
HAL Id: hal-03162898
https://hal.science/hal-03162898

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling Faust audio DSP code to WebAssembly
Stéphane Letz, Yann Orlarey, Dominique Fober

To cite this version:
Stéphane Letz, Yann Orlarey, Dominique Fober. Compiling Faust audio DSP code to WebAssembly.
Web Audio Conference, Aug 2017, London, United Kingdom. �hal-03162898�

https://hal.science/hal-03162898
https://hal.archives-ouvertes.fr

Compiling Faust audio DSP code to WebAssembly

Stéphane Letz
GRAME

letz@grame.fr

Yann Orlarey
GRAME

orlarey@grame.fr

Dominique Fober
GRAME

fober@grame.fr

ABSTRACT
After a first version based on asm.js [4], we show in this
paper how the Faust audio DSP language can be used to
generate e�cient Web Audio nodes based on WebAssem-
bly. Two new compiler backends have been developed. The
libfaust library version of the compiler has been compiled
for the Web, thus allowing to have an e�cient compilation
chain from Faust DSP sources and libraries to audio nodes
directly available in the browser.

Keywords
Web Audio API, WebAssembly, Faust, Domain Specific
Language, DSP, audio, real-time.

1. WEB AUDIO PROGRAMMING

1.1 Web Audio API
The Web Audio API specification describes a high-level

JavaScript API for processing and synthesizing audio in Web
applications. The design model is based on an audio graph,
where a set of AudioNode objects are created and connected
together to describe the wanted audio computation.

The actual processing is usually executed in the under-
lying implementation (typically optimized Assembly/C++
code), and direct JavaScript processing and synthesis is also
supported using the ScriptProcessorNode interface, in a non-
real-time rendering context, thus possibly causing annoying
audio glitches.

The AudioWorklet specification1 aims in improving the
situation, having the audio graph definition done in the main
thread, but rendering it (including user-defined nodes coded
in pure JavaScript or WebAssembly) in a separated real-
time thread. This new specification is not yet o�cially im-
plemented in any browser 2.

1https://webaudio.github.io/web-audio-api/
#rendering-loop
2Although development seems to move on in Firefox, see
https://bugzilla.mozilla.org/show bug.cgi?id=1062849

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

1.2 Extending the Web Audio API
Various JavaScript DSP libraries or musical languages,

have been developed over the years [1], to extend, abstract
and empower the capabilities of the o�cial API. They o↵er
users a richer set of audio DSP algorithms and sound models
to be directly used in JavaScript code. In this case, devel-
opments have to be restarted from scratch, or by adapting
already written code (often in more real-time friendly lan-
guages like C/C++) into JavaScript.

An interesting alternative has been developed by the
Csound team [2]. Using the C/C++ to JavaScript Em-
scripten [3] compiler, the complete C written Csound run-
time and DSP language is now available in the context of
the Web Audio API.

2. FAUST DSP AUDIO LANGUAGE
In this paper we demonstrate a third alternative based on

Faust, a compiled Domain Specific Language (DSL). Faust
[Functional Audio Stream] [5] is a functional, synchronous,
domain-specific programming language specifically designed
for real-time signal processing and synthesis. A unique fea-
ture of Faust, compared to other existing music languages
like Max/MSP3, PureData, Supercollider etc., is that pro-
grams are not interpreted, but fully compiled. Faust pro-
vides a high-level alternative to C/C++ to implement e�-
cient sample-level DSP algorithms. Architecture files have
to be used to wrap the compiler generated code to connect
it to the external world, that is di↵erent kind of controllers
(OSC, MIDI, GUI), and the audio drivers to render the au-
dio stream[6].

The Faust compiler currently exists in two flavors. The
o�cial master branch only generates C++ code, the Faust2
branch can generate several other target languages, using an
intermediate FIR representation (Faust Imperative Repre-
sentation), to be translated in the destination languages.

The FIR language describes the computation performed
on the samples in a generic manner. It contains primitives
to read and write variables and arrays, do arithmetic op-
erations, and defines the necessary control structures (for
and while loops, if structure etc.). The language of signals
(internal to the compiler) is compiled into the FIR. Sev-
eral backends have been developed (Figure 1) to translate
the FIR in C, C++, Java, JavaScript, asm.js, WebAssembly
and LLVM IR4.
3the gen object added in Max6 now creates compiled code
from a patch-like representation, using the LLVM based
technology.
4Low Level Virtual Machine Intermediate Representation.

https://webaudio.github.io/web-audio-api/#rendering-loop
https://webaudio.github.io/web-audio-api/#rendering-loop
https://bugzilla.mozilla.org/show_bug.cgi?id=1062849

Figure 1: Faust2 compilation chain

Furthermore, the Faust compiler has been packaged as
an embeddable library called libfaust, published with an as-
sociated API [7] based on a factory/instance model.

3. COMPILING FOR THE WEB

3.1 From asm.js to WebAssembly
Mozilla developers have started in 2011 the Emscripten

compiler project [3], based on LLVM technology, that gen-
erates from C/C++ sources, a statically compilable and
garbage-collection free typed subset of JavaScript named
asm.js. This approach has been successful, demonstrating
that near native code performance could be achieved on the
Web.

Starting from this asm.js experience, core developers of
the PNaCL5 and asm.js projects have designed WebAssem-
bly6, a new e�cient low-level programming language for in-
browser client-side scripting. As a portable stack machine
model, it aims to be faster than JavaScript to parse and
execute.

WebAssembly initial goal is to support compilation from
C/C++ using specialized compilers like Emscripten, or as
a compilation target for other high level or Domain Specific
Languages. The minimum viable product (MVP) specifi-
cation has been recently finalized with a binary format, as
well as a textual format that looks like traditional assembly
languages.

3.2 Compiling to WebAssembly
Two new wast and wasm Faust backend have been de-

veloped to generate these formats. The wast one has been
done first and generates the textual human-readable code,
easier to test and debug. The wasm one generates the equiv-
alent binary format to be directly loaded and executed in
browsers.

3.2.1 Module definition

A module is a distributable, loadable, and executable unit
of code in WebAssembly, instantiated at runtime with a set
of import values to produce instances. The backends have to
translate the intermediate FIR code to follow the required
module format. All FIR functions are translated in a set of

5Google Portable Native Client (PNaCl) is a sandboxing
technology for running a subset of Intel x86, ARM, or MIPS
native code in a sandbox.
6As asm.js model done correctly, see http://webassembly.
org

exported functions with their definition. Prototypes of re-
quired mathematical functions not part of the WebAssembly
specification are generated in the import section. Code for
32 or 64 bits float format can be generated, with the adapted
version of mathematical functions and memory access code.

3.2.2 Memory management

Modules may define an internal linear memory area, or
can import it from the JavaScript context. The memory
zone of the generated DSP contains the main DSP object,
as well as inlined sub-objects or waveforms 7. Fields of the
DSP object are addressed with their computed index.

When a single DSP object is generated, the module in-
ternal memory is used. On the contrary if the DSP object
is going to be used in a more complex memory layout (like
when allocating several DSP objects in a polyphonic instru-
ment for instance), an externally defined memory zone from
JavaScript context is imported.

3.2.3 Denormals handling

A specific problem occurs when audio computation pro-
duces denormal float values, which is quite common with
recursive filters, and can be extremely costly to compute on
some processors like the Intel family for instance. A Flush
To Zero (FTZ) mode for denormals can usually be set at
hardware level, but it not yet available in the MVP version,
which strictly conform to the IEEE 754 norm 8. Thus an
automatic software strategy which consists in adding FTZ
code in all recursive loops has been implemented 9.

3.2.4 Additional JavaScript glue code

An additional JavaScript file containing helper functions
(to get the DSP JSON representation, table of controller
paths etc.) is also generated.

3.3 WebAssembly code in Web Audio nodes
JavaScript code is used to load the wasm file into a typed

array, compile it to a module with WebAssembly.compile,
then instantiate it using WebAssembly.Instance function,
and finally get the callable exported functions. The DSP
memory is either allocated inside the wasm module, or ex-
ternally in the wrapping JavaScript code, and given to the
module.

Starting from a karplus.dsp Faust source file for exam-
ple, the following function has to be used, taking as param-
eters, the wasm filename, the Web Audio context, the bu↵er
size, and a callback to use the wasm compiled instance:

faust.createkarplus(file, context, bs, cb);

The user interface can be retrieved as a JSON description:

var jd = dsp.json();

The instance can be used with the following kind of code:

dsp.connect(context.destination);

dsp.setParamValue("path_to_control", 0.5);

7The Faust backend for a more structured langage like C++
typically generates sub-classes in this case.
8https://github.com/WebAssembly/design/issues/148
9Using the -ftz 1 or -ftz 2 parameters in the compiler.

http://webassembly.org
http://webassembly.org
https://github.com/WebAssembly/design/issues/148

Figure 2: Compiling C++ libfaust to libfaust.js with
Emscripten

Figure 3: libfaust.js + wasm dynamic compilation
chain

3.4 Embedding the JavaScript FAUST
compiler in the browser

Since the Emscripten compiler helps deploying any C++
code on the Web, it becomes possible to compile the Faust
compiler itself in pure JavaScript and WebAssembly (Figure
2).

It has been done by compiling the C++ libfaust library
in a libfaust.js library combined with a libfaust.wasm file. A
unique low-level createWasmCDSPFactoryFromString entry
point has been defined, using the wasm backend, compiling
the DSP source code, and producing the module as an array
of bytes and helper JavaScript functions as a string (Figure
3).

Using WebAssembly API again and JavaScript “eval”
function, allows to deploy it in JavaScript context. From
the JavaScript side, a DSP “factory” will be created from
the DSP source code with the following code:

faust.createDSPFactory(dsp_code, argv, cb);

A fully working DSP “instance” as a Web Audio node is
then created with the code:

faust.createDSPInstance(fact, context, bs, cb);

The DSP instance can then be controlled with the API
described in section 3.3. Note that the high-level JavaScript
API stays the same with asm.js and wasm backends.

4. USE CASES
Using the previously explained technologies, three di↵er-

ent use cases have been experimented:

• compiling self-contained ready to use Web Audio nodes

• using Faust static compilation chain to produce
HTML pages with Web Audio nodes

• using the Faust dynamic compilation chain to directly
program DSP on the Web.

4.1 Programming Web Audio nodes with
FAUST

Self contained ready to use Web Audio nodes can be pro-
duced from a DSP source using the faust2wasm script, which

Figure 4: Self-contained HTML page loading the
wasm module

basically calls the Faust compiler targeting the wasm back-
end, then wraps the produced code with a generic JavaScript
API to be usable in the Web Audio context. The -comb pa-
rameter can be added to compile several .dsp source files in
a unique resulting JavaScript file.

Audio nodes can be created and activated. A full JSON
description of the control parameters and their layout is
available and can be used to create customized Graphical
User Interfaces. Control parameters can then be read and
written. This model has to be used when a custom control
or Graphical User Interface is developed later on.

4.2 Deploying FAUST DSP examples on the
Web

Using the faust2webaudiowasm script, a DSP source file
can be compiled to a self-contained ready to run HTML
page, and wrapping the wasm/JavaScript generated code in
a HTML CSS/SVG based Graphical User Interface (Figure
4).

Adding the -links parameter to the script makes the
HTML page also contains links to the original DSP textual
file, as well as the block-diagram SVG representation. Thus
it becomes quite simple to publish reusable DSP algorithms.

4.3 Web embedded compiler
Having the Faust compiler itself as a library in the

browser opens interesting capabilities experimented in the
FaustPlayground application10.

FaustPlayground (Figure 5) lets the user develop an au-
dio application by graphically connecting high-level modules
written in Faust. The source code can be dropped as a
string, a file, or a Web URL, or loaded from a library of
predefined modules included in the platform.

Using libfaust.js, the DSP is compiled in the browser on
the client machine, to become a functional Web Audio node
that can be connected to others. At any time, the node
source code can be edited and recompiled.

The user can then export his realization to all the plat-
forms supported by the online compilation service11. In or-
der to perform this export, the graph must first be trans-
formed into a single Faust source code obtained by collect-
ing the Faust implementations of each node of the graph.

FaustPlayground is still using the asm.js version of the
libfaust.js Faust compiler library. A WebAssembly version
is in progress.

10http://faust.grame.fr/faustplayground
11http://faustservice.grame.fr

http://faust.grame.fr/faustplayground
http://faustservice.grame.fr

Figure 5: FaustPlayground dynamic compilation
platform

5. TESTS AND BENCHMARKS
WebAssembly and asm.js backends have been tested on a

4 cores MacBook Pro Core i7 2,2 GHz using Firefox 54.0.1,
Chrome 59.0 and WebKit (development version) browsers.
All backends are generating code with the same default
“scalar” generation model 12. The benchmarks have been
done using the Activity Monitor tool by simply comparing
the application CPU use with two di↵erent DSP programs,
running at 44.1kHz and 1024 frames per audio bu↵er.

This first one (Table 1) compares native code (deployed
using the libfaust + LLVM chain) using hardware FTZ, and
wasm code (using software FTZ protection code) running on
three browsers.

DSP code native Chrome Firefox WebKit
STunedBar6 4.0 % 11.8 % 17.6 % 14.8 %
frenchBell 1.8 % 4.6 % 7.4 % 5.3 %

Table 1: Global CPU use of the application tested
with native, asm.js and wasm backends

The second one (Table 2) compares asm.js and wasm un-
der Chrome with FTZ protection code activated.

DSP code Chrome asm.js Chrome wasm
STunedBar6 15.4 % 11.6 %
frenchBell 5.0 % 4.6 %

Table 2: Global CPU use of the application tested
with asm.js and wasm backends

The third one (Table 3) compares wasm under Firefox
with and without FTZ protection code.

Even with this rather limited testing method, some inter-
esting results emerge. With the first o�cial version, We-
bAssembly based audio nodes already outperform asm.js
ones, which is quite encouraging. Comparing the browsers
shows that Chrome currently wins the race, but this may
change since work is still done to optimize WebAssembly
implementations on all of them. Until an hardware solution
can be found, the use of FTZ software protection is almost
mandatory to have good performances.

12In this mode, the compute method uses a single global DSP
loop

DSP code Firefox FTZ Firefox no FTZ
STunedBar6 17.6 % 21.1 %
frenchBell 7.4 % 35.0 %

Table 3: Global CPU use of the application tested
using wasm backends with and without FTZ protec-
tion code

Note that native code can benefit from compilation opti-
mization steps like auto-vectorization, which is not yet the
case for the WebAssembly model.

6. CONCLUSION
We have demonstrated how the Faust audio DSP lan-

guage can be used to easily develop new audio nodes in the
Web Audio model, and use them in an audio graph. Com-
plete HTML pages with a working user interface can also be
generated. Having the dynamic compilation chain directly
available in the browser is also interesting to further explore.

The community still waits for the AudioWorklet specifi-
cation to be implemented with its promise of real-time low
latency audio rendering. Proper handling of float denormals
has also to be done. And finally the Web MIDI API 13 is
also a much needed addition to the ecosystem in order to
develop professional level applications on the Web.

Acknowledgments
This work has been done under the FEEVER project [ANR-
13-BS02-0008] supported by the “Agence Nationale de la
Recherche”.

7. REFERENCES
[1] C. Clark, A. Tindale, “Flocking: a framework for

declarative music-making on the Web”, International
Computer Music Conference, 2014.

[2] V. Lazzarini, E. Costello, S. Yi and J. Fitch, “Csound
on the Web”, Linux Audio Conference, 2014.

[3] A. Zakai, “Emscripten: an LLVM to JavaScript
compiler”, In Proceedings of the ACM international
conference companion on Object oriented programming
systems languages and applications, pages 301–312.
ACM , 2011.

[4] S. Letz, S.Denoux, Y. Orlarey and D. Fober, “Faust
audio DSP language in the Web”, Linux Audio
Conference, 2015.

[5] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust”, Soft Computing, 8(9),
2004, pp. 623–632.

[6] D. Fober, Y. Orlarey, and S. Letz, “Faust
Architectures Design and OSC Support”, IRCAM,
(Ed.): Proc. of the 14th Int. Conference on Digital
Audio E↵ects (DAFx-11), pp. 231-216, 2011.

[7] S. Letz, Y. Orlarey and D. Fober, “Comment
embarquer le compilateur Faust dans vos
applications?”, Journees d’Informatique Musicale, 2013.

13https://webaudio.github.io/web-midi-api/

https://webaudio.github.io/web-midi-api/

	Web audio programming
	Web Audio API
	Extending the Web Audio API

	FAUST DSP audio language
	Compiling for the Web
	From asm.js to WebAssembly
	Compiling to WebAssembly
	Module definition
	Memory management
	Denormals handling
	Additional JavaScript glue code

	WebAssembly code in Web Audio nodes
	Embedding the JavaScript FAUST compiler in the browser

	Use cases
	Programming Web Audio nodes with FAUST
	Deploying FAUST DSP examples on the Web
	Web embedded compiler

	Tests and benchmarks
	Conclusion
	References

