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ABSTRACT

FAUST is a compiled language designed for real-time au-
dio signal processing. It is a free software published under
the terms of the GNU General Public License. Sources
and binaries are available at source forge :

http://faudiostream.sourceforge.net.
The demonstration will give an overview of the main fea-
tures of the language and the compiler through several
simple and practical examples.

1. INTRODUCTION

The name FAUST [1] stands for Functional AUdio STream.
It designates a language that combines two programming
models : functional programming and block diagram com-
position. Therefore you can think of FAUST as a struc-
tured block diagram language with a textual syntax.

FAUST is intended for programmers that need to de-
velop efficient C/C++ audio code from a high level spec-
ification. A single FAUST specification can be used for
multiple targets from plugins (various plugins standards
are supported) to standalone audio applications. Thanks
to some specific compilation techniques and powerful op-
timizations, the C++ code generated by the Faust compiler
is usually very fast and can generally compete with (and
sometimes outperform) hand-written C/C++ code.

2. THE LANGUAGE

The primitive elements of the language are : mathematical
operations on signals (the C functions on numbers have
a FAUST equivalent on signals), delays, tables and user
interface widgets. These primitive building blocks are
combined using five high level composition operations.
They operate on block-diagrams by establishing specific
patterns of connections between their inputs and outputs.
Moreover powerful abstraction mechanisms based on the
Lambda-Calculus allows for parametric block-diagrams
(block-diagrams with variable parts that can be instanti-
ated).

Programming with FAUST is somehow like working
with electronic circuits and analog signals. A FAUST pro-
gram is a list of definitions that describes a signal proces-

sor : a piece of code that produces output signals accord-
ing to its inputs signals (and maybe some user interface
parameters). For example a very simple FAUST program
that transforms a stereo signal into a mono signal is :

process = +;

It defines the process block-diagram (the FAUST equiv-
alent for main in C) as the + primitive operator that add
two signals.

3. THE COMPILER

In order to generate the most efficient code, the compila-
tion is based on a semantic approach. Instead of compiling
directly the block-diagram defined by the user, the idea
is to compile its mathematical meaning (what it actually
computes).

This mathematical meaning is inferred by the compiler
using symbolic techniques. It propagates virtual signals in
the block diagram and collects the resulting output signal
equations. These output equations are then simplified and
normalized before being used to generate the C++ code.
Two different block diagrams can then result in the same
C++ program provided that they have the same mathemat-
ical meaning.

The compiler can optionally wrap the generated code
into an architecture depended file in order to directly pro-
duce a VST plugin, a MAX/MSP external object or a Jack-
Gtk application for Linux. Eight different targets are cur-
rently available : Max/MSP, VST, LADSPA, OSS, Jack,
Port-Audio, Audio files. Other targets can be added sim-
ply by providing the corresponding architecture file.
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