
HAL Id: hal-03162875
https://hal.science/hal-03162875

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEMONSTRATION OF FAUST SIGNAL
PROCESSING LANGUAGE

Yann Orlarey, Dominique Fober, Stephane Letz

To cite this version:
Yann Orlarey, Dominique Fober, Stephane Letz. DEMONSTRATION OF FAUST SIGNAL
PROCESSING LANGUAGE. International Computer Music Conference (ICMC-2005), Sep 2006,
Barcelona, Spain. �hal-03162875�

https://hal.science/hal-03162875
https://hal.archives-ouvertes.fr


DEMONSTRATION OF FAUST
SIGNAL PROCESSING LANGUAGE

Yann Orlarey, Dominique Fober, Stephane Letz
Grame, Centre National de Creation Musicale

9, rue du Garet, BP 1185
69001 Lyon Cedex 01

France

ABSTRACT

FAUST is a compiled language designed for real-time au-
dio signal processing. It is a free software published under
the terms of the GNU General Public License. Sources
and binaries are available at source forge :

http://faudiostream.sourceforge.net.
The demonstration will give an overview of the main fea-
tures of the language and the compiler through several
simple and practical examples.

1. INTRODUCTION

The name FAUST [1] stands for Functional AUdio STream.
It designates a language that combines two programming
models : functional programming and block diagram com-
position. Therefore you can think of FAUST as a struc-
tured block diagram language with a textual syntax.

FAUST is intended for programmers that need to de-
velop efficient C/C++ audio code from a high level spec-
ification. A single FAUST specification can be used for
multiple targets from plugins (various plugins standards
are supported) to standalone audio applications. Thanks
to some specific compilation techniques and powerful op-
timizations, the C++ code generated by the Faust compiler
is usually very fast and can generally compete with (and
sometimes outperform) hand-written C/C++ code.

2. THE LANGUAGE

The primitive elements of the language are : mathematical
operations on signals (the C functions on numbers have
a FAUST equivalent on signals), delays, tables and user
interface widgets. These primitive building blocks are
combined using five high level composition operations.
They operate on block-diagrams by establishing specific
patterns of connections between their inputs and outputs.
Moreover powerful abstraction mechanisms based on the
Lambda-Calculus allows for parametric block-diagrams
(block-diagrams with variable parts that can be instanti-
ated).

Programming with FAUST is somehow like working
with electronic circuits and analog signals. A FAUST pro-
gram is a list of definitions that describes a signal proces-

sor : a piece of code that produces output signals accord-
ing to its inputs signals (and maybe some user interface
parameters). For example a very simple FAUST program
that transforms a stereo signal into a mono signal is :

process = +;

It defines the process block-diagram (the FAUST equiv-
alent for main in C) as the + primitive operator that add
two signals.

3. THE COMPILER

In order to generate the most efficient code, the compila-
tion is based on a semantic approach. Instead of compiling
directly the block-diagram defined by the user, the idea
is to compile its mathematical meaning (what it actually
computes).

This mathematical meaning is inferred by the compiler
using symbolic techniques. It propagates virtual signals in
the block diagram and collects the resulting output signal
equations. These output equations are then simplified and
normalized before being used to generate the C++ code.
Two different block diagrams can then result in the same
C++ program provided that they have the same mathemat-
ical meaning.

The compiler can optionally wrap the generated code
into an architecture depended file in order to directly pro-
duce a VST plugin, a MAX/MSP external object or a Jack-
Gtk application for Linux. Eight different targets are cur-
rently available : Max/MSP, VST, LADSPA, OSS, Jack,
Port-Audio, Audio files. Other targets can be added sim-
ply by providing the corresponding architecture file.

4. REFERENCES

[1] Yann Orlarey, Dominique Fober, Stephane
Letz ”Syntactical and Semantical Aspects of
Faust”, Soft Computing, Volume 8, Number 9,
Springer-Verlag GmbH, September 2004.


	Index
	ICMC 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Program Guide

	Sessions
	Monday 5, September 2005
	MonAmOR1-Paper Session 1: Frameworks
	MonAmPO1-Demo Session 1
	MonAmOR2-Paper Session 2: History of Electroacoustic Mu ...
	MonAmPO2-Poster Introduction Session
	MonAmPO3-Demo Session 2
	MonPmOR1-Paper Session 3: Automatic Performance Renderi ...
	MonPmOR2-Studio reports
	MonPmPO1-Demo Session 3
	MonPmOR3-Paper Session 4: Sound Synthesis and Analysis
	MonPmPO2-Demo Session 4

	Tuesday 6, September 2005
	TueAmOR1-Paper Session 1: Sound Synthesis and Analysis
	TueAmPO1-Demo Session 1
	TueAmOR2-Paper Session 2: Music Analysis and Representa ...
	TueAmPO2-Poster Introduction Session
	TueAmPO3-Demo Session 2
	TuePmOR1-Paper Session 3: Mathematical Music Theory
	TuePmPO1-Demo Session 3

	Wednesday 7, September 2005
	WedAmOR1-Paper Session 1: Sound Synthesis and Analysis
	WedAmPO1-Demo Session 1
	WedAmOR2-Paper Session 2: Psychoacoustics
	WedAmPO2-Poster Introduction Session
	WedAmPO3-Demo Session 2
	WedPmOR1-Paper Session 3: Systems for Composition and M ...
	WedPmOR2-Studio reports
	WedPmPO1-Demo Session 3
	WedPmOR3-Paper Session 4: Sound Processing and Synthesi ...
	WedPmPO2-Demo Session 4

	Thursday 8, September 2005
	ThuAmOR1-Paper Session 1: Music Information Retrieval a ...
	ThuAmOR2-Paper Session 2: Performance
	ThuAmPO1-Poster Introduction Session
	ThuAmPO2-Demo Session 2
	ThuPmOR1-Paper Session 3: Interactive Music
	ThuPmOR2-Studio reports
	ThuPmPO1-Demo Session 3
	ThuPmOR3-Paper Session 4: General Computer Music Topics
	ThuPmPO2-Demo Session 4

	Friday 9, September 2005
	FriAmOR1-Paper Session 1: Composition Systems
	FriAmOR2-Paper Session 2: Composition Systems
	FriAmPO1-Poster Introduction Session
	FriAmPO2-Demo Session 2
	FriPmOR1-Paper Session 3: Sound Synthesis and Analysis
	FriPmPO1-Demo Session 3
	FriPmOR2-Paper Session 4: Performance
	FriPmPO2-Demo Session 4


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic

	Topics
	Digital Audio Signal Processing
	Sound Synthesis and Analysis
	Music Analysis
	Music Information Retrieval
	Representation and Models for Computer Music
	Artificial Intelligence and Music
	Languages for Computer Music
	Mathematical Music Theory
	Psychoacoustics, Music Perception and Cognition
	Acoustics of Music
	Aesthetics, Philosophy and Criticism of Music
	History of Electroacoustic Music
	Computer Systems in Music Education
	Composition Systems and Techniques
	Interactive Performance Systems
	Software and Hardware Systems
	General and Miscellaneous Issues in Computer Music
	Studio Reports

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Stephane Letz
	Dominique Fober
	Yann Orlarey



