

All of the plugin formats mentioned above
can be generated from Faust code with varying
levels of feature support. For example, there
is a very complete faust2lv2 shell-script dis-
tributed with Faust provided by Albert Gräf
[3]. There is also a highly useful faust2au
script by Reza Payami that is still under devel-
opment. Useful VST 2.4 plugins can be gener-
ated using the faust2vst script, and relatively
limited VSTi plugins (i.e., VST synthesizer or
“instrument” plugins) can be generated using
faust2vsti. Initial VSTi support was limited

2Specifically in the PlugCanDos namespace, declared
in audioeffectx.cpp (in VST 2.4 SDK)

http://faust.grame.fr


a single voice (implemented in the Faust archi-
tecture file vsti-mono.cpp).

This paper describes the VSTi support
implemented in the Faust architecture file
vsti-poly.cpp.3 This effort adds polyphony
support, pitch-bend, note-history, and other fea-
tures described below. Pitch-bend and note his-
tory support facilitates effects such as porta-
mento slide,4 and creating arpeggiators. Finally,
we provide an example of how it can be used
to create instruments. We demonstrate using
Faust-generated VST plugins with MuLab [4]
and Renoise [7] workstations. We also discuss
possible future improvements and additions.

Related work
For handling MIDI events and polyphony sup-
port in a Faust architecture file, we bene-
fited from the MIDI plugin section of [3] and
the Faust DSSI architecture-file source code
dssi.cpp. Additionally, vsti-mono.cpp was
useful as a basis for our extended Faust VSTi
architecture.

2 Design
Following the convention introduced by Albert
Gräf for faust2pd [2] and faust2lv2 [3] et
al. [6], the VST architecture file implements
functionality for recognizing the “freq”, “gate”
and “gain” Faust-control labels to set the note
and velocity upon MIDI Note-On events (0x90)
and to set the gate to 0 for a MIDI Note-Off
event (0x80). One approach to implementing
polyphony for the VSTi architecture is doing it
similarly to the DSSI plugin architecture. The
“freq”, “gate” and “gain” are mapped to the con-
trols multiple times which enables playing si-
multaneously a predefined maximum number of
notes.

We combine the approaches taken in
vsti-mono.cpp and dssi.cpp. Figure 1
shows a UML diagram describing our design
(vsti-poly.cpp). A VST host interacts with
the VST plugin through the AudioEffectX
interface. The Faust class defines the func-
tionality of the plugin by implementing that
interface. The mydsp class performs the signal
processing and synthesis—it is the code that is
actually produced by the Faust compiler. We
instantiate mydsp for each voice (Voice class).

3It is expected that this name will later change to
vsti.cpp. The faust2vsti command-line script will of
course be updated as well in that case.

4Although for a monophonic synthesizer portamento
can be implemented by smoothing the input frequency.

The VST plugin controls are created and up-
dated using the vstUI class. There is an in-
stance of vstUI held by the Faust class which is
used for knobs and sliders controlled by the user
via the graphical interface or by mapping MIDI
controls. This instance is for controlling param-
eters that are global and should affect every note
played. The instances of vstUI that are created
as part of each Voice instance are for control-
ling per note parameters (frequency, gain, pre-
viously played frequency and gate). The Faust
class implementation of the setParameter inter-
face method is broadcasting any change in the
global plugin parameter to all Voice instances.

Handling MIDI events
Faust VSTi architecture handles MIDI events
delegated by the VST host. The host sends the
events to the plugin by calling processEvents.
An event of type kVstMidiType indicates a
MIDI event.
Note On
A MIDI note-on event (status byte is 0x9) re-
sults in searching for a free voice instance to
handle the new note in the freeVoices list con-
tained in the Faust class. The search proceeds
in a classic round robin pattern as found in hard-
ware synthesizers. If a free voice is found, the
voice is designated as the new voice, otherwise
the oldest playing voice is stolen and designated
as the new voice. Its frequency is set according
to the note number, the gain parameter is set
according to the note velocity, and the gate is
set to 1. An entry is added to playingVoices,
mapping the note to the voice index, and the
voice index is removed from the freeVoices list.
The previously played note is saved in order to
enable the portamento slide.

The VST format operates with multiple sam-
ples in a processing block. The note-on event in-
cludes a sample offset within the current block.
These deltas are stored in a list so that multi-
ple note-on events can be handled in the block.
The note to voice allocation occurs within the
processing loop, so that each note starts at its
correct sample position within the block.
Note Off
A MIDI note-off event (status byte is 0x8) re-
sults in searching for the corresponding Voice
instance in the playingVoices list contained in
the Faust class. The gate is then set to 0. Be-
cause the voice may have a release tail after the
gate is zeroed, a silence detection algorithm is
used to determine when the voice index should



Figure 1: Faust VSTi design

be added to the freeVoices list. The voice out-
put must be below the silence threshold for an
entire block before it is marked as free. Silence
detection allows sounding voices to not be re-
allocated prematurely and also provides better
CPU efficiency compared to always processing
all voices. Like note-on events, note-off events
are sample accurate within a block.

Pitch Bend
A MIDI pitch bend is indicated by status byte
0xE. The MIDI event pitch argument has values
in the range 0..16384. We normalize it to be in

the range -1..1 and broadcast the value to all
voices thus affecting all currently playing notes.
The frequency is not updated by the architec-
ture, as it is the responsibility of the Faust code
to use the pitchbend control value. This sepa-
ration enables the user to ignore or handle the
pitch-bend MIDI event according to the desired
behavior.

All-notes-off Event
The All-notes-off MIDI event is indicated by a
note number of 0, and velocity 0. Like the sin-
gle note-off event, the voice gate is set to 0 and



entered into the release silence detection state.
This is done for all active voices.

Portamento Slide Implementation
We demonstrated the very common portamento
slide effect by creating a Faust VSTi based
on the sawtooth synthesizer that is part of the
Faust oscillator library (oscillator.lib). We
added a portamento control that can take val-
ues in the range 0.01..0.3. The portamento ef-
fect is achieved by mixing two exponentials, one
decaying and one reaching saturation with char-
acteristic time τ that is equal to the value of the
portamento control.

fmixed = fnew ·
(
1− e−

t
τ ·SR

)
+ fprev · e−

t
τ ·SR

where SR is the sampling frequency, t is the
time that has passed since the new note was
played and fnew and fprev are the new and pre-
viously played frequencies, respectively. This in-
strument also supports pitch bending controlled
by the pitch-bend wheel. The fnew is actually a
sum of note frequency and the value of the pitch-
bend control (in the range -1..1) multiplied by
20. The demo synthesizer source code is pre-
sented in Alg. 1.

A demonstration of music production using
Faust can be found at http://stanford.edu/
~yanm2/music/faustloop.mp3.

This short loop was produced using only
Faust-generated VSTi plugins, with the excep-
tion of the drums.

Figure 2: VST plugin generated by Faust as
it appears in MuLab. Using predefined con-
trol names “freq”, “gain”, “gate”, “prevfreq” and
“pitchbend” automatically maps the controls to
MIDI event parameters.

3 Installation and Basic Usage
Basic installation instructions are provided in
[3]. If you are using an up-to-date ver-
sion of Faust you should already have the
vsti-poly.cpp architecture file, and running

Figure 3: VST plugin generated by Faust as it
appears in Renoise tracker.

make install

should make faust2vsti tool accessible from
any directory. Running

faust2vsti <yourfaustcode.dsp>

will create a VST effect or synthesizer from the
.dsp file. To produce only the source code (.cpp)
run

faust -a vsti-poly.cpp
-o <output filename>
<yourfaustcode.dsp>

vsti-poly.cpp currently supports both VST
audio processing plugins and VSTi-MIDI-driven
software synthesizer plugins. In the future we
expect to consolidate all the VST related archi-
tecture files under the Faust project.

4 Future Work
In this section we briefly offer suggestions for
future development, based on our observations
during this project.
Inherent portamento slide support
Portamento-slide is common to many synthe-
sizers, for which reason it may be a good idea
to incorporate the support for it into the ar-
chitecture file. This effect requires a gradual
change of frequency that can be performed by
vsti-poly.cpp. The speed of transition to the
new frequency could be determined by a “por-
tamento” control as is done with other controls
recognized by the architecture.
Inherent pitch-bend support
Pitch-bending is also common to many synthe-
sizers and requires a change of frequency. This
change in frequency can be done by the archi-
tecture prior to calling mydsp::compute5.

5This of course requires the synth to use a “freq” con-
trol and not only note identifier as we suggest in the
next paragraph. It would also require a way to specify
the bending range.

http://stanford.edu/~yanm2/music/faustloop.mp3
http://stanford.edu/~yanm2/music/faustloop.mp3


Algorithm 1 sawtooth-synth: sawtooth with portamento and pitch-bend in Faust
declare name "Sawtooth-Synth";

import("music.lib");
import("oscillator.lib");

gate = button("gate");
gain = hslider("gain[unit:dB][style:knob]", -10, -30, +10, 0.1) : db2linear : smooth(0.999);
freq = nentry("freq[unit:Hz]", 440, 20, 20000, 1);
prevfreq = nentry("prevfreq[unit:Hz]", 440, 20, 20000, 1);
portamento = vslider("[5] Portamento [unit:sec] [style:knob] [tooltip: Portamento (frequency-glide)
time-constant in seconds]", 0.1,0.01,0.3,0.001);
pitchbend = vslider("pitchbend", 0, -1, 1, 0.01);

start_time = latch(freq == freq’, time);
dt = time - start_time;
expo(tau) = exp(0-dt/(tau*SR));
mix(tau, f, pf) = f*(1 - expo(tau)) + pf*expo(tau);
bended_freq = freq + pitchbend * 20;
sfreq = mix(portamento, bended_freq, prevfreq) : min(20000) : max(20);

x = sawtooth(sfreq : smooth(0.999));
process = x * gain * (gate);

Setting note identifier control in addition
to frequency
Currently the pitch is set by a “freq” control,
used by the Faust code to determine the fre-
quency. The “freq” control value is set by the
architecture according to the note identifier re-
ceived in the MIDI Note-On event. Sometimes
it is more useful to have the note identifier or
piano key identifier. For instance, there are ex-
isting Faust synthesizers that take the key as
input. A percussion synthesizer that produces
a different sound for every key would possibly
use a key identifier instead of note frequency. It
would be therefore a welcome addition to the
vsti-poly architecture to set the value of a note
identifier control on each Note-On event.
Extended note history
We currently save only the previously played
frequency enabling the implementation of the
portamento-slide. Synthesizers that produce
chords or arpeggios may require information
about more previously played notes. This would
be enabled by extending the saved note his-
tory. Passing these values to the Faust code
would require instantiation of multiple note or
frequency controls.
Single Faust VST architecture file
Currently there are several Faust architecture
files related to VST: vst.cpp, vst2p4.cpp,

vsti-mono.cpp and vsti-poly.cpp. While
theses have been kept side-by-side to not inter-
fere with other users during development of each
new architecture file, they are redundant and
should be consolidated into a single vsti.cpp
architecture file.

Shared signals among multiple voices
Many synthesizers offer modulation sources that
affect multiple voices simultaneously. For exam-
ple, an LFO can modulate pitch or waveform on
all voices in a polyphonic synth. In the future it
would be beneficial if shared signal support was
provided to the synthesizer designer.

Enhanced GUI support
Other architectures within the Faust ecosystem
have more features in their GUI layout capabil-
ities. The grouping of controls into subsections
and providing specification of knobs vs. sliders
would provide better flexibility and organization
comparable to hand coded VSTi plugins.

Further Host-Plugin integration
One simple yet useful feature to implement is
the Bypass capability, enabling the user to turn
off a plugin from the host.

More information provided to the plugin by
the host includes time and tempo. This can be
useful for implementing arpeggio instruments,
or audio effects dependent on tempo, such as



gating or synchronized echo.

Consolidation of various VST related
architecture files
At the time of writing, Faust code con-
tains multiple architecture variants pertain-
ing to VST: vst.cpp and vst2p4.cpp for ef-
fects, vsti-mono.cpp for monophonic instru-
ments and vsti-poly.cpp, introduced by this
work, supporting effects, polyphonic instru-
ments and other features discussed in the pa-
per. We suggest there should be one archi-
tecture encorporating all mentioned functional-
ity. Meanwhile, since portamento is very rele-
vant to monophonic instruments, we added the
necessary modifications to support the effect in
vsti-mono.cpp, as well as support for pitch-
bend.

5 Conclusion
We presented the vsti-poly.cpp Faust archi-
tecture file and its new features: polyphony,
pitch-bend and note-history. We used these
features in the implementation of a polyphonic
sawtooth synthesizer with pitch-bend and por-
tamento slide support, and demonstrated it in a
short musical loop, recorded in a popular DAW.
We also suggest ideas for further development
of VSTi support in Faust which will contribute
to easier implementation of common synthesizer
features. The ideas presented here are not lim-
ited to the VSTi architecture but could also
serve as a reference for implementing Faust ar-
chitectures for other plugin formats.

References
MIDI Manufacturers Association. MIDI
messages.
http://www.midi.org/techspecs/-
midimessages.php.

Albert Gräf. Interfacing Pure Data with
Faust. In Proc. 5th Int. Linux Audio Conf.
(LAC-07), TU Berlin,
http://www.kgw.tu-berlin.de/˜lac2007/-
proceedings.shtml, 2007.
http://www.grame.fr/ressources/-
publications/lac07.pdf.

Albert Gräf. Creating LV2 plugins with
Faust. In Proc. 11th Int. Linux Audio Conf.
(LAC-13), Graz,
http://lac.linuxaudio.org/, 2013.
http://wiki.faust-lv2.googlecode.com/-
hg/faust-lv2-lac13-full.pdf.

MuTools. Mulab, http://www.mutools.com/.
http://www.mutools.com/-
mulab-product.html.

Yann Orlarey, Dominique Fober, and
Stephane Letz. Faust: an efficient functional
approach to DSP programming. New
Computational Paradigms for Computer
Music, 2009.

Yann Orlarey, Albert Gräf, and Stefan
Kersten. DSP programming with Faust, Q
and SuperCollider. In Proc. 4th Int.
Linux Audio Conf. (LAC-06), ZKM Karlsruhe,
http://lac.zkm.de/2006/proceedings.shtml,
pages 39–40, 2006. http://lac.zkm.de/-
2006/proceedings.shtml#orlarey_et_al.

Renoise. Renoise, http://www.renoise.com.

Wikipedia. Virtual studio technology.

http://www.midi.org/\discretionary {-}{}{}techspecs/\discretionary {-}{}{}midimessages.php
http://www.kgw.tu-berlin.de/~{}lac2007/proceedings.shtml
http://www.grame.fr/ressources/publications/lac07.pdf
http://lac.linuxaudio.org/
http://wiki.faust-lv2.googlecode.com/hg/faust-lv2-lac13-full.pdf
http://www.mutools.com/
http://www.mutools.com/mulab-product.html
http://lac.zkm.de/2006/proceedings.shtml
http://lac.zkm.de/2006/proceedings.shtml#orlarey_et_al
http://www.renoise.com

	Introduction
	Design
	Installation and Basic Usage
	Future Work
	Conclusion

