
HAL Id: hal-03162895
https://hal.science/hal-03162895

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAUCK!! HYBRIDIZING THE FAUST AND CHUCK
AUDIO PROGRAMMING LANGUAGES

Ge Wang, Romain Michon

To cite this version:
Ge Wang, Romain Michon. FAUCK!! HYBRIDIZING THE FAUST AND CHUCK AUDIO PRO-
GRAMMING LANGUAGES. Sound and Music Computing Conference (SMC-16), Aug 2016, Ham-
burg, Germany. pp.310-313. �hal-03162895�

https://hal.science/hal-03162895
https://hal.archives-ouvertes.fr

FAUCK!! HYBRIDIZING THE FAUST AND CHUCK AUDIO
PROGRAMMING LANGUAGES

Ge Wang
CCRMA, Stanford University
ge@ccrma.stanford.edu

Romain Michon
CCRMA, Stanford University

rmichon@ccrma.stanford.edu

ABSTRACT

This paper presents a hybrid audio programming environ-
ment, called FAUCK, which combines the powerful, suc-
cinct Functional AUdio STream (FAUST) language with
the strongly-timed CHUCK audio programming language.
FAUCK allows programmers to on-the-fly evaluate FAUST
code directly from CHUCK code and control FAUST sig-
nal processors using CHUCK’s sample-precise timing and
concurrency mechanisms. The goal is to create an amal-
gam that plays to the strengths of each language, giving
rise to new possibilities for rapid prototyping, interaction
design and controller mapping, pedagogy, and new ways
of working with both FAUST and CHUCK. We present our
motivations, approach, implementation, and preliminary
evaluation. FAUCK is open-source and freely available.

1. INTRODUCTION

A variety of computer music programming languages exist
for the same reason there are many different types of tools:
each is well-suited to different types of tasks, and speaks
to different aesthetic and pragmatic preferences of the pro-
grammer. FAUST and CHUCK are two audio program-
ming languages that effectively illustrate this point. FAUST
(Functional AUdio STream) [1–4] embraces a declarative
and functional paradigm, is succinct, tailored to expres-
sively describe low-level digital signal processing (DSP)
algorithm, and generates optimized, efficient synthesis mod-
ules. CHUCK, [5, 6], on the other hand, is imperative, de-
signed around a notion of temporal determinism that in-
cludes sample-synchronous timing and concurrency (called
strongly-timed), tailored for precise control, readability, and
an on-the-fly rapid-prototyping mentality [7]. Yet, they
share the general goal of sound synthesis for musical appli-
cations and both are text-based languages (e.g., not graph-
ical patching).

What happens when one combines these two languages?
More to the point, can these languages be combined in such
a way to take advantage of the respective strengths of both?
Furthermore, that the two languages seem vastly different
in syntax, semantics, and personality is all the more rea-
son to explore their intersections (i.e., why try to combine

Copyright: c© 2016 Ge Wang et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

two things are already similar?). Might their profound dif-
ferences give rise to something different from either alone?
Such curiosities provide the primary motivation for our ex-
ploration in hybridizing FAUST and CHUCK.

FAUST
code

ChucK
code

on-the-fly
rapid

iteration

controls

dynamically
evaluates, runs

Figure 1. New FAUCK model.

FAUCK is a tight integration between FAUST and CHUCK
that attempts to infuse their respective characteristics, re-
inforcing and even augmenting each language with aspects
of the other (Figure 1). It is designed such that program-
mers can embed and evaluate FAUST code directly from
within a CHUCK program, take full advantage of CHUCK’s
sample-synchronous time-based control and concurrency,
and do all of this on-the-fly. At the same time, this makes
available to CHUCK the entire existing body of FAUST
programs, ready to be used for synthesis and interaction
design. In combination, FAUCK provides a different hy-
bridized way to rapidly prototype sample-precise audio syn-
thesis code in FAUST and control it precisely using CHUCK.

2. RELATED WORK

2.1 Existing Paradigm

Thanks to its architecture system [8], FAUST can be used to
easily build custom DSP modules that generate or process
samples as part of a larger host. The traditional paradigm
of incorporating FAUST into computer music systems in-
volves a pipeline that 1) generates C++ code from FAUST
code, 2) compiles into a plug-in, and 3) runs as part of a
host software system 1 (e.g., PureData 2 , Max/MSP 3 , Su-
perCollider 4 , etc.). In this regime, there is a new plug-in
created from any given FAUST program (Figure 2). Such a
system currently exists for compiling a given FAUST pro-
gram into a CHUCK chug-in [9].

1 http://faust.grame.fr/Documentation/ contains an
exhaustive list of the FAUST architectures.

2 https://puredata.info/.
3 https://cycling74.com/products/max/.
4 http://supercollider.github.io/.

mailto:ge@ccrma.stanford.edu
mailto:rmichon@ccrma.stanford.edu
http://creativecommons.org/licenses/by/3.0/
http://faust.grame.fr/Documentation/
https://puredata.info/
https://cycling74.com/products/max/
http://supercollider.github.io/

FAUST
program

C++
code Plug-in Host

Figure 2. Traditional FAUST code to plug-in model.

2.2 Dynamic FAUST Extensions

Modules created using the technique described in §2.1 are
static and cannot be modified once they are compiled. libfaust
[10] which is part of the FAUST2 distribution 5 allows to
embed the FAUST compiler in any program written in C++
to dynamically generate DSP modules on the fly (see §4).

Since its introduction in 2012 libfaust has been used
in various projects to integrate the FAUST compiler to ex-
isting platforms or to create new one. The FAUST back-
end [11] of the Pure programming language [12] that pre-
dates the creation of libfaust was used as the basis for
the design of this tool.
libfaustwas used for the first time in PureData within

a dynamic external that can be turned into any DSP ob-
ject by modifying the FAUST code linked to it [13]. Simi-
larly faustgen [14] is a dynamic MaxMSP external bor-
rowing the paradigm used in gen [15] to create custom
unit generators. CSound 6 now hosts a dynamic opcode
functioning the same way than the two previous exam-
ples [16]. libfaust has also been used under different
forms within the Web Audio API [17] to create custom dy-
namic nodes [18, 19]. More recently, FAUST has been in-
tegrated to the JUCE 7 platform [20] and the Processing 8

programming language.
Finally, libfaust is at the core of the FAUSTLIVE "just

in time" FAUST compiler [21] allowing to write FAUST
code in a text file and generating the corresponding stan-
dalone audio application almost instantly.

3. THE FAUCK APPROACH

3.1 Using FAUCK

FAUST objects can be used easily in any CHUCK code
through a chugin called Faust. For example, a new FAUST
unit generator (e.g., an audio DSP effect that takes an input
from CHUCK) can be declared as follow:

adc => Faust foo => dac;

In the case where foo would be a synthesizer, the adc
would be ignored and we could simply write:

Faust foo => dac;

Any FAUST program can be associated with foo and dy-
namically evaluated by calling the eval method.

foo.eval(‘process=osc(440);‘);

For brevity and convenience, several common libraries
(music.lib, filter.lib, oscillator.lib,

5 https://sourceforge.net/p/faudiostream/code/
ci/faust2/tree/.

6 http://www.csounds.com/.
7 https://www.juce.com/.
8 https://processing.org/.

effect.lib, math.lib) are, by default, automatically
imported by FAUCK. Furthermore, note the use of the back-
tick (‘) to delineate the inline FAUST code – this removes
the need to manually escape single and double quotation
marks used in the FAUST code.

Alternately, the same object can load a FAUST program
from the file system by invoking compile and providing
a path to a FAUST .dsp file:

foo.compile("osc.dsp");

Next, the vmethod can be called at anytime to change the
value of a specific parameter defined on the FAUST object
that is specified by its path (v stands for "value"; we chose
this abbreviation in anticipation that most program will in-
voke this method often). For example, here we create a
sine wave oscillator whose only parameter is its frequency
(freq) and we set it to 440Hz:

foo.eval(‘
frequency = nentry("freq",

200,50,1000,0.01);
process = osc(frequency);

‘);
foo.v("freq",440);

Finally, the dump method can be called at any time to
print a list of the parameters of the FAUST object as well as
their current value. This is useful to observe large FAUST
programs that have a large number of parameters in com-
plex grouping paths. Programmers can also directly copy
the path of any parameter to control for use with the v
method.

3.2 Examples

3.2.1 A Simple Example

The following example puts together the different elements
given in §3.1 by implementing a simple sine wave oscil-
lator (specified in FAUST) whose frequency and gain are
randomly changed every 100ms (controlled in CHUCK).

// connect a Faust object to ChucK dac
Faust foo => dac;
// evaluate
foo.eval(‘

frequency = nentry("freq",
200,50,1000,0.01) : smooth(0.999);

gain = nentry("gain",
1,0,1,0.01) : smooth(0.999);

process = osc(frequency)*gain;
‘);
// ChucK time loop
while(true){

// control frequency
foo.v("frequency", Math.random2f(50,800));
// control gain
foo.v("gain", Math.random2f(0,1));
// advance time
100::ms => now;

}

3.2.2 An Advanced Example

Making use of CHUCK’s sample-precise timing and con-
currency mechanisms, it is straightforward to mix CHUCK

https://sourceforge.net/p/faudiostream/code/ci/faust2/tree/
https://sourceforge.net/p/faudiostream/code/ci/faust2/tree/
http://www.csounds.com/
https://www.juce.com/
https://processing.org/

unit generators with FAUST objects to create hybrid ele-
ments. In the following example, a string physical model
implemented in an external FAUST file is filtered by a cry-
baby effect evaluated in the CHUCK file and declared in
effect.lib (FAUST library). The wah parameter of
the crybaby effect is modulated by an LFO 9 declared as a
CHUCK object. The string physical model is controlled in
concurrent CHUCK shreds, spawned through the spork
operator.

// instantiate and connect 2 Faust modules
Faust string => Faust cryBaby => dac;
// LFO using ChucK UGen
SinOsc LFO => blackhole; 6 => LFO.freq;

// load FAUST program; map to Faust object
string.compile("string.dsp");
// evaluate code; crybaby from effect.lib
cryBaby.eval(‘process = crybaby_demo;‘);

// generates random notes
fun void notes(){

while(true){
// new note
string.v("gate",0);
10::ms => now;
string.v("gate",1);
// with random frequency
string.v("freq",
Math.random2f(80,800));
100::ms => now;

}
}
// modulates the cry baby with the LFO
fun void lfoWah(){

while(true){
cryBaby.v(

"/CRYBABY/Wah_parameter",
(LFO.last()*0.5+0.5));

1::samp => now; // every sample!
}

}

spork ~ notes();
spork ~ lfoWah();
while(true){

10::ms => now;
}

4. IMPLEMENTATION

FAUCK is implemented as a chugin (CHUCK plugin), sim-
ply named Faust. The chugin, when installed, shows up
as the FAUST unit generator in CHUCK, and can be used
in any number or configuration from CHUCK (as shown
in the code example above). FAUCK internally manages
the interface between CHUCK and the just-in-time FAUST
compiler. Each instance of the Faust unit generator main-
tains a map of parameters indexed on the full parameter
path, which enables real-time look-up and direct manipu-
lation of the named parameters.

FAUCK is written in C++ and is made possible by libfaust,
an embedded version of the FAUST compiler, capable of
generating LLVM bitcode (LLVM IR) instead of C++. libfaust

9 Low Frequency Oscillator.

Faust Code (From File or String) Binary DSP Object

LLVM “Just in Time” Compiler

Block Diagram

Signals

Faust Imperative
Representation (FIR)

LLVM IR

Faust Compiler
libfaust

FaucK Chugin

Figure 3. Overview of the FAUCK chugin.

invokes the LLVM compiler with the bitcode to emit into
an efficient binary format that can be run dynamically [10].

Real-time performances seem promising. The advanced
example in the previous section runs below 7% CPU uti-
lization on a MacBook Pro from 2012 (this includes the
baseline overhead of the CHUCK virtual machine). For
comparison, a similar example, missing the notes() func-
tion, fully implemented in FAUST, and compiled as a stan-
dalone CoreAudio application, runs at approximately 5%
on the same computer.

5. CONCLUSIONS AND FUTURE WORK

As it turns out (and as we had hoped), the pronounced dif-
ferences between FAUST and CHUCK actually make it eas-
ier to articulate a useful intersection between the two lan-
guages. FAUST code tends to operate at the within-unit
generator DSP level, whereas CHUCK’s unique strength
lies in the strongly-timed, concurrent control of unit gen-
erators. This makes for easy division of labor in FAUCK.
Furthermore, it is straightforward in this model to mix FAUST
modules with existing CHUCK unit generators.

More generally, FAUCK provides a few unique benefits:

• FAUCK combines the control capabilities of CHUCK
to the efficiency and concise, expressive DSP pro-
gramming of FAUST.

• FAUST has no scheduler/control system — some-
thing CHUCK was specifically designed for (making
for example, polyphonic FAUST objects is now easy
with FAUCK).

• The Faust modules provides seamless integration
with CHUCK unit generators, enabling a new type
of rapid prototyping and experimentation in FAUST,
CHUCK, or in tandem.

• Overall, FAUCK provides a new way to work with
FAUST, while expanding CHUCK’s synthesis capa-
bilities to include the large and growing body of FAUST
code. FAUCK presents a clear deterministic all-in-
one place delineation of both FAUST and CHUCK
code, which can potential benefit both research and
classroom settings.

For future work, we’d like to continue experimenting with
features in FAUCK to further facilitate this hybridization.
For example, while it’s possible for CHUCK code to con-
trol all parameters in a FAUST program, regardless of the
type of UI defined for the parameter, it would be conve-
nient if FAUCK can provide functionality to auto-generate
miniAudicle user interfaces (MAUI) [22] from any FAUST
code. Also, since both FAUST and CHUCK are text-based,
it would be intriguing to further deepen the intersection
with dynamically- or self-generating FAUST code from within
CHUCK. Also, we are beginning to apply FAUCK in com-
puter music pedagogical settings, as well as towards DSP-
based physical modeling and computer-mediated instru-
ments design for laptop orchestras.

FAUCK is open-source and is part of the ChuGin repos-
itory: https://github.com/ccrma/chugins.

Acknowledgments

We thank our colleagues at CCRMA and GRAME for their
suggestions and support.

6. REFERENCES

[1] Y. Orlarey, S. Letz, and D. Fober, New Computational
Paradigms for Computer Music, Paris, France, 2009,
ch. FAUST : an Efficient Functional Approach to DSP
Programming.

[2] Y. Orlarey, D. Fober, and S. Letz, “An algebra for
block diagram languages,” in Proceedings of the Inter-
national Computer Music Conference, 2002.

[3] R. Michon and J. O. Smith, “Faust-stk: A set of linear
and nonlinear physical models for the faust program-
ming language,” in Proceedings of the 14th Interna-
tional Conference on Digital Audio Effects, 2011.

[4] R. Michon, J. O. Smith, and Y. Orlarey, “Mobilefaust:
a set of tools to make musical mobile applications with
the faust programming language,” in Proceedings of
the Linux Audio Conference, 2015.

[5] G. Wang, “The chuck audio programming language,”
Ph.D. dissertation, Princeton University, 2008.

[6] G. Wang, P. R. Cook, and S. Salazar, “Chuck: A
strongly timed computer music language,” Computer
Music Journal, vol. 39, no. 4, pp. 10–29, 2015.

[7] G. Wang and P. R. Cook, “On-the-fly programming:
Using code as an expressive musical instrument,” in
New Interfaces for Musical Expression, 2004.

[8] D. Fober, Y. Orlarey, and S. Letz, “Faust architec-
tures design and osc support,” in Proceedings of the
14th International Conference on Digital Audio Effects
(DAFx-11), Paris, France, September 2011.

[9] S. Salazar and G. Wang, “Chugens, chubgraphs, and
chugins: 3 tiers for extending chuck,” in Proceed-
ings of the International Computer Music Conference,
2012.

[10] S. Letz, D. Fober, and Y. Orlarey, “Comment embar-
quer le compilateur faust dans vos applications?” in
Proceedings of the Journées de l’Informatique Musi-
cale, Paris, France, May 2013.

[11] A. Gräf, “An llvm bitcode interface between pure and
faust,” in Proceedings of the Linux Audio Conference
(LAC-11), Maynooth, Ireland, May 2011.

[12] A. Gräf, “Signal processing in the pure programming
language,” in Proceedings of the Linux Audio Confer-
ence (LAC-09), Parma, Italy, April 2009.

[13] A. Gräf, “pd-faust: An integrated environment for
running faust objects in pd,” in Proceedings of the
Linux Audio Conference (LAC-12), Stanford, Califor-
nia, April 2012.

[14] “Faustgen,” 2012. [Online]. Available: http://faust.
grame.fr/news/2012/12/11/faustgen.html

[15] “Gen documentation,” 2016. [Online]. Avail-
able: https://cycling74.com/wiki/index.php?title=
gen~_For_Beginners

[16] V. Lazzarini, “Faust programs in csound,” Revue Fran-
cophone d’Informatique Musicale, no. 4, Fall 2014.

[17] “The web audio api,” 2015. [Online]. Available:
https://www.w3.org/TR/webaudio/

[18] S. Denoux, Y. Orlarey, S. Letz, and D. Fober, “Com-
pose with faust in the web,” in Proceedings of the Web
Audio Conference, Paris, France, January 2015.

[19] S. Letz, S. Denoux, Y. Orlarey, and D. Fober, “Faust
audio dsp language in the web,” in Proceedings of the
Linux Audio Conference (LAC-15), Mainz, Germany,
April 2015.

[20] O. Larkin, “Using the faust dsp language and the lib-
faust jit compiler with juce,” in Proceedings of the
JUCE Summit, London, UK, November 2015.

[21] S. Denoux, S. Letz, Y. Orlarey, and D. Fober,
“Faustlive: Just-in-time faust compiler... and much
more,” in Proceedings of the Linux Audio Conference
(LAC-12), Karlsruhe, Germany, April 2014.

[22] S. Salazar, G. Wang, and P. R. Cook, “miniaudicle and
chuck shell: New interfaces for chuck development
and performance.” in Proceedings of the International
Computer Music Conference, 2006.

https://github.com/ccrma/chugins
http://faust.grame.fr/news/2012/12/11/faustgen.html
http://faust.grame.fr/news/2012/12/11/faustgen.html
https://cycling74.com/wiki/index.php?title=gen~_For_Beginners
https://cycling74.com/wiki/index.php?title=gen~_For_Beginners
https://www.w3.org/TR/webaudio/

	 1. Introduction
	 2. Related Work
	2.1 Existing Paradigm
	2.2 Dynamic Faust Extensions

	 3. The FaucK Approach
	3.1 Using FaucK
	3.2 Examples
	3.2.1 A Simple Example
	3.2.2 An Advanced Example

	 4. Implementation
	 5. Conclusions and Future Work
	 6. References

