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ABSTRACT

This paper introduces MESH2FAUST, a modal physical mod-
el generator for the FAUST programming language as well
as an open-source framework to design 3D objects and
turn them into physical models for sound synthesis.
MESH2FAUST can convert any volumetric mesh of a 3D
object into a FAUST modal physical model by extracting
modal information from the result of a finite element analy-
sis. A wide range of parameters can be configured to spec-
ify the material properties of the model, the behavior of the
generated model, etc. This system is evaluated by applying
it to bell synthesis.

1. INTRODUCTION

The Finite Element Method can be used to compute mode
parameters to synthesize the sound of a wide range of el-
ements [1] using modal synthesis [2, 3]. However, there
doesn’t yet seem to exist a complete open-source solution
to carry out this type of operation, allowing to simply draw
a 3D object and turn it into a physical model for sound
synthesis.

In this paper, we introduce MESH2FAUST, an open-source
modal physical model generator for the FAUST program-
ming language. MESH2FAUST takes a volumetric mesh
of a 3D object as its main argument, carries out a finite
element analysis, and generates the corresponding FAUST
modal physical model. A wide range of parameters can be
configured to fine-tune the analysis as well as the behavior
of the generated object.

FAUST [4] is a functional programming language for real-
time digital signal processing (DSP). It has been used ex-
tensively to implement waveguide and modal physical mod-
els of musical instruments [5]. The implementation of such
models in FAUST is eased by the wide range of functions
available in the FAUST DSP libraries [6] and by the block-
diagram/signal-oriented syntax of the language.

MESH2FAUST is being developed as part of the FAUST
Physical Modeling Library and Tool Kit (FPML), ! allow-
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ing to implement a wide range of musical instrument phys-
ical models using various techniques. Thus, models gen-
erated by MESH2FAUST can be easily integrated to larger
models implemented with FPML (e.g., a waveguide bowed
string connected to a violin body generated by MESH2-
FAUST, etc.).

First, we present a brief review of the theory behind finite-
element and modal synthesis. Next, we describe the imple-
mentation of MESH2FAUST and present a complete open-
source framework to model 3D objects and turn them into
physical models of musical instruments. Finally, we evalu-
ate our system by applying it to bell modeling and synthe-
sis, and we propose future directions for this work.

2. THEORY: FEM

The Finite Element Method (FEM) is a frequently used
technique for modeling the dynamic deformation of an ob-
ject and synthesizing the sound emitted by the object after
an excitation. The method consists of meshing the object
in small elements defined by several nodes (depending on
the desired element type), and then solving the equations
of motion for each of the nodes.

The linear deformation equation with no damping can be
written as follows:

M %(t) + K x(t) = £(t) )

where x(t) € R3" corresponds to the vector of displace-
ments at all the nodes, and M and K represent respectively
the mass and stiffness matrices determined by the object
properties.

A first attempt to solve Eq.(1) is to assume that the solu-
tions of the corresponding homogeneous equation (f(t) = 0)
are of the form u;(t) = U;e?“i* where U; € R3" and
w; € R. The substitution of those potential solutions into
the homogeneous equation of Eq.(1) defines the commonly
called generalized eigenvalue problem:

KU = AMU 2)

where A is a diagonal matrix containing the eigenvalues
i = w? of Eq.(1), and U is the modal matrix containing
the eigenvectors U; of Eq.(1). By solving this problem,
both eigenvalues and eigenvectors of the system will be
obtained.

Now, the system in Eq.(1) can be decoupled by using the
transformation x = Uq and Eq.(1) can be rewritten as

d+Aq=U"f. 3
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Thus, the solutions of the decoupled homogeneous modal
form § + Aq = 0 can be implemented using a parallel
bank of modes of the form

¢ = a; sin(2m f; + 6;), 4

where a; is the excited amplitude of the ith mode, f; is its
frequency, and 0; its initial phase. The excitation force f(t)
is taken to be an impulse at time ¢ = 0, and our simulation
will start at time 0. To maximize the initial attack without
creating an amplitude discontinuity at time 0, we choose
our initial phases as #; = 0. The excited mode amplitudes
a; depend on the location of the object excitation, and the
frequency of the ith mode depends on the object geometry
and material properties according to

1
fi=—vV\i, (5)

2w

where \; denotes the ith eigenvalue obtained from solving
Eq.(2).

Since the damping matrix was omitted in the above for-
mulation, the modes in Eq.(4) are missing an important
factor for sound synthesis which is the exponential decay.
In this paper, exponential decays have not been estimated
by FEM, as will be explained in the following section.

3. IMPLEMENTATION AND USE
3.1 Faust Modal Physical Model

Modal synthesis [2] consists of implementing each mode
of a linear system as an exponentially decaying sine wave.
Each mode can then be configured with its frequency, gain,
and resonance duration (T60). Sine waves with an expo-
nential decay are typically implemented using a sine wave
oscillator with an exponential envelope or with a resonant
bandpass filter [7]. The second option offers more flexibil-
ity since any signal can be fed into the model to excite it.
This feature is important to be able to create modules com-
patible with FPML, which is why modal physical models
generated by MESH2FAUST use this approach.

Our mode filters are implemented as a biquad section
having transfer function

H(z) = Lo ©)
2= gl + o1z 4 agz2

with

o] = —2T cosw
Qo = 7'2
2r f
w=—"
[s
7 =0.0017%0
having the following parameters:
e g: the mode gain
e f: the mode frequency

e tgo: the mode T60

The constrained form of the transfer-function numerator
1—272 = (14+2z71)(1—271) enforces a zero of transmis-
sion at both dc and half the sampling rate, thereby giving
a bandpass characteristic appropriate for a resonant mode.
The denominator parameters similarly enforce a complex-
conjugate pole pair with angles +w and radius 7.

The corresponding FAUST function (modeFilter) is
used to implement our FAUST “modal model” which takes
the position of excitation and the excitation signal as its
two arguments:

modalModel (exPos) = _ <: par (i,nModes,
modeFilter (modesFreqgs (i), modesT60s (i),
modesGains (exPos,1))) :> /(nModes)

The FAUST-generated? block diagram associated with
this function can be seen in Figure 1. modesFreqgs (1),
modesT60s (1), andmodesGains (exPos, 1) are ar-
rays that are formatted by MESH2FAUST (see §3.2). This
model is compatible with all the decoupled excitation func-
tions of the FAUST physical modeling library (e.g., ham-
mer, pluck, impulse, etc.).

nModes- -

Figure 1. Block diagram of a FAUST modal model implementing three
modes.

3.2 MESH2FAUST

MESH2FAUST is implemented in C++ and works as a UNIX
command line application taking a volumetric mesh as its
main argument and outputting a FAUST modal physical
model. Various parameters can be configured using a wide
range flags that are presented in this section.

MESH2FAUST relies on the Vega FEM Library* [8] to
carry out the finite element analysis needed to compute
mode parameters. The provided volumetric mesh must be
saved as an “object file” (. obj) and its dimensions should
be in meters. The volumetric mesh must first be converted
into a 3D tetrahedral mesh (see Figure 2). This is eas-
ily done by Vega which implements its own tetrahedral
mesher [9]. Material properties (Young Modulus in N/m?,
Poisson’s Ratio, and Density in kg/m?) are applied to the
model during this step and can be configured by the user
using the ——material flag.

Next, the corresponding mass and stiffness matrices are
generated and fed to the Vega eigen solver. The number
of modes to be computed during this step can be config-
ured by the user using the ——nfemmodes flag and must
be smaller than the number of vertices in the volumetric
mesh. The result of this operation is a list of eigenvalues

2 This diagram was generated using the faust2svg tool.

3 A complete list of the MESH2FAUST options is available in its online
documentation: https://github.com/rmichon/pmFaust.
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and eigenvectors that are ordered linearly starting from the
lowest mode.

As mentioned in Section 2, the modes frequencies can be
easily calculated from eigenvalues (Eq.(5)), and the mode
gains can be computed from the matrix of eigenvectors and
the excitation force.

Before the mode gains and frequencies are integrated to
the FAUST physical model, they are selected based on a
series of user-defined parameters:

e ——nsynthmodes: number of modes to synthesize

e ——minmode: lowest mode frequency

e ——maxmode: highest mode frequency

e ——cb: mode selection by critical bands

e ——expos: list of “excitable” vertices

e ——lmexpos: number of excitation position

—--minmode and —-maxmode allow to define the fre-

quency range of the modes to synthesize. If the number of
modes within this range is smaller than ——nsynthmodes,
this parameter will be adapted accordingly. Note that
—-—-nsynthmodes can be different than ——nfemmodes

since some modes might be discarded at the bottom of the
spectrum depending on the value of ——minmode.

If the number of modes in the range defined by ——minmode

and ——maxmode is greater than ——nsynthmodes, syn-
thesized modes will be selected by frequency, starting from
the lowest mode. ——cb allows to change this behavior by
selecting modes by critical bands. In this case, the fre-
quency range defined by ——minmode and —-maxmode
will be split into ——nsynthmodes critical bands and the
loudest mode for each of them will be selected. This fea-
ture is very useful if the model has lots of modes.

By default, the number of excitation positions in the gen-
erated model is the same as the number of vertices in the
provided volumetric mesh. If this mesh has a high density,
the amount of data to integrate to the model might become
a problem. For example, for a mesh with 3E4 vertices
and 200 modes to synthesize, the modes gains matrix will
have a size of 3E4x200 which corresponds to 6E6 float-
ing point values to be hard-coded in the FAUST physical
model source code! Thus, it might be helpful to optimize
the model by limiting its number of excitation positions
by using ——1mexpos. In that case, positions are “ran-
domly” selected, however, specific vertices can be selected
using ——expos. Vertex IDs can be easily retrieved using
a mesh visualizer such as meshlab (see §4).

After this, the resulting FAUST modal physical model (see

§3.1) is generated and placed in a FAUST library file (. 1ib).

Currently, MESH2FAUST doesn’t compute the damping
matrix of the system. Thus, while mode T60s cannot be
estimated, they can be optionally empirically computed as
a function of the frequency and the gain of the modes rel-
atively to the fundamental. This solution is temporary and
we hope to add damping matrix support to our system in
the future (see §6).

Volumetric Mesh (.ob3j)

Material Properties | | Model Parameters |>

~ mesh2faust
| - Vega FEM - R |

Tetrahedral Mesh

| Mass Matrix | | Stiffness Matrix |

Eigen Solver

| Eigenvectors |
T

| Eigenvalues |
T

| Modes Gains Matrix | | Modes Frequencies |

Modes Selection
Faust Model Formatting

| Faust Physical Model (. 1ib) |

Figure 2. Overview of the MESH2FAUST implementation.

4. COMPLETE OPEN SOURCE SOLUTION TO
FINITE ELEMENT ANALYSIS

Computer Assisted Design (CAD) and FEM tools are widely
used in industry for different types of applications. Most
of these tools are proprietary and their cost is often pro-
hibitive for personal applications. In this section, we briefly
describe a completely open-source (OS) framework/tool
chain allowing to quickly design 3D models from scratch
and turn them into FAUST physical models using MESH2-
FAUST.

OpenSCAD? is an open-source CAD program in which
shapes are specified using a high-level functional program-
ming language. While it allows to design complex 3D ob-
jects by combining or differentiating simple 3D elements
(e.g., cubes, spheres, cylinders, etc.), it can also linearly
or rotationally extrude 2D shapes specified as a polygon
(expressed as a set of 2D Cartesian coordinates). Thus,
MESH2FAUST comes with a modified version of Daniel
Newman’s Inkscape to OpenSCAD converter® allowing
to export Inkscape ? 2D paths to OpenSCAD. This is very
useful to create more complex 3D shapes (see Figure 3)
such as the one presented in §5. Various parameters such
as the number of points (resolution) in the generated poly-
gon can be configured, etc.

OpenSCAD can render 3D shapes as volumetric meshes
using the STL (STereoLithography) format. However, these
meshes are highly optimized and can’t be used for finite
element analysis. For example, flat squared surfaces will
be rendered as two triangles regardless of their size which
is not good. Instead, unstructured meshes with faces uni-
formly distributed across the object are better for FEM (the
quality of the mesh is crucial to obtaining realistic modal
parameters from the FEM). This can be achieved by ex-
porting a high-resolution mesh from OpenSCAD to Mesh-
Lab,® and then carrying out a quadric edge collapse deci-
mation to make the mesh uniform and specify the number
of desired faces. A Laplacian smoother can help refine the

Shttp://www.openscad.org/
Shttp://www.thingiverse.com/thing:25036
Thttps://inkscape.org/
8http://www.meshlab.net/
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quality of the previous operation. §5 presents an example
of this system.

- Complex 3D Shapes
2D Drawing Inkscape to OpenSCAD Extrusion
i| (Inkscape)

Converter (OpenSCAD) | |
~ Simple 3D Shapes - mesh2faust FEM and Model

! " P:
i | Basic 3D Object Me?&::gr:g; ent
(OpenSCAD) i Faust Physical Model

Figure 3. Open source framework to make FAUST modal physical models
from scratch.

5. EVALUATION: BELL PHYSICAL MODELING

Bells can be considered as quasi-linear systems and can
be successfully synthesized using modal synthesis. The
acoustics of bells is well understood [10] and bell founders
have been using FEM for decades to tune bells before mak-
ing them [11].

In this section, we model a church bell after Rossing’s
elliptical arc approach using the framework described in
the previous sections, and we compare the results of our
system with the one published in his paper [10].

A Bezier curve was drawn on top of Rossing’s church bell
profile in Inkscape and was exported to OpenSCAD using
the extension presented in §4. The radius of the bell was
set to be 351mm, as in Rossing’s paper. The result of this
operation was a high definition mesh with about 25E4 ver-
tices (see Figure 4). This number was arbitrarily chosen to
provide a good balance between performance and quality.

Inkscape to
OpenSCAD

—

351mm

2D Path

3D CAD Mesh

Figure 4. Church bell cross section and corresponding CAD model mod-
eled after Rossing’s elliptical arc approach.

This high density mesh was restructured in MeshLab us-
ing the technique described in §4 and down-sampled to a
lower definition mesh with 15E3 vertices (see Figure 5).

This mesh was fed into MESH2FAUST with material pa-
rameters corresponding to bell metal [11] (Young’s Mod-
ulus: 1.05E11 N/mz, Poisson’s Ratio: 0.33, and Density:
8600 kg/m3). The results of the FEM modal analysis are
presented in Figure 6 and plotted in Figure 7.

Figure 6 compares the theoretical “ideal” partial ratios to
prime with the one computed by MESH2FAUST (the com-
puted frequency of the undertone partial is 490.25 Hz).
The modes naming conventions are the same as the one
used by Rossing [10].

Figure 5. Mesh generated in MeshLab after quadric edge collapse deci-
mation and Laplacian smoothing.

We can see that the FEM modes respect relatively well
the theoretical mode hierarchy, resulting in very realistic
synthesized sounds.

Modes Names of Theoretical MTF
Partials Ratios Ratios
2,0) Hum, undertone 0.500 0.500
2,1#) Fundamental, prime 1.000 1.012
3,1 Tierce, minor third 1.200 1.208
(3,1#) Quint, fifth 1.500 1.6
4,1) Nominal, octave 2.000 1.980
(4,1#)  Major Third, deciem 2.500 2451
2,2) Fourth, undeciem 2.667 2.610
5,1 Twelfth, duodeciem 3.000 3.073
6,1) Upper octave 4.000 4.11

Figure 6. Comparison between the theoretical “ideal” mode ratios to
prime with the ones computed by MESH2FAUST for the bell mesh pre-
sented in Figure 5.

The same procedure was applied for a wide range of bells
(e.g., carillon bells, hand bells, church bells from different
countries, etc.). The results of this work and the corre-
sponding FAUST-generated web apps synthesizer are avail-
able online. °

6. FUTURE DIRECTIONS

Currently, MESH2FAUST doesn’t allow to estimate modes
T60s. These exponential decays can be approximated by
implementing a damping matrix. The Vega FEM Library
already contains all the tools to do it so we plan to integrate
this feature to a future version of MESH2FAUST.

7. CONCLUSIONS

MESH2FAUST, combined with the framework presented in
84, allows to easily design 3D models of musical instru-
ments and turn them into physical models for sound syn-
thesis. The combined forces of this system with the Faust
Physical Modeling Library should hopefully greatly sim-
plify the design and prototyping of novel physically-informed
digital musical instruments.

https://ccrma.stanford.edu/~rmichon/pmFaust/
#bells
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Figure 7. First fifty modes computed by MESH2FAUST for the bell mesh
presented in Figure 6 for an excitation position matching the strike posi-
tion of the clapper inside the bell.

MESH2FAUST and the Faust Physical Modeling Library
are being developed as part of a project on augmenting
mobile devices towards a “hybrid lutherie” [12] where 3D
printed and electronic prostheses are added to mobile de-
vices to turn them into musical instruments.
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