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Abstract

This paper proposes an exact algorithm to solve the one-to-one
multi-objective shortest path problem. The solution involves deter-
mining a set of non-dominated paths between two given nodes in a
graph that minimizes several objective functions. This study is moti-
vated by the application of this solution method to determine cycling
itineraries. The proposed algorithm improves upon a label-correcting
algorithm to rapidly solve the problem on large graphs (i.e., up to mil-
lions of nodes and edges). To verify the performance of the proposed
algorithm, we use computational experiments to compare it with the
best-known methods in the literature. The numerical results confirm
the efficiency of the proposed algorithm.

1 Introduction

The shortest path problem is a famous problem in graph theory [16] and
was first studied in 1958 [5, 17]. Variants of this problem are still being
studied, such as the optimal path problem in stochastic networks [21], the
fixed-charge shortest-path problem [22], the time-dependent shortest path
problem [54], and the multi-objective shortest path (MOSP) problem. The
MOSP problem is to find a set of paths between two given points that mini-
mizes several objective functions. This problem arises in many applications,
including the design of transportation networks [13], transportation prob-
lems [2], transport risk management [14], tourist trip design [27], satellite
scheduling [24], bike tour planning [50], and evacuation planning [44].
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We consider a directed graph G composed of a set V of nodes and a set
A of arcs, a source node s, a destination node t, and a set K of criteria.
Each arc between two nodes i and j is associated with |K| costs denoted
ckij ∀ k ∈ K. We consider the case in which the graph G contains only

nonnegative costs (ckij ≥ 0). The MOSP problem consists in determining
a set P of non-dominated paths from node s to node t that minimizes a
sum-type objective function for each criterion. In many studies, the graph
G corresponds to a road network where an arc represents a road and a node
represents a junction. Costs can correspond to distances, travel times, or
other criteria, depending on the application. Even if these criteria conflict
in theory, they are positively correlated in practice, especially if the graph
represents a road network. The exact solution of the MOSP problem gives
a set of strictly non-dominated paths, also called the Pareto frontier [61].

The motivation of this study is to determine cycling routes. For eco-
logical reasons, cycling has grown as a suitable alternative transportation
mode and, in many countries, public authorities have sought to improve
and increase the road network for cyclists. From a cyclist’s point of view,
the criteria used to design a cycling itinerary include not only distance and
travel times, but also other criteria such as safety or height difference. This
study was conducted in collaboration with a firm named La Compagnie des
Mobilités, which develops a product called Geovelo (https://www.geovelo.fr)
which is a website and mobile application that proposes appropriate paths
for cycling. The proposed paths take into account several criteria such as
safety, distance, and physical effort. Finding optimal paths in the shortest
possible computational time requires rapidly solving a MOSP problem.

In this paper, we propose an efficient label-correcting algorithm called
“Label-Correcting with Dynamic update of Pareto Frontier” (LCDPF), which
provides an exact resolution of the MOSP problem. This work is an ex-
tension of previous works [50]. The LCDPF algorithm rapidly computes
all non-dominated solutions, even for large graphs; its performance is even
competitive with that of the best benchmark algorithms. In addition to be-
ing simple and flexible, the LCDPF algorithm benefits from state-of-the-art
techniques from the related literature and two newly developed techniques,
the first of which consists in removing unnecessary nodes from the graph G
and the second of which consists in exploiting information collected in the
preprocessing phase to quickly update the Pareto frontier during the unidi-
rectional search. This latter technique serves to prune partial paths while
searching the space. In contrast, the majority of the benchmark instances
in the literature use two criteria: distance and travel time. Given the con-
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text of cycling itineraries, we propose herein new instances of the MOSP
problem from real road networks with two or three less correlated crite-
ria. The LCDPF algorithm can easily be extended to as many objectives
as desired. For example, although the LCDPF algorithm was developed for
sum-type objectives, it can be modified for bottleneck objectives such as
minimizing the maximum cost in a path, which is equivalent to maximizing
the minimum cost in a path [30].

This paper thus makes several contributions: (i) It provides an exact
algorithm to solve the MOSP problem based on a classic label-correcting
method plus two new techniques (removing unnecessary nodes and quickly
updating the Pareto frontier). (ii) It reports the results of a computational
experiment that demonstrates the efficiency of the proposed algorithm com-
pared with the best algorithms in the literature and tests new instances
inspired by the cycling context with two or three criteria.

This paper is organized as follows: Section 2 introduces classical and
recent algorithms for the MOSP problem. Section 3 presents in detail the
LCDPF algorithm. Section 4 describes the benchmark instances used for the
computational experiments, presents the numerical results of the algorithm
for different parameter values, and demonstrates how the number of objec-
tives affects computation time. In addition, computational experiments are
used to compare the proposed algorithm with the best-known algorithms
from the literature [the bLSET algorithm developed by [47], the pulse al-
gorithm developed by [19], the improved version of the NAMOA* method
by [37], and the bi-objective Dijkstra algorithm recently proposed by [51]].
Finally, Section 5 concludes the paper and suggests directions for future
work.

2 State of the Art

The MOSP problem is one of the most studied of the multi-objective com-
binatorial optimization problems [20]. [53] proved that the MOSP problem
is NP -complete by reducing the Knapsack problem to a bi-criterion short-
est path problem. Later, [30] demonstrated that the MOSP problem is an
intractable problem, even for two criteria. In this section, we present the
main research works from the MOSP literature, even though the majority
of these works address only two objectives. For a more complete review of
the topic, we refer the reader to [26] and [57].

The first methods used to solve MOSP problems were the labeling meth-
ods proposed by [31] and [39], which were a generalization of existing meth-
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ods for solving MOSP problems [6]. Two types of labeling methods exist:
label-correcting and label-setting. The main difference between these two
methods is the ordering strategy to treat the labels. Label-setting methods
are based on an ordering strategy such that, at each iteration, a label is
only treated if it is permanent and thus non-dominated until the end of the
algorithm. Label-setting methods cannot cannot guarantee polynomial-time
convergence on networks with negative edge lengths (but no negative length
cycles) [1], whereas label-correcting methods are more general and can use
any ordering strategy to explore the labels (e.g., the first-in-first-out rule)
[8, 55]. This type of method considers all labels as temporary until the end
of the algorithm, at which point they all become permanent. Label-setting
algorithms can be considered as special cases of label-correcting algorithms.
In labeling methods, two types of selection strategies exist to choose the
next label to process: the node-selection strategy, where all labels on a se-
lected node are propagated at the same time, and the label-selection strat-
egy, where labels are separately managed. [29] compare different selection
strategies for the label-setting method.

Another type of method to address the MOSP problem includes the
ranking methods proposed by [11] for the bi-objective case and by [3] for
the multi-objective case. These methods are based on the kth-shortest path
problem introduced by [10]. Other studies [55, 12] state that the ranking
methods are less competitive than the labeling methods.

A two-phase approach introduced by [42] and [62] is also commonly used
to solve MOSP problems. This method determines separately supported so-
lutions (i.e., located on the convex hull boundary) during the first phase, and
non-supported solutions during the second phase with, eventually, other sup-
ported solutions. The solutions found in the first phase can be determined
by using a single objective method based on a weighted sum of objectives.
During the next phase, a bi-objective method computes all non-supported
solutions. [48] demonstrated the efficiency of this method and compared
several strategies for determining all efficient paths. [47] proposed an im-
proved label-setting algorithm called bLSET. According to [15], the bLSET
algorithm had the best computational times of the labeling approaches. [15]
proposed an accelerated version of Martin’s algorithm [39] for MOSP prob-
lems. Specifically, they proposed the use of two techniques based on stopping
conditions and developed a bidirectional label-setting method. The stopping
conditions allow the search to be terminated according to minimum criteria
retrieved from the exploration queue and permanent solutions of the Pareto
frontier. [25] proposed another bidirectional search to solve multi-objective
state space graph problems. The same year, [45] undertook a computational
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study of labeling methods for the MOSP problem. They tested 27 variants
of the labeling algorithm and considered two labeling techniques (setting or
correcting), several data structures for storing the unexplored labels, and
several operators for ordering the labels. The performances of the variants
were evaluated by applying them to three types of graphs: random, com-
plete, and grid. The results show that, for grid networks, the most efficient
label-correcting version uses a first-in-first-out policy to select the labels,
whereas the correcting version with a dequeue policy is better for random
and complete networks.

[19] designed a new exact method, called the “pulse algorithm,” to solve
bi-objective shortest path problems on large-size graphs. The pulse al-
gorithm is a recursive method that uses pruning strategies to accelerate
path exploration. The experiments demonstrate that the pulse algorithm
outperforms the bLSET algorithm on extremely-large-size graphs from the
DIMACS dataset. The pulse algorithm may be thought of as a general
framework extended to solve other shortest path problems, such as the con-
strained shortest path problem [35] or the elementary shortest path problem
with resource constraints [34]. [52] proposed a generalization of the Dijkstra
method to find all extreme supported solutions of a bi-objective shortest
path problem in one-to-one or one-to-all versions. They demonstrated that
the execution times of the method are O(N [m + p log(p)]) where p is the
number of nodes, m is the number of arcs, and N is the number of extreme
supported points in the solution space. [37] proposed a method to com-
pute lower bounds for the bi-objective shortest path problem. These lower
bounds are used to improve the NAMOA* method [38], which is a general-
ization of the A* algorithm to solve multi-objective problems. NAMOA* is
a best-first search algorithm for solving the MOSP problem.

Recently, for the bi-objective case, [51] proposed a generalization of Di-
jkstra’s algorithm that uses pruning strategies and a bidirectional search.
They first considered the one-to-all bi-objective shortest path problem for
which time and space complexities are given, following which they developed
a fast algorithm to solve the one-to-one version. Their proposed algorithm
outperforms one of the state-of-the-art algorithms to solve the bi-objective
shortest path in large road networks (i.e., the pulse algorithm).

Numerous problems derive from the MOSP problem, such as the multi-
objective uncertain shortest path problems or the resource-constrained short-
est path problems. [49] studied a MOSP problem with uncertain edge
lengths and, to solve the problem, proposed two main approaches based
on the label-correcting algorithm to find robust solutions that exploit sev-
eral concepts of robust efficiency, namely, multi-scenario efficiency, flimsily
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and highly robust efficiency, and point-based and set-based min-max ro-
bust efficiency. Experiments on two types of networks (grid and NetMaker)
demonstrate the performance of the proposed algorithms. The resource-
constrained shortest path (RCSP) problem is similar to the MOSP problem
in which the only objective is to minimize (or maximize) subject to ad-
ditional constraints that bound the value of other objectives. Thus, the
optimal solution of a RCSP problem belongs to the set of all non-dominated
solutions of the related MOSP problem. This difference implies that some
optimization techniques for solving RCSP problems may become useless for
solving MOSP problems (or vice versa). [18] studied the effectiveness of sev-
eral techniques integrated within a classic label-setting algorithm. Among
the techniques proposed, one is a preprocessing technique that aims to re-
duce the graph based on the resolution of several one-to-all mono-criterion
shortest path problem. From randomly generated and real network data,
they provided a systematic comparison of the performance of the different
algorithms. To have an overview of RCSP solution methods, we refer the
reader to [33]. A classification and a generic formulation for the RCSP
is proposed as well as commonly used RCSP solution methods, such as
the label correcting algorithm. [58] proposed a exact bidirectional A* al-
gorithm, called “RC-BDA”, to solve RCSP problems. They demonstrate
that, although bidirectional A* approaches perform poorly in most stud-
ies in terms of computation speed, they exploit the resource constraints to
produce an efficient bidirectional A* algorithm. [58] also analyzed computa-
tionally and theoretically the sensitivity of the algorithm’s performance. In
the same year, [46] studied a generalization of the resource constrained short-
est path problem where the resources are taken in a monoid. For example,
this includes stochastic and non-linear resource constrained shortest path
problems. He proposed a generic solution method with several bounding
algorithms allowing to discard partial paths during the exploration phase
of the solution method. Computational experiments shown that the pro-
posed method outperform existing ones on non-linear pricing subproblem of
a column generation approach to an airline operations problem.

Recently, [9] proposed a bidirectional pulse algorithm to exactly solve a
RCSP problem. This algorithm is based on the pulse algorithm and a bidi-
rectional search executed in parallel. The algorithm has two parameters: the
maximum number of labels to store at each node and the maximum depth
for which the search type may still be adjusted (i.e., to achieve a balance
between breadth and depth searches). They also undertook a sensitivity
analysis to understand the algorithm components and performance. Com-
putational experiments involving large-scale road networks are done in the
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United States and the results are compared to those of [58]. The proposed
bidirectional pulse algorithm is four times faster on average, although the
RC-BDA algorithm solved a few more instances.

3 Label Correction with Dynamic update of Pareto
Frontier Algorithm

The LCDPF algorithm is composed of two phases: The first phase, called
the “preprocessing phase,” serves to determine supported solutions by solv-
ing several mono-objective shortest path problems. This phase determines
upper and lower bounds of the final Pareto frontier at each node of the
graph, making this information available for the next phase. The prepro-
cessing phase also determines whether a node is unnecessary to find the
Pareto frontier. Every unnecessary node is removed from the graph, which
may accelerate the next phase of the algorithm. The second phase consists
in determining the Pareto frontier (i.e., finding all the non-dominated solu-
tions) by using the information obtained in the first phase. To accomplish
this, the LCDPF algorithm is based on a label-correcting algorithm into
which we integrated additional improvements to increase efficiency. Section
3.1 presents the second phase of the LCDPF algorithm, called the “label-
correcting phase,” following which the details of the preprocessing phase are
given in Section 3.2. Section 3.3 uses an example to illustrate both phases of
the algorithm. Finally, Section 3.4 discusses the complexity of the LCDPF
algorithm.

3.1 Label-Correcting Phase

The LCDPF algorithm is based on a label-correcting algorithm introduced
by [39]. The goal of the algorithm is to determine all non-dominated paths
from source node s to destination node t (i.e., the final Pareto frontier). The
LCDPF algorithm uses the following notation:

• lu is a label representing a feasible partial path from node s to a node
of the graph. A label is defined by a tuple (i,U , lp), where

– i is the end node of the partial path.

– U is the vector containing the |K| criteria of the feasible path
from s to i. uk is the value of criterion k in U .
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– lp is the predecessor node label from which lu is determined (only
a pointer to lp is needed). This information allows us to determine
the corresponding path from s to i.

• lv ≺ lu means that the label lu is strictly dominated by lv in the Pareto
sense.

• LNi is the set of labels at node i.

• Q is the set of labels that represents the label-correcting exploration
queue, which contains unexplored labels.

• Y max is a parameter that defines when the dynamic update of the
current Pareto frontier is to be applied.

The LCDPF algorithm also uses results from preprocessing phase, which
are listed below:

• A vector of |K| lower bounds denoted LBi = (lbi1, . . . , lb
i
|K|) that gives

a lower bound on each criterion of any path from i to t. It is therefore
impossible to determine a path from i to t with a value less than lbik
for every criterion k.

• A set of feasible paths exists from node i to t. We denote Vni =
(vni1, . . . , v

n
i|K|) as the vector of |K| criteria associated with the nth

feasible path from node i to t.

The LCDPF algorithm is detailed in Algorithm 1. At the end of the
LCDPF algorithm, the final Pareto frontier is given by LNt. Algorithm 1
lists the five main steps of the LCDPF algorithm.

• Initialization step. This step (lines 2 to 4) consists in running the
preprocessing phase, initializing as an empty set the list of labels asso-
ciated with each node, and initializing the exploration queue and LNs

to the same first label. The goal of the preprocessing phase, described
in Section 3.2.1, is to remove unnecessary nodes from the graph, ini-
tialize the Pareto frontier (LNt) with feasible initial paths, compute
the lower bounds (LBi), and determine a set of feasible paths from
node i to node t (Vni ).

• Select the next label to propagate. In each main iteration of
the algorithm, labels at a given node i are propagated through the
edges from i until no additional labels remain to consider in Q (line
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Algorithm 1 LCDPF algorithm

1: function LCDPF(G = (V,A), s, t, Y max)
2: Run the preprocessing phase, which computes the values of LBi and Vn

i ,
initializes LNt, and removes unnecessary nodes from G.

3: Initialize LNi to ∅, ∀ i ∈ V, i 6= t.
4: Initialize LNs and Q to (s, {0, 0, . . . , 0},−).
5: while Q 6= ∅ do
6: lu = (i,U , lp)← Get the next label to treat(Q)
7: Remove lu from Q .
8: for all nodes j such that (i, j) ∈ A do

9: Create a new label lu′ = (j, {u1 + c1ij , u2 + c2ij , . . . , u|K| + c
|K|
ij }, lu)

at node j from lu.
10: if lu′ is not dominated by a label in LNj (i.e., @ lv ∈ LNj/lv ≺ lu′)

then
11: Create a new label llb = (t, {u′1+lbj1, u

′
2+lbj2, . . . , u

′
|K|+lb

j
|K|}, −).

12: if llb is not dominated by a label in LNt (i.e., @ lv ∈ LNt/lv ≺ llb)
then

13: Add lu′ to LNj .
14: Remove all labels from LNj that are dominated by lu′ ; let S

be the set of removed labels.
15: Remove all labels in S from Q.
16: if j 6= t then
17: Add lu′ to Q.
18: every Y max iterations of propagation of a label do
19: LNt ← Update the current Pareto fron-

tier(LNt,lu′)
20: end every
21: end if
22: end if
23: end if
24: end for
25: end while
26: return LNt

27: end function
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5). The exploration order is given by the GET THE NEXT LABEL
TO TREAT function, which selects the next label lu from Q. Several
strategies to select the next most pertinent label are available in the
literature; for example, [7] use a best-promise exploration order as an
acceleration strategy for the weight-constrained shortest path problem
with replenishment. The majority of these strategies can be general-
ized as follows: the next label lu = (i,U ,−) to explore minimizes the
objective function

min
∑
k∈K

[uk + h(i, k)].αk

where

– h(i, k) is a function that computes or estimates the cost of the
shortest path from i to t considering criterion k;

– αk is the weight associated with criterion k.

Both parameters define the strategy to select the next label to consider.
For example, if α1 = 1, αk = 0 ∀ k ∈ K\{1}, and h(i, k) = 0 ∀ i ∈
G ∀ k ∈ K, then the labels in Q are sorted in increasing order of
the first criterion u1. As in the A* algorithm introduced by [32], the
search is accelerated by implementing an effective function h(i, k). The
number of labels explored during the LCDPF algorithm (Algorithm 1)
is related to the order in which they are selected. In our case, a good
function to use is h(i, k) = lbik, which corresponds to the lower bounds
computed in the preprocessing phase. The earlier that promising labels
are explored, the more accurate is the approximation of the Pareto
frontier. Several strategies were tested, and the results are presented
in Section 4, Computational Experiments.

• Create and evaluate new labels. From node i and label lu, a new
label lu′ is created for each successor of i (lines 8 and 9 of Algorithm 1).
First, the new label lu′ is considered for the next steps only if it is not
dominated by a label in LNj (line 10). Otherwise, this label lu′ would
lead to a dominated path in LNt. Next, lines 11 and 12 verify if label
lu′ is promising by using the lower bounds at node j. lu′ represents a
partial path Pj from node s to j. An ideal and dummy path from node
s to node t, represented by label llb, is deduced such that the value of
criterion k is given by u′k+lbjk, where u′k is the value of the partial path
Pj on criterion k. If llb is dominated by at least one label in LNt, then
the ideal path is dominated by a solution of the current Pareto frontier,
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and the partial path Pj is of no interest, so its label lu′ can be pruned.
This pruning method is commonly used in the literature; it was first
introduced by [60] and later extended by [19]. The closer the current
Pareto frontier is to the final Pareto frontier, the greater is the number
of pruned labels, which will accelerate the search. For this reason, the
last step, “update the current Pareto frontier,” is important. Figure
1 illustrates a case where a label associated with a path Pj should be
pruned (|K| = 2).

Figure 1: Pruning label.

• Add new labels to the list of labels associated with a node and
update this list. Each promising label lu′ is added to the list of labels
LNj associated with a node j (line 13). This label lu′ can dominate
one or several labels in LNj , which should therefore be removed from
LNt (line 14). If S is the set of removed labels, every label in S that
is no longer interesting can remain in the exploration queue, so the
labels are also removed from the exploration queue (line 15). Finally,
if j is not the destination node, the label lu′ is added to the exploration
queue Q (line 17).

• Update the current Pareto frontier. This step (line 5) refers to
the dynamic update of the Pareto frontier during the search, which
consists in trying to improve the current Pareto frontier by using the
current label lu′ and upper bounds at node j (Vnj ). This step aims
at accelerating the convergence of the current Pareto frontier to the
final Pareto frontier throughout the search, which is a time-consuming
procedure and does not necessarily improve the current Pareto frontier;
for this reason, the procedure is applied only every Y max iterations
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of the propagation of a label. The procedure called UPDATE THE
CURRENT PARETO FRONTIER is described by Algorithm 2. For
each feasible path n from j to t computed during the preprocessing
phase and given by Vnj = (vnj1, . . . , v

n
j|K|), a feasible path from s to t

represented by label lub is deduced by using lu′ so that criterion k is
given by u′k+vnjk. If no label in LNt dominates lub, each new path given
by lub is added to the current Pareto frontier. If a label lub is added
to LNt, then every path in LNt dominated by lub is removed. Figure
2 presents the case where a path Pj given by lu′ allows us to improve
the current Pareto frontier by adding a new solution and removing two
others (|K| = 2).

Algorithm 2

1: functionUPDATE THE CURRENT PARETO FRONTIER (LNt,
lu′ = (j,U ′, lu))

2: for all feasible paths from j to t given by Vnj do
3: Create a new label lub = (t, {u′1 + vnj1, u

′
2 + vnj2, . . . , u

′
|K| +

vnj|K|}, −).

4: if lub is not dominated by any label in LNt (i.e., @lv ∈ LNt/lv ≺
lub) then

5: Add lub to LNt.
6: Remove all labels from LNt that are dominated by lub.
7: end if
8: end for
9: end function

Figure 2: Update of Pareto frontier.
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This step uses a concept similar to that used for a bidirectional search
[15, 51] but in a different way. The common concept involves com-
bining two labels associated with a node to find a feasible path to
update the Pareto frontier. However, in the bidirectional algorithm,
this combination is executed during the exploration step (i.e., while
propagating the labels in both directions, backward and forward) using
the propagated labels. In contrast, we propose to combine the propa-
gated labels with labels that have been computed in the preprocessing
phase.

3.2 Preprocessing phase

The goal of the preprocessing phase is to remove unnecessary nodes from the
graph, initialize the Pareto frontier LNt with initial feasible paths, compute
the lower bounds LBi, and determine a set of feasible paths from node i to
t (Vni ). This phase is divided into two steps: The first step initializes LNt

and starts to compute the lower bounds LBi and some feasible paths from
node i to t. The second step finishes determining the lower bounds LBi

and the feasible paths from node i to t, and then deduces the unnecessary
nodes to remove from the graph. Both steps use a set of the solution to the
mono-objective shortest path problem solved by Dijkstra’s algorithm [17].

3.2.1 First step

Let the parameterW be a set of tuples that contains weights associated with
each criterion, and let wn

k be the weight of the nth tuple of W associated
with criterion k such that∑

k∈K
wn
k = 1 ∀ n ∈ {1, . . . , |W|}.

We suppose that the first |K| tuples in W are defined such that, ∀ n ∈
{1, . . . , |K|}, we have wn

n = 1 and ∀ k ∈ K\n, wn
k = 0 [e.g., |K| = 3 and

W = {(∞, ′, ′), (′,∞, ′), (′, ′,∞), (′.33, ′.33, ′.34), . . . }]. The first step of
the preprocessing phase consists in solving |W|mono-objective shortest path
problems from the destination node t to the source node s, where every arc
in the graph is reversed. We refer to this type of problem as a reversed mono-
objective shortest path problem. The nth reversed shortest path problem
minimizes a linear combination of criteria by using the weights of the nth
tuple in W. For all n ∈ {1, . . . , |K|}, the nth problem is equivalent to a
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mono-criterion shortest path problem considering only the criterion k = n.
In this case, the mono-criterion shortest path problem given criterion k is
solved by using a lexicographic optimization strategy [20] in which criterion
k is first optimized, and then the remaining criteria are optimized in the
same arbitrary order. The goal of this approach is to consider only non-
dominated paths at each node from among the paths with the same optimal
objective value for criterion k.

After solving the |W| mono-objective shortest path problems from node
t to node s and using Dijkstra’s algorithm, we retrieve all feasible paths
from node i to node t that were explored in the resolution of each n ∈ W
mono-objective shortest path problem. These feasible paths correspond to
Vni = (vni1, . . . , v

n
i|K|) and are determined from a linear combination of criteria

using the nth tuple of weights. We obtain the following information from
these feasible paths:

• For the MOSP problem, we obtain |W| supported solutions given by
Vns ∀ n ∈ W based on Geoffrion’s theorem [28] [see Section 3.8.2 in
[59]]. Vns = (vns1, . . . , v

n
s|K|) corresponds to the optimal path between

node s and node t that minimizes a linear combination of criteria using
the nth tuple of weights. All these supported solutions belong to the
final Pareto frontier and are used to initialize the Pareto frontier (LNt).
Initializing the Pareto frontier with non-dominated solutions increases
the amount of pruning and thus accelerates the LCDPF algorithm.

• Lower bounds LBi = (lbi1, . . . , lb
i
|K|) such that lbik = vkik ∀ k ∈ K

because every vkik value is determined by Dijkstra’s algorithm to solve
the mono-criterion shortest path problem for criterion k.

• Upper bounds Vni correspond to non-dominated paths from node i
to node t and serve to update the current Pareto frontier during the
search.

Note that, given the stopping criterion of Dijkstra’s algorithm, not all
Vni are determined for every node i in the graph (and, therefore, not all
LBi are determined). Thus, enumerating all non-dominated paths Vni ∀ n ∈
{1, . . . , |W|} for all nodes i in the graph is not necessary and can be time-
consuming; however, enumerating them for a subset of pertinent nodes may
be worthwhile, where “pertinent nodes” refers to nodes that will be strongly
involved during the exploration phase (propagation of partial paths). The
second step of the preprocessing phase aims at computing other partial paths
from pertinent nodes to node t.
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3.2.2 Second step

To find additional non-dominated paths from pertinent node i to node t
(and thereby determine additional Vni ), we solve a reversed one-to-all mono-
objective shortest path problem (from t to all nodes) for each tuple in W.
To solve this problem, we use the same Dijkstra algorithm as that used at
the previous step but change the stopping criterion from “node s is reached”
to “all pertinent nodes are reached.” To estimate this set of pertinent nodes,
the stopping criterion of the reversed one-to-all mono-objective shortest path
problem is obtained as follows: We define the worst dummy path such that

Vworsts = ( vworsts1 = max
∀ n∈W

(vns1), . . . , v
worst
s|K| = max

∀ n∈W
(vns|K|)).

The nth iteration of Dijkstra’s algorithm is stopped when the next node i
to visit is associated with Vni = (vni1, . . . , v

n
i|K|) such that vnik ≥ vworstsk ∀ k ∈

K. Note that Vworsts is determined after the first step of the preprocessing
phase. The use of this stopping criterion implies that not all nodes are
explored during each resolution of the one-to-all mono-objective shortest
path problem (only one node is explored for each tuple in W). The result
is the same when determining LBi by solving the one-to-all mono-objective
shortest path problem only for the first |K| tuples in W. This information
allows us to determine the nodes that are “useless” for the resolution of the
multi-objective shortest path problem.

Lemma 1 When determining LBi, if node i is explored at most once dur-
ing the resolution of the |K| one-to-all mono-criterion shortest path prob-
lem, then any path through node i computed during the exploration phase
is dominated by a solution of the initial Pareto frontier computed after the
preprocessing phase. Thus, node i can be removed from graph G after the
preprocessing phase.

The proof of the Lemma 1 is available in Section 1 of online supplement.
In addition to finding other partial paths from pertinent nodes to node t,
the goal of the second step is to delete other nodes from the graph by us-
ing Lemma 1. The size of W and its values are parameters of the LCDPF
algorithm and determine the number of initial non-dominated solutions in
the Pareto frontier and the number of solutions for a mono-objective short-
est path problem. An appropriate size for W is a trade-off between the
time required for the preprocessing phase and the contribution of the initial
solutions to reducing the exploration of the graph during the exploration
phase.
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3.3 Example

Figures 3 and 4 show an example of an instance with two criteria and W =
{(1, 0), (0, 1), (0.5, 0.5)}. The graph of Figure 3 is composed of 10 nodes and
15 arcs. Figure 4 overviews the results after the first step of the preprocessing
phase. The Pareto frontier LNt is initialized with the supported solution
(2, 8), (8, 2), and (4, 5). Each value of Vni is noted on the graph. For some
nodes (e.g., nodes 1, 3, 6, and 8), not all Vni are determined because of
the stopping criterion of Dijkstra’s algorithm used to solve mono-criterion
shortest path problems.

Figure 3: Graph example.

Figure 4: Results of first step of preprocessing phase.

Figure 5 (in gray) shows the results of the second step of the preprocess-
ing phase. Vni are determined for all nodes except node 8, where V28 is not
determined. Based on Lemma 1, this node can be removed from the graph
because it has been explored only once during the resolution of the first two
one-to-all mono-criterion shortest path problems.
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Figure 5: Results of second step of preprocessing phase.

Figure 6 shows the results of the first iteration of the LCDPF algorithm.
Label l0 is propagated and creates five new labels on nodes 1–5. After
creating the label l1 = (1, 0) on node 1, the current Pareto frontier is updated
by adding a new non-dominated solution (7, 4) owing to label l1 and the
values of V11 . Label l2 = (1, 2) created at node 3 is not added in LN3

because l2 is not a promising label: the dummy path computed from l2 and
lower bounds v13,1 = lb31 and v23,2 = lb32 is dominated by at least one solution
in the current Pareto frontier [e.g., (4, 5)].

Figure 6: Results of first iteration of LCDPF algorithm.
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3.4 Time Complexity of LCDPF Algorithm

The complexity of the preprocessing phase is polynomial because it consists
in solving |K|mono-objective shortest path problems, adding non-dominated
solutions to the initial Pareto frontier, and removing some nodes from the
graph. Each mono-objective shortest path problem is solved by applying
Dijkstra’s algorithm with a specific stopping criterion to avoid exploring
the whole graph. The worst case corresponds to exploring the entire graph
for each iteration of Dijkstra’s algorithm (note that, in this case, no node is
removed from the graph). When using a classic implementation of Dijkstra’s
algorithm, the complexity of the preprocessing phase has the computational
complexity O(|K|(|A|+ |V|) log |V|).

The complexity of the exploration phase depends on the number of labels
to explore, which, theoretically, may be an exponential number. If no tech-
nique improves the pruning of labels during the search, the algorithm will
enumerate all labels (i.e., feasible paths) that are not dominated at a given
node. Only labels dominated by another label are pruned, so the algorithm
finds the optimal Pareto frontier when the exploration queue is empty.

A key element of the LCDPF algorithm is the choice of data structure
and, more specifically, the structure of the list of labels LNj and the explo-
ration queue Q. To decrease the complexity of the algorithm, a sagacious
choice is to use the same data structure, such as a multi-index container as
implemented in the Boost Multi-Index Containers Library [43]. This struc-
ture saves the data with different sorting and access semantics; in our case,
one for each criterion, one for the node index, and one for the exploration
strategy h(i, k). The complexity to insert, delete, locate, and modify an ele-
ment in this structure of p elements is O(log p), O(1), O(log p), and O(log p),
respectively. The parameter p corresponds to |LNj | for the structure of the
label list at each node j and to |Q| for the structure of the exploration queue
Q. Both depend on the number of explored paths.

This type of structure allows the GET NEXT LABEL TO TREAT()
procedure to have complexity O(log |Q|). The complexity of lines 10 and
12 is related to the operation that checks a label lv in both LNj and LNt

that dominates the labels lu′ and llb, respectively. This operation can be
done with complexities O(|K||LNj |) and O(|K||LNt|) for LNj and LNt,
respectively. Line 14, which removes the dominated labels, has complex-
ity O(|K||LNj |). In addition, the procedure UPDATE THE CURRENT
PARETO FRONTIER has complexity O(|W||K||LNt|) because, for each
tuple n in W, it checks if a label lv exists in LNt that dominates the label
lub.
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To conclude, for each iteration of the main loop of the algorithm (one
iteration for each label to explore in Q), the worst-case scenario corresponds
to the creation of new labels (one label per successor node of the current
label), where each new label is promising and is used to update the Pareto
frontier. Therefore, the worst-case complexity of each iteration of the main
loop of the LCDPF algorithm is O(∆G(|K||LNj | + |W||K||LNt|)), where
∆G is the maximum degree of graph G.

4 Computational Experiments

This section presents the computational experiments used to test the LCDPF
algorithm. First, Section 4.1 introduces two types of instances used to test
the efficiency of the proposed algorithm. Section 4.2 shows how the label-
selection strategy affects the results of the LCDPF algorithm and the choice
of the setW of weights in mono-criterion searches that serve to initialize and
update the Pareto frontier. Section 4.3 shows how the number of criteria
affects the LCDPF algorithm. Finally, Section 4.4 compares the LCDPF
algorithm with the best methods available in the literature. The LCDPF
algorithm was implemented in C++ using the Boost Graph Library. The
computational experiments were done on a Linux system equipped with an
Intel Xenon W3520 2.67 GHz CPU, eight cores, and 24 GB of RAM. Each
experiment used only one core.

4.1 Benchmark instances

Two types of instances were used. The first type is a classic set of instances
from the literature on the MOSP problem. The second type is a set of
instances generated by a real application for cycling itineraries.

4.1.1 DIMACS instances

The first type of instances are the DIMACS instances from the 9th DIMACS
challenge. Table 1 lists the characteristics of the eight graphs used for the
computational experiments. The criteria of these graphs are the physical
distance and travel time.
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Name Description Number of nodes Number of arcs

NY New York City 264 346 733 846
BAY San Francisco Bay Area 321 270 800 172
COL Colorado 435 666 1 057 066
FLA Florida 1 070 376 2 712 798
NW Northwest USA 1 207 945 2 840 208
NE Northeast USA 1 524 453 3 897 636

CAL California and Nevada 1 890 815 4 657 742
LKS Great Lakes 2 758 119 6 885 658

Table 1: Characteristics of DIMACS instances.

4.1.2 Geovelo instances

To emulate more realistically the real application (i.e., cycling itineraries),
we used actual road networks based on data from OpenStreetMap (https://www.openstreetmap.org)
to build a new set of instances. In this network, a node corresponds to a
junction and an arc between two junctions is associated with a set of values
(i.e., the travel distance, road security, and other information regarding the
type of road). To determine the security cost associated with an arc, each
road was graded between zero (maximal safety) and five (minimal safety).
The security cost is given by the product of the security grade and the
arc length. The three graphs extracted are for Paris (France), Berlin (Ger-
many), and the San Francisco Bay Area (USA). The graph of Paris contains
29 086 nodes and 64 538 arcs. The graph of Berlin is interesting because
Germany has an active OpenStreetMap community, so safety information
is accurately reported; the Berlin graph contains 59 673 nodes and 145 840
arcs. The San Francisco graph (SF hereinafter), which is also interesting
because of the road network structure (in fact, urban road networks in the
USA are rather larger than those in Europe), contains 174 975 nodes and
435 959 arcs. This set of instances is noted as OSM graphs. For each graph,
we generated 60 random instances (i.e., pairs of origin-destination nodes),
which were ordered by increasing number of non-dominated solutions in the
final Pareto frontier and were grouped into three sets of identical size: P1,
P2, P3 for Paris, B1, B2, B3 for Berlin, and SF1, SF2, SF3 for San Fran-
cisco. The data are available on the VRP-REP open-data platform [40] at
http://www.vrp-rep.org/references/item/kergosien-et-al-2021.html.
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4.2 Comparison of label-selection strategies and parameter
setting W

The choice of the label-selection strategy, described in Section 3.1, is im-
portant and affects the performances of the LCDPF algorithm. Specifically,
it determines in what order the labels are considered and therefore influ-
ences the number of explored labels and the computation time. To test
several strategies, we used the OSM graphs just described with two criteria
(distance and security).

Let α1 be the weight associated with the distance criterion and α2 be the
weight associated with the security criterion. Three strategies were tested:

• The first label-selection strategy (STR1) selects the label with the
shorter distance, as in the classic Dijkstra method. For each node
i and criterion k, the cost of the shortest path from i to t is not
considered, so h(i, k) = 0 ∀ i ∈ V, k ∈ {1, 2}. Furthermore, to only
consider distance, we set α1 = 1 and α2 = 0.

• For the distance criterion, the second label-selection strategy (STR2)
selects the label with the smallest sum of distance from the source
node associated with label u1 and the shortest path distance from
i to t. This method is similar to an A* method. In this strategy,
the cost h(i, 1) represents the shortest distance between nodes i and
t (v1i1) computed in the second step of the preprocessing phase (see
Section 3.2.2). The security cost of the shortest path from i to t is
not considered, so h(i, 2) = 0 ∀ i ∈ V. Furthermore, to consider only
distance, we set α1 = 1 and α2 = 0.

• The third label-selection strategy (STR3) selects the label with the
smaller linear combination of distance and insecurity for the labels u1
and u2, with equal weights α1 = 0.5 and α2 = 0.5. For each node i and
criterion k, the cost of the shortest path from i to t is not considered,
so h(i, k) = 0 ∀ i ∈ V, k ∈ {1, 2}.

Other strategies based on the insecurity criterion instead of the distance
criterion were tested; however, the results were either similar or worse than
the results of these three strategies.

In the first phase of the LCDPF algorithm, |W| mono-objective shortest
path problems are solved (cf. Section 3.2). The objective function of each
problem is a weighted linear combination of all criteria for which the weights
are contained in W. The results allow us to initialize the Pareto frontier,
to compute lower bounds and upper bounds, and to deduce the nodes to be
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removed from the graph. The upper bounds are then used during the explo-
ration phase to update the current Pareto frontier (Algorithm 2). However,
to update the current Pareto frontier, we consider only a subset W ′ ⊆ W to
evaluate the performance of this procedure (i.e., only Vnj ∀ n ∈ W ′ are used
in line 2 of Algorithm 2). For each label-selection strategy, we test different
values of W and W ′. Let us define the following:

• W1 =W ′
1 ≡ {(1, 0), (0, 1)};

• W2 =W ′
2 ≡ {(1, 0), (0, 1), (0.5, 0.5)};

• W3 =W ′
3 ≡ {(1, 0), (0, 1), (0.75, 0.25), (0.5, 0.5), (0.25, 0.75)}.

Finally, after preliminary experimental analysis, the parameter Y max was
set to 15 for the remainder of the numerical experiments, which means that,
for each 15 iterations of the propagation of label l, the update of the Pareto
frontier was applied by using l.

Tables 2–4 show howW andW ′ affect the execution time of the LCDPF
algorithm when using the strategies STR1–STR3, respectively. The first
column shows the graph name, and columns two to ten give the average
running time in seconds for each pair W and W ′. Note that W = ∅ means
that the Pareto frontier is not dynamically updated.

W1 W2 W3

∅ W ′
1 ∅ W ′

1 W ′
2 ∅ W ′

1 W ′
2 W ′

3

P1 0.04 0.03 0.04 0.04 0.04 0.08 0.07 0.07 0.07

P2 0.14 0.08 0.13 0.10 0.09 0.16 0.15 0.15 0.15

P3 1.30 0.29 0.94 0.32 0.29 0.71 0.36 0.36 0.34

B1 0.24 0.11 1.30 0.13 0.12 0.26 0.23 0.22 0.23

B2 1.61 0.34 4.36 0.38 0.35 0.93 0.54 0.54 0.53

B3 9.79 1.86 2.41 1.88 1.66 3.92 1.89 1.78 1.56

SF1 0.37 0.17 0.31 0.22 0.22 0.48 0.42 0.41 0.41

SF2 30.46 6.08 19.57 6.09 5.23 11.13 5.67 5.17 4.42

SF3 158.22 45.83 122.80 45.49 41.61 98.24 44.50 41.57 38.59

Table 2: Influence of W and W ′ on LCDPF algorithm execution times (s)
when using strategy STR1.

As can be observed in Tables 2 and 4, the best results for execution time
are obtained with the combination {W3;W ′

3}, especially for large graphs.
This means that dynamically updating the Pareto frontier improves the
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W1 W2 W3

∅ W ′
1 ∅ W ′

1 W ′
2 ∅ W ′

1 W ′
2 W ′

3

P1 0.03 0.03 0.04 0.05 0.04 0.08 0.07 0.07 0.07

P2 0.07 0.06 0.10 0.09 0.09 0.15 0.15 0.15 0.15

P3 0.30 0.27 0.34 0.31 0.29 0.40 0.38 0.37 0.37

B1 0.11 0.10 0.15 0.14 0.12 0.23 0.23 0.23 0.23

B2 0.34 0.32 0.43 0.40 0.35 0.58 0.56 0.56 0.58

B3 1.82 1.75 1.95 1.84 1.75 2.05 1.99 1.98 1.97

SF1 0.18 0.17 0.26 0.26 0.22 0.42 0.41 0.41 0.41

SF2 6.38 6.17 6.63 6.40 6.13 6.90 6.75 6.62 6.60

SF3 62.02 60.45 62.49 60.77 60.52 62.49 61.33 61.07 61.34

Table 3: Influence of W and W ′ on LCDPF algorithm execution times (s)
when using strategy STR2.

W1 W2 W3

∅ W ′
1 ∅ W ′

1 W ′
2 ∅ W ′

1 W ′
2 W ′

3

P1 0.04 0.03 0.04 0.04 0.04 0.08 0.07 0.08 0.07

P2 0.17 0.08 0.15 0.10 0.10 0.16 0.15 0.15 0.15

P3 3.25 0.52 2.44 0.55 0.52 1.78 0.60 0.59 0.55

B1 0.34 0.12 0.21 0.14 0.13 0.27 0.24 0.23 0.23

B2 3.58 0.45 2.46 0.49 0.45 1.51 0.64 0.62 0.61

B3 33.41 4.50 22.87 4.52 3.98 12.33 4.20 3.89 3.27

SF1 0.59 0.18 0.36 0.24 0.23 0.52 0.43 0.43 0.42

SF2 132.30 21.15 84.89 21.07 17.72 44.33 18.10 16.31 13.05

SF3 1,126.77 336.01 893.35 335.97 310.70 722.35 326.38 307.68 284.61

Table 4: Influence of W and W ′ on LCDPF algorithm execution times (s)
when using strategy STR3.

algorithm efficiency when using the strategy STR1 or STR3. However, the
data of Table 3 show that the best results for execution time are obtained
with two types of combinations, {W1;W ′

1} and {W2;W ′
2}, which lead to

approximately the same results. The use of the combination {W3;W ′
3} with

the strategy STR2 does not minimize the corresponding execution times. In
fact, dynamically updating the Pareto frontier requires comparing labels to
determine which are non-dominated (this step is time consuming), and the
efficiency of this step is related to the label-selection strategy. Whichever
combination of W and W ′ is used, the strategy STR3 based on a linear
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combination is the less effective. In general, the strategy STR1 based on the
Dijkstra method and using the combination {W3;W ′

3} produces superior
results compared with the strategy STR2 based on the A* method, even
with the combination {W1;W ′

1}. However, the algorithm that uses the
strategy STR2 requires less memory than the strategy STR1. Therefore, the
strategies STR1 and STR2 were used for the remainder of the computational
experiments.

4.3 Influence of the number of criteria

Increasing the number of criteria increases significantly the difficulty of the
problem because the number of solutions in the final Pareto frontier increases
considerably. To the best of our knowledge, the majority of the studies
to have addressed the MOSP problem used either instances with only two
criteria or instances with a small graph and up to ten criteria. To determine
how the number of criteria affects the results, we conducted two types of
experiments on two versions of the LCDPF algorithm:

(i) LCDPF1: This experiment used the LCDPF algorithm with the fol-
lowing parameters: Y max = 15, strategy STR1 is used, andW3 =W ′

3

if |K| = 2; otherwise W = W ′ contains a set of mono-objective
searches and a set of identical weights for each criterion [e.g., if |K| = 5
then W = W ′ = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),
(0, 0, 0, 0, 1), (0.2, 0.2, 0.2, 0.2, 0.2)}].

(ii) LCDPF2: This experiment used the LCDPF algorithm with the fol-
lowing parameters: Y max = 15, strategy STR2 is used, and W = W ′

set to a corresponding set of mono-objective searches regardless of the
number of criteria [e.g., if |K| = 5 then W = W ′ = {(1, 0, 0, 0, 0),
(0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}].

The first type of experiment is based on the benchmark instances of
the resource-constrained shortest path problem proposed by [4]. As in [19],
the instances were adapted, and each type of resource was considered as
a criterion in addition to the distance criterion. From these instances, we
created six instances with three, five, and eleven criteria. Table 5 gives the
size of the graphs and the results for each instance (i.e., execution times for
versions of the LCDPF algorithm and the number of solutions in the final
Pareto frontier).
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Both versions of the LCDPF algorithm can solve instances of up to
eleven criteria within a similar reasonable time. As expected, the execution
time increases with the number of criteria. For example, the last instance is
solved in 20 ms and has 55 non-dominated solutions in the Pareto frontier for
the case of three criteria whereas, for eleven criteria, 12 045 non-dominated
solutions are found in 74.94 s for LCDPF1 and in 78.52 s for LCDPF2.

The second type of experiment was based on the Geovelo instances for
which we added a third criterion equal to one for each arc. This criterion
serves to determine how many arcs compose a path from the source node
to the destination node. This kind of criterion is in conflict with the two
other criteria and implies the existence of a large number of non-dominated
solutions in the Pareto frontier. Table 6 summarizes the execution times
(in s) of both versions of the LCDPF algorithm and gives the number of
solutions in the Pareto frontier for each group of Geovelo instances, for two
and three criteria.

Instances Number of criteria
|K| = 2 |K| = 3

LCDPF1 LCDPF2 LCDPF1 LCDPF2

Time (s) Time (s) |S| Time (s) Time (s) |S|
P1 0.07 0.03 11.20 0.07 0.05 33.90
P2 0.15 0.06 41.65 0.30 0.22 200.60
P3 0.34 0.27 145.50 95.68 95.18 1623.00

B1 0.23 0.10 39.95 0.77 0.73 214.10
B2 0.53 0.32 144.35 93.33 82.71 1583.50
B3 1.56 1.75 367.05 10 178.70 9590.16 8861.00

SF1 0.41 0.17 60.40 111.93 108.69 873.45
SF2 4.42 6.17 429.85 51 512.63 43 054.82 12 273.50
SF3 38.59 60.45 1327.65 - - -

Table 6: Influence of the number of criteria when using Geovelo instances.

The results given in Table 6 clearly demonstrate that the number of
solutions in the Pareto frontier increases with the number of criteria. For
example, the instance group B3 has an average of 367.05 solutions when
two criteria are considered and an average of 8861 solutions when three
criteria are considered. This results in an increase in computing time. For
the SF instances of group SF3, neither version of the LCDF algorithm can
enumerate all the solutions in the Pareto frontier because of insufficient
memory, whereas, for two criteria, all the instances are solved in less than 2
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minutes. Regardless of the number of criteria, the computation times of both
versions are similar for groups of small instances (i.e., P1, P2, P3, B1, and
B2). However, for groups of large instances (i.e., B3, SF1, SF2, and SF3), the
LCDPF1 algorithm is faster than the LCDPF2 algorithm for two criteria,
whereas the LCDPF2 algorithm is faster than the LCDPF1 algorithm for
three criteria. This may be explained by the required computation time
of the dynamic update of Pareto frontier, which is much greater for three
criteria than for two criteria, and knowing that this technique is extensively
used in the LCDPF1 algorithm compared to LCDPF2 algorithm.

4.4 Comparison with the literature

The computational experiments presented in this section compare the pro-
posed algorithm with five of the best-known methods in the literature, and
we report the results of each method, including the computation times.
Given the differences between computational systems used in these studies
and that used herein, we normalize the running times by using the PassMark
benchmark [56]. Section 2 of online supplement lists the computational sys-
tems used in each study, and we determine the time-scaling factor from the
Thread mark of PassMark (higher values indicate that the corresponding
CPU is faster).

First, we compare the results of both versions of our algorithm to the
results of the bLSET algorithm presented by [47] and the pulse algorithm
presented by [19] when applied to the NY, BAY, COL, FLA, and NW graphs
of the 9th DIMACS challenge. The parameter settings used for all exper-
iments discussed in this section are the same as those in Section 4.3. We
use the same pairs of source and target nodes, and the same classification
of instances used by [19]. Based on the number of solutions in the Pareto
frontier, the 30 instances of each graph are grouped into three equal-sized
clusters, denoted S (small), M (medium), and L (large). Table 7 presents
the computational results of bLSET, the pulse algorithm, and the LCDPF
algorithms. The first column indicates the graph name and the group. The
columns entitled bLSET, pulse2, LCDPF1, and LCDPF2 give the average
execution times (in seconds) and the number of solved instances within a
timeout of 3600 s for each algorithm. The last column gives the average
number of non-dominated solutions in the Pareto frontier.

The results given in Table 7 indicate that the running times of the bLSET
algorithm are on average longer than those of the other algorithms. For
the majority of instance groups, the LCDPF1 and LCDPF2 algorithms
are clearly faster on average and solve all instances of the groups within
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Cluster bLSET Pulse LCDPF1 LCDPF2 |S|
Name Time Time Time Time

(s) Solved (s) Solved (s) Solved (s) Solved

NY S 62.39 10 0.32 10 0.73 10 0.29 10 34.10
NY M 301.16 10 52.32 10 2.48 10 1.39 10 147.40
NY L 881.26 10 1367.66 7 9.56 10 12.57 10 422.70
BAY S 6.78 10 0.16 10 0.40 10 0.13 10 8.80
BAY M 55.24 10 5.70 10 1.18 10 0.45 10 49.90
BAY L 317.43 10 105.55 10 3.46 10 2.50 10 171.80
COL S 7.30 10 0.20 10 0.86 10 0.28 10 18.20
COL M 233.03 10 381.94 9 2.91 10 1.84 10 87.10
COL L 865.76 10 508.76 10 4.98 10 3.47 10 328.40
FLA S 330.12 10 0.35 10 2.61 10 0.74 10 14.70
FLA M 566.15 9 347.91 10 5.06 10 1.86 10 94.10
FLA L 2627.43 4 888.59 9 13.03 10 10.47 10 552.30
NW S 260.73 10 1.99 10 2.51 10 0.77 10 39.00
NW M 1109.98 8 81.96 10 4.90 10 2.33 10 124.20
NW L 1443.66 8 538.54 9 8.70 10 5.96 10 281.60

Table 7: Comparison of execution times (s) for bLSET, pulse, LCDPF1,
and LCDPF2 algorithms.

15 s [note that, according to the PassMark benchmark, the setup of [19]
is 1.31 times faster than the proposed setup]. The execution time of the
LCDPF2 algorithm is, on average, slightly less than the execution time of
the LCDPF1 algorithm. Finally, all algorithms behave the same; that is, the
execution time increases exponentially with the number of non-dominated
paths.

We also compared the results of the proposed algorithm with those of
the adaptation of the NAMOA* algorithm presented by [37]. Their paper
presents a pre-calculation method called KDLS for lower-bound sets. The
computational experiments of [37] are based on the NY graph of the 9th

DIMACS challenge using two objectives: travel time and economic cost.
The latter was introduced by [36] and is computed based on the toll and
fuel-consumption costs according to road category. In this graph, only a
single arc is considered for each pair of nodes. In the NY graph, for each
set of arcs between the same pair of nodes, the first arc in the lexicographic
order of the file is retained.

Table 8 gives the execution times of the NAMOA* algorithm proposed
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by [37] (with several parameter settings of the KDLS method) and of both
versions of the LCDPF algorithm applied to the same 20 pairs of source and
target nodes. The first column gives the instance number, columns two to
eight give the execution times (in seconds) of each parameter setting of the
KDLS method (including the NAMOA* algorithm), and column nine gives
the execution times of the LCDPF1 and LCDPF2 algorithms. The last
column shows the number of non-dominated solutions for each instance.
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The results listed in Table 8 indicate that the execution times of the
NAMOA* with several parameter settings of KDLS proposed by [37] ex-
ceed those of both versions of the LCDPF algorithm (even if we take into
account a factor of 0.76, computed from the PassMark benchmark, which
would reduce their execution times). For resolved instances, the LCDPF1

and LCDPF2 algorithms are 50 times faster on average than the best KDLS
method. Neither NAMOA* algorithm solves instances 4, 8, 19, and 20 within
12 h (mainly because of insufficient memory space in our case), and none of
the algorithms resolves instance 4. Comparing the results for the original
instances of the NY graph for the 9th DIMACS challenge with the results
for the new instances based on the same graph proposed by [37] reveals an
increasing number of non-dominated solutions in the Pareto frontier and a
longer execution time on average for both versions of the LCDPF algorithm.
This demonstrates that replacing an objective by another more conflicting
objective (e.g., economic cost instead of distance) appears to increase the
difficulty of the problem. For all 19 instances solved, the LCDPF1 algorithm
is faster than the LCDPF2 algorithm for 16 instances with an average re-
duction in computation time of 22%.

Finally, we compare the LCDPF1 and LCDPF2 algorithms with the
BBDijkstra and BDijkstra algorithms proposed by [51]. These two recent
algorithms outperform one of the state-of-the-art algorithms to solve the
bi-objective shortest path problems in large road networks (i.e., the pulse
algorithm). We used the same instances from the 9th DIMACS challenge
(NY, BAY, COL, FLA, NE, CAL, and LKS graphs) and the same 100 pairs
of source and target nodes for each graph. Each run was limited to 3600
seconds for all algorithms.

Table 9 lists the average, minimum, and maximum numbers of solutions
in the Pareto frontier for solved instances, the number of solved instances for
each algorithm, and the average, minimum, and maximum running times for
each algorithm. Note that the average running times are determined with a
computational time of 3600 seconds for unsolved instances.

The results of both versions of the LCDPF algorithm are similar to those
of the BBDijkstra and BDijkstra algorithms and have shorter average run-
ning times for the FLA, NE, CAL, and LKS graphs. However, the CPU used
in [51] is 65% faster than the CPU used to execute the LCDPF algorithm
(according to the PassMark benchmark). After standardizing the running
times with the help of the time-scaling factor, the LCDPF1 and LCDPF2

algorithms have shorter running times for all graphs except for the smallest
graph (NY). The proposed algorithms are at least twice as fast as the BB-
Dijkstra and BDijkstra algorithms for the FLA and NE graphs, at least 50%
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|S| BBDijkstra BDijkstra LCDPF1 LCDPF2

NY Solved/100 100/100 100/100 100/100 100/100 100/100
Avg. 119.79 0.74 1.32 2.10 1.62
Min 1 0.22 0.15 0.13 0.03
Max 646 8.46 21.75 16.31 26.80

BAY Solved/100 100/100 100/100 100/100 100/100 100/100
Avg. 143.77 1.28 2.16 3.21 3.36
Min 1 0.27 0.18 0.16 0.04
Max 825 16.39 33.42 29.57 51.07

COL Solved/100 100/100 100/100 100/100 100/100 100/100
Avg. 346.51 10.89 12.20 12.83 16.18
Min 1 0.36 0.25 0.18 0.04
Max 2612 255.25 355.57 336.38 412.90

FLA Solved/100 100/100 100/100 99/100 100/100 100/100
Avg. 673.72 83.86 129.21 50.55 71.04
Min 2 0.93 0.62 0.40 0.08
Max 6292 1596.66 1626.24 1076.84 1637.23

NE Solved/100 99/100 99/100 99/100 99/100 99/100
Avg. 808.19 246.95 199.83 135.46 172.32
Min 7 1.56 1.05 0.65 0.15
Max 3145 3414.14 1308.06 1143.06 1440.57

CAL Solved/100 99/100 98/100 98/100 97/100 98/100
Avg. 862.54 216.99 267.29 204.62 228.56
Min 1 1.90 1.24 0.74 0.15
Max 6962 2543.59 2786.61 1013.86 2074.06

LKS Solved/100 74/100 68/100 74/100 68/100 69/100
Avg. 1917.80 1577.87 1421.14 1,325.55 1380.35
Min 1 2.93 1.92 1.21 0.26
Max 7547 3560.20 3286.70 1357.64 2210.31

Table 9: Comparison of execution times (s) of BBDijkstra, BDijkstra,
LCDPF1, and LCDPF2 algorithms.

faster for the CAL graph, and at least 70% faster for the LKS graph. These
results demonstrate that both versions of the LCDPF algorithm are par-
ticularly efficient for the largest graphs. However, the BDijkstra algorithm
solves 74 instances for the LKS graphs, whereas the LCDPF1 algorithm
solves 68 instances and the LCDPF2 algorithm solves 69 instances.

The results of the LCDPF1 and LCDPF2 algorithms thus seem quite
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similar. Although the LCDPF1 algorithm is slightly faster than the LCDPF2

algorithm, the LCDPF2 algorithm solves slightly more instances than the
LCDPF1 algorithm. These results all show that, even if the LCDPF1 al-
gorithm uses a poorer label-selection strategy (STR1) than that (STR2)
used by the LCDPF2 algorithm, the intense reliance on dynamically up-
dating the Pareto frontier makes the LCDPF1 algorithm as efficient as the
LCDPF2 algorithm.

5 Conclusion

We propose herein a new exact algorithm called the “Label-Correcting with
Dynamic update of Pareto Frontier” (LCDPF) algorithm to solve the one-to-
one MOSP problem. The LCDPF algorithm is an improved label-correcting
algorithm that rapidly solves the MOSP problem on large graphs with up
to millions of nodes and edges. We undertook computational experiments
to compare two versions of the proposed algorithm with the best-known
methods from the literature, and the results demonstrate that both versions
outperform most existing methods. We also generated new instances based
on three graphs corresponding to the urban areas of Paris, Berlin, and the
San Francisco Bay Area, including at least two conflicting objective functions
(travel distance and security cost).

The LCDPF algorithm is based on the assumption that the graph in
question contains only nonnegative costs. However, if no negative cycle
exists, the algorithm can be modified to consider negative costs in the graph.
The first phase of the algorithm uses the Bellman-Ford-Moore [5, 23, 41]
algorithm instead of Dijkstra’s algorithm, which increases the computation
time of this phase and invalidates Lemma 1. Nevertheless, the second phase
remains unchanged.

Finally, the LCDPF algorithm can be extended to consider, in addition
to sum-type objectives, bottleneck objectives such as minimizing the maxi-
mum cost of a path or maximizing the minimum cost of a path. To consider
this type of objective, Dijkstra’s algorithm is easily adapted and some minor
steps are added to the LCDPF algorithm, such as the dominance condition,
label comparison, and label propagation.
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