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ABSTRACT

This paper presents a hybrid audio programming environ-
ment, called FAUCK, which combines the powerful, suc-
cinct Functional AUdio STream (FAUST) language with
the strongly-timed CHUCK audio programming language.
FAUCK allows programmers to on-the-fly evaluate FAUST
code directly from CHUCK code and control FAUST sig-
nal processors using CHUCK’s sample-precise timing and
concurrency mechanisms. The goal is to create an amal-
gam that plays to the strengths of each language, giving
rise to new possibilities for rapid prototyping, interaction
design and controller mapping, pedagogy, and new ways
of working with both FAUST and CHUCK. We present our
motivations, approach, implementation, and preliminary
evaluation. FAUCK is open-source and freely available.

1. INTRODUCTION

A variety of computer music programming languages exist
for the same reason there are many different types of tools:
each is well-suited to different types of tasks, and speaks
to different aesthetic and pragmatic preferences of the pro-
grammer. FAUST and CHUCK are two audio program-
ming languages that effectively illustrate this point. FAUST
(Functional AUdio STream) [1–4] embraces a declarative
and functional paradigm, is succinct, tailored to expres-
sively describe low-level digital signal processing (DSP)
algorithm, and generates optimized, efficient synthesis mod-
ules. CHUCK, [5, 6], on the other hand, is imperative, de-
signed around a notion of temporal determinism that in-
cludes sample-synchronous timing and concurrency (called
strongly-timed), tailored for precise control, readability, and
an on-the-fly rapid-prototyping mentality [7]. Yet, they
share the general goal of sound synthesis for musical appli-
cations and both are text-based languages (e.g., not graph-
ical patching).

What happens when one combines these two languages?
More to the point, can these languages be combined in such
a way to take advantage of the respective strengths of both?
Furthermore, that the two languages seem vastly different
in syntax, semantics, and personality is all the more rea-
son to explore their intersections (i.e., why try to combine
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two things are already similar?). Might their profound dif-
ferences give rise to something different from either alone?
Such curiosities provide the primary motivation for our ex-
ploration in hybridizing FAUST and CHUCK.
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Figure 1. New FAUCK model.

FAUCK is a tight integration between FAUST and CHUCK
that attempts to infuse their respective characteristics, re-
inforcing and even augmenting each language with aspects
of the other (Figure 1). It is designed such that program-
mers can embed and evaluate FAUST code directly from
within a CHUCK program, take full advantage of CHUCK’s
sample-synchronous time-based control and concurrency,
and do all of this on-the-fly. At the same time, this makes
available to CHUCK the entire existing body of FAUST
programs, ready to be used for synthesis and interaction
design. In combination, FAUCK provides a different hy-
bridized way to rapidly prototype sample-precise audio syn-
thesis code in FAUST and control it precisely using CHUCK.

2. RELATED WORK

2.1 Existing Paradigm

Thanks to its architecture system [8], FAUST can be used to
easily build custom DSP modules that generate or process
samples as part of a larger host. The traditional paradigm
of incorporating FAUST into computer music systems in-
volves a pipeline that 1) generates C++ code from FAUST
code, 2) compiles into a plug-in, and 3) runs as part of a
host software system 1 (e.g., PureData 2 , Max/MSP 3 , Su-
perCollider 4 , etc.). In this regime, there is a new plug-in
created from any given FAUST program (Figure 2). Such a
system currently exists for compiling a given FAUST pro-
gram into a CHUCK chug-in [9].

1 http://faust.grame.fr/Documentation/ contains an
exhaustive list of the FAUST architectures.

2 https://puredata.info/.
3 https://cycling74.com/products/max/.
4 http://supercollider.github.io/.
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Figure 2. Traditional FAUST code to plug-in model.

2.2 Dynamic FAUST Extensions

Modules created using the technique described in §2.1 are
static and cannot be modified once they are compiled. libfaust
[10] which is part of the FAUST2 distribution 5 allows to
embed the FAUST compiler in any program written in C++
to dynamically generate DSP modules on the fly (see §4).

Since its introduction in 2012 libfaust has been used
in various projects to integrate the FAUST compiler to ex-
isting platforms or to create new one. The FAUST back-
end [11] of the Pure programming language [12] that pre-
dates the creation of libfaust was used as the basis for
the design of this tool.
libfaustwas used for the first time in PureData within

a dynamic external that can be turned into any DSP ob-
ject by modifying the FAUST code linked to it [13]. Simi-
larly faustgen [14] is a dynamic MaxMSP external bor-
rowing the paradigm used in gen [15] to create custom
unit generators. CSound 6 now hosts a dynamic opcode
functioning the same way than the two previous exam-
ples [16]. libfaust has also been used under different
forms within the Web Audio API [17] to create custom dy-
namic nodes [18, 19]. More recently, FAUST has been in-
tegrated to the JUCE 7 platform [20] and the Processing 8

programming language.
Finally, libfaust is at the core of the FAUSTLIVE "just

in time" FAUST compiler [21] allowing to write FAUST
code in a text file and generating the corresponding stan-
dalone audio application almost instantly.

3. THE FAUCK APPROACH

3.1 Using FAUCK

FAUST objects can be used easily in any CHUCK code
through a chugin called Faust. For example, a new FAUST
unit generator (e.g., an audio DSP effect that takes an input
from CHUCK) can be declared as follow:

adc => Faust foo => dac;

In the case where foo would be a synthesizer, the adc
would be ignored and we could simply write:

Faust foo => dac;

Any FAUST program can be associated with foo and dy-
namically evaluated by calling the eval method.

foo.eval(‘process=osc(440);‘);

For brevity and convenience, several common libraries
(music.lib, filter.lib, oscillator.lib,

5 https://sourceforge.net/p/faudiostream/code/
ci/faust2/tree/.

6 http://www.csounds.com/.
7 https://www.juce.com/.
8 https://processing.org/.

effect.lib, math.lib) are, by default, automatically
imported by FAUCK. Furthermore, note the use of the back-
tick (‘) to delineate the inline FAUST code – this removes
the need to manually escape single and double quotation
marks used in the FAUST code.

Alternately, the same object can load a FAUST program
from the file system by invoking compile and providing
a path to a FAUST .dsp file:

foo.compile("osc.dsp");

Next, the vmethod can be called at anytime to change the
value of a specific parameter defined on the FAUST object
that is specified by its path (v stands for "value"; we chose
this abbreviation in anticipation that most program will in-
voke this method often). For example, here we create a
sine wave oscillator whose only parameter is its frequency
(freq) and we set it to 440Hz:

foo.eval(‘
frequency = nentry("freq",

200,50,1000,0.01);
process = osc(frequency);

‘);
foo.v("freq",440);

Finally, the dump method can be called at any time to
print a list of the parameters of the FAUST object as well as
their current value. This is useful to observe large FAUST
programs that have a large number of parameters in com-
plex grouping paths. Programmers can also directly copy
the path of any parameter to control for use with the v
method.

3.2 Examples

3.2.1 A Simple Example

The following example puts together the different elements
given in §3.1 by implementing a simple sine wave oscil-
lator (specified in FAUST) whose frequency and gain are
randomly changed every 100ms (controlled in CHUCK).

// connect a Faust object to ChucK dac
Faust foo => dac;
// evaluate
foo.eval(‘

frequency = nentry("freq",
200,50,1000,0.01) : smooth(0.999);

gain = nentry("gain",
1,0,1,0.01) : smooth(0.999);

process = osc(frequency)*gain;
‘);
// ChucK time loop
while( true ){

// control frequency
foo.v("frequency", Math.random2f(50,800));
// control gain
foo.v("gain", Math.random2f(0,1));
// advance time
100::ms => now;

}

3.2.2 An Advanced Example

Making use of CHUCK’s sample-precise timing and con-
currency mechanisms, it is straightforward to mix CHUCK
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https://sourceforge.net/p/faudiostream/code/ci/faust2/tree/
http://www.csounds.com/
https://www.juce.com/
https://processing.org/


unit generators with FAUST objects to create hybrid ele-
ments. In the following example, a string physical model
implemented in an external FAUST file is filtered by a cry-
baby effect evaluated in the CHUCK file and declared in
effect.lib (FAUST library). The wah parameter of
the crybaby effect is modulated by an LFO 9 declared as a
CHUCK object. The string physical model is controlled in
concurrent CHUCK shreds, spawned through the spork
operator.

// instantiate and connect 2 Faust modules
Faust string => Faust cryBaby => dac;
// LFO using ChucK UGen
SinOsc LFO => blackhole; 6 => LFO.freq;

// load FAUST program; map to Faust object
string.compile("string.dsp");
// evaluate code; crybaby from effect.lib
cryBaby.eval(‘process = crybaby_demo;‘);

// generates random notes
fun void notes(){

while( true ){
// new note
string.v("gate",0);
10::ms => now;
string.v("gate",1);
// with random frequency
string.v("freq",
Math.random2f(80,800) );
100::ms => now;

}
}
// modulates the cry baby with the LFO
fun void lfoWah(){

while( true ){
cryBaby.v(

"/CRYBABY/Wah_parameter",
(LFO.last()*0.5+0.5) );

1::samp => now; // every sample!
}

}

spork ~ notes();
spork ~ lfoWah();
while( true ){

10::ms => now;
}

4. IMPLEMENTATION

FAUCK is implemented as a chugin (CHUCK plugin), sim-
ply named Faust. The chugin, when installed, shows up
as the FAUST unit generator in CHUCK, and can be used
in any number or configuration from CHUCK (as shown
in the code example above). FAUCK internally manages
the interface between CHUCK and the just-in-time FAUST
compiler. Each instance of the Faust unit generator main-
tains a map of parameters indexed on the full parameter
path, which enables real-time look-up and direct manipu-
lation of the named parameters.

FAUCK is written in C++ and is made possible by libfaust,
an embedded version of the FAUST compiler, capable of
generating LLVM bitcode (LLVM IR) instead of C++. libfaust

9 Low Frequency Oscillator.
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Figure 3. Overview of the FAUCK chugin.

invokes the LLVM compiler with the bitcode to emit into
an efficient binary format that can be run dynamically [10].

Real-time performances seem promising. The advanced
example in the previous section runs below 7% CPU uti-
lization on a MacBook Pro from 2012 (this includes the
baseline overhead of the CHUCK virtual machine). For
comparison, a similar example, missing the notes() func-
tion, fully implemented in FAUST, and compiled as a stan-
dalone CoreAudio application, runs at approximately 5%
on the same computer.

5. CONCLUSIONS AND FUTURE WORK

As it turns out (and as we had hoped), the pronounced dif-
ferences between FAUST and CHUCK actually make it eas-
ier to articulate a useful intersection between the two lan-
guages. FAUST code tends to operate at the within-unit
generator DSP level, whereas CHUCK’s unique strength
lies in the strongly-timed, concurrent control of unit gen-
erators. This makes for easy division of labor in FAUCK.
Furthermore, it is straightforward in this model to mix FAUST
modules with existing CHUCK unit generators.

More generally, FAUCK provides a few unique benefits:

• FAUCK combines the control capabilities of CHUCK
to the efficiency and concise, expressive DSP pro-
gramming of FAUST.

• FAUST has no scheduler/control system — some-
thing CHUCK was specifically designed for (making
for example, polyphonic FAUST objects is now easy
with FAUCK).

• The Faust modules provides seamless integration
with CHUCK unit generators, enabling a new type
of rapid prototyping and experimentation in FAUST,
CHUCK, or in tandem.

• Overall, FAUCK provides a new way to work with
FAUST, while expanding CHUCK’s synthesis capa-
bilities to include the large and growing body of FAUST
code. FAUCK presents a clear deterministic all-in-
one place delineation of both FAUST and CHUCK
code, which can potential benefit both research and
classroom settings.



For future work, we’d like to continue experimenting with
features in FAUCK to further facilitate this hybridization.
For example, while it’s possible for CHUCK code to con-
trol all parameters in a FAUST program, regardless of the
type of UI defined for the parameter, it would be conve-
nient if FAUCK can provide functionality to auto-generate
miniAudicle user interfaces (MAUI) [22] from any FAUST
code. Also, since both FAUST and CHUCK are text-based,
it would be intriguing to further deepen the intersection
with dynamically- or self-generating FAUST code from within
CHUCK. Also, we are beginning to apply FAUCK in com-
puter music pedagogical settings, as well as towards DSP-
based physical modeling and computer-mediated instru-
ments design for laptop orchestras.

FAUCK is open-source and is part of the ChuGin repos-
itory: https://github.com/ccrma/chugins.
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