
HAL Id: hal-03162886
https://hal.science/hal-03162886

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mephisto: an Open Source WIFI OSC Controller for
Faust Applications

Romain Michon

To cite this version:
Romain Michon. Mephisto: an Open Source WIFI OSC Controller for Faust Applications. Linux
Audio Conference (LAC-14), May 2014, Karlsruhe, Germany. �hal-03162886�

https://hal.science/hal-03162886
https://hal.archives-ouvertes.fr


Mephisto: an Open Source WIFI OSC Controller for Faust
Applications

Romain MICHON
Center for Computer Research in Music and Acoustics

Department of Music,
Stanford, CA 94305-8180,

USA,
rmichon@ccrma.stanford.edu

Abstract

Mephisto is a small battery powered open source
Arduino based device. Up to five sensors can be
connected to it using simple 1/8” stereo audio jacks.
The output of each sensor is digitized and converted
to OSC messages that can be streamed on a WIFI
network to control the parameters of any Faust gen-
erated app.

Keywords

Faust, Arduino, Controller, OSC

1 Introduction

In the past few years, the Faust1 [Orlarey and
Letz, 2002] programming language has been
used increasingly by researchers and developers
to implement new algorithms for real time audio
signal processing. As a result, dozens of open
source Faust effects and synthesizers are now
freely available. For example, Julius Smith’s li-
braries [Smith, 2012] and the Faust-STK [Mi-
chon and Smith, 2011] provide a large array of
objects ranging from the simplest lowpass filter
to complex feedback delay networks and physi-
cal models of musical instruments.

However, we observed that these technologies
remain relatively inaccessible to musicians who
don’t have the knowledge (and the desire) to
compile a Faust object on their laptop. In
other words, these elements are not “plug and
play”.

One of the tool already at our disposal to fa-
cilitate the sharing and the use of Faust objects
is the Online Compiler2 [Michon and Orlarey,
2012]. This web app contains an interactive cat-
alog of Faust programs that can be compiled
to any of the available Faust architectures and
then downloaded. Users can easily add their
own Faust codes to the catalog or modify ex-
isting elements. Even if this very high level tool
makes the creation of plug-ins, etc., very easy, it

1http://faust.grame.fr.
2http://faust.grame.fr/compiler.

targets users who have some knowledge in com-
puter music and who know how to use a VST3,
an external audio interface, etc.

Thus, to make things even easier we started
to think about a Faust stomp box that could be
based on an embedded Linux system such as a
Raspberry Pi4. It would have been able to con-
nect to the online compiler to provide its user a
list of the objects stored in the catalog. A down-
load button to cross compile and then download
the effect or the synthesizer in the Faust box
would have made the use of this system very
easy.

However, even though Raspberry Pis are
great prototyping platforms, their computation
power is quite limited. Also, their booting
time can be a problem for impatient musi-
cians. We then realized that a smartphone or
a tablet could do a similar job and would be
more user friendly. While there already existed
a faust2ios architecture, Apples product were
presenting a huge disadvantage over Android
phones: in order to be installed, an app has
to be approved by the Apple Store which was
making our concept of a customizable stomp
box impossible to implement. Thus we opted
for Android and created a faust2android [Mi-
chon, 2013] architecture.

Another key component of our project was
to provide an easy way for musicians to con-
trol the different parameters of a Faust object
during a live performance. While smartphones
offer built-in basic controllers: touch screen, ac-
celerometer, etc., these elements are not very
practical to interact with if the user is playing
an instrument and processing its sound with his
phone. Indeed, many instruments require the
use of both hands, making it inconvenient to
interact with another interface.

Mephisto was created to solve this problem.

3Virtual Studio Technology.
4http://www.raspberrypi.org/.

http://faust.grame.fr
http://faust.grame.fr/compiler
http://www.raspberrypi.org/


Figure 1: View of Mephisto from its top.

It is a small battery powered device that can be
easily attached on someone’s belt (cf., figures 1
and 2). Up to five sensors can be connected to it
using simple 1/8” stereo audio jack plugs. The
output of each sensor is digitized and converted
to OSC5 [Wright, 2005] messages that can be
streamed on a WIFI network to control the pa-
rameters of any Faust generated app. As OSC
is a standard protocol, Mephisto can be used
with faust2android apps but is also compat-
ible with most of the Faust architectures and
programs enabling OSC communication.

As a “DIY”6 open source project, Mephisto
only uses open source hardware (Arduino, etc.)
and was designed to be easily built by anyone.
A web page giving the instructions to build your
own Mephisto has been created7.

2 Hardware

Designing small scale open source hardware can
be a rather complicated task. Indeed, while
software can be easily deployed and shared,
in many cases hardware requires a production
chain, etc. For this reason, Mephisto has been
designed to be easily and quickly built by any-
one.

2.1 The Case

To make it as easy as possible for users, the case
of Mephisto is 3D printable. It has been de-
signed with Blender8 which is an open source
program for 3D design that has some CAD fea-
tures.

5Open Sound Control: http://opensoundcontrol.
org/.

6Do It Yourself.
7http://ccrma.stanford.edu/~rmichon/mephisto.
8http://www.blender.org/.

Figure 2: Use example of Mephisto.

Figure 3: 3D model of Mephisto’s case as it
appears in Blender.

We’re perfectly aware that not everyone has a
3D printer at home, but 3D printed models can
now be ordered very easily online for very cheap.
Moreover, Mephisto’s case has a very simple
design and can be printed on almost every 3D
printers.

2.2 Electronics

Mephisto is based on an Arduino Uno9 and
a WIFI Shield10 (cf., figure 4). The Arduino
provides five analog inputs that are used in

9http://arduino.cc/en/Main/arduinoBoardUno.
10http://arduino.cc/en/Main/ArduinoWiFiShield.

http://opensoundcontrol.org/
http://opensoundcontrol.org/
http://ccrma.stanford.edu/~rmichon/mephisto
http://www.blender.org/
http://arduino.cc/en/Main/arduinoBoardUno
http://arduino.cc/en/Main/ArduinoWiFiShield


Figure 4: An Arduino Uno and its WIFI shield.

WIFI Shield

Smartphone, 
Laptop, etc.

Sensors Jack Inputs

Mephisto

Template Arduino
Firmware

JAVA Interface

Ino

Interface Program

Arduino

USB

Compilation &
Upload

LCD Screen

Nav Buttons

OSC

User Interface

Figure 5: Mephisto flow chart.

Mephisto to digitize the output signals of the
sensors. Simple 1/8” stereo audio jacks (three
pins) are used to bring power to the sensors and
to retrieve their output signal (cf., figure 1).

Users can configure basic parameters such as
the WIFI network to connect to or the IP ad-
dress of the host using an LCD screen and a
navigation button interface.

Mephisto can be powered with any DC
power adapter between seven and nine volts
or with a simple nine volts battery. We con-
sidered using lithium ion batteries instead but
these are more expensive and need a special
charger. With five simple sensors plugged to
it, Mephisto can run for about four hours on
the same nine volts battery. Moreover, it is very
easy and quick to replace it.

Figure 6: Example of sensors that can be con-
nected to Mephisto with their 1/8” jack plugs.

Dozens of sensors have been tested and can be
easily prepared to work with Mephisto. Our
website explains how to set up an accelerometer,
a pressure sensitive and a flex sensors, trim pots,
etc.11.

3 Software

3.1 Arduino Firmware

The Arduino firmware carries out a large num-
ber of tasks. It retrieves and digitizes the output
signals of the sensors and scale them in function
of the parameters specified in the interface pro-
gram (cf., §3.2). Then it converts them to OSC
messages using oscuino12. The OSC address of
each sensor can be configured in the interface
program (cf., §3.2).

The firmware also handles the user interface
implemented through the LCD screen and the
navigation buttons.

3.2 Interface JAVA Program

Even though Mephisto provides its own very
simple interface to configure it by the mean of
its LCD screen and navigation buttons, a JAVA
program13 that can run on both Linux and Ma-
cOSX was created to carry out this task more
precisely.

This simple program allows to configure the
OSC address and the range of the OSC messages
sent by Mephisto for each jack input. It is also
possible to choose which sensor is connected to
which jack in order to carry out some scaling on
their output signal (even if the Mephisto web-
site explains how to do basic electronic scaling

11http://ccrma.stanford.edu/~rmichon/mephisto.
12http://cnmat.berkeley.edu/oscuino.
13https://github.com/rmichon/mephisto/.

http://ccrma.stanford.edu/~rmichon/mephisto
http://cnmat.berkeley.edu/oscuino
https://github.com/rmichon/mephisto/


Figure 7: Screenshot of the interface program
used to configure Mephisto from a desktop.

on sensors, it is often necessary to adjust their
output range computationally).

The Mephisto configuration program also
makes it possible to pre-configure the WIFI net-
work to which mephisto will connect as well as
its password if it is protected, the IP address of
the host and the rate at which the messages are
sent.

This interface program formats and cus-
tomizes the Arduino firmware in function of the
provided parameters. It then compiles it and
uploads it to the Arduino if it is connected to
one of the USB port using ino14. As this pro-
gram only works with Linux and MaxOSX it
makes the interface only usable on these plat-
forms even though it can also be executed on
Windows.

4 Conclusion

Mephisto is an open source project that im-
proves and simplifies the control of sound ef-
fects and synthesizers running on a mobile de-
vice. Any kind of sensor can be connected to it
and used as on OSC controller for live perfor-
mance.

The Faust online compiler together with
Mephisto, faust2android and the Faust cat-
alog of sound effects and synthesizers greatly
simplifies the use of Faust objects by musi-
cians.

The use of 3D printing in the framework of
open source hardware projects makes things a
lot easier than in the past. Indeed users don’t
need to have any background in manufacturing
and only have to take care of putting the differ-
ent components together.

Similarly, Arduinos are relatively self con-
tained environments that significantly reduce
the size of electronic circuits making projects
like Mephisto easy to build at home.

14http://inotool.org/.

References

Michon and Orlarey. 2012. The faust on-
line compiler: a web-based ide for the faust
programming language. In Proceedings of the
Linux Audio Conference (LAC-2012), pages
111–116, Stanford University, USA.

Michon and Smith. 2011. Faust-stk: a set of
linear and nonlinear physical models for the
faust programming language. In Proceedings
of the Conference on Digital Audio Effects
(DAFx-11), pages 199–204, IRCAM, Paris,
France.

R. Michon. 2013. Faust2android: a faust
architecture for android. In Proceedings of
16th Int. Conference on Digital Audio Effects
(DAFx-13), pages 301–304, National Univer-
sity of Ireland, Maynooth, Ireland.

Fober Orlarey and Letz. 2002. An algebra
for block diagram languages. In Proceedings
of the International Computer Music Con-
ference (ICMA), pages 542–547, Gothenburg,
Sweden.

J. Smith. 2012. Signal processing libraries for
faust. In Proceedings of the Linux Audio Con-
ference (LAC-2012), pages 33–38, Stanford
University, USA.

M. Wright. 2005. Open sound control: an
enabling technology for musical networking.
Organised Sound, 10(03):193–200.

http://inotool.org/

	Introduction
	Hardware
	The Case
	Electronics

	Software
	Arduino Firmware
	Interface JAVA Program

	Conclusion

