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Abstract—The success of the Internet of Things (IoT) depends
on the ability to provide reliable communication to the billions
of devices that are used in many applications. In essence,
estimating the quality of wireless links ensures the optimization
of several protocols, reduces the end-to-end latency, and increases
the reliability and the network lifetime. In this paper, we
study the link quality in the Time Slotted Channel Hopping
(TSCH) network by analyzing the received signal strength (RSSI)
and error rates. The objective is to understand the temporal
properties of these parameters which is important to select the
appropriate channels for the critical applications and to enhance
the Quality of Service (QoS) of the network. We apply machine
learning techniques to a real dataset collected from a testbed
IoT network deployed at Grenoble, France. We define five classes
and present a classification of the 16 channels by comparing the
performances of KNN (k-Nearest Neighbor) and LSTM (Long
Short-Term Memory) algorithms.

Index Terms—Internet of Things (IoT), Link quality, QoS,
TSCH

I. INTRODUCTION

With the deployment of high speed networks and the rapid
growth of smart devices, the Internet of Things (IoT) has
gained wide acceptance and popularity. The number of Iot
devices is estimated at 50 billion in 2020 [1]. They are used
in several fields of application such as: industry, energy saving,
home automation, security, smart cities, etc. These applications
have a great impact on the quality of life of people and also
lead to economic benefits. The IoT objects are low-cost and
easy to deploy. Many architectures, operating systems and
protocols are defined for the IoT networks [2], [3]. Conse-
quently, different challenges may arise during the deployment
of IoT applications including the scalability, the diversity
of applications requirements, channel utilization, device’s re-
source limitation such as energy efficiency, processing capacity
and memory size [4]–[6]. Furthermore, radio signals are very
sensitive to noise, interference and multi-path distortions [7].
Hence, the Quality of Service (QoS) depends on the quality
estimation of the communication links between nodes which
have an impact on the routing and data gathering [8].

Quality approaches have been proposed at various layers of
the IoT architecture and take into consideration a number of
different QoS factors [9]. For example, the routing protocols
of these networks use various link quality estimators to spec-
ify the best available paths considering higher-quality links.

Furthermore, machine learning algorithms can be employed
to build link quality predictors. These algorithms assume an
initial model that can be used to generate predictions in real
time without any computational capabilities. The machine
learning model can be thereafter updated every time a new
quality value is observed in the link with the aim of improving
the accuracy of the initial model and also adapting it to
the changes observed in the link. Several approaches for
the link quality estimation are proposed in literature. In this
paper, we focus on data link layer by studying the quality of
wireless links. The objective is to anticipate the link breakage
and assign links with good quality to critical applications
which improves the Quality of Experience (QoE) provided
by the network. Generally, the quality of a link is estimated
as a proportion of successfully received packets. Hence, the
goodness of a link is linear to the proportion of received
packets. For this reasons, we study the link quality metrics and
then we apply Machine Learning (ML) algorithms to classify
and predict the quality of wireless links. This quality is usually
measured as a single value, such as Received Signal Strength
Indicator (RSSI), Link Quality Indicator (LQI) or the packet
delivery ratio (PDR) [10]. We apply KNN and LSTM machine
learning schemes and we consider a real data-set extracted
from the Grenoble testbed of the FIT IoT-lab. .

The rest of the paper is structured as follows; in Section II
we present a brief review of link quality metrics and we focus
on machine learning techniques used in link quality prediction.
In section III, we describe the test bed dataset, the prediction
procedure and then, we present comprehensive analysis of ML
approaches applied on different metrics. Finally, section IV
concludes the paper.

II. BACKGROUND & RELATED WORK

In the following, we briefly describe the most used link
quality metrics in the literature, and then we review two of
the important machine learning algorithms that can be applied
in the predictions in IoT networks.

A. Link Quality in IoT

A link characterizes a path allowing the exchange of data
between a sender and a receiver. Evaluating the quality of
links is crucial because it provides valuable information on
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the quality of transmission and avoid collisions. In essence,
wireless links with a bad quality would generate many re-
transmissions of the same packets which increases delivery
latency and decreases network lifetime by wasting node en-
ergy. However, a stable link guarantees a successful packet
reception.

Two types of metrics are defined to estimate the link quality
in IoT: hardware-based metrics and software-based metrics.

Hardware-based metrics. They are defined to estimate the
the Received Signal Strength (RSSI) and the Link Quality
Indication (LQI) of the received packet [11]. They include:
• Received Signal Strength Indicator (RSSI) is an estima-

tion of the received signal power in the channel. It is
measured over the first 8 symbols following the start
delimiter of a frame. When there is no transmission, the
register gives a background noise.

• Link Quality Indication (LQI) indicates the quality of the
received signal computed using the signal to noise ratio.
The routing metric at the network layer depends on this
measure.

• Signal to Noise Ratio (SNR) denotes the strength of the
signal. It is the difference between the received signal
strength and the background noise.

To estimate SNR, the receiver records at first the RSSI of
the received packet, then it has to measure the background
noise. RSSI of a signal is defined as:

RSSI[dBm] = 10 log10 (%'% + BKGnoise [dBm]) (1)

where %'% and � �=>8B4 are the power of the received
packet and the background noise respectively.

Because the RSSI of the ambient noise is estimated as
10;>610 (� �=>8B4), the equation of the SNR is the following:

SNR[dBm] = RSSI[dBm] − BKGnoise [dBm] (2)

The RSSI and the LQI metrics are correlated with the good-
ness of a signal and are computed over each received packet.
Numerous existing researches explored the link behavior in
literature. The authors in [12] presented an experimental study
of wireless link quality variation over a period of several
days in a sensor network placed in two different indoor office
environments. Kola et al. [13] analyzed the received signal
strength and error rates in an IEEE 802.11 indoor wireless
mesh network.They demonstrated that statistical distribution
and memory properties vary across different links, but are
predictable.

Software-based metrics. The software-based estimators are
further split into into three categories [14]:
• (Packet-Delivery Ratio) (PDR) is defined as the ratio of

the successful received packets to the total number of
send packets.

• Requested Number of Packets (RNP) It counts the average
number of packet transmissions/re-transmissions required
before a successful reception.

• Score-based is used to provide a score or a label iden-
tifying the link quality without referring to a physical
phenomena.

These software-based metrics can be gathered either on the
receiver, transmitter or both sides. Several works studied the
link quality based on hardware and software metrics. In [15],
the authors evaluated the relative accuracy of four metrics for
capturing the quality of a wireless link: RSSI, SINR, PDR
and BER (Bit-Error Rate) by conducting experiments with
multiple transmission rates and varying levels of interference
on a large set of links. A two stage classification was proposed
in [16], in which a very large fraction of links are immediately
either deemed usable or not, while the remaining ones need
a bit more testing before they are advertised by the routing
protocol as good or weak links. The Authors in [17] proposed
a prediction based cooperative scheme through which the prob-
lem of "when to relay" and "who to relay" are decided in an
optimal way. Also, the authors of [18] showed cooperative two
relay communication with opportunistic relaying significantly
mitigates interference of the whole network. However, more
recent works conducted in [19] studied an effective scheme
for joint two-hop cooperative communication integrated with
transmit power control for interference mitigation.

Generally, the existing metrics ensure either stability or
accuracy, depending on their types, but rarely both. Overall,
previous studies tried to classify links and discussed link
asymmetry. They claimed that intermediate links are highly
unstable. In this context, we further predict the link quality
using hardware and software based metrics. We mainly fo-
cus on link classifications according to PDR as well as on
the temporal and spatial fluctuation of RSSI and LQI. The
prediction of the values of the link metrics at a given time
will allow the adaptation of the data transmission. Indeed, in
wireless networks, collisions between data packets can occur.
If we know that a link at a given time has a high chance of
having collisions, then we can shift the transmission to a more
favorable time and therefore less prone to collisions. To make
these prediction, we use machine learning algorithms.

B. Machine Learning Techniques

Due to the ability to process and learn from large amount of
data traces, the use of ML techniques in link quality estima-
tions is promising to significantly improve the performance
of the networks. Data sets can be collected across various
technologies, topologies and mobility scenarios. Several con-
tributions can be found in the literature exploiting ML such
as classification, regression and clustering techniques in link
quality predictions. In this paper, we used KNN (K-Nearest
Neighbour) and LSTM (Long Short-Term Memory) to predict
the short term evolution of link quality, in order to switch
the data transmission on a better quality link. K-Nearest

Neighbour. KNN is a supervised learning model that could
predict the link quality state based on a small correlative part
of data [20]. In essence, it has no training phase. The training
data is used when making predictions to classify the data.



KNN It searches the K most similar feature vectors within
the historical database to predict future values. It defines a
simple structure with high computation efficiency. In general,
the prediction performance is influenced by the attributes of
datasets. For that, KNN has the ability to find out the most
similar historical patterns and ignore other dissimilar patterns
of the dataset.

KNN has been applied to address a variety of problems
within the context of wireless networks other than link quality
prediction. KNN has been used for for traffic state prediction
[21], anomaly detection, energy consumption, etc.

Long Short-Term Memory. LSTM is a is a deep learning
approach making predictions using historical data as a training
set. It learns over long sequences (keep or forget informa-
tion) [22]. This feature differentiates it from regular multi-
layer neural networks that do not have memory and can only
learn a mapping between input and output patterns.
The LSTM network is composed of three layers: : Input,
Hidden, and Output Layer [23]. It is constituted of memory
blocks with self-loops. Each memory block is composed of
special multiplicative units called gates. The memory blocks
learn over arbitrary vector representation of the input time-
series. The data is filtered with a set of weights and the help
of three gates. The input and forget gate, both work on the state
of memory blocks. The role of the input gate is to decide what
incoming data will be stored in memory, while forget-gate is
aimed at selectively forgetting information that is no longer
required for the LSTM understanding. It defines how long
data will be stored. Finally, the output gate is responsible for
picking useful information and dispensing it out as an output.

The LSTM learns to keep only pertinent information
to make predictions. This is achieved during the retro-
propagation (training phase).

III. WIRELESS LINK QUALITY PREDICTION

A. Dataset

In this study, we have used a dataset provided by IoT-LAB1

at Grenoble, France. We were able to access to 50 IoT nodes
(sensor and actuator) connected on 16 channels during 48
hours, with an overall of 6000 data exchanges per channel.
For each record, we collected the daytime, source, destination,
channel, average RSSI, PDR, and the number of packets sent.
Table I shows a raw dataset sample.

TABLE I: Raw dataset sample.
 

 

Datetime SRC DST Channel Mean RSSI PDR TX Count 

2018-01-11 16:32:22 0 18 11 -69.90 1.0 100 

2018-01-11 16:32:22 0 7 11 -70.74 1.0 100 

2018-01-11 16:32:22 0 42 11 -80.06 0.6 100 

 

 SRC DST Channel Mean RSSI PDR Link Classes PDR Difference RSSI Difference 

1 0 7 11 -70.74 1.0 0 0.0 -0.84 

2 0 42 11 -80.6 0.6 2 -0.4 -9.32 

3 0 28 11 -68.46 1.0 0 0.4 11.60 

 

 

Excellent Good Average Bad Very Bad 

PDR ≥ 0.9 
AND 

RSSI ≥ -80 

PDR ≥ 0.9AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≥ -80 

0.9 < PDR < 0.1 
AND 

-80 < RSSI < -90 

PDR ≤ 0.1 AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≤ -90 

PDR ≤ 0.1 
AND 

RSSI ≤ -90 

 

Datetime SRC DST Channel Mean RSSI PDR TX Count 

We are, therefore, in the case of time series. So the daytime
of sending becomes the index of our matrix. We have then
6 variables. After a quick glance at the means, standard
deviations, and variances of the different variables, we can
eliminate the last variable (the number of packets sent) because

1IoT-LAB: www.iot-lab.info

it does not vary. After cleaning the dataset, we need to perform
feature engineering. Hence, we added the difference from one
transmission to another for the average RSSI as well as for
the PDR. These features are calculated based on the following
formulas:

RSSIC (�, �) =
∑
8 rssi8 (�→ �)∑
Packet(�→ �) (3)

where � is the sender and � is the receiver, rssi8 represents
the RSSI of the 8Cℎ packet sent by A and received by B.

PDRC (�, �) =
∑

ACK(�→ �)∑
Packet(�→ �) (4)

In this case, a packet sent by node A is counted as received
by B if and only if B sends an acknowledgment. The PDR
ranges from 100% if the node received all packets, to 0% if
it received zero packet.

Additionally, we also want to rank links based on their
quality. So we defined the five classes, as shown in Table II.

TABLE II: Classes of link quality.
 

Excellent Good Average Bad Very Bad 

PDR ≥ 0.9 
AND 

RSSI ≥ -80 

PDR ≥ 0.9AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≥ -80 

0.9 < PDR < 0.1 
AND 

-80 < RSSI < -90 

PDR ≤ 0.1 AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≤ -90 

PDR ≤ 0.1 
AND 

RSSI ≤ -90 

 

Since the different variables’ values do not have the same
range, we need to scale the values before passing them to the
model. Here, the RSSI varies between -95 and -25 while the
PDR varies between 0 and 1. Therefore, we have to sort all
the variables in the same order of magnitude so that the model
does not give more importance to one variable than another.
Table III shows a sample of dataset after the cleaning process.

TABLE III: Cleaned dataset sample.

 

 

Datetime SRC DST Channel Mean RSSI PDR TX Count 

2018-01-11 16:32:22 0 18 11 -69.90 1.0 100 

2018-01-11 16:32:22 0 7 11 -70.74 1.0 100 

2018-01-11 16:32:22 0 42 11 -80.06 0.6 100 

 

 SRC DST Channel Mean RSSI PDR Link Classes PDR Difference RSSI Difference 

1 0 7 11 -70.74 1.0 0 0.0 -0.84 

2 0 42 11 -80.6 0.6 2 -0.4 -9.32 

3 0 28 11 -68.46 1.0 0 0.4 11.60 

 

 

Excellent Good Average Bad Very Bad 

PDR ≥ 0.9 
AND 

RSSI ≥ -80 

PDR ≥ 0.9AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≥ -80 

0.9 < PDR < 0.1 
AND 

-80 < RSSI < -90 

PDR ≤ 0.1 AND -80 < RSSI < -90 
OR 

0.9 < PDR < 0.1 AND RSSI ≤ -90 

PDR ≤ 0.1 
AND 

RSSI ≤ -90 

 

Datetime SRC DST Channel Mean RSSI PDR TX Count 

B. Models

Starting with LSTM and KNN, the model has to predict one
of the 5 link quality categories above. Startin with LSTM,
Fig. 1a indicates for each real class, which class the model
predicted. We also notice the disparity in the classes of links.
More than half of the links are “Excellent” and only a tiny
fraction are “Very Bad”.

This step allowed us to know that the choice of LSTM cells
was the right choice given the better results compared to the
results with KNN (Figure 1b). However, to reach the target
goal, we need to predict RSSI and PDR metrics to identify
the quality of a link. Here, we have created a new model
with regression problem. After some testing, we found that
the predictions of RSSI and PDR did not react exactly the
same way and therefore the model had to be adapted to the
metric.



(a) with LSTM.

(b) with KNN

Fig. 1: Confusion matrix for the classification of links.

C. Learning and Predictions

Before tackling the model parameters, we tested 3 different
scalings: “Robust Scaler”, “Standard Scaler”, and “MinMax
Scaler”. We have then developed a simple model where we
can observe the different performances.

As shown in Fig. 2, the scaling gave different results for
RSSI and PDR metrics. Here, we decide to chose the scaler
with the lowest loss, which means that we selected “MinMax
Scaler” for the RSSI, and “Standard Scaler” for the PDR. We
also split the data to 70% for training, and 30% for test.

D. Optimizers, Loss Function, and Number of Epochs

Now, we need to predict the RSSI and the PDR so that
we could rank the links according to their quality. To decide
on the number of epochs, we had to determine it based on
the curves and see when the loss was no longer changing.
By doing regression work, the chosen loss function was the
root mean square error. The results were slightly different,
if not worse with other functions. Looking at the scaling
curves, 1000 epochs seemed suitable. Then we tested different
optimizers for the two models. Fig. 3 shows the accuracy of
the model according to the epochs and the chosen optimizer.

From the obtained results, we were able to disqualify
Adagrad for RSSI and SGD for PDR since they are too slow
to learn or even unable at a time. However, the results for
Nadam and Adam have been similar for both metrics.
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Fig. 2: Model precision according to the number of epochs
according to the chosen scaling.

(a) RSSI.

(b) PDR

Fig. 3: Accuracy of the model according to the epochs and
the chosen optimizer.

E. Number of Layers and Neurons
The more layers and neurons the model has, the greater

number of calculations and therefore the longer the execution



(a) RSSI.

(b) PDR

Fig. 4: Channel 11 metric predictions (sample prediction,
parameters: Adam, MAE, 4505 training data, 4 hidden layers
of 128, 64, 32 and 16 neurons).

time. We started with a 4 hidden layer model of 128, 64, 32,
and 16 neurons (LSTM cells), the obtained results are shown
in Fig. 4. The execution times were relatively fast but the
performance poor. Given the rather mediocre results observed,
we made two hypotheses: (a) there is not enough training data
for the model to correctly capture the complexity of channel
quality variations, and (b) the chosen model is not efficient
enough to predict values. Therefore, we decided to increase
in a semi-synthetic way, by creating new data from what we
already have, and hence allow better learning.

After the first test, and by increasing only the number
of data, the results are immediately better. Although the
predictions for RSSI are slightly improved (Fig. 5a), the
performance of PDR prediction is greatly improved (Fig. 5b).
Besides, by modifying the number of neurons to 256 for the
4 layers of the model, the performance becomes excellent for
the predictions of RSSI and PDR (Fig. 6). The calculation
time is approximately one hour.

F. Prediction Accuracy:

In this work, we have two almost identical models, only the
activation function of the output layer is different, near for the
RSSI and sigmoid for the PDR. The input data differs in its
scaling, the "MinMax scaler" is used for RSSI data, and the
"Standard scaler" is used for PDR data.

By predicting the RSSI and PDR metrics, we were able
to predict the quality of a link according to different classes
(Table II), which gives us a confusion matrix as shown in Fig.
7. We can normalize this matrix in order to obtain percentages

(a) RSSI

(b) PDR.

Fig. 5: Metric predictions for channel 11 with increased data
volume (sample prediction, parameters: Adam, MSE, 9018
training data, 4 hidden layers of 128, 64, 32 and 16 neurons).

(a) RSSI.

(b) PDR.

Fig. 6: Metric predictions for channel 11 with increased data
volume (sample prediction, parameters: Adam, MSE, 4 hidden
layers of 256 neurons).

and thus know the prediction accuracy for each class as
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Fig. 8: Normalized confusion matrix.

depicted in Fig. 8.
On the diagonal, we can find good predictions, and on the

rest of the lines, we find bad predictions. We can easily see
that the “Excellent” quality is predicted very well. Conversely,
"Very Bad" quality is very poorly predicted. This is explained
by the training data, which is uneven and which includes much
more "Excellent" quality and very little "Very Bad" quality.
One solution to this problem would be to homogenize the
data to have as much quality of each class.

IV. CONCLUSION

In this paper, we proposed to predict link quality in IoT
networks. We studied two link quality estimators: a hardware
one, RSSI, and a software one, PDR. We compared the
accuracy provided by different machine learning techniques:
KNN and LSTM. Considering bad links in routing protocols
penalizes the network performances in terms of end-to-end
latency, end-to-end reliability and network lifetime. In essence,
we demonstrate the importance of the prediction techniques in
the case of critical application and to improve the QoS of the
network. The next phase of the project will therefore be to
use these models and to be able to predict for a real network,
the quality of the links in order to optimize communications.
It will be necessary to test, if this method can be used for a
larger number of nodes and therefore of data. Nevertheless,

if this method is viable, it could be used in various fields
of application such as security, with the case of critical
applications which require reliable and fast communication,
or even for smart cities comprising networks of sensors of
size.
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