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ABSTRACT

The characterization of the spectral energy distribution (SED) of dust emission has become a critical issue in the quest for primordial
B-modes. The dust SED is often approximated by a modified black body (MBB) emission law but the extent to which this is accurate
is unclear. This paper addresses this question, expanding the dust SED at the power spectrum level. The expansion is performed by
means of moments around the MBB law, related to derivatives with respect to the dust spectral index. We present the mathematical
formalism and apply it to simulations and Planck total intensity data, from 143 to 857 GHz, because no polarized data are yet available
that provide the required sensitivity to perform this analysis. With simulations, we demonstrate the ability of high-order moments to
account for spatial variations in MBB parameters. Neglecting these moments leads to poor fits and a bias in the recovered dust spectral
index. We identify the main moments that are required to fit the Planck data. The comparison with simulations helps us to disentangle
the respective contributions from dust and the cosmic infrared background to the high-order moments, but the simulations give an
insufficient description of the actual Planck data. Extending our model to cosmic microwave background B-mode analyses within a
simplified framework, we find that ignoring the dust SED distortions, or trying to model them with a single decorrelation parameter,
could lead to biases that are larger than the targeted sensitivity for the next generation of CMB B-mode experiments.

Key words. cosmic background radiation – submillimeter: ISM – methods: data analysis

1. Introduction

The precise characterization of the properties of the polarized
dust emission from our Galaxy is a crucial issue in the quest for
the primordial B-modes of the cosmic microwave background
(CMB). If measured, this faint cosmological signal imprinted by
the primordial gravitational wave background would be evidence
of the inflation epoch and could be used to quantify its energy
scale, providing a rigorous test of fundamental physics far
beyond the reach of accelerators (Polnarev 1985; Kamionkowski
et al. 1997; Seljak & Zaldarriaga 1997). However, accurate deter-
mination of diffuse CMB B-mode foregrounds – among which
the polarized Galactic dust emission dominates at observing fre-
quencies &70 GHz (see e.g., Krachmalnicoff et al. 2016; Planck
Collaboration XI 2020) – is required to get an unbiased estimate
of the ratio r between tensor and scalar primordial perturbations,
a parameter of unknown amplitude scaling the CMB B-mode
power on the sky and directly linked to the energy scale at which
inflation occurred.

The frequency dependence of the dust emission, assessed
through its spectral energy distribution (SED) is one of the char-
acteristics that needs to be determined with the highest accu-
racy. The Planck data have shown that the SED of the dust
emission for total intensity and polarization can be fitted by a
modified black body (MBB) law (Planck Collaboration XXX
2014; Planck Collaboration XI 2014; Planck Collaboration Int.
XXII 2015; Planck Collaboration XI 2020). Maps of the dust
MBB spectral indices and temperatures have been fitted to the

total intensity Planck data (see e.g., Planck Collaboration Int.
XVII 2014; Planck Collaboration X 2016). These provide evi-
dence that dust emission properties vary across the sky. The data
do not provide comparable observational evidence for polariza-
tion due to insufficient signal to noise ratio (S/N). However,
analyzing total intensity data is directly relevant to polariza-
tion. Indeed, Planck and the Balloon-borne Large Aperture Sub-
millimeter Telescope for Polarimetry (BLASTPol) observations
have shown that the polarization fraction is remarkably con-
stant from the far-infrared to millimeter wavelengths, suggesting
that the polarized and total dust emission arise predominantly
from a single grain population (Planck Collaboration Int. XXII
2015; Gandilo et al. 2016; Ashton et al. 2018; Guillet et al. 2018;
Shariff et al. 2019; Planck Collaboration XI 2020).

In the inference of cosmological parameters from CMB data,
the spectral frequency dependence of dust polarization and its
angular structure on the sky are most often assumed to be sepa-
rable. This is a simplifying assumption that needs to be improved
upon. When spatial variations of the dust emission law are
present but ignored, biases that compromise the cosmological
analysis can arise and bias the sought-after CMB B-mode sig-
nal (Tassis & Pavlidou 2015; Planck Collaboration Int. L 2017;
Poh & Dodelson 2017). A bias can also be introduced by addi-
tional Galactic emission components or if the dust emission is
not perfectly fitted by a MBB emission law. Even if the MBB is
observed to be a good fit to the data, dust models do anticipate
such departures (e.g., Draine & Hensley 2013; Hensley & Bull
2018).
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Spatial SED variations induce a decorrelation between
dust maps in different frequency bands, causing a loss of
power in the map cross-correlation compared to the geomet-
rical mean of power spectra, which can generate a bias in
CMB spectra if it is not properly accounted for. A tentative
detection of this effect with the Planck polarization dust data
(Planck Collaboration Int. L 2017) was later dismissed (Sheehy
& Slosar 2018). This analysis was further extended by Planck
Collaboration XI (2020), performing a global multi-frequency
fit of the polarized Planck HFI channels with a spectral model
that includes decorrelation. These latter authors derive an upper
limit on frequency decorrelation that depends on an ad-hoc, pos-
sibly misleading model. This shortcoming also applies to the
analysis of the latest BICEP2/Keck data (Keck Array & BICEP2
Collaborations 2018). Although current data analyses do not pro-
vide conclusive evidence for frequency decorrelation, this is an
effect that must be present at some level. The spectral model-
ing of polarized dust emission has thus become one of the main
challenges in the quest of primordial B-modes.

An additional complexity is due to the fact that in sky maps,
local variations in dust emission properties across the interstel-
lar medium are averaged along the line of sight and within the
beam. When computing power spectra, further averaging occurs
through the computation of the expansion of spherical harmon-
ics. Even if the emission law of the dust in any infinitesimal
volume element of the Galaxy is perfectly described by a MBB
law, after averaging, the dust spectral frequency dependence is
no longer a MBB and SED distortions arise. The dust frequency
dependence and its angular structure on the sky become interde-
pendent in ways that are difficult to model and generally involve
nonlinear transformations.

Chluba et al. (2017) proposed a way to describe the varia-
tions of the spectral properties along the line of sight, inside the
beam, and across the sky using the moment decomposition around
the MBB in the map pixel space. The moments can capture SED
distortions due to variations in the dust temperature and spec-
tral index, along the line of sight or between lines of sight, and
also in the potential contribution of minor dust emission compo-
nents. The present paper extends the moment formalism from the
map to the angular cross-power spectra, which are highly rele-
vant to CMB B-mode analyses, and to getting rid of noise bias
and uncorrelated systematic effects. Similar extensions could also
play an important role in the extraction of primordial CMB spec-
tral distortions that are caused by energy release (Zeldovich &
Sunyaev 1969; Sunyaev & Zeldovich 1970b,a; Chluba & Sunyaev
2012) and which could be targeted in the future (Kogut et al. 2019;
Chluba et al. 2019).

We present the formalism and assess its ability to fit simula-
tions of increasing complexity before using it to analyze Planck
High Frequency Instrument (Planck-HFI) total intensity data and
build a spectral model in terms of harmonic space moments
of the dust spectral index. While the polarization data avail-
able today are not sensitive enough to perform such an analy-
sis, Planck-HFI total intensity data offer the required sensitivity
and frequency coverage to build a direct spectral model based on
astrophysical grounds. Here, we consider Planck intensity data
as a proxy to data from future CMB B-modes experiments from
Space (Hazumi et al. 2019; Hanany et al. 2019), in terms of S/N
and frequency coverage.

The paper is organized as follows. In Sect. 2, we describe
the formalism of the dust moment expansion in harmonic space
including angular cross-power spectra. Section 3 details our
methodology and implementation of the dust moments analysis.
We present the simulations and the actual Planck data to which

we fit our spectral model in Sect. 4; the results of the fits are pre-
sented in Sect. 5. In Sect. 6, within a simplified framework, we
relate our spectral model to the analysis of CMB B-modes data.
We summarize the main results and present our conclusions in
Sect. 7. The paper has five Appendices. The first three detail
the simulations (Appendix A), the cross-spectra covariance
matrix (Appendix B), and additional fit results (Appendix C).
In Appendix D we asses the impact of synchrotron emission on
our analysis and in Appendix E we assess the effect of the spatial
variations of dust temperatures.

2. Formalism

In this section we present the formalism to describe the moment
expansion of the dust intensity SED built from angular cross-
power spectra of spherical sky maps. As presented in Chluba
et al. (2017), this formalism is a powerful tool with which to
account for SED distortions arising from the various averaging
effects. We first reiterate the usual and the moment-expansion
dust SED parameterizations in Sect. 2.1. In Sects. 2.2 and 2.3
we present the spherical harmonics and the cross-power spectra
moment expansion that is used in the analysis we present.

We present the formalism to describe the spectral departures
from the MBB associated with derivatives with respect to the
dust spectral index β, which is known to vary across the sky (e.g.,
Planck Collaboration X 2016). This can be easily generalized to
include derivatives with respect to the dust temperature (Chluba
et al. 2017). However, in the following analysis, we only use the
spectral index moment expansion in the Rayleigh-Jeans regime,
as temperature and β-variations can have similar effects on the
dust SED built from microwave and submillimeter data.

2.1. Dust SED parametrization in the map domain

2.1.1. Modified black body formalism

The commonly used parametrization for a single-temperature
dust spectrum is a MBB emission law. We first consider the
MBB parametrization without any spatial variations of the SED,
that is, with a constant spectral index β0 and a constant temper-
ature T0 across the sky. At a given frequency ν the dust intensity
map ID(ν, n̂) takes the form:

ID(ν, n̂) =
Iν(T0, β0)
Iν0 (T0, β0)

AD(n̂) =

(
ν

ν0

)β0 Bν(T0)
Bν0 (T0)

AD(n̂), (1)

where AD(n̂) is in this case a frequency-independent dust inten-
sity template map, ν0 a reference frequency, and Bν(T0) is the
Planck law for the temperature T0. As long as the MBB with con-
stant temperature and spectral index is the correct emission law
for all lines of sight, the spatial and the frequency dependence
are separable. Nevertheless, different lines of sight probe Galac-
tic regions with very different physical conditions (temperature,
dust composition) in the three dimensions of space (we note
here that spatial variations between lines of sight and 3D vari-
ations along one line of sight lead to similar effects on the final
SED). Emission from these regions are averaged along the line
of sight and within instrumental beams so that even if the SED of
every infinitesimal volume element were to accurately describe
by Eq. (1), the MBB would no longer accurately describe the
effective emission law. In the following, we formally consider
only the variations from one line of sight to another, so that the
effective spectral index β or temperature T in Eq. (1) can vary
spatially.
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2.1.2. Modified black body with spatially varying spectral
index

One general attempt to describe the spatial variations of the dust
SED in the Rayleigh-Jeans regime of the dust SED is to allow
the MBB spectral index to vary spatially. As a consequence,
the frequency and spatial dependence of the dust emission are
no longer trivially separable. Therefore, the standard MBB for-
malism of Sect. 2.1.1 must be extended. In this case, the dust
intensity map can be written as follows (assuming that the dust
temperature remains constant across the sky):

ID(ν, n̂) =
Iν
(
T0, β(n̂)

)
Iν0

(
T0, β(n̂)

) AD(n̂) , (2)

where now β(n̂) accounts for the fact that the spectral index
varies from pixel to pixel over the sky. We note that for the sake
of clarity, in writing this equation, we ignore the variations along
the line of sight.

2.1.3. Modified black body spectral index moment expansion

A more general and powerful parametrization of the dust SED
was proposed by Chluba et al. (2017). It introduces the moment
expansion of the dust SED, a perturbative expansion of the SED
by means of derivatives of the MBB. In our frequency regime,
we use derivatives with respect to the dust spectral index β so
that the dust map ID(ν, n̂) at a frequency ν now reads:

ID(ν, n̂) '
Iν(T0, β0)
Iν0 (T0, β0)

[
AD(n̂) + ω1(n̂) ln

(
ν

ν0

)
+

1
2
ω2(n̂) ln2

(
ν

ν0

)
+

1
6
ω3(n̂) ln3

(
ν

ν0

)
+ · · ·

]
, (3)

where ωi(n̂) = AD(n̂)∆β(n̂)i is the ith order moment map associ-
ated to the ith derivative of the MBB with respect to β (here in an
expansion up to third order1), and ∆β(n̂) = β(n̂) − β0.

2.2. Dust SED parametrization in spherical harmonics

By definition, decomposition of the dust map into spherical har-
monics coefficients implies averaging over various lines of sight
over the sky, which is mathematically equivalent to averaging
pixels with different SEDs along the line of sight or in an instru-
mental beam (Chluba et al. 2017). Therefore, we can use the
spectral moment decomposition described in Eq. (3). This leads
to the following expansion in the spherical harmonics space:

(ID)ν`m =
Iν(T0, β0(`))

Iν0(T0, β0(`))
×

[
(AD)`m + (ω1)`m ln

(
ν

ν0

)
+

1
2

(ω2)`m ln2
(
ν

ν0

)
+

1
6

(ω3)`m ln3
(
ν

ν0

)
+ · · ·

]
, (4)

where2 β0(`) refers to the effective value of the dust spectral
index β0 for each multipole, as we see in the following. The
variables (ωi)`m (i ∈ {1, . . . ,N}) are the spherical harmonic coef-
ficient of the ith order moment map ωi(n̂). We note that the

1 Ultimately, the required maximal moment order is driven by the sen-
sitivity and spectral coverage of the experiment under consideration and
the target signal level.
2 More generally, one could introduce β0(`,m) for each multipole.
However, we are mainly concerned with the power spectra, and so β0(`)
is a better starting point.

spherical harmonics moments (ωi)`m are not the same as the spa-
tial moments ωi(n̂), as they involve different averaging.

We stress that the formalism in Eq. (4) accounts for SED
distortions in the most general case and not only the ones asso-
ciated to the averages due to the spherical harmonics decom-
position. Therefore, no further extension is required to cap-
ture the effects of line-of-sight or beam averaging. We also
stress that the line-of-sight and beam-averaging effects, for real-
world experiments, can never be avoided, such that β(n̂) should
already be interpreted as an averaged dust-amplitude-weighted
quantity.

2.3. Dust SED parametrization in the cross-power spectra

Based on Eq. (4), we can compute the cross-spectrum between
the maps observed in the frequency bands ν1 and ν2. Up to third
order in terms of β derivatives, this takes the form:

D
ν1×ν2
`

=
Iν1 (T0, β0(`))Iν2 (T0, β0(`))

I2
ν0

(T0, β0(`))
×

{
D

ADAD
`

1. order

 +
[

ln
(
ν1
ν0

)
+ ln

(
ν2
ν0

) ]
D

ADω1
`

+
[

ln
(
ν1
ν0

)
ln

(
ν2
ν0

) ]
D
ω1ω1
`

2. order


+ 1

2

[
ln2

(
ν1
ν0

)
+ ln2

(
ν2
ν0

)]
D

ADω2
`

+ 1
2

[
ln

(
ν1
ν0

)
ln2

(
ν2
ν0

)
+ ln

(
ν2
ν0

)
ln2

(
ν1
ν0

) ]
D
ω1ω2
`

+ 1
4

[
ln2

(
ν1
ν0

)
ln2

(
ν2
ν0

)]
D
ω2ω2
`

3. order


+ 1

6

[
ln3

(
ν1
ν0

)
+ ln3

(
ν2
ν0

)]
D

ADω3
`

+ 1
6

[
ln

(
ν1
ν0

)
ln3

(
ν2
ν0

)
+ ln

(
ν2
ν0

)
ln3

(
ν1
ν0

) ]
D
ω1ω3
`

+ 1
12

[
ln2

(
ν1
ν0

)
ln3

(
ν2
ν0

)
+ ln2

(
ν2
ν0

)
ln3

(
ν1
ν0

) ]
D
ω2ω3
`

+ 1
36

[
ln3

(
ν1
ν0

)
ln3

(
ν2
ν0

)]
D
ω3ω3
`

+ · · ·

}
, (5)

where the moment cross-power spectra, Dab
` , {a, b} ∈

{AD, ω1, ω2, ω3} are defined as3:

Dab
` =

`(` + 1)
2π

∑
−`≤m,m′≤`

(a)`m(b)`m′ . (6)

In Eq. (5), we group terms according to the maximal derivative
order in β that appears. These spectral moment truncations are
motivated by first constructing the moment maps and then com-
puting all the corresponding cross power spectra, though in this
work we measure these cross moment spectra directly from the
cross frequency data power spectra. Using this ordering, trun-
cating after the first moment order means including the first
three terms, truncating after the second moment order means
including the first six terms, and so on. As it is useful in the
following, we define the moment functions for a given cross-
spectrum, Mab

` (νi, ν j), as the moments Dab
` normalized to the

dust amplitude spectrumDADAD
`

and re-scaled by the correspond-
ing frequency-dependent numerical factors for the νi × ν j cross-
spectrum, as:

Mab
` (νi, ν j) = cab(νi, ν j, ν0) Dab

` /D
ADAD
`

, (7)

where cab(νi, ν j, ν0) are the numerical coefficients which involve
the sum and/or the product of the ln(νi/ν0) and ln(ν j/ν0) terms,

3 In the rest of this work we always use D` angular power spectra
(D` = `(`+ 1)C`/2π), where C` is the original angular power spectrum.
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as appearing in Eq. (5). In this way, theMab
` functions of Eq. (7)

show, for a given cross-spectrum, the effective contribution of
each moment to the departure of the standard MBB SED. We
stress that, in Eq. (5), the dust spectral index β0(`) is fixed and
assigned with optimized values (these steps are described fur-
ther) for each multipole `.

The model for the dust SED in Eq. (5) can be truncated at
any order, depending on the complexity one wants to capture or
the available degrees of freedom in the data to be modeled. At
zero order (keeping only the first element of the sum, DADAD

`
),

Eq. (5) becomes the cross-power spectrum with a `-dependent
spectral index. The higher order terms account for the dust SED
distortions to the MBB, meaning that Eq. (5) provides us with
a consistent and robust description of the dust SED distortions
with respect to the MBB emission law.

Furthermore, as this formalism describes the corrections
to the MBB in the angular power spectrum domain – as a
function of the multipole ` – it naturally provides an effi-
cient framework with which to characterize the frequency
decorrelation of the cross-power spectra due to spatial var-
iations of the SED. In contrast to previous attempts (e.g., Planck
Collaboration Int. L 2017; Vansyngel et al. 2017; Keck Array
& BICEP2 Collaborations 2018), the frequency decorrelation is
not introduced by an ad-hoc choice.

We also note that the normalized first-order term can be inter-
preted as a correction to the MBB spectral index β0(`) needed to
recover the “true” β(`) when spatial and/or line-of-sight varia-
tions are present. We therefore define:

∆β0(`) ≡ DADω1
`

/DADAD
`

, (8)

where the ∆β0(`) pivot parameter solution depends on the total
number of moments that are included and becomes unbiased
in the limit of many moments. In fact, this term quantifies the
scale-dependent bias that arises from neglecting SED correc-
tions. Adding the moment expansion allows us to eliminate the
bias while having nonzero moments at first and higher orders that
include the full covariance between the parameters. This connec-
tion can be used to introduce an iterative scheme to the analysis,
as discussed in Sect. 3.

We stress that β0(`) in Eq. (8) is related to a power-
spectrum weighted average of β(n̂) (which, strictly-speaking,
itself is a line-of-sight-averaged quantity). A similar averag-
ing process was discussed for the temperature power spec-
trum stemming from the relativistic Sunyaev-Zeldovich effect
(Remazeilles et al. 2019). The higher order moment terms
in Eq. (5) quantify (3D) cross-correlations between the spec-
tral indices (Chluba et al. 2017). In general, they each come
with their own spatial dependence and maps of these moments
can help identify parts of the sky with substantial SED
variations.

In summary, Eq. (5) provides, for the first time, a physically
motivated model for dealing with spatial and line-of-sight varia-
tions of the dust spectral index β at the power-spectrum level.

3. Methodology and implementation

In this section, we detail the methodology and the implementa-
tion of the dust moments analysis. The analysis consists of an
`-by-` SED fit of a cross-spectra data vector D`, gathering all
the cross spectra that can be computed from a set of maps Mνi at
frequencies νi, i ∈ {1, . . . ,N}:

D` ≡



D
ν1×ν1
`
D
ν1×ν2
`
D
ν1×ν3
`
...

D
ν1×νN
`
...

D
νN×νN
`


≡



D`
(
Mν1 × Mν1

)
D`

(
Mν1 × Mν2

)
D`

(
Mν1 × Mν3

)
...

D`
(
Mν1 × MνN

)
...

D`
(
MνN × MνN

)


. (9)

The analysis is divided in three steps:
– Step 1: We fit for each multipole ` the two parameters β0(`)

and DADAD
`

(T0 is fixed). Zero-order or MBB fits, in the follow-
ing, refer to this first step

– Step 2: We fix β0(`) and then fit Eq. (5). Three parameters
are fitted at the first order, six at the second order and ten at the
third order.

– Step 3: We update the value of the spectral index to
βcorr

0 (`) = β0(`) + ∆β0(`), fix it and redo the fits as in step 2. In
practice, step 3 may need to be repeated in order to ensure that
∆β0(`) and thusDADω1

`
become compatible with zero, indicating

the convergence.
For instance, in the case of the dust moment expansion up

to the third order, the fitted parameters in step 3, for each mul-
tipole bin, are: DADAD

`
, DADω1

`
, Dω1ω1

`
, DADω2

`
, Dω1ω2

`
, Dω2ω2

`
,

D
ADω3
`

, Dω1ω3
`

, Dω2ω3
`

, Dω3ω3
`

. This “three-step” method for the
dust moments fit allows us to consistently search for spectral
departures from the standard MBB, quantifying, at each multi-
pole, the corrections to the β0(`) due to SED averaging effects,
and therefore providing a description of the scale dependence of
the frequency decorrelation.

In practice, we perform a Levenberg-Marquardt least-
squares minimization of r = y − mi, where, at each multipole
bin, y ≡ D` is the input cross-spectra data vector of Eq. (9) and
mi ≡D

D
`

is the model vector:

D
D
`

=



D
D,ν1×ν1
`

D
D,ν1×ν2
`

D
D,ν1×ν3
`
...

D
D,ν1×νN
`
...

D
D,νN×νN
`


. (10)

For step 1, the model refers to the dust cross-spectra function
truncated at zero order, mi ≡ m0, that is, the MBB emission with
constant temperature and spectral index β0(`). For steps 2 and
3, the model refers to the dust moment cross-spectra function of
Eq. (5), truncated at orders 1, 2, and 3.

In order to take into account the correlations between the
cross-spectra Dνi×ν j and Dνk×νl , the cross-spectra covariance
matrix C is included in the fit:

C ≡ Ci jkl (`) ≡ cov
(
D
νi×ν j

`
,Dνk×νl

`

)

=



var
(
D
ν1×ν1
`

,Dν1×ν1
`

)
· · · cov

(
D
ν1×ν1
`

,Dν1×νN
`

)
· · · cov

(
D
ν1×ν1
`

,DνN×νN
`

)
.
.
.

. . .
.
.
.

.

.

.

cov
(
D
ν1×νN
`

,Dν1×ν1
`

)
· · · var

(
D
ν1×νN
`

,Dν1×νN
`

)
· · · cov

(
D
ν1×νN
`

,DνN×νN
`

)
.
.
.

.

.

.
. . .

.

.

.

cov
(
D
νN×νN
`

,Dν1×ν1
`

)
· · · cov

(
D
νN×νN
`

,Dν1×νN
`

)
· · · var

(
D
νN×νN
`

,DνN×νN
`

)


.

(11)
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The computation of this cross-spectra covariance matrix from
simulations is described in detail, for our applications, in
Appendix B. The reduced χ2 to be minimized is then defined
as:

χ2 =
rTC−1r
Nd.o.f.

, (12)

where Nd.o.f. is the number of degrees of freedom.

4. Data and simulation settings

In this section we present the Planck intensity data and the simu-
lations used in this paper. We only use the five highest-frequency
Planck-HFI channels (143, 217, 353, 545 and 857 GHz). We dis-
card lower frequencies in order to minimize the impact of emis-
sion components other than the thermal dust emission which
are significant at frequencies lower than 143 GHz but may be
neglected at higher frequencies at high Galactic latitude, such
as the synchrotron emission, the anomalous microwave emis-
sion (AME), and the free-free emission. The CO emission lines
at 115, 230, and 345 GHz are significant in the Planck 217 and
353 GHz channels, but their impact can be strongly reduced by
applying a tailored mask, which is what we do as detailed later in
this section and in Appendix A. The cosmic infrared background
(CIB) emission is a significant emission component to the total
intensity in all frequency bands from 143 to 857 GHz, with an
amplitude relative to dust that increases towards small angular
scales (Planck Collaboration XI 2014).

In the following analysis, we consider five different data sets
(full sky intensity maps at 143, 217, 353, 545 and 857 GHz): four
types of simulations of the Planck intensity data (labeled SIM1,
SIM2, SIM3 and SIM4) and the actual Planck intensity data
(labeled PR3). All the maps used in this work use the HEALPix4

pixelization (Górski et al. 2005).

4.1. Simulated map data sets

For each simulation type, the frequency channel maps MSIM
νi

are
the sum of a noise component N and a sky template S . The sky
template S includes a dust component of increasing complexity
from SIM1 to SIM4 which has been implemented in order to
explore the impact of the spatial variations of the dust spectral
index – and eventually other components, such as the CIB – to
assess its potential contribution to the moment expansion analy-
sis of the dust.

4.1.1. Noise component

The noise component N is the same for each simulation type.
We use 300 Planck End-to-End noise maps (Nη

νi , η ∈ {1, 300},
300 realizations per frequency band νi) obtained from the FFP10
Planck simulations (which include the contributions of both the
noise and the residual systematic errors). These maps are pub-
licly available in the Planck Legacy Archive (PLA5).

4.1.2. Dust component

The dust component is built from a dust intensity map template
at 353 GHz, defined, in MJy sr−1 units, as:

S D
353(n̂) = 1020 · MD

τ353
(n̂) · Bν=353 GHz(T0 = 19.6 K), (13)

4 http://healpix.jpl.nasa.gov
5 http://pla.esac.esa.int/pla/

where Bν=353 GHz(T0 = 19.6 K) is the Planck function at 353 GHz
for the temperature T0 = 19.6 K in W m2 sr−1, and MD

τ353
(n̂) is

the dust optical depth map at 353 GHz. For all the simulations,
we use the MD

τ353
map derived from an MBB fit of Planck dust

total intensity maps, obtained with the GNILC component sep-
aration method designed to separate dust from CIB anisotropies
(Planck Collaboration Int. XLVIII 2016)6. The GNILC analysis
produced all-sky maps of Planck thermal dust emission at 353,
545, and 857 GHz with reduced CIB contamination. Reducing
the CIB contamination of the thermal dust maps is crucial to
building maps of dust optical depth, temperature, and dust spec-
tral index that are accurate at high Galactic latitudes. The dust
map template S D

353(n̂) at 353 GHz as defined in Eq. (13) is shown
in the top panel of Fig. B.2.

The coefficients used to re-scale the dust template at
353 GHz to a different frequency νi are defined as:

ανi (n̂) =
ν
β(n̂)
i Bνi (T (n̂))

(353 GHz)β(n̂)B353 GHz(T (n̂))
, (14)

meaning that the dust map at the frequency νi is:

S D
νi

(n̂) = S D
353(n̂)ανi (n̂). (15)

We define three types of dust simulation, with different levels
of complexity in the frequency scaling of the dust intensity in
Eqs. (14) and (15):

1. S D1
νi : simulations with constant dust temperature (T (n̂) =

T0 = 19.6 K) and spectral index (β(n̂) = β0 = 1.59).
2. S D2

νi : simulations with Gaussian variations of the dust spec-
tral index and fixed temperature (T (n̂) = T0 = 19.6 K). The
Gaussian spectral index map β(n̂) = N(β0,∆β

2) is a single ran-
dom realization (i.e., the same realization for all the simulations)
of the normal distribution with a mean β0 = 1.59 and a 1-σ dis-
persion ∆β = 0.1. The ∆β value is chosen to roughly match the
observed dispersion of the spectral index variations in the Planck
data (Planck Collaboration Int. XXII 2015; Planck Collaboration
Int. XLVIII 2016). The corresponding β(n̂) map is shown in the
top panel of Fig. B.3.

3. S D3
νi : simulations using Planck sky maps of the dust

spectral index and temperature. The dust spectral index map
β(n̂) and the temperature map T (n̂) are those derived from
the MBB fit of the Planck GNILC dust total intensity maps
(Planck Collaboration Int. XLVIII 2016). For illustration, the
β(n̂) map is shown in the bottom panel of Fig. B.3.

4. S D4
νi : simulations using the GNILC Planck sky map of

the dust spectral index β(n̂) and a constant dust temperature
T0 = 19.6 K. These simulations are not used in the main analy-
sis but presented in Appendix E to assess the effect of the dust
temperature spatial variations.

The simulations are computed at the Planck-HFI ref-
erence frequencies. For comparison, the PR3 data will be
color-corrected to account for the Planck-HFI bandpasses
(Planck Collaboration IX 2014).

4.1.3. Cosmic infrared background and synchrotron

In one of our simulation sets, detailed below, we include a CIB
component S CIB

νi
. For this, we use the multi-frequency CIB sim-

ulation of the Planck Sky Model (PSM) version 1.9 described in
Delabrouille et al. (2013)7. This CIB map is a random Gaussian

6 The maps are available in the PLA.
7 http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.
html
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realization matching the Planck measured CIB power spectra of
Planck Collaboration XVIII (2011). As an illustration, we show
the CIB map at 353 GHz in the middle panel of Fig. B.2. Given
that the synchrotron emission has a negligible impact on our
analysis we do not detail the simulations of this component here,
but comment on it in Appendix D.

4.1.4. Simulation types

From the components above, we produce four batches of 100
simulated intensity maps at 143, 217, 353, 545, and 857 GHz,
numbered by the superscript η ∈ {1, 100}:
(a) SIM1: MSIM1,η

νi = Nη
νi + S D1

νi ,
(b) SIM2: MSIM2,η

νi = Nη
νi + S D2

νi ,
(c) SIM3: MSIM3,η

νi = Nη
νi + S D3

νi ,
(d) SIM4: MSIM4,η

νi = Nη
νi + S D3

νi + S CIB
νi

.
We note that for a given simulation type and in a given frequency
band, only the noise realization changes from one simulation to
another while the sky component remains constant.

4.2. Planck map data set

For the actual Planck map data set, we use the publicly avail-
able total intensity maps (observed at 143, 217, 353, 545 and
857 GHz) from the third and latest Planck release. When refer-
ring to the data we therefore use the “PR3” label. The CMB com-
ponent is subtracted from the PR3 intensity data set at the map
level. We subtract the SMICA CMB map (Planck Collaboration
IV 2020) from the five Planck-HFI frequency channel maps we
use in this work. As the SMICA map resolution is different from
that of the Planck-HFI frequency channel maps, we first decon-
volve the SMICA CMB map from its beam function and then
convolve it with the beam of individual Planck-HFI frequency
channel maps before subtraction. All the required information to
do so is available in the PLA5.

4.3. Cross-power spectra computation

The cross-angular power spectra are computed from the data
sets (SIM1, SIM2, SIM3, SIM4 and PR3) applying the LR42
sky mask defined in Planck Collaboration Int. XXX (2016) and
used in several Planck publications. This mask leaves 42% of
the sky for the analysis; it is apodized and includes a galac-
tic mask, a point source mask, and a CO mask, as described in
Planck Collaboration Int. XXX (2016), and is shown in Fig. B.1.

To compute the cross-spectra we use the Xpol code
described in Tristram et al. (2005). The Xpol code is a pseudo-
C` power spectrum estimator that corrects for the incomplete sky
coverage, the filtering effects, and the pixel and beam window
functions.

For both the Planck and the simulation data sets, we com-
pute the 15 possible cross-spectra8 between the five Planck-HFI
channels from 143 to 857 GHz, as described in Sect. 3, and
store them in the data vectorD` (see Eq. (9)). The cross-spectra
vector is binned in 15 bins of multipoles9 of size ∆` = 20 in
the range most relevant for CMB primordial B-modes analysis
(` ∈ {20, 300}), such that Db ≡ 〈D`〉`∈b. As we work only with

8 143 × 143, 143 × 217, 143 × 353, 143 × 545, 143 × 857, 217 × 217,
217 × 353, 217 × 545, 217 × 857, 353 × 353, 353 × 545, 353 × 857,
545 × 545, 545 × 857, and 857 × 857.
9 Centered on the multipoles ` = 23, 40, 60, 80, 100, 120, 140, 160,
180, 200, 220, 240, 260, 280 and 300, respectively.

the binned version of the cross-spectra, in the remainder of this
paper and for the sake of clarity, we do not make the distinction
between b and `, and soD` refers toDb.

In order to avoid the noise auto-correlation bias and to reduce
the level of correlated systematic errors, we compute the cross-
spectra from data split maps (the Planck half-mission maps,
HM). We explain how we combine half-mission maps and com-
pute the covariance matrix of the cross-spectra in Appendix B.

After the computation of the cross-spectra D`, we subtract,
from every data set (PR3 and simulations), the averaged cross-
spectrum computed from the 300 Planck End-to-End simula-
tions, which include instrumental noise and systematic effects
(see Sect. 4.1.1). This allows us to correct for the small bias
linked to residual systematic errors in the data and, by construc-
tion, in our simulations. Finally, we apply a color-correction
to the PR3 data set cross-spectra to get rid of Planck-HFI-
specific calibration effects as described in Planck Collaboration
IX (2014). The units of the total intensity cross-spectra for all
the data sets are [(MJy sr−1)2].

5. Results for simulations and Planck data

Here we present the results of the fits made for the five data sets
(SIM1, SIM2, SIM3, SIM4 and PR3) described in Sect. 4. Each
data set is fitted independently for each multipole bin ` using the
MBB moments expansion with the three-step method introduced
in Sect. 3. The maximum order of the moments expansion is
limited to third order by the number of degrees of freedom of
our data sets (see Appendix B). Here, we focus on our results
for the MBB and the moment expansion to this maximum order,
but additional plots in Appendix C include results for first and
second orders.

This section is organized as follows. We report on the good-
ness of fits and the dust amplitude spectrum DADAD

`
in Sect. 5.1,

on the dust spectral index β0(`) and its leading order correction
∆β0(`) in Sect. 5.2, and on higher order moments in Sect. 5.3.
Section 5.4 summarizes these results. For each set of simula-
tions, we present mean results averaged over 100 realizations,
with error bars corresponding to the standard deviation among
realizations. For the PR3 data, we estimate error bars propagat-
ing uncertainties through the fit. We checked that this approach,
when applied to simulations, yields comparable error bars to
those computed from the 100 realizations.

5.1. Goodness of fits and dust amplitude spectra

The goodness of the fits is quantified with the reduced χ2(`)
plots, one per data set, shown in Fig. 1. In each plot, we show
the reduced χ2(`) for four fits: the MBB law and the moments
expansion in Eq. (5) truncated to first, second, and third order.

As expected, the SIM1 set is well fitted by the MBB because
these simulations do not include variations of the MBB parame-
ters. The fact that the reduced χ2 of the fit has a value close to 1
indicates that our correction for Planck residual systematic errors
described in Sect. 4.3 is effective. There is some weak evidence
of residual systematic errors in the lowest ` = 23 bin; indeed, for
this bin a third-order fit is needed for the χ2(`) to reach unity. For
SIM2, fitting with higher order terms is required to get a reduced
χ2(`) ∼ 1. First order gives a fair χ2(`) (except at very low `) and
second order is needed to get a χ2(`) close to unity.

For the SIM3 and SIM4 simulations, as well as for the
PR3 data, the MBB yields very poor fits. This illustrates the
dual impact of multipole averaging, which introduces spectral
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Fig. 1. Reduced χ2 of the moment expansion fits as a function of the multipole `. From the top left to the bottom right, the panels show the χ2(`)
results for the SIM1 (green circles), SIM2 (yellow squares), SIM3 (red diamonds), SIM4 (blue stars), and PR3 (black triangles) data sets. The
χ2(`) of the fits at zero (solid black), first (dashed yellow), second (dashed-dotted blue), and third order (dotted red) are displayed.
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Fig. 2. Amplitude of the dust spectrumDADAD
` as a function of the mul-

tipole `. The symbols are green circles, yellow squares, red diamonds,
and blue stars for the simulation sets SIM1 to SIM4, and black triangles
for the Planck PR3 data. The error bars are smaller than the symbols.

complexity and increases the signal-to-noise ratio. For SIM3, a
moment expansion up to second-order is required to get a fair
fit and up to third order to reach χ2(`) ∼ 1, while for the SIM4
set that includes the CIB, the third order is needed to have a
fair reduced χ2(`). For the PR3 data, the reduced χ2(`) is some-
what worse than those for SIM4 (except for the MBB fit which is
slightly better), indicating that the Planck data have more spec-
tral complexity than the SIM4 simulations.

Figure 2 shows the amplitude of the dust spectra DADAD
`

for
the third-order fit of each data set. We note that these amplitudes
do not significantly depend on the order of the fit (see Fig. C.1).
As expected, the SIM1, SIM2, and SIM3 amplitudes are essen-

tially indiscernible because they are built from the same dust
spatial template and they only differ in the modeling of the dust
SED. The SIM4 and PR3 spectra are close to each other. Both
depart from the dust-only simulations for multipoles ` & 100,
that is, for angular scales where the contribution from the CIB
component is significant. We note that the power measured on
the SIM4 simulations is somewhat larger than that measured for
the Planck data for multipoles ranging from about 100 to 220.
This may be due to the fact that the GNILC maps used as tem-
plates in the dust simulations are not fully free of CIB (Chiang
& Ménard 2019).

5.2. Dust spectral index

The dust spectral indices derived from our fitting are presented
in Fig. 3. The top plot displays the spectral indices β0(`) derived
from the MBB fit, and the bottom plot the corrected dust spec-
tral index βcorr

0 (`) ≡ β0(`) + ∆β0(`) in Eq. (8), obtained by fit-
ting the spectral model in Eq. (5) up to third order. The correc-
tion depends on the truncation order of the fit as illustrated in
Fig. C.2.

We find that β0(`) matches the input spectral index of the
simulation β0 = 1.59 for the SIM1 set. For SIM2, β0(`) values
are slightly larger than the input value at ` & 100 but the small
difference is corrected when computing βcorr

0 (`).
Our results are less straightforward for the additional sets.

For SIM3, we find 〈βcorr
0 (`)〉SIM3 = 1.537±0.003 with no system-

atic dependence with `. For comparison, we computed the spec-
tral index for a MBB from the ratio between the cross-spectra
of the 217 and 353 GHz maps and the 353 GHz power spec-
trum, as in Planck Collaboration XI (2020). We find values in
the range 1.52 to 1.55 with no systematic dependence on `, in
good agreement with the corrected index from our model. We
also computed the median spectral index of the GNILC input
map (corrected to the reference temperature T0 = 19.6 K we use
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Fig. 3. Upper panel: spectral index β0(`) as a function of the multipole
` for the MBB fit (step 1). Bottom panel: corrected dust spectral index:
βcorr

0 (`) = β0(`) + ∆β0(`) from step 3 of the model fit. The symbols for
the different data sets are as in Fig. 2.

in our model) over the L42 mask. The resulting value, 1.6, com-
puted giving equal weights to each pixel, is slightly larger than
〈βcorr

0 (`)〉SIM3.
The comparison of SIM3 and SIM4 in Fig. 3 shows that the

CIB lowers both β0(`) and βcorr
0 (`) for ` > 100. Above this mul-

tipole, the difference between SIM3 and SIM4 values of βcorr
0 (`)

increases steadily with `, as does the CIB contribution. The val-
ues of βcorr

0 (`) obtained on the PR3 data are systematically lower
than the corresponding values for SIM4, but the dependence on
` is similar for both sets. We direct the reader to Fig. C.2, which
shows a systematic dependence of βcorr

0 (`) on the order of the
expansion, that is, on the spectral model. It is interesting to note
that from second to third order the values of βcorr

0 (`) move in the
opposite direction for SIM4 and PR3. While the two sets of val-
ues roughly match for the second-order fits, they differ at third
order.

To conclude this section, we compare our PR3 results with
earlier determinations of the dust spectral index obtained by ana-
lyzing Planck total intensity data.

Planck Collaboration XI (2020) measured the dust spectral
index from the ratio between the 217 × 353 and the 353 × 353
cross-spectra over the multipole range ` ∈ {4, 170}. For ` < 100,
where our analysis indicates that the measured spectral index is

not biased by the CIB contribution, the spectral indices reported
in their Table C.4 for the L42 mask are in the range 1.47–1.50,
a little larger than our value 〈βcorr

0 (`)〉PR3 = 1.45 ± 0.01 averaged
over the same range of multipoles. In Planck Collaboration XI
(2020), the spectral index increases with ` for ` > 100 up to
1.53 ± 0.01 in their ` = 150 bin. In our analysis, we observe an
opposite trend with the spectral index decreasing for ` > 100.
It is not clear to us how to interpret this result. We are inclined
to consider this as evidence of a spectral mismatch between the
SIM4 simulations and the PR3 data, rather than an outcome of
the spectral model used to determine the spectral indices. This
hypothesis is supported by the fit results in Fig. C.2, which show
that the order of the moments expansion does not have a signifi-
cant effect on the `-dependence.

5.3. High-order moments

In this section, we discuss the results for the high-order (first- to
third-order) moments in Eq. (5). We choose to show the moment
functionsMab

` (νi, ν j) defined in Eq. (7) with νi = 143 GHz and
ν j = 545 GHz. We stress that this specific choice of frequen-
cies only impacts the scaling pre-factor cab(νi, ν j, ν0) in Eq. (7),
and not the `-dependence of the moments or the relative values
between data sets for a given moment. The moment functions
are presented in five plots in Fig. 4, one for each data set. All
moments in this figure were obtained from fits to third order.
The top left panel of Fig. 4 represents the first-order moment
function MADω1

`
, which is made compatible with zero through

iteration on ∆β0(`) (see Sect. 3).
As expected, we do not detect any moment function for

SIM1. This result gives us confidence that residual systematic
errors included in our noise simulations (see Sect. 4.1.1) do
not have a significant impact on high-order moments. For the
SIM2 data set, the Mω1ω1

`
function is detected with an ampli-

tude increasing with `, while the other moments are consistent
with zero. For SIM3, we find that the Mω1ω1

`
moment is nearly

scale-independent and is significantly larger than that of SIM2 at
low `. For this set, two additional moment functions are detected,
namelyMω1ω2

`
and more marginallyMADω2

`
. Comparing moment

functions for the SIM3 and SIM4 sets, we find that the CIB has
a significant impact on several moments at ` & 100, but not on
M

ω1ω1
`

. Nearly all of the other moment functions increase with `
and are close to zero in the lowest `-bins.

For the PR3 data, all the moment functions (from first- to
third-order) are detected with an absolute amplitude larger than
that measured on the simulated data sets. The Mω1ω1

`
moment

function shows a similar amplitude as for SIM3 and SIM4 for
` & 100, while at larger angular scales it does not. For theMADω2

`

and Mω2ω2
`

, the PR3 data set has an overall ` behavior close to
that of SIM4 but with an increased absolute value. TheMω1ω2

`
,

M
ω1ω3
`

,Mω2ω3
`

andMω3ω3
`

of PR3 match those of SIM4 for ` .
70 but progressively deviate from them for higher multipoles.
Finally, we point out that theMADω3

`
moment function is the one

with highest absolute amplitude for the PR3 set. Surprisingly,
it has the opposite sign, and a different `-dependence from the
SIM4 moment.

5.4. Discussion

Here, we summarize the main results of the fits before briefly
discussing our interpretation.

– The goodness of the fit obtained for the simulations demon-
strates the ability of the moment expansion to account for spatial
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Fig. 4. Step 3 moment functionsMab
` as a function of the multipole ` defined in Eq. (7) for the 143× 545 cross-spectrum. The plots refer, from top

left to bottom right, toMADω1
` ,Mω1ω1

` ,MADω2
` ,Mω1ω2

` ,Mω2ω2
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` ,Mω2ω3

` , andMω3ω3
` . The symbols refer to the different data sets:

SIM1 (green circles), SIM2 (yellow squares), SIM3 (red diamond), SIM4 (blue stars), and PR3 (black triangles).

variations of the dust SED, even when the MBB law provides
a very poor fit. Except for the simplest SIM1 simulations, with
constant temperature and spectral index, high-order moments are
significantly detected for the other simulations and the PR3 data.

– When spatial variations of the dust SED are present, the
spectral index inferred from the MBB fit is biased. Fitting high-
order moments, we obtain a significantly different value that can-
cels the first-order moment Aω1.

– The comparison of the moments obtained for the SIM3
and SIM4 simulations, which only differ by the addition of the
CIB, shows that the CIB has a significant impact on moments at
` & 100. To account for this additional emission component, we
need to extend the moment expansion to third order.

– The moments on the SIM4 simulations that include realis-
tic spatial SED variations and the CIB are quantitatively different
from those measured on the PR3 data.

The moment functions in Fig. 4 are difficult to interpret at
` > 100 due to the CIB contribution, but for lower multipoles
one may relate the results to dust emission properties. For the PR3
data at ` < 100, the three most significant moment functions in
decreasing order areMADω3

`
,MADω2

`
andMω1ω1

`
. We point out that

the simulations do not match any of these three moment functions.
The most immediate interpretation of this mismatch is the lack of
variations of the dust MBB parameters along the line of sight in
the simulations, but this may not be the sole explanation. The dust
emission could also comprise two or more emission components,
which are not fully correlated on the sky (Draine & Hensley 2013;
Guillet et al. 2018; Hensley & Bull 2018).

It is not straightforward to provide a specific interpretation
of the amplitude, the scale dependence, or the hierarchy of the
moments fits. One difficulty lies in the fact that the moments
expansion does not decompose the data into independent com-
ponents: the high-order moments depend on the expansion order
as illustrated in Figs. C.3–C.6. Furthermore, the moments also
quantify the SED averaging that occurs when going from pixel
space to harmonic space. Without a model of the sky emission,
it is therefore difficult to link a given high-order moment to a
physical property of the dust emission. An iteration on dust and
CIB simulations converging towards a moment decomposition in
agreement with that of the Planck data would be needed to quan-
tify possible interpretations. We foresee that the moment decom-
position could be used as a quantitative metric to obtain simula-
tions that better match the data, but this is beyond the scope of
the present work.

6. Implications for the tensor-to-scalar ratio
measurement

We finally discuss the potential impact of our results on the
measurement of the tensor-to-scalar ratio r. We performed the
moment expansion of the dust SED from the Planck intensity
power spectra. There is no reason for the departures from the
MBB SED that we observed and quantified to be absent in
polarization. Here, we indeed assume that the SED of the dust
B-modes shows spectral departures from the mean MBB SED of
the same relative order as the ones we observed in intensity and
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Fig. 5. Upper panel: mean SED in MJy2 sr−1 for the 100 SIM3 cross-
spectra as a function of the effective frequency (√νi · ν j, in GHz) for
the multipole bin centered at ` = 80. The MBB (solid black), first-
(dashed yellow), second- (dashed-dotted blue), and third-order (dotted
red) best fits are displayed and not distinguishable. Bottom panel: rela-
tive percentage difference between the SIM3 SED and the MBB (black
diamonds) and the first- (yellow diamonds), second- (blue diamonds)
and third-order (red diamonds) best fits.

we derive the potential bias on r that would result from neglect-
ing them.

In order to be conservative in this determination, we use
the SIM3 simulated data set: we know from our χ2 analysis of
Sect. 5.1 that the actual dust intensity in the Planck PR3 data
contains at least the same level of departure from the MBB that
is present in this simulated data set. We could have used SIM4 or
PR3 data sets, but as we see in Sect. 5, it is not trivial to decipher
which part of the SED distortion is due to dust and CIB; the lat-
ter component being expected to contribute much less than the
dust to the B-modes.

We consider the SIM3 cross-spectra fit with Eq. (5) at differ-
ent orders in the moment expansion. We look here at the relative
difference between the SIM3 data set cross-spectra and the fitted
model of Eq. (5), for every cross-spectra between frequencies νi
and ν j. We focus on the multipole bin centered at `0 = 80, as this
scale corresponds to the CMB primordial B-modes peak. This
relative difference reads:

∆D`0

(
νi × ν j

)
≡
DSIM3
`0

(
νi × ν j

)
−Dfit

`0

(
νi × ν j

)
DSIM3
`0

(
νi × ν j

) . (16)

This relative difference is displayed in Fig. 5. Focusing
on the 143 × 143 cross-spectrum, which is a frequency chan-
nel indicative of typical CMB B-mode experiments, the simple
MBB fit leaves a ∆D`0 (143 × 143) = 10.9% residual, the first-
order fit leaves ∆D`0 (143 × 143) = 3.2%, the second-order fit
leaves ∆D`0 (143 × 143) = 0.5% and the third-order fit leaves
∆D`0 (143 × 143) = 0.06%.

Let us now consider a future CMB B-mode experiment
that has the same frequency channels and a S/N for the dust
B-modes that is similar to those of Planck-HFI for the dust
intensity (e.g., LiteBIRD, Hazumi et al. 2019). We know from
Planck Collaboration Int. XXX (2016) that the dust B-mode
power spectrum computed on the LR42 mask has an ampli-
tude of AD(`0) = 78.6 µK2 at 353 GHz. If we convert this
amplitude into the r-equivalent amplitude at 150 GHz rD (Planck
Collaboration Int. XXX 2016), it corresponds to rD = 1.8. Our
results therefore suggest that a CMB B-mode experiment look-

Table 1. Estimates of the tensor-to-scalar ratio bias ∆r at 150 GHz for
the LR42 and the BICEP2/Keck regions, in the case of the SIM3 cross-
spectra SED fitted assuming a MBB and a first-, second-, and or third-
order SED moment expansion.

LR42 BICEP2/Keck
( fsky = 0.42) ( fsky = 0.01)

MBB 0.2 0.01
1st order 0.06 4 × 10−3

2nd order 9 × 10−3 5 × 10−4

3rd order 1 × 10−3 7 × 10−5

ing at half the sky could find an analysis bias of ∆r = 0.109 ·rD =
0.20 by assuming that the dust B-modes follow a MBB SED,
∆r = 0.032 · rD = 0.06 by assuming an first-order moment
expansion, ∆r = 0.005 · rD = 0.009 by assuming a second-order
moment expansion, and ∆r = 0.0006 · rD = 0.001 by assuming a
third-order moment expansion (as we see in the above analysis,
parameterizing a dust decorrelation amounts to fitting the first
order, if the parametrization is correct).

The region of the sky observed by the BICEP2/Keck exper-
iment has rD = 0.11 (Keck Array & BICEP2 Collaborations
2018). If we transpose our results to this region, we see that
a MBB fit of the dust B-modes would lead to ∆r = 0.109 ·
rD = 0.01, a decorrelation or first-order analysis would lead
to ∆r = 0.032 · rD = 4 × 10−3, a second-order analysis to
∆r = 0.005 · rD = 5 × 10−4, and a third-order analysis to
∆r = 0.0006 · rD = 7 × 10−5.

The ∆r values in the different cases are summarized in
Table 1. Although these ∆r values are rough estimates (that
might be overestimated in the BICEP2/Keck case because fewer
SED spatial variations could occur on this small region), they
provide an insight into the order of magnitude of the poten-
tial bias. The values seen are in strong support of the need to
take into account the spectral departures from the dust MBB in
future CMB B-mode analyses, targeting r values down to 10−3

and beyond.
These conclusions are further supported by the moment

decomposition of the Planck PR3 data set at ` < 100, where the
CIB contribution is likely to be negligible. As the moment func-
tions Mab

` measure a fractional departure from a simple MBB
law, we can see that in order to reach an accuracy in the dust
subtraction of 10−3, we need to consider all moments with an
absolute amplitude larger than 10−3. As can be seen in Fig. 4,
most of the moments in the PR3 data set decomposition up to
third order have an absolute amplitude that is greater than this
threshold. In that sense, dust-dominated angular scales of the
intensity PR3 data set additionally stress the need for a third-
order expansion of the polarized dust SED in order to reach the
accuracy targeted by future CMB B-mode experiments.

7. Summary and conclusions

In this paper, we present a model that describes the Galactic dust
SED for total intensity at Planck-HFI frequencies in terms of
SED distortions with respect to the MBB emission law. This
model accounts for variations in the dust SED on the sky and
along the line of sight in order to provide an astrophysically
motivated description at the power spectrum level. The model
formalism relies on expansion of the dust emission SED in
moments around the MBB law related to derivatives with respect
to the dust spectral index. These high-order moments lead to
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frequency decorrelation; departures from the MBB inevitably
appear because of averaging effects along the line of sight and
within the beam, and, as is most relevant here, because of the
spherical harmonic expansion performed in the data processing.

We applied our analysis to total intensity cross-spectra com-
puted from the combination of CMB-corrected PR3 Planck data
at the five HFI channels at 143, 217, 353, 545, and 857 GHz, and
to four sets of foreground simulations of increasing complex-
ity. The main conclusions of our analysis can be summarized as
follows.

Our analysis quantifies the spectral complexity of the Planck
total intensity data at frequencies larger than 143 GHz. At
` & 100, the CIB is a significant component contributing to
the complexity. At lower multipoles, the data are dust domi-
nated but the dust simulations based on MBB parameters fit-
ted on Planck maps fail to match the most significant moments.
In future work, the moment decomposition could be used to
obtain improved simulations of dust and CIB emission, which
better match Planck data and may be used to test possible
interpretations.

We extend our results to B-mode analyses within a simplified
framework. We find that neglecting the dust SED distortions of
the dust polarization with respect to the MBB, or trying to model
them with a single ad-hoc parameter, could lead to biases larger
than the accuracy of the component separation required to search
primordial B-modes down to a tensor-to-scalar ratio r = 10−3.

If our results extend to polarized emission without any addi-
tional complexity, we anticipate that moment expansion up to
third order would be required to model the dust polarization SED
to the accuracy of future CMB B-mode experiments. If this is a
valid statement, it sets constraints on the number of frequency
bands required to separate dust and CMB polarization. At least
four and five dust-dedicated frequency channels are needed in
order to perform second- and third-order moment expansion fits,
respectively.

Additional difficulties for B-mode searches could arise from
changes in polarization angles across frequencies, which would
make the decomposition of polarized dust emission in E and
B-modes frequency-dependent. Further complexity may arise
because of variation in dust temperature, which we did not
include here. Similarly, synchrotron foregrounds at low frequen-
cies will require an independent moment expansion.

Based on these findings, we conclude that the moment
expansion of the dust SED is a new promising tool to model
the dust component at the level of precision needed for the mea-
surement of the CMB primordial B-modes. This paper presents
a first step in this direction, providing the formalism and the first
qualitative results based on the Planck total intensity data and
simulations. When dealing with the polarization, other details
should be carefully considered and added, such as for instance
the fact that the magnetic field direction will project variations
of the SED differently in Q and U, which implies that, gener-
ally, two independent moment expansions are needed. Study-
ing the moment expansion method specifically for polarization
will be another important step and the focus of a forthcoming
publication.

It will also be important to study applications of the power
spectrum moment expansion for extractions of primordial CMB
spectral distortions. The expected signals are small (e.g., Chluba
2016) and heavily obscured by foregrounds. Most extraction
methods mainly use information based on the SED shapes and
neglect spatial information (Sathyanarayana Rao et al. 2015;
Desjacques et al. 2015; Abitbol et al. 2017), but a more recent

study explores the benefits of using spatial information (Rotti
& Chluba 2021). Spatial information could be further exploited
using the techniques described here, which warrants further
investigation.
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Appendix A: Mask and foreground templates

In this section we provide details on the mask and on the
foreground templates that we used to generate the simula-
tions. For both the data and the simulations, we used a
mask that combines a 50% apodized galactic cut and a point
source mask. This mask, referred to as LR42 and defined in
Planck Collaboration Int. XXX (2016), has been extensively
used in the Planck analyses, has fsky = 0.42, and is shown in
Fig. B.1.

As described in Sect. 4, we generated different sets of dust
and multi-component simulations. We provide an illustrative
example of the foreground templates at 353 GHz in MJy sr−1

units in Fig. B.2. From top to bottom, the figure shows the dust
template defined in Eq. (13), the CIB template, and the syn-
chrotron template.

Given that investigating the impact of the spatial variations
of the dust spectral index is a key part of our analysis, we show
in Fig. B.3 the β(n̂) maps used in the simulations. The top panel
of Fig. B.3 shows the β(n̂) map used to generate the SIM2 dust
simulations with Gaussian β(n̂) variations with ∆β = 0.1 around
β0 = 1.59. The bottom panel of Fig. B.3 shows the GNILC β(n̂)
map used to generate SIM3 simulations (Planck Collaboration
Int. XLVIII 2016).

Appendix B: Cross-spectra definition, covariance,
and correlation matrices

LR42

0 1

Fig. B.1. LR42 mask used in the analysis.

Here we provide more details on how we compute the angu-
lar power spectra of the data sets we consider in the paper, as
introduced in Sect. 4.3, and on how this impacts the cross-power
spectra correlations and their statistical independence.

B.1. Definitions

In order to avoid the noise auto-correlation bias and to reduce
the level of correlated systematic errors, we compute the cross-
spectra from data split maps (the 2 Planck half-mission maps,
HM, namely HM1 and HM2). The general philosophy would be
to reproduce Planck Collaboration Int. XXX (2016) to construct
the cross-power spectra from two frequency maps Mνi and Mν j :

D`

(
Mνi × Mν j

)∣∣∣∣
i= j

= D`

(
MHM1
νi
× MHM2

νi

)
D`

(
Mνi × Mνi

)∣∣∣
i, j = 1

4

[
D`

(
MHM1
νi
× MHM1

νi

)
+D`

(
MHM1
νi
× MHM2

νi

)
+D`

(
MHM2
νi
× MHM1

νi

)
+ D`

(
MHM2
νi
× MHM2

νi

)]
(B.1)

0.0104035 204.135

0.0891494 0.221988

2.25714e-05 0.00545104

Fig. B.2. Foreground templates at 353 GHz in MJy sr−1 units. Top panel:
dust template defined in Eq. (13). Middle panel: CIB template. Bottom
panel: synchrotron template.

The idea of doing the sum of the four cross-spectra in
Eq. (B.1) is to increase the S/N of D`

(
Mνi × Mνi

)∣∣∣
i, j, presum-

ably at the cost of the statistical independence between distinct
cross-spectra, as we see in the following. To preserve the statisti-
cal independence between the cross-spectra, we do not adopt the
definition of Eq. (B.1) but that of Eq. (B.6), in Appendix B.3, for
the reasons that are presented in Appendix B.2.

The covariance matrix C from Eq. (11), which is used for the
fits we perform throughout the paper, is computed from 100 pairs
of half-mission maps of a given data set (e.g., SIM1 simulations
are used to compute C when dealing with SIM1). As they are the
closest to the data in terms of physical components and compo-
nent complexity, the covariance matrix is inferred from the SIM4
simulations when dealing with the actual Planck data set PR3.
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 map

1.11108 2.03652

 map

1 2.5

Fig. B.3. Dust spectral index map β(n̂) used for the dust simulations
SIM2 with Gaussian β variations with ∆β = 0.1 (top panel) and for the
dust simulations SIM3 with β variations estimated from the data with
the GNILC component separation method (bottom panel).

In order to assess the statistical independence between the
cross-spectra of our data sets, we build the correlation matrix
from the covariance matrix of Eq. (11):

R ≡ Ri jkl (`) ≡ corri jkl (`) ≡
Ci jkl (`)√

Ci ji j (`)Cklkl (`)

=
Ci jkl (`)√

vari j (`) varkl (`)
=

Ci jkl (`)
σi j (`)σkl (`)

. (B.2)

This correlation matrix is displayed for the SIM1 data set in
Fig. B.4, for the multipole bin centered at ` = 100 (the shape of
R is qualitatively the same in each multipole bin). It is signifi-
cantly nondiagonal, showing large correlations between numer-
ous cross-spectra. This highlights that the cross-spectra, as they
are defined in Eq. (B.1), are not all independent. In the following
section we see why this happens. Below, we change the defini-
tion of the cross-spectra in Eq. (B.1) to minimize these correla-
tions.

B.2. Expected correlations from a toy model

In a high-S/N mixture of interstellar dust and instrumental noise,
the correlation between frequency channels cross-spectra can
become significant and needs to be taken into account in min-
imization processes.
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Fig. B.4. Cross-spectra correlation matrices computed from Eq. (B.2)
for the SIM1 data set in the multipole bin centered at ` = 100. Upper
panel: correlation matrix computed from the cross-spectra as defined
in Eq. (B.1). Middle panel: correlation matrix computed for our toy-
model of the correlation presented in Appendix B.2. Bottom panel: cor-
relation matrix computed from the cross-spectra as defined in Eq. (B.6).

Let us suppose that a map of the sky Mi ≡ Mνi observed
at a frequency channel νi can be written as the sum of a dust
component D and an instrumental noise term N so that Mi '

Di + Ni. The cross angular power spectra then read:

Mi × M j = Di × D j + Di × N j + D j × Ni + Ni × N j. (B.3)

As the dust templates are the same in every simulation, the
D × D term does not contribute to the covariance (nor to the
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variance) and in the high-S/N regime the N × N term can be
neglected with respect to the D × N terms. Thus, the correla-
tion coefficient between the power spectra computed from these
maps, as defined in Eq. (B.2), reads10:

Ri jkl'
cov

(
Di × N j + D j × Ni,Dk × Nl + Dl × Nk

)
√

var
(
Di × N j + D j × Ni

)
var (Dk × Nl + Dl × Nk)

. (B.4)

Let us now consider as an example the specific correlation
between 2 Planck cross-spectra, namely 143 × 217 and 143 ×
353 (νi = 143, ν j = 217, νk = 143 and νl = 353 GHz). As
cov(X +Y,Z) = cov(X,Z)+cov(Y,Z), the most significant among
the developed terms in the numerator of Eq. (B.4) is cov(D217 ×

N143,D353 × N143) as it is the only one to involve twice the same
noise map and hence would be the most “covariant”. If we make
the assumption that the dust component is spatially the same at
each frequency (i.e., the same dust spatial template D), scaling
as Di = Ai · D and that the noise basically scales as Ni = Bi · N
(where Ai and Bi are scalars), we find:

R143×217,143×353 '

A217A353B2
143√(

A2
217B2

143 + A2
143B2

217

)
·
(
A2

353B2
143 + A2

143B2
353

) . (B.5)

For a typical dust MBB SED with β0 = 1.59 and T0 = 19.6 K
and the Planck-HFI noise levels, we find that R143×217,143×353 =
0.90, which is a significant correlation. We note that it would be
markedly decreased if the noise was independent between the 2
143 GHz maps used in the two different cross-spectra. This can
happen using two different data splits (as the Planck HM maps)
as we see in the following.

By applying a reasoning equivalent to that of the exam-
ple above to all the cross-spectra covariances in the correlation
matrix R, we can build the full toy-model correlation matrix for
the data sets we use in this paper. It is displayed in the mid-
dle panel of Fig. B.4. We can see that despite the simplicity of
our assumptions, this toy-model correlation matrix qualitatively
reproduces that of our data sets (top panel of the same figure).

B.3. Minimizing the correlations and effective degrees of
freedom

In order to minimize the correlations between the cross-spectra
of our data sets, we change the definition of Eq. (B.1) in the case
i , j:

D`

(
Mνi × Mν j

)∣∣∣∣
i= j

= D`

(
MHM1
νi
× MHM2

νi

)
D` (M143 × M217) ≡ D`

(
MHM2

143 × MHM1
217

)
D` (M143 × M353) ≡ D`

(
MHM1

143 × MHM2
353

)
D` (M143 × M545) ≡ D`

(
MHM1

143 × MHM1
545

)
D` (M143 × M857) ≡ D`

(
MHM2

143 × MHM2
857

)
D` (M217 × M353) ≡ D`

(
MHM2

217 × MHM1
353

)
D` (M217 × M545) ≡ D`

(
MHM1

217 × MHM1
545

)
D` (M217 × M857) ≡ D`

(
MHM2

217 × MHM2
857

)
D` (M353 × M545) ≡ D`

(
MHM1

353 × MHM1
545

)
D` (M353 × M857) ≡ D`

(
MHM2

353 × MHM2
857

)
D` (M545 × M857) ≡ D`

(
MHM2

545 × MHM1
857

)
.

(B.6)

10 We drop the ` dependence, as the reasoning below does not depend
on the multipole.

This is the definition of the data sets cross-spectra we adopt
in this paper. The correlation matrix built for the SIM1 data
set from this definition of the cross-spectra is displayed, for
the multipole bin centered at ` = 100, in the bottom panel of
Fig. B.4. We can see that the correlations have been significantly
decreased with respect to those of the cross-spectra defined in
Eq. (B.1) and that the correlation matrix is closer from being
diagonal.

An eigenvalue analysis of the correlation matrix as computed
in Eq. (B.1) indicates that the effective degrees of freedom from
the 15 cross-spectra is Nd.o.f. = 5. When defining the cross-
spectra as in Eq. (B.6), it becomes Nd.o.f. = 11, allowing us to
fit the SED moment expansion of the cross-spectra up to third
order (see Sect. 5).

Appendix C: Truncating the dust moment
expansion at difference orders
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Fig. C.1. Corrected dust amplitude DADAD
` after step 3 of the fit, when

truncating Eq. (5) at first order (“1” label on the plot markers), second
order (“2” label), and third order (“3” label, same values as those in
Sect. 5). The symbols refer to the different data sets: SIM1 (green cir-
cles), SIM2 (yellow squares), SIM3 (red diamond), SIM4 (blue stars),
and PR3 (black triangles).
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Fig. C.2. Same as Fig. C.1 but for βcorr
0 (`).

In Sect. 5 we present results from the third-order dust SED
moment expansion. Here, we present the corrected dust ampli-
tudeDADAD

`
, the corrected spectral index βcorr

0 (`), and the relevant

A52, page 14 of 16

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937367&pdf_id=10
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201937367&pdf_id=11


A. Mangilli et al.: Dust moments

50 100 150 200 250 300
Multipole

0.08

0.06

0.04

0.02

0.00

1
1

1
1

1

1
1

1 1 1 1
1

1
1

1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1
1 1

1
1

1
11 1

1 1
1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1
1

1 1 1

1

1

1
1

1

2
2

2

2 2
2 2

2
2

2

2

2 2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2
2

2
2

2
2

2

2 2 2
2

2
2 2

2
2 2 2

2 2 2 2

2 2 2
2

2
2

2 2
2 2

2 2
2 2

2

3

3

3
3

3

3

3

3
3 3 3

3

3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3
3 3

3
3

3 3
3

3

3
3 3

3
3

3 3 3
3 3

3
3

3 3 3

3
3

3 3

3
3 3

3 3

3

3 3
3

3 3

Fig. C.3. Same as Fig. C.1 but for Mω1ω1
` , normalized for the 143 ×

545 GHz cross-spectrum.
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Fig. C.4. Same as Fig. C.1 but for MADω2
` , normalized for the 143 ×

545 GHz cross-spectrum.
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Fig. C.5. Same as Fig. C.1 but for Mω1ω2
` , normalized for the 143 ×

545 GHz cross-spectrum.

moment functions M` in the case where Eq. (5) is truncated at
first and second order in our three-step fitting procedure.

These other truncating order results are displayed in
Figs. C.1–C.6 for DADAD

`
, βcorr

0 (`), Mω1ω1
`

, MADω2
`

, Mω1ω2
`

and
M

ω2ω2
`

, respectively.
SIM1, SIM2, and SIM3 data set results are stable with the

truncating order, while SIM4 and PR3 change significantly. Nev-
ertheless, SIM4 and PR3 results are affected in a very different
way. For example, βcorr

0 (`) values increase with the truncating
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Fig. C.6. Same as Fig. C.1 but for Mω2ω2
` , normalized for the 143 ×

545 GHz cross-spectrum.

order for SIM4, while they evolve in the opposite way for SIM3.
However, this behavior is not observed for the moment func-
tions.

Appendix D: Impact of the synchrotron emission
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Fig. D.1. Reduced χ2 of the fit of Eq. (5) at zero (solid black), first
(dashed yellow), second (dashed-dotted blue), and third order (dotted
red) for the SIM5 (including synchrotron, pink plus signs) and SIM4
(blue stars) data sets.

In this section we quantify the impact of the synchrotron emis-
sion on the moment analysis by comparing the results between
two types of simulations: the SIM4 simulations, described in
Sect. 4, and the SIM5 simulations that in addition to SIM4 also
include a synchrotron component:

SIM5: MSIM5,η
νi = Nη

νi + S D3
νi + S CIB

νi
+ S Sync

νi ,

where S Sync
νi is the synchrotron template at the frequency νi. This

component is generated, as for the CIB component, using the
Planck Sky Model (PSM) version 1.9 described in Delabrouille
et al. (2013). Examples of the CIB and synchrotron templates at
353 GHz are shown in the middle and bottom panels of Fig. B.2,
respectively. We can already note that, at this frequency, the syn-
chrotron is sub-dominant with respect to the CIB by at least three
orders of magnitude.

Figure D.1 shows the reduced χ2 results of the MBB and
the dust moment fits up to third order for the SIM4 and SIM5
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Fig. D.2. Relative difference between SIM5 and SIM4 fitted parameters.
∆X = (XSIM5 − XSIM4)/XSIM4 with X ∈ {DADAD

` , β0, β
corr
0 ,M

ADω1
` , etc.} as

a function of the multipole `.

simulations. The lines are barely distinguishable. The relative
difference of the dust amplitude spectrumDADAD

`
, the dust spec-

tral index β0(`), the corrected spectral index βcorr
0 (`), and the dust

moments functions Mab
` up to third order between SIM4 and

SIM5 are shown in Fig. D.2. For most of these quantities, this
relative difference is very small. It is bigger for some of them, for
example for the MADωi

`
moment functions, but still well within

the propagated error bars (due to division by small numbers).
According to these results we can therefore conclude that

the synchrotron emission has a negligible impact on the dust
moment analysis for the Planck-HFI channels from 143 to
857 GHz.

Appendix E: Dust simulations with varying spectral
index and constant temperature

In the present work, the moment expansion is performed by
derivation with respect to the dust spectral index β. Here, we
present the results from an additional simulated data set in
order to shed light on the capacity of the moments expansion
on β to capture the complexity arising specifically from the
spatial variations of the dust temperature T (n̂). Our SIM1
data set has constant β(n̂) = β0 and T (n̂) = T0 over the
sky, while our SIM3 data set has spatial variations of both
these parameters; here we introduce SIM6, a data set simulated
with a varying spectral index β(n̂) and a constant temperature T0:

SIM6: MSIM6,η
νi = Nη

νi + S D4
νi ,

where S D4 is the dust model with varying spectral index β(n̂) and
a constant temperature T0, presented in Sect. 4.1.2. The SIM6
simulated data set underwent the same fits as for the other sets
presented in the main body of this article.

Figure E.1 shows the reduced χ2 results of the MBB and the
dust moment fits up to third order for the SIM6 simulations. They
globally show similar trends as the ones computed for SIM3 (see

50 100 150 200 250 300
Multipole

10
0

10
1

10
2

10
3

2

SIM6 data set

Fig. E.1. Reduced χ2 of the fit of Eq. (5) at zero (solid black), first
(dashed yellow), second (dashed-dotted blue), and third order (dotted
red) for the SIM6 (β(n̂),T0, orange crosses).
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Fig. E.2. Comparison between SIM3 (red diamonds) and SIM6 (orange
crosses) fitted parameters for the corrected spectral index βcorr

0 and the
higher order moments (Mab

` (143×545) ∈ {AD, ω1, ω2, ω3}) as a function
of the multipole `.

Fig. 1). The reduced χ2 values for the MBB are significantly
higher than that of SIM3, while higher order fits give slightly
better χ2.

Pushing further the comparison between SIM3 and SIM6, we
can see from Fig. E.2 that most of the parameters from the fits
are similar, except for βcorr

0 andMADω2
`

. SIM6 shows significantly
higher values than SIM3 for βcorr

0 andMADω2
`

.
The known dust emission β–T anti-correlation (e.g., Juvela

et al. 2013) could be an explanation for the differences between
results on SIM6 and SIM3. SIM6, with a constant T0 on the sky,
shows a larger variability in SED due to the β spatial variations,
whereas in SIM6 the spatial variations of T – anti-correlated to
those of β – tend to compensate the SED variability, hence the
larger χ2 when fitting the MBB.
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