
HAL Id: hal-03162635
https://hal.science/hal-03162635v1

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

60 Years of Mastering Concurrent Computing through
Sequential Thinking

Sergio Rajsbaum, Michel Raynal

To cite this version:
Sergio Rajsbaum, Michel Raynal. 60 Years of Mastering Concurrent Computing through Sequential
Thinking. ACM SIGACT News, 2020, 51 (2), pp.59-88. �10.1145/3406678.3406690�. �hal-03162635�

https://hal.science/hal-03162635v1
https://hal.archives-ouvertes.fr


60 Years of Mastering Concurrent Computing
through Sequential Thinking ∗

Sergio Rajsbaum†, Michel Raynal?,◦

†Instituto de Matemáticas, UNAM, Mexico
?Univ Rennes IRISA, 35042 Rennes, France

◦Department of Computing, Hong Kong Polytechnic University
rajsbaum@im.unam.mx raynal@irisa.fr

Abstract

Modern computing systems are highly concurrent. Threads run concurrently in shared-memory
multi-core systems, and programs run in different servers communicating by sending messages to
each other. Concurrent programming is hard because it requires to cope with many possible, unpre-
dictable behaviors of the processes, and the communication media. The article argues that right from
the start in 1960’s, the main way of dealing with concurrency has been by reduction to sequential
reasoning. It traces this history, and illustrates it through several examples, from early ideas based
on mutual exclusion (which was initially introduced to access shared physical resources), pass-
ing through consensus and concurrent objects (which are immaterial data), until today distributed
ledgers. A discussion is also presented, which addresses the limits that this approach encounters,
related to fault-tolerance, performance, and inherently concurrent problems.

.

Keywords: Agreement, Asynchrony, Atomicity, Concurrent object, Consensus, Consistency con-
dition, Crash failure, Fault-tolerance, Ledger, Linearizability, Message-passing, Mutual exclusion,
Progress condition, Read/write register, Sequential thinking, Sequential specification, State machine
replication, Synchronization, Total order broadcast, Universal construction.

I must appeal to the patience of the wondering reader,
suffering as I am from the sequential nature of human communication.

Edsger W. Dijkstra (1903–1987) [26]

Le véritable lieu de naissance est celui
où l’on a porté pour la première fois un coup d’œil intelligent sur soi–même.1

Marguerite Yourcenar (1903-1987) [97]

L’unicité de la pensée claire.2

Jean Fourastié (1907-1990) [37]
∗This article is an extended version of the article [76], which appeared in the Communications of the ACM.
1The real place of birth is the one where for the first time we took an intelligent look at ourselves.
2The uniqueness of clear thinking.

1



1 Introduction

Sequential reasoning is natural and easier. The human brain behaves as a multiprocessor computer,
which performs many tasks simultaneously, naturally and frequently. However, despite the fact we are
good at processing parallel information, it is difficult to be aware of the activities we perform concur-
rently, and when we try to raise awareness, we end up distracting ourselves and reducing the quality
of what we are doing. Only after intense training can we, like a musician, conduct several activities
simultaneously.

It is much easier to reason sequentially, doing only one thing at a time, than to understand situations
where many things occur simultaneously. Furthermore, we are limited by our main communication
mechanisms with others, spoken or written language, which are inherently sequential. These convey
information in parallel through the voice tone, facial and body expressions, writing style, etc., but we
are often unaware of it. Thus, while we are “parallel processors”, and we leave in a world where multiple
things happen at the same time, we usually reason by reduction to a sequential world.

The same happens in computing. It is much easier to reason about a sequential program, than about
one in which operations are executed concurrently.

The grand challenge. For more than fifty years, one of the most daunting challenges in informa-
tion science and technology lies in mastering concurrency. Concurrency, once a specialized discipline
for experts, is forcing itself onto the entire IT community because of two disruptive phenomena: the
development of networking communications, and the end of the ability to increase processors speed
at an exponential rate. Increases in performance can only come through concurrency, as in multicore
architectures. Concurrency is also critical to achieve fault-tolerant, distributed available services, as
in distributed data bases and cloud computing. Yet, software support for these advances lags, mired
in concepts from the 1960s such as semaphores. The problem is compounded by the inherently non-
deterministic nature of concurrent programs: even minor timing variations may generate completely
different behavior. Sometimes tricky forms of concurrency faults can appear, such as data races (where
even though two concurrent threads handle a shared data item in a way that is correct from each thread’s
perspective, a particular run-time interleaving produces inconsistent results), and others, such as dead-
locks (situation where some threads still have computations to execute, while none of them can proceed
as each is waiting for another one to proceed), improper scheduling of threads or processes, priority in-
versions (where some processes do not proceed because the resources they need are unduly taken away
by others) and various kinds of failures of the processes and communication mechanisms. The result is
that it is very difficult to develop concurrent applications. Concurrency is also the means to achieve high
performance computing, but in this paper we are not concerned with such applications.

A simple illustration of synchronization difficulty. Let us consider the following classical illustra-
tion of the concurrency difficulties in software engineering. A bank account is shared by a group of
people. The rule is that if the balance drops below a certain threshold, L, some high interest will be
charged. Thus, each time a member of the group wants to withdraw some amount of money, x, she first
needs to send a message to the bank to make sure the balance is greater than or equal to L + x. Only
then she will send a message asking to withdraw x from the account. Without any synchronization, it
is impossible to maintain the invariant that the balance of the account is always at least L, unless of
course no withdrawals are ever done. Even assuming that the participants can directly access the ac-
count, synchronization is needed. Namely, suppose members of the group can issue read() operations,
that directly return the current balance in the account, and execute withdraw(x) operations that reduce
the balance by x. If Alice asks for the balance and gets back a value z > L + x, she cannot then issue
a withdraw(x) operation, because she might be a bit slower than Bob, who could very fast issue read()
and then withdraw(x), just after of Alice invoked read() but before she invokes withdraw(y).

2



What does concurrent computing through sequential thinking mean? Instead of trying to reason
directly about concurrent computations, the idea is to transform problems in the concurrent domain into
simpler problems in the sequential domain, yielding benefits for specifying, implementing, and verifying
concurrent programs. It is a two-sided strategy, together with a bridge connecting them:
• Sequential specifications for concurrent programs.
• Concurrent implementations.
• Consistency conditions relating concurrent implementations to sequential specifications.

Although a program is concurrent, the specification of the object (or service) that is implementing
is usually through a sequential specification, stating the desired behavior only in executions where the
processes execute one after the other, and often trough familiar paradigms from sequential computing
(such as queues, stacks and lists). In the previous example, when we state the rule that if the balance
drops below a certain threshold, L, some high interest will be charged, we are thinking of an account
which is always in an atomic state, i.e., a state where the balance is well defined. This makes it easy to
understand the object being implemented, as opposed to a truly concurrent specification which would
be hard or unnatural. Thus, instead of trying to modify the well-understood notion of say, a queue, we
stay with the usual sequential specification, and move to another level of the system the meaning of a
concurrent implementation of a queue.

The second part of the strategy is to provide implementation techniques for efficient, scalable, and
fault-tolerant concurrent objects. We will discuss only a few of the many techniques that have been
developed, such as mutual exclusion algorithms, simulations of an easier to program model on top of a
different system, state machine replication, quorums, broadcast abstractions.

Bridging techniques show how to obtain concurrent executions that appear to the processes as if the
operations invoked on the object where executed atomically, in some sequential interleaving. This is
captured by the notion of a consistency condition, which defines the way concurrent invocations to the
operations of an object correspond to a sequential interleaving, which can then be tested against the its
sequential specification. We will concentrate on linearizability, among the many consistency conditions
that have been proposed.

Everything is NOT reducible to sequential thinking. While a core branch of development in con-
current computing has been by reduction to sequential thinking, it is important to stress that not all
problems are of this type. Some applications are not required to provide the illusion of sequential
executions. Among them there are distributed graph algorithms, resource allocation problems, clock
synchronization, and applications that involve large amounts of data that are continually updated, to cite
a few.

Organization of the article. This article concentrates on a few significant examples of sequential
reasoning used to master concurrency, highlighting fundamental notions of this approach. More specifi-
cally, it focuses on sequential specifications, linearizability, progress conditions, universal constructions,
the need to solve consensus for fault-tolerance, strong shared objects as a way of solving consensus, and
distributed ledgers.

To have a concrete illustration of the ideas, the article describes several algorithms. It starts by
exploring a brief history of the approach, trying to understand in more detail its meaning and significance
(Section 2). Then it tells the story through concrete examples, starting with mutual exclusion algorithms
(Section 3) and shows a natural evolution from synchronization suited the sharing of physical resources
to the sharing of digital (immaterial) resources/objects (Section 4).

Then, the article discusses the construction read/write registers on top of crash-prone asynchronous
message-passing systems (Section 5), and more generally, considers then construction of the family
of objects defined by a sequential specification (Section 6). A central technique is the state machine

3



Impossibility of asynchronous determinisitic consensus

Fast mutual exclusion

1977, 1983

1993, 1997

Shared memory on top of asynchronous message-passing systems

Weakest information on failures to solve consensus in the

1981

1974

1971

1965

1983

1985

1980

1985

1987

1991

1995

1996

2008

Byzantine failures in synchronous systems (DA 2005)

Simplicity in mutex algorithms

Liveness (progress condition) (DA 2018)

in the presence of process crashes (DA 2001)

Wait-free synchronization (DA 2003)

Asynchronous randomized consensus (DA 2015)

presence of asynchrony and process crashes (DA 2010)

despite a minority of process crashes (DA 2011)

Scalability, accountability

Transactional memory (DA 2012)

Peterson [71]

Ben-Or [6], Rabin [73]

Alpern, Schneider [1]

Herlihy [44]

Lamport [58]

Pease, Shostak, Lamport [70]

Fischer, Lynch, Paterson [34]

Herlihy, Moss [46], Shavit, Touitou [85]

Attiya, Bar Noy, Dolev [3]

Chandra, Hadzilacos, Toueg [17]
Nakamoto [66]

1965 Mutual exclusion from atomic read/write registers
Dijkstra [23]

Semaphores Dijkstra [25]
Mutual exclusion from non-atomic read/write registers

Concurrent reading and writing

Lamport [55]

Lamport [53]

Lamport [54], Peterson [72]
Distributed state machine (DA 2000)

1

Some of the previous papers were awarded the ACM-EATCS Edsger W. Dijkstra Prize in
Distributed Computing. Created in 2000, this award is given to outstanding papers on the

principles of distributed computing, whose significance and impact on the theory and/or practice
of distributed computing have been evident for at least a decade). In the history line, “[aa] DA

bcde” means “paper(s) referenced [aa] received the Dijkstra Award in the year bcde”.

Sidebar 1: History of synchronization: a few important dates

replication (Section 7), used to implement a replicated fault-tolerant system that seems to behave as a
single sequential state machine. thee article then describes how it is made possible to implement such a
sequential machine in a fault-tolerant way through powerful synchronization objects (Section 8). It also
discusses the distributed ledger trend of doing so in a highly scalable, tempered-proof way (Section 9).
The approach has some limitations, both in terms of efficiency and applicability (Section 10). Finally a
conclusion presents the evolution line, which motivated this article (Section 10).

2 Elements of the Approach: an Historical Perspective

The history of concurrency is long and there is an enormous amount of development, on many perspec-
tives. As far as concurrency in distributed computing is concerned, the interested reader will find many

4



results (both in shared-memory and message passing) in textbooks such as [5, 14, 40, 50, 54, 65, 78,
81, 84, 91] to cite a few. Many more books exist on other approaches, such as systems, formal methods
and security. The focus here is the history about the theoretical ideas of sequential reasoning to master
concurrency. A few milestones are in the Sidebar 1.

When the story started. To understand what does concurrent computing through sequential thinking
means, let us go back to its origins in the 1960’s and 1970’s, where a variety of systems were being built,
both in hardware and software, moving away from the original paradigm of a single user interacting with
a single sequential computer. As soon as communication and interaction among users and sequential
processes was becoming possible, the desire to take advantage of these possibilities emerged: to share
resources, to replicate components for fault-tolerance, to compute in a collaborative way, to distribute
resources and data geographically for accessibility. All such motivations are relevant to the approach
that concerns us, both to understand its meaning, and to study the tools to implement it. And indeed, the
approach surveyed in the present article is relevant in different areas, still today: databases, operating
systems, networking, distributed computing, and concurrent programming.

The early days were in the 1960’s with the seminal work of Dijkstra and others in multi-programming
(see [11] where are collected the very first articles which gave rise to concurrent programming), then
in the 1970’s with database and fault-tolerance communities. At the end of the 1970’s, distributed
computing had become a possibility. Soon after, the Internet was born and it was being used to send
email and do file transfer. Additionally, it was hoped that the Internet could be used to run applications
distributed over many machines, but there was little understanding of how that could be accomplished. It
was motivated by a lack of understanding basic theory, that theoretical distributed computing was born,
the first ACM conference on Principles of Distributed Computing in 1982, and the first impossibility
results such as the first version the famous FLP impossibility result in 1983 [35], and the highlighting of
lower bounds (e.g., [34, 72]).

Already in 1967 there were debates about multi-processor computing and Amdahl’s Law predicting
speedup when using multiple processors. In the late 1970s a move occurred from multiprocessors with
shared memory to multicomputers with distributed memory communicating by sending messages. In
the 1990s, the importance of shared memory with multicores returns, as it meets the barriers of energy
expenditure, and the limits of making processors increasingly faster, emphasizing that the exponential
growth prophesied by Moore’s Law refers to packaging more and more components on the same chip,
that is more and more parallel computing. And a new era of distributed systems is entered, which is
motivated by new distributed services such as ledger-based applications, which must be open, scalable,
and tolerate arbitrarily malicious faults. Nevertheless, while both parallel computing and distributed
computing involve concurrency, it is important to stress the fact they address different computing worlds
(see Sidebar 2).

At the origin: mutual-exclusion to share physical resources. Concurrent computing began in 1961
with what was called multiprogramming in the Atlas computer, where concurrency was simulated – as
we do when telling stories where things happen concurrently – interlacing the execution of sequential
programs. Concurrency was born in order to make efficient use of a sequential computer, which can
execute only one instruction at a time, giving users the illusion that their programs are all running
simultaneously, through the operating system. A collection of early foundational articles on concurrent
programming appears in [11].

As soon as the programs being run concurrently began to interact with each other, it was realized
how difficult it is to think concurrently. By the end of the 1960s there was already talk of a crisis:
programming was done without any conceptual foundation and lots of programs were riddled with subtle
race-related errors causing erratic behaviors. In 1965 Dijkstra [25] discovered that the mutual exclusion

5



As far as terminology is concerned we consider the following definitions (from [81]).

• Parallel computing. Parallel computing addresses concepts, methods, and strategies which
allow us to benefit from parallelism (simultaneous execution of distinct threads or processes)
when one has to implement a computation. The essence of parallel computing lies in the
decomposition of the computation in independent computation units and exploit their in-
dependence to execute as many of them as possible in parallel (simultaneously) so that the
resulting execution is time-efficient.

• Distributed computing. Distributed computing arises when one has to solve a problem in-
volving geographically distributed entities (processors, nodes, sensors, peers, agents, etc.),
such that each entity only has a partial knowledge of the many input parameters involved in
the problem to be solved. Because their knowledge is partial, these computing entities must
cooperate to solve the problem. They also must cope with their environment, which can be
modeled as adversaries, such as asynchrony, failures, mobility, etc. These adversaries create
an uncertainty on the state of the system, uncertainty that has to be understood and mastered
if one wants to produce correct distributed software.

As we can see, parallel and distributed computing are in some sense dual: one consists in decom-
posing a computation into independent entities, while the other consists in allowing pre-existing
entities – whose distribution is not under the control of the programmer – to cooperate in the
presence of adversaries such as the net effect of asynchrony and process failures.

Sidebar 2: Distributed computing versus parallel computing: two different faces of concurrency

of parts of code is a fundamental concept of programming, and opened the way for the first books of
principles on concurrent programming which appeared at the beginning of the 1970s.

Interestingly, a very early impossibility result, showing a lower bound on the size of memory needed
for two-process mutual exclusion [23], was one of the motivations for the systematic study of distributed
computing by pioneers of the field (see for example [66]).

Fault-tolerance. Some of the earliest sources of the approach followed in this article come from fault-
tolerance concerns, dating back to the 1960’s, and in fact going back to von Neumann, as described by
Aviẑienis in [6], where he describes the sources of fault-tolerant techniques and some techniques used
up to day: “Considerable effort has been continuously directed toward practical use of massive triple
modular redundancy (TMR) in which logic signals are handled in three identical channels and faults
are masked by vote-taking elements distributed throughout the system." The idea begins to emerge, that
“The fact that a task is executed by several processors is invisible to the application software."

In 1973 the design of systems such as the SIFT [95] project at SRI began to emerge, for highly
reliable computer systems for aircraft control. This project was notable for producing the Byzantine
generals problem and its solutions [72], and indeed another source of motivation for the birth of theoret-
ical research on distributed computing. Among other points, the study of Byzantine processes showed
that triple modular redundancy does not work when processes can exhibit Byzantine failures (in the
presence of such failures, many problems cannot be solved only if one third or more of the processes
can be Byzantine).

The primary backup approach to fault-tolerance is an elementary early way of producing the illusion
of a single computer, originating in 1976 or earlier [89]. A survey of about 30 years on replication
collects many techniques, some from the very practical perspective [21]. It is about replicating data
or a service that will behave in a manner indistinguishable from the behavior of some non-replicated
reference system running on a single non-faulty node. More modern techniques such as virtual syn-

6



chrony, viewstamped replication, quorums, etc, have their origins in Lamport’s seminal 1978 paper [57]
proposing the fundamental state machine replication paradigm.

Networking. In addition to providing the motivation to build distributed systems and resource shar-
ing, the distributed system community started early to design broadcast algorithms that are central to
implementation of distributed systems that behave as if they were sequential. The proceedings of the
Sixth Symposium on Data Communications (SIGCOMM) in 1979 already includes papers on integra-
tion of a DBMS into a network environment, concurrency control in distributed database systems, and
the reliable update of replicated databases.

An early system was the Stony Brook System, discussed in [3]. This paper is remarkable for noticing
what we call now the Coordinated Attack Problem where two generals need to coordinate by sending
messages that may be lost, and furthermore, present one of the earliest impossibility results in the field
“To show that no amount of user protocol can solve the problem in a manner to dissipate the anxiety of
both parties as to the outcome of a transaction." Remarkably, this is the first computer communication
problem proved to be unsolvable. Still today, introductory classes about computer networking teach this
result, teach that TCP cannot guarantee state consistency between endpoints and why this is the case,
explained in a similar manner to this early paper. It is not surprising that the short documentary film
from 1972 about the ARPANET is titled Computer Networks: The Heralds of Resource Sharing.

Resource sharing. In 1965, Robert Taylor at ARPA started to fund large programs in advanced re-
search in computing at major universities and corporate research centers throughout the United States,
especially motivated by resource sharing. Among the computer projects that ARPA supported was time-
sharing, in which many users could work at terminals to share a single large computer The thing that
drove Bob Taylor at ARPA was resource sharing.

Time-sharing was developed in the late 1950’s out of the realization that a single expensive com-
puter could be efficiently utilized if a multitasking, multiprogramming operating system allowed mul-
tiple users simultaneous interactive access. The DEC’s PDP-10 is the machine that made time-sharing
common, and this and other features made it a common fixture in many university computing facilities
and research labs during the 1970s. Time-sharing emergence as the prominent model of computing in
the 1970’s represented a major technological shift in the history of computing.

The first commercially successful time-sharing system, the Dartmouth Time Sharing System’s cre-
ators wrote in 1968 that "any response time which averages more than 10 seconds destroys the illusion
of having one’s own computer" [83]. Timesharing users thought that their terminal was the computer.

The architecture of this system was influenced by the Multics operating system. Multics supported
multiple CPUs; it was one of the earliest multiprocessor systems. An influential early time-sharing
operating system, started in 1964. The 1950s and 1960s was the era of timesharing and it was clear that
the fundamental principles of timesharing would also apply to data networks. With the appearance of
computer networks in the late 1960’s and early 1970’s, both homogeneous multi-machine configurations
(TSS-IBM) consisting of identical systems and at the other extreme is the ARPA network, work on
distributed operating systems was fostered, focusing on interprocess communication. A main concern
was resource sharing over the network, both physical and files (which are immaterial data).

By the spring of 1969, a well-documented, reliable version of the RC 4000 multiprogramming sys-
tem was running. Brinch Hansen [12] describes it, saying that “Dijkstra [26] has demonstrated that
indivisible lock and unlock operations operating on binary semaphores are sufficient primitives from a
logical point of view. We have been forced to conclude, however, that the semaphore concept alone
does not fulfill for our requirements of safety and efficiency in a dynamic environment in which some
processes may turn out to be black sheep and break the rules of the game. Instead we have introduced
message buffering within the system nucleus as the basic means of process communication”.

7



Databases and consistency conditions. This community was the first to think about consistency in
replication platforms, and to struggle with fundamental limits. They had their own version of the FLP
result: replication algorithms in which applications updated replicas using simple timeout mechanisms
for fault-tolerance, was shown to result in non-serializable executions [8].

While the previous approaches are some of the important sources for the sequential approach to
distributed computing, they were more focused on operational approaches, like consensus, mutual ex-
clusion and fault-tolerance. Indeed it was from the semantics side, explicitly defining the meaning of
sequential thinking for concurrency, with the idea of serializability, as early as 1976, “based on suitable
consistency and concurrency control operation, we show that, even though the individual application
programs are running concurrently and generating requests interleaved in an apparently random fashion,
the overall effect produced by the concurrency control must be the same as if the programs that write
had been run sequentially in some linear order" [88]. Or also in 1976 Eswaran et al. [31], “Nonserial
schedules run the risk of giving a transaction an inconsistent view of the state. So we are particularly
interested in those schedules which are "equivalent" to serial schedules".

But still in 1981 a need for a theory of concurrency control was in need. Stearns et al. [10] say
"Concurrency control has been actively investigated for the past several years, and the problem for
nondistributed DBMSs is well understood. A broad mathematical theory has been developed to analyze
the problem, and one approach, called two-phase locking, has been accepted as a standard solution.
Current research on non-distributed concurrency control is focused on evolutionary improvements to
two-phase locking, " "Distributed concurrency control, by contrast, is in a state of extreme turbulence.
More than 20 concurrency control algorithms have been proposed for DDBMSs, and several have been,
or are being, implemented. These algorithms are usually complex, hard to understand, and difficult to
prove correct (indeed, many are incorrect). Because they are described in different terminologies and
make different assumptions".

In addition to the semantics contribution, from databases come some of the earliest techniques to
enforce a sequential view, under failures, such as two-phase commit dating back to ideas of Lampson
and Sturgis in 1976 [63].

From the seminal book of Bernstein, Hadzilacos and Goodman [9], it is clear that it was in database
transaction processing that the roots of sequential thinking are most clear, “Whether by its native ca-
pabilities or the way we educate it, the human mind seems better suited for reasoning about sequential
activities than concurrent ones. This is indeed unfortunate for the study of concurrency control algo-
rithms. Inherent to the study of such algorithms is the need to reason about concurrent executions."

3 Mutual Exclusion

In the mutual exclusion problem described and solved by Dijkstra [25] there is a collection of asyn-
chronous processes, each alternately executing a critical and a noncritical section, that must be synchro-
nized so that no two processes ever execute their critical sections concurrently.

Mutual exclusion. A mutual exclusion algorithm consists of the code for two operations, acquire()
and release(), that a process invokes to bracket a section of code called a critical section. The usual
environment in which a mutual exclusion algorithm is executed is asynchronous, where process speeds
are arbitrary, independent from each other. The mutual exclusion algorithm should guarantee two con-
ditions.

• Mutual exclusion. No two processes are simultaneously executing their critical section.

• Deadlock-freedom. if one or several processes invoke concurrently acquire(), eventually one of
them terminates its invocation, and consequently executes its critical section.

8



Progress conditions. When Dijkstra introduced mutual exclusion [25], he also introduced the previous
progress condition, called deadlock-freedom. As observed by D.E. Knuth in [53], Deadlock-freedom
does not prevent specific timing scenarios from occurring in which some processes can never enter their
critical section. Hence, he proposed The stronger starvation-freedom progress condition, states that any
process that invokes acquire() will terminate its invocation (and will consequently execute its critical
section).

On mutual exclusion algorithms from atomic read/write registers. The first mutual exclusion al-
gorithms were abstruse, difficult to understand and prove correct (some of them are collected in [77]).
We describe here an elegant algorithm by Peterson [73]. The version presented in Algorithm 1 is for two
processes, but can be easily generalized to n processes.

The two processes p1 and p2 share three read/write atomic registers, FLAG [1], FLAG [2], and
LAST . Initially FLAG [1], FLAG [2], are down, while LAST does not need to be initialized. Both
processes can read all registers. Moreover, while LAST can be written by both processes, only pi,
i ∈ {1, 2}, writes to FLAG [i]. Atomic means that the read and write operations on the registers appear
as if they have been executed sequentially (hence, the notion of “last writer” associated with LAST is
well defined).

operation acquire() is % invoked by pi, i ∈ {1, 2}
FLAG[i]← up; LAST ← i; let j = 3− i;
wait

(
(FLAG[j] = down) ∨ (LAST 6= i)

)
;

return()
end operation.

operation release() is FLAG[i]← down; return() end operation.

Algorithm 1: Peterson’s algorithm for two processes

When process pi invokes acquire(), it first raises its flag, thereby indicating it is competing, and then
writes its name in LAST indicating it is the last writer of this register. Next process pi repeatedly reads
FLAG [j] and LAST until it sees FLAG [j] = down or it is no longer the last writer of LAST . When
this occurs, pi terminates its invocation. The operation release() consists in a simple lowering of the
flag of the invoking process. The read and write operations on FLAG [1], FLAG [2], and LAST are
totally ordered (atomicity), which facilitates the proof of the mutual exclusion and starvation-freedom
properties.

Mutual exclusion was the first mechanism for mastering concurrent programming through sequen-
tial thinking, and lead to the identification of notions that began to give a scientific foundation to the
approach, such as the concepts of progress condition and atomicity.

Fast mutual exclusion and adaptive algorithms. The previous algorithm can be easily generalized
to solve mutual exclusion in a set of n ≥ 2 processed. Many n-process mutual exclusion algorithms
have been proposed, in which each process must solve (n−1) conflicts to access the critical section. An
algorithm in which the number of read and write accesses to shared registers is constant in contention-
free scenarios appears in Lamport [60]. This article is the origin of research on adaptive algorithms,
whose complexity depends on the concurrency pattern in which operations are invoked.

Atomicity from non-atomic read/write registers. The previous algorithms implements mutual ex-
clusion using underlying atomic read/write registers. In fact, this hardware atomicity is not required,
Lamport [55], showed that mutual exclusion can be achieved using only safe registers [59]. Several

9



algorithms building atomic read/write registers from non-atomic read/write registers are described in
e.g., [78, 91].

On the database side. The concept of a transaction was introduced in database as a computation unit
(usually, an operation-based translation of a query expressed in a specific query language) [43]. The
management of transactions introduced the notion of concurrency control, which gave rise to several
approaches to ensure that transactions appear as if they had been executed sequentially [9, 71].

Transactional memory. The concept of transactional memory (TM) was introduced by M. Herlihy
and J. Moss in 1993 [48], and then investigated from a pure software point of view (STM) by N. Shavit
and D. Touitou in 1997 [87].

The aim of a TM/STM system is to discharge the programmers from the management of synchro-
nization in multiprocess programs that access concurrent objects. To that end, an TM/STM system
provides the programmer with the concept of a transaction. Basically, the job of the programmer is to
design each process of the application as a sequence of transactional code and non-transactional code,
where a transaction is any piece of code that accesses concurrent objects, but contains no explicit syn-
chronization statement, and non-transactional code does not access concurrent objects. It is then the
job of the underlying TM/STM system to provide the illusion that each transaction appears as being
executed atomically (see Sidebar 3, where each read or write operation is replaced by a transaction).
Executing each transaction in a critical section would solve the problem, but this would be inefficient.
So, for efficiency, a TM/STM system must allow transactions to execute concurrently. The major parts
of a TM/STM systems execute transaction in a speculative mode at the end of with a transaction is
committed or aborted. According to the TM/STM system, the recovery of a transaction can be under
the control of either the system or the invoking process. Examples of STM systems based on different
underlying principles can be found in [15, 24].

As we can see, a TM/STM system allows the programmer to concentrate on the problem it has to
solve and not on the way the required synchronization must be implemented. In this sense it provides
the programmer with a higher abstraction level. It is important to see that a transaction can be any piece
of code (and not a code obtained from a specific query language as in databases). TM/STM provides
programmers with a tool from which they can see executions as sequences of transactional codes.

The important point here is that both concurrency control in database and transactional memory aim
at providing an abstraction level at which the users see an execution as if it was produced by a sequential
processor.

4 From (Physical) Resources to (Immaterial) Objects

From physical resources to services. At the beginning, a critical section was encapsulating the use
of a physical resource, which by its own nature, is sequentially specified (e.g., disk, printer, processor).
Conceptually not very different, it was then used to protect concurrent accesses to preserve consistency
of simple data (such as a file in the readers/writers problem [22]). However, when critical sections began
to be used to encapsulate more general shared objects, new ideas were needed.

Data are not physical resources. A shared object is different from a physical object, in that it does not
a priori require exclusive access; a process can read the data of a file while another process concurrently
modifies it. The mutex-free (also called lock-free) approach (introduced by Lamport in [56]), makes
possible to envisage implementations of purely digital objects in which operation executions are free

10



from mutual exclusion and can overlap in time, none of them depending of the others to terminate [46]
(see progress conditions defined below).

Consistency conditions. Wherever concurrent accesses to share data take place, a consistency con-
dition is needed to define what does it mean to correctly execute concurrently operations, especially
in the presence of buffers and memory caches (that are defined only in sequential executions, such as
read/write operations). Instead of transforming a concurrent execution into sequential execution (as in
mutual exclusion), the idea appears to enforce only virtual sequentiality, namely, from an external ob-
server point of view, everything must appear as if the operations were executed sequentially, thereby
reducing –at a higher abstraction layer– concurrent computing to sequential computing. When the to-
tal order on the operations is required to respect the order on non-overlapping operations, this virtual
sequentiality is called atomicity [59] or linearizability [51] (these two terms are synonyms). This is illus-
trated in Sidebar 3, which describes an execution in which three processes access an atomic read/write
register R.

From serializability to linearizability. Since early on in 1976, in the database context, serializabil-
ity [71, 88] of transactions that aggregate many operations without locking and unlocking entities was
generally accepted as the right notion of correctness: to require that transactions appear to have executed
atomically. In the concurrent programming the equivalent notion of sequential consistency was used,
but for individual operations [58]. Later on, realizing that this type of condition is not composable, lin-
earizability [51] required additionally that this sequential order must also preserve the global ordering
of non-overlapping operations. Linearizability has the advantage of being composable, over sequential
consistency: a system made of linearizable implementations is linearizable.

The environment has an impact on computations: crash failures. Let us remark that mutual ex-
clusion cannot work when one has to implement an object in the presence of asynchrony and process
crashes (premature halting). If a process crashes inside its critical section, mutual exclusion will never
be released, and no other process will be able to access the object. It follows that the use of mutual
exclusion (locks) is limited in the presence of asynchrony and process crashes.

On progress conditions in the presence of crash failures. Three progress conditions have been pro-
posed for the implementation of the operations of data objects in an environment where processes are
asynchronous and may crash. They are the following ones, going from the stronger to the weaker (see
Table 1).

• The wait-freedom progress condition states that if a process invokes an object operation, and does
not crash, it terminates its invocation [46]. This means that it terminates whatever the behavior of
the other processes (e.g., some of them being crashed, and others being concurrently involved in
object operations).

• The non-blocking progress condition states that if several processes concurrently invoke opera-
tions on the object, at least one of them terminates [51].

• The obstruction-freedom progress condition states that if a process invokes an operation, does not
crash during this invocation, and all other processes stop accessing the internal representation of
the object during a long enough period, then the process terminates its operation [47].

Let us remark that the wait-freedom and non-blocking progress conditions are independent of both
the failure pattern and the concurrency pattern. They can be seen as the “corresponding” of starvation-
freedom and deadlock-freedom in asynchronous crash-prone system. Differently, obstruction-freedom
is dependent on the concurrency pattern.

11



p1

p2

p3

R.read() → 1 R.read() → 2

R.write(1) R.write(2)

R.write(3) R.read() → 2

External observer’s

point of view

Here R = 1 Here R = 2

Here R = 3

An atomic (linearizable) execution of processes p1, p2, and p3 on atomic register R. The read
and write operations are denoted R.read() and R.write(). From an external observer point of

view, it appears as if the operations were executed sequentially.

Sidebar 3: An atomic execution of a read/write register

Lock-based implementations Mutex-free implementations
Obstruction-freedom [46]

Deadlock-freedom [25] Non-blocking [51]
Starvation-freedom [53] Wait-freedom [47]

Table 1: Progress conditions for the implementation of concurrent objects

Other progress conditions are investigated in [52, 93, 96]. Progress is the context of specific con-
tention and failures patterns is addressed in [29, 78, 92].

5 Read/Write Registers on Top of Message-Passing Systems

The read/write shared register abstraction provides several advantages over message passing: a more
natural transition from uniprocessors, and simplifies programming tasks. For this reason, concurrent
systems that support shared memory are have wide acceptance in both research and commercial com-
puting.

It is relatively easy to build atomic read/write registers on top of a reliable asynchronous message-
passing system (e.g. [79]), but if processes may crash, more involved algorithms are needed. Two
important results are presented by Attiya, Bar-Noy and Dolev in [4]:

• An algorithm that implements an atomic read/write register on top of a system of n asynchronous
message-passing processes, where at most t < n/2 of them may crash.

• A proof of the impossibility of building an atomic read/write register when t ≥ n/2.

The section presents the algorithm, referred to as the ABD Algorithm, which illustrates the importance
of the ideas of reducing concurrent thinking to sequential reasoning. A more detailed proof can be found
in [4, 5, 81], as well as other algorithms.

12



Design principles of ABD: each written value has an identity. Each process is both a client and
a server. Let REG be the multi-writer multi-reader (MWMR) register that is built (hence any process
is allowed to read and write the register). On its client side a process pi can invoke the operations
REG .write (v) (to write a value v in REG , and REG .read () to obtain its current value. On its server
side, a process pi manages two local variables: regi which locally implement REG , and timestampi
which contains a timestamp made up of a sequence number (which can be considered as a date) and a
process identity j. The timestamp timestampi constitutes the “identity” of the value v saved in regi
(namely, this value was written by this process at this time). Any two timestamps 〈sni, i〉 and 〈snj , j〉 are
totally ordered by their lexicographical order; namely, 〈sni, i〉 < 〈snj , j〉 means (sni < snj) ∨ (sni =
snj ∧ i < j).

Design principles of ABD: intersecting quorums. The basic mechanism on which ABD relies on
a query/response message exchange pattern. A process pi broadcasts a query to all the processes and
waits for acknowledgments from a majority of them. Such a majority quorum set, has the following
properties. As t < n/2, waiting for acknowledgments from a majority of processes can never block
forever the invoking process. Moreover, the fact that any two quorums have a non-empty intersection
implies the atomicity property of the read/write register REG .

operation REG.write (v) issued by process pi is
build a new tag tag identifying this write operation;
% Phase 1: acquire information on the system state %
broadcast WRITE_REQ (tag);
wait acknowledgments from a majority of processes,
each carrying tag and a sequence number;
% Phase 2 : update system state %
ts← 〈msn+ 1, i〉 where msn is
the greatest sequence number previously received;
broadcast WRITE (tag, v, ts);
wait acknowledgments carrying tag from a majority of proc.;
return().

when WRITE_REQ (tag) is received from pj , j ∈ {1, ..., n} do
send to pj an acknowledgment carrying tag, and
the sequence number contained in timestampi.

when WRITE (tag, v, ts) is received from pj , j ∈ {1, ..., n} do
if (timestampi < ts) then
timestampi ← ts; regi ← v end if;

send to pj an acknowledgment carrying tag.

Algorithm 2: Operation REG .write (v): client and server behavior for a process pi

The operation REG .write (v). This operation is implemented by Algorithm 2. When a process pi
invokes REG .write (v), it first creates a tag denoted (tag) which will identify the query/response mes-
sages generated by this write invocation. Then (phase 1), it executes a first instance of the query/response
exchange pattern to learn the highest sequence number saved in the local variables timestampj of a ma-
jority of processes pj . When this is done, pi computes the timestamp tswhich will be associated with the
value v it wants to write in REG . Finally (phase 2), pi starts a second query/response pattern in which
it broadcasts the pair (v, ts) to all the processes. When, it has received the associated acknowledgments
from a quorum, pi terminates the write operation.

On its server side, a process pi that receives a WRITE_REQ message sent by a process pj during
phase 1 of a write operation, sends it back an acknowledgment carrying the sequence number associated

13



with the last value it saved in regi. When it receives WRITE_REQ message sent by a a process pj during
phase 2 of a write operation, it updates its local data regi implementing REG if the received timestamp
is more recent (with respect to the total order on timestamps) than the one saved in timestampi , and,
in all cases, it sends back to pj and acknowledgment (so pj terminates its write).

It is easy to see that, due to the intersection property of quorums, the timestamp associated with a
value v by the invoking process pi is greater than the ones of the write operations that terminated before
pi issued its own write operation. Moreover, while concurrent write operations can associate the same
sequence number with their values, these values have different (and ordered) timestamps.

The operation REG .read (). Algorithm 3 implements operation operation REG .read (), with a sim-
ilar structure as the implementation of operation REG .write (). Namely, it is made up of two phases,
each one being an instance of the query/response communication pattern. In the first phase, the invoking
process obtains a pair (value, associated timestamp) from a minority of processes, from which – thanks
to the total order on timestamps – it can extract the most recent value, that it will return as the result of
the read operation.

operation REG.read () is
build a new tag tag identifying this read operation;
% Phase 1: acquire information on the system state %
broadcast READ_REQ (tag);
wait acknowledgments from a majority of processes,
each carrying tag and a pair 〈value,timestamp〉;
let ts be the greatest timestamp received,
and v the value associated with this timestamp;
% Phase 2 : update system state %
broadcast WRITE (tag, v, ts);
wait ACK_WRITE (tag) from a majority of proc.;
return (v).

when READ_REQ (tag) is received from pj , j ∈ {1, ..., n} do
send to pj an ack. carrying tag, regi and timestampi.

Algorithm 3: Operation REG .read (): client and server behavior for a process pi

Notice that the following scenario can occur, which involves two read operations read1 and read2 on
a register REG by the processes p1 and p2, respectively, and a concurrent write operation REG .write(v)
issued by a process p3 (Fig. 1). Let ts(v) be the timestamp associated with v by p3.

p3

The phase 1 majority quorum obtained by p2The phase 1 majority quorum obtained by p1

REG .write(v)

contains the pair (v, ts(v)) does not contain the pair (v, ts(v))

read1()

read2()
p2

p1

1

Figure 1: New/old inversion scenario

It is possible that the phase 1 majority quorum obtained by p1 includes the pair (v, ts(v)), while the

14



one obtained by p2 does not. If this occurs, the first read operation read1 obtains a value more recent that
the one obtained by the second read2, which violates atomicity. This can be easily solved by directing
each read operation to write the value it is about to return as a result. In this way, when read1 terminates
and returns v, this value is known by a majority of processes despite asynchrony, concurrency, and a
minority of process crashes. This phenomenon (called new/old inversion) is prevented by the phase 2 of
a read operation.

The combination of intersecting quorums and timestamps allows for the implementation of atomic
read/write registers in asynchronous message-passing systems where a minority of process may crash.
Hence, sequential thinking on shared registers can be used at the upper abstraction level.

6 The World of Concurrent Objects

Objects defined by a sequential specification. A read/write register is a special case of an immaterial
object. In general, an object is defined by the set of operations that processes can invoke, and by an au-
tomaton, which specifies the behavior of the object when these operations are invoked sequentially. The
automaton specifies, for each state, and each possible operation invocation, a response to that invocation,
and a transition to a new state. A stack for example, is easily specified in this way. The operations are
push(v), to add v at the top of the stack; if the stack is full, it returns the control value full. Similarly,
if the stack is not empty, the operation pop() returns the value at the top of the stack and suppresses it
from the stack; and it returns the control value empty if the stack is empty.

A concurrent stack can be implemented by executing the operations pop() and push() using mutual
exclusion. As already indicated, this strategy to create a total order does not work if processes may
crash. The state machine replication mechanism [57] is a general way of implementing an object by
asynchronous crash-prone processes, that invoke operations on the object concurrently.

Implementing a state machine is easy if no process crash. This is no longer the case in crash-prone
asynchronous systems, where the implementation of a state machine relies on the consensus object.

Consensus. At the core of many sequential reasoning for concurrent programming situations (includ-
ing state machine replication) are agreement problems. A common underlying abstraction is the con-
sensus object. It has a single operation denoted propose(), that a process can invoke once. If a process
invokes propose(v), the invocation eventually returns a value v′. This sequential specification is defined
by the following properties.

• Validity. If an invocation returns v then there is a propose(v).

• Agreement. No two different values are returned.

• Termination. If a process invokes propose() and does not crash, it returns a value.

Consensus objects are universal in the sense that (together with read/write registers), they can be used to
implement, despite asynchrony and process crashes, any object defined by a sequential specification. The
consensus-based state machine replication technique provides an illustration of this claim, as discussed
below.

All objects are not equal in a crash-prone environment. It turns out that an object as simple as a con-
current stack cannot be implemented by asynchronous processes, which communicate using read/write
registers only, if any operation invoked by a process that does not crash must return (independently of the
speed or crashes of the other processes). Such an implementation of an object is said to be wait-free [46].

A way of measuring the synchronization power of an object in the presence of asynchrony and
process crashes is by its consensus number [46]. The consensus number of an object O is the greatest
integer n, such that it is possible to wait-free implement a consensus object for n processes from any

15



number of objects O and atomic read/write registers. The consensus number of O is ∞ is there is no
such greatest integer. As an example, the consensus number of a Test&Set object or a stack object is 2,
while consensus number of a Compare&Swap or LL/SC object is ∞. The power and limits of shared
memory systems is addressed in [49].

7 State Machine Replication

The state machine replication mechanism [57] is the main approach to implement an object in a con-
current system, with asynchrony and process crash failures in message-passing systems [57, 85], and in
multiprocessors where each processor has a local memory [78]. The idea is for the processes to agree
on a sequential order of the concurrent invocations, and then each one to simulate the sequential speci-
fication automaton locally. We illustrate here the approach with a mechanism for reaching the required
agreement: a total order broadcast abstraction.

Total order broadcast. The TO-broadcast abstraction [45, 81] in an important primitive in distributed
computing, that ensures that all correct processes receive messages in the same order (we do not define
them more formally here). It is used through two operations, TO_broadcast() and TO_deliver(). A
process invokes TO_broadcast(m), to send a message m to all other processes. As a result, processes
execute TO_deliver() when they receive a (totally ordered) message. The TO-broadcast abstraction is
defined by the following properties (the first three are safety, while the last two are liveness properties).
It is assumed without loss of generality that all messages are different.
• TO-validity. If a process executes TO_deliver(m) (i.e., to-delivers the a message m) , then a

process executes TO_broadcast(m).

• TO-integrity. If a process executes TO_deliver(m) and TO_deliver(m′), then m 6= m′.

• TO-order. If a process executes TO_deliver(m) and TO_deliver(m′) in this order, then no process
executes these operations in the reverse order.

• TO-termination-1. If a process executes TO_broadcast(m) and does not crash, it eventually exe-
cutes TO_deliver(m).

• TO-termination-2. If a process executes TO_deliver(m), then every process that does not crash
executes TO_deliver(m).

TO-broadcast illustrates one more general idea within the theory of mastering concurrent program-
ming through sequential thinking: the identification of communication abstractions that facilitate build-
ing concurrent objects defined by a sequential specification.

State machine replication based on TO-broadcast. A concurrent implementation of object O is
described in Algorithm 4. It is a universal construction, as it works for any object O defined by a
sequential specification. The object has operations opx(), and a transition function δ() (assuming δ is
deterministic), where δ(state, opx(paramx)) returns the pair 〈state′, r〉, where state′ is the new state
of the object and res the result of the operation.

Let p1,, ..., pn be the set of asynchronous crash-prone processes. Each process pi is both client
(it can invoke operations on O) and server (it participates in the implementation of O). The idea of
the construction is simple. Each process pi has a copy statei of the object, and the TO-broadcast
abstraction is used to ensure that all the processes pi apply the same sequence of operations to their
local representation statei of the object O. When a process pi invokes an operation it builds a message
sent_msg composed of two fields: sent_msg.op which contains the operation and sent_msg.proc
which contains the identity of the invoking process. Then pi to-broadcasts sent_msg and waits until its
operation has been executed on its local copy of O. On it server side, a process pi executes an infinite

16



when operation opx (paramx) is invoked by the client pi do
resulti ← ⊥; let sent_msg = 〈opx (paramx), i〉;
TO_broadcast (sent_msg);
wait (resulti 6= ⊥); return (resulti).

background task T is
repeat forever

rec_msg ← TO_deliver();
〈statei, res〉 ← δ(statei, rec_msg.op);
if (rec_msg.proc = i) then resulti ← res end if

end repeat.

Algorithm 4: TO-broadcast-based construction

loop in which it first waits for the next message to-delivery. Then, it computes the next state of the object
O, and, if it is the process that invoked the operation, it writes its result into its local variable resulti to
allow the operation to terminate. The correction of this simple universal construction follows directly
from the properties of the to-broadcast abstraction [45, 81].

Implementing TO-broadcast from consensus. Algorithm 5 is a simple construction of TO-broadcast
on top of an asynchronous system enriched with consensus objects [45].

Each process pi manages four local variables: a sequence number sni initialized to 0, a set of
message deliveredi initialized to ∅, a queue to_deliverablei initialized to the empty sequence ε, and
an auxiliary variable resi. Let broadcast(m) stand for “for each j ∈ {1, ..., n} do send(m) to pj end
for”. If the invoking process does not crash during its invocation, all processes receive m; if it crashes
an arbitrary subset of processes receive m. To simplify the presentation, it is assumed that a process can
send a message to itself.

when pi invokes TO_broadcast(m) do send(m) to itself.

when m is received for the first time do
broadcast(m); deliveredi ← deliveredi ∪ {m}.

when (to_deliverablei contains messages not yet to-delivered) do
let m = first message ∈ to_deliverablei not yet to-delivered;
TO_deliver(m).

background task T is
repeat forever

wait(deliveredi \ to_deliverablei 6= ∅);
let seq = (deliveredi \ to_deliverablei);
order the messages in seq;
sni ← sni + 1; resi ← CS[sni].propose(seq);
add resi at the end of to_deliverablei

end repeat.

Algorithm 5: TO-broadcast from consensus

When a process pi invokes TO_broadcast(m) it sends the message to itself, which entails its broad-
cast, and only then pi adds m to its local set deliveredi. When a process receives a message m from
another process for the first time, it does the same. It follows that when a process does not crash during
its broadcast of a message m, all processes receive it. Hence, if a process pj adds m to deliveredj , so
do at least all the processes that do not crash.

17



TO deliver ()Application layer

Underlying layer

TO broadcast (m)

reception of a message mbroadcast (m)

with the help of consensus objects
From a set to a sequence

queue to deliverablei

set deliveredi

Figure 2: Structure of the consensus-based implementation of TO-broadcast

When, the queue to_deliverablei of a process pi contains messages not yet locally to-delivered, pi
to-delivers them in the order in which they appear in to_deliverablei.

The core of the algorithm is the background task T . A consensus object SC[k] is associated with
the iteration number k. A process pi waits until there are messages in the set deliveredi and not yet in
the queue to_deliverablei. When this occurs, process pi computes this set of messages (seq) and order
them. Then it proposes seq to the consensus instance SC[k]. This instance returns a sequence saved in
resi, which is added by pi at the end of its local queue to_deliverablei. The correctness of this algorithm
relies on the properties of the consensus object. For any k ≥ 1, the consensus instance CS[k] returns
the same sequence of messages to all the processes that invoke it. As processes execute instances in
the same order, their queue to_deliverablei eventually contain the same sequence of messages. Formal
proofs of this algorithms can be found in [20, 81].

While their styles are different, these two citations capture the universality issues encountered in
asynchronous fault-tolerant distributed computing.

• In sequential systems, computability is understood through the Church-Turing Thesis: any-
thing that can be computed, can be computed by a Turing Machine. In distributed sys-
tems, where computations require coordination among multiple participants, computability
questions have a different flavor. Here, too, there are many problems which are not com-
putable, but these limits to computability reflect the difficulty of making decisions in the
face of ambiguity, and have little to do with the inherent computational power of individual
participants [49].

• A distributed system is one in which the failure of a computer you didn’t even know existed
can render your own computer unusable.

L. Lamport, email Message-Id: <8705281923.AA09105@jumbo.dec.com>.

Sidebar 4: Two citations on universality

8 When Are Universal Constructions Possible?

An impossibility. A fundamental result in distributed computing is the impossibility to design a (de-
terministic) algorithm that solves consensus in the presence of asynchrony, even if only one process may
crash, either in message-passing [36] or read/write shared memory systems [64]. Given that consen-

18



sus and TO-broadcast are equivalent, the state machine replication algorithm presented above cannot be
implemented in asynchronous systems where processes can crash.

Thus, sequential thinking for concurrent computing has studied properties about the underlying sys-
tem that enable the approach to go through. There are several ways of considering computationally
stronger (read/write pr message-passing) models (see, e.g. [78, 81]), where state machine replication
can be implemented. Some ways, mainly suited to message-passing systems, are presented in Sidebar 5.
We discuss next a different way, through powerful communication hardware.

The case of enriched read/write systems. Nearly all read/write systems usually provide processes
with synchronization-oriented atomic operations such as Test&Set, Compare&Swap, or the pair of oper-
ations Load Link/Store Conditional (LL/SC in short). These operations have a consensus number greater
than 1. More specifically, the consensus number of Test&Set is 2, while the consensus number of both
Compare&Swap and the pair LL/SC, is +∞. Namely, 2-process (but not a 3-process) consensus can be
implemented from Test&Set, despite crash failures. Compare&Swap (or LL/SC) can implement consen-
sus for any number of processes. Hence, for any n, any object can be implemented in an asynchronous
n-process read/write system enriched with Compare&Swap (or LL/SC), despite up to n − 1 process
crashes. Furthermore, that are implementations that tolerate arbitrary, malicious failures [13, 81].

Ways of circumventing the impossibility of solving consensus:

• The failure detector approach [19] abstracts away synchrony assumptions sufficient to dis-
tinguish between slow processes and dead processes.

• In eventually synchronous systems [28, 30] there is a time after which the processes run
synchronously. The celebrated Paxos algorithm is an example [61].

• Using random coins [7, 70, 75] consensus is solvable with high probability.

• Using synchronization operations with consensus number n to solve consensus among n
processes, in a fully asynchronous system.

• Consensus is solvable in some situations where not all combinations of input values are
possible [69].

Sidebar 5: Circumventing consensus impossibility

Consensus from the pair LL/SC. The intuition of how the LL/SC operations work is as follows.
Consider a memory location M accessed only by the operations LL/SC. Assumed that if a process
invokes M.SC(v) it has previously invoked M.LL(). The operation M.LL() is a simple read of M
which returns the current value of M . When a process pi invokes M.SC(v) the value v is written into
M if and only if no other process invoked M.SC() since its (pi) last invocation of M.LL(). If the write
succeeds M.SC() returns true, otherwise it returns false (see Sidebar 6).

Algorithm 6 is a simple implementation of consensus object from the pair of operations LL/SC,
which tolerates any number of process crashes. The consensus object is represented by the memory
location M initialized to the default value ⊥, which cannot be proposed). Each process manages a local
variable vali and a Boolean bi.

When a process pi invokes the operation propose(v) it first reads the value of M (first invocation
of M.LL()) from which it obtains a value vali. If vali 6= ⊥, it is the value decided by the consensus
object and pi returns it. If vali = ⊥, no value has yet been decided and possibly several processes
are competing to impose their proposal as the decided value. Each of them invokes M.SC(). Due the
semantics of the pair LL/SC one and only one of them succeeds. The winner returns its value, and the

19



SucceedsSucceeds

X.LL() by pi

X.LL() by pk

Y.SC() by pj X.SC() by pi

Y.LL() by pj X.SC() by pk

Fails

Let X and Y be two different shared registers, and pi, pj , pk be three distinct processes.
As there is no invocation of Y.SC() between the invocations of Y.LL() and Y.SC() by pj , its
invocation of Y.SC() succeeds. For the same reason, the invocation of for X.SC() by pi succeeds.
Differently, as there is an invocation of X.SC() between the invocations of X.LL() and X.SC()
by pk, its invocation of X.SC() does not succeed.

Sidebar 6: An execution of LL/SC operations

operation propose(v) is
vali ←M.LL();
if (vali 6= ⊥) then return(vali)

else bi ←M.SC(v);
if bi then return(v)

else vali ←M.LL(); return(vali)
end if

end if.

Algorithm 6: Consensus from the operations LL/SC

other competing processes read again the value ofM (second invocation ofM.LL()) and return the value
proposed by the winner.

A simple stacking-based universal construction. As consensus objects can be built from the pair of
operations LL/SC (Algorithm 6) and TO-broadcast communication abstraction can be built on top of
consensus objects (Algorithm 5), their stacking allows us to use the universal construction Algorithm 4
to obtain an implementation of any sequentially-defined object, which copes with the net effect of asyn-
chrony and process failures. This construction can give the reader a feeling for the distributed ledgers
discussed in the next section.

A direct universal construction Algorithm 7 (based on an algorithm introduced in [32], simplified
in [80]) is a direct universal construction (does not use an intermediate layer of TO-broadcast) of an
object O with transition function δ, for n processes.

The shared memory is composed of the two following data structures.

• An array on n atomic single-writer multi-reader registers, BOARD [1..n]. While any process can
read BOARD [i], only process pi can write it. Each register BOARD [i] is composed of two fields:
BOARD [i].op which contains the last object operation invoked by pi and BOARD [i].sn which
contains the associated local sequence number.

• An atomic register, STATE , accessed with the operations LL() and SC(). It is made of three fields:
STATE .value contains the current state of the object under construction, STATE .sn[1..n] is an
array of local sequence number, and STATE .res[1..n] which is an array of results. More pre-

20



cisely, STATE .res[i] contains the result of the last object operation issued by pj , and STATE .sn[j]
contains its sequence number.

when the operation opx (paramx) is locally invoked do
sni ← sni + 1; BOARD [i]← 〈opx (paramx), sni〉;
apply();
statei ← STATE .LL(); return(statei.res[i]).

internal procedure apply() is
statei ← STATE .LL();
boardi ← [BOARD [1],BOARD [2], · · · ,BOARD [n]];

, for ` ∈ {1, · · · , n} do
if (boardi[`].sn = statei.sn[`] + 1)

then 〈statei.value, statei.res[`]〉 ← δ(statei.value, pairsi[`].op); % line A
statei.sn[`]← statei.sn[`] + 1 % line B

end if
end for;
success← STATE .SC(statei);
if (¬success) then

statei ← STATE .LL();
if (sni = statei.sn[i] + 1)

then same as lines A and B with ` = i;
STATE .SC(statei)

end if
end if.

Algorithm 7: Universal construction for LL/SC-enriched shared memory systems (code for pi)

Each process pi manages a local sequence number sni and two local variables, denoted boardi and
statei, which will contain local copies of BOARD and STATE , respectively.

When a process pi invokes an operation opx (paramx) on O, it informs all the processes of it by
storing the pair 〈opx (paramx), sni〉 in BOARD [i]. It executes then the internal procedure apply()
(which is the core of the construction). When it returns from apply(), it returns the result that has been
deposited in STATE .res[i]. As there is no waiting statement in apply(), if the invoking process does
not crash, it terminates its operation on O. Hence, the progress condition for object O is wait-freedom.

When pi executes apply(), if first atomically reads the register STATE (invocation of STATE .LL()),
whose value is saved in its local variable statei, reads the content of the array BOARD and saves it in
its local variable boardi. Let us remark that, while the the reading of each register BOARD [j] is atomic,
the array BOARD is read asynchronously and consequently the reading of the whole array BOARD is
not at all atomic. When this is done, pi starts a speculative execution, which consists in a ”for” loop, with
one iteration per process p`. If the last operation announced by p` is the next to be applied (according to
its view of p`’s local sequence numbers), pi applies p`’s operation to its local view of the current state of
O, namely statei. When this has been done for each process p`, pi tries to write the new resulting state
in STATE (this is done by the invocation of STATE .SC(statei)). If STATE .SC(statei) returns true,
the speculative execution succeeded: pi’s operation has been executed, as have also been operations
from other processes, and consequently pi’s invocation of apply() terminates. Otherwise, the specula-
tive execution failed. In this case, process pi reads again STATE (second invocation of STATE .LL()).
If its operation has not been executed, pi speculatively executes it on statei, and tries to commit it by
invoking STATE .SC(statei). If this invocation returns true its operation is taken into account. If it
returns false, another process pk invoked successfully STATE .SC(statek) between the invocations of
STATE .LL() and STATE .SC() by pi. But in this case, due to the fact that LL/SC are atomic opera-
tions, necessarily when pk read BOARD [i] it was informed of pi’s operation and consequently executed
it. Hence, the result obtained by pi from STATE .res[i] is the one associated with its last operation.

21



9 Distributed Ledgers

Since ancient times, ledgers have been at the heart of commerce, to represent concurrent transactions
by a permanent list of individual records sequentialized by date (Fig. 3). Today we are beginning to
see algorithms that enable the collaborative creation of digital distributed ledgers with properties and
capabilities that go far beyond traditional physical ledgers. All participants within a network can have
their own copy of the ledger. Any of them can append a record to the ledger, which is then reflected
in all copies in minutes or even seconds. The records stored in the ledger can stay temper-proof, using
cryptographic techniques.

block x

block (x + 1) ?

block (x + 1) ?

block (x + 1) ?

block 1 block 2

Figure 3: Ledger object: a crucial issue for the processes is to agree on the next block to add

Ledgers as universal constructions. Mostly known because of their use in cryptocurrencies, and due
to its blockchain incarnation [68], from the perspective of this paper a distributed ledger is a byzantine
fault-tolerant replicated implementation of a specific ledger object. The ledger object has two operations,
read() and append(). Its sequential specification defines it as a list of blocks. A block X can be added
at the end of the list with the operation append(X), while a read() returns the whole list. In the case of
a cryptocurrency, X may contain a set of transactions. (See [33, 81] for a formalization of the ledger
object.)

Thus, a ledger object, as any other object, can be implemented in a distributed, fault-tolerant way,
using the state machine replication technique. Furthermore, it can then be used as a universal construc-
tion of an object O defined by a state machine with a transition function δ. To do so, when a process
invokes append(X), X consists of a transition to be applied to the state machine. The state of the ob-
ject is obtained through a read() invocation, which returns the sequence of operations which have been
sequentially appended to the ledger, and then locally applying them starting from the initial state of the
object (see [81] for more details).

Three remarkable properties. The apparently innocent idea of a read() operation that returns the list
of commands that have been applied to the state machine, opens the discussion of one of the remarkable
points of distributed ledgers that has brought them to such wide attention. The possibility of guaranteeing
a temper-proof list of commands. The blockchain implementation is by using cryptographic hashes that
link each record to the previous one (although it actually has been known in cryptography community
for years [67]).

The ledger implementation used in Bitcoin showed that it is possible to have a state machine repli-
cation tolerating Byzantine failures that scales to hundreds of thousands of processes. The cost is tem-
porality sacrificing consistency— forks can happen at the end of the blockchain, which means that the
last few records in the blockchain may have to be withdrawn.

The third remarkable property brought to the public attention by distributed ledgers is the issue
of who the participants can be. As opposed to classic algorithms for mastering concurrency through

22



sequential thinking, the participants do not have to be a priori-known, can vary with time, and may even
be anonymous. Anyone can append a block, and read the ledger (although there are also permissioned
versions where participants have to be registered, and even hybrid models). In a sense, a distributed
ledger is an open distributed database, with no central authority, where the data itself is distributed
among the participants.

Agreement in dynamic systems. Bitcoin’s distributed ledger implementation is relatively simple to
explain in the framework of state machine replication. Conceptually it builds on randomized consensus
(something that had already been carefully studied in traditional approaches, e.g. Sidebar 5), through
the following ingenious technique to implement it. Whenever several processes want to concurrently
append a block, they participate in a lottery. Each process selects a random number (by solving cryp-
tographic puzzles) between 0 and some large integer K, and the one that gets a number smaller than
k << K, wins, and has the right to append its desired block. The implementation details of the lottery
(by a procedure called proof of work) are not important for this paper; what is important here, is that
processes cannot cheat by biasing the random number they get. Thus, with high probability only one
wins. However, from time to time, more than one process wins and a fork happens, with more than one
block being appended at the end of the ledger. Again, for the purpose of this paper, it suffices to say
that only one branch eventually pervades (in Bitcoin this is achieved by always appending to the longest
branch). This introduces a new interesting idea into the paradigm of mastering concurrency through
sequential thinking: a tradeoff between faster state machine replication, and temporary loss of consis-
tency. In other words, the x operations at the very end of the ledger, for some constant x (which depends
on the assumptions about the environment) cannot yet be considered committed. To be sure (with high
probability) that an operation has permanently been applied to the ledger, a process has to wait until it is
at a depth greater than x in the list of blocks.

10 On the Limits of the Approach

It is intuitively clear, and it has been formally proved since a long time that linearlizability is an expensive
requirement. Recent papers in the context of shared memory programming, argue that it is often possible
to improve performance of concurrent data structures by relaxing their semantics (see, e.g. [16, 44, 86,
90, 94]). This approach has been studied even in the case of randomized algorithms: distributional
linearizability is a correctness condition for randomized relaxed data structures [1], defined in terms of
a sequential specification and a cost function measuring the deviation from the sequential specification.
Relaxations of queues and stacks that are not sequentially specified and can be implemented using only
read/write operations are presented in [18]. Concurrent specifications are discussed further at the end of
this section.

In the context of distributed systems, eventual consistency is widely deployed to achieve high avail-
ability by guaranteeing that if no new updates are made to a given data item, eventually all accesses to
that item will return the last updated value [96]. Eventual consistency (also called optimistic replica-
tion), which is deployed in some distributed systems, has origins in early mobile computing. A system
that has achieved eventual consistency is often said to have converged.

In the case of distributed ledgers, we have seen the benefit that can be gained by relaxing the sequen-
tial approach to mastering concurrency: branches at the end of the blockchain (such as Bitcoin) tem-
porarily violate a consistent view of the ledger. Still, ledger implementations based on the blockchain
technology suffer from a performance bottleneck due to the requirement of ordering all transactions in
a single list, which has prompted the exploration of partially ordered ledgers, based on directed acyclic
graphs such as those based on Iota, Tangle, or Hedera Hashgraph systems. The benefit is scalability to
thousands of processes, that instead of communicating with each other to decide on a single leader that
will append a block, they avoid communication altogether, using random numbers.

23



The CAP Theorem formalizes a fundamental limitation of the approach of mastering concurrency
through sequential reasoning: at most two of the following three properties are achievable, Consistency
(linearizability), Availability, Partition tolerance [41, 42]. This may give an intuition of why distributed
ledgers implementations have temporary forks. An alternative is a cost in availability, and postpone the
property that every non-failing participant returns a response for all operations in a reasonable amount
of time. We have already seen in the ABD algorithm that the system continues to function and upholds
its consistency guarantees, provided that only a minority of processes may fail.

Finally, another fundamental limitation to the approach of mastering concurrency through sequential
reasoning is that not all concurrent problems of interest have sequential specifications. Many examples
are discussed in [17]. Thus, the need for a formalism that extends the usual way of specifying a con-
current object through an automaton, to one that specifies the output of the object also in concurrent
invocations of operations. An interval-sequential automaton generalizes the usual sequential automa-
ton, and interval-linearizability is the corresponding notion, that associates concurrent executions to the
specification defined by the interval-automaton. This is the formalism described in [17], that generalizes
linearizability to arbitrary concurrent specifications.

Physical resource

management

Immaterial

objects

Distributed

state machine

Adversaries:

Failures, etc.

Asynchrony, Scalability

Figure 4: An evolution line

11 Conclusion

The aim of this article was to show how does the theme of reducing concurrent programming to se-
quential reasoning weaves through history since the early days and along different domains (operating
systems, databases, shared memory and distributed systems, cryptocurrencies, etc), to build complex
concurrent systems. The thread brings in a scientific foundation through common conceptual tools, such
as sequential specifications, progress and consistency conditions, synchronization abstractions like con-
sensus, communication mechanisms such as broadcast and gossiping, fault-tolerance techniques, etc. It
evolves from concrete resource-oriented mutual exclusion in a failure free-context, through immaterial
objects and failures, to universal constructions of replicated state machines, to current trends on dy-
namic, temper-proof distributed ledgers. The associated evolution line is depicted in Fig. 4. The deep
continuity lasting more than sixty years, is now exploring its frontiers, looking for roundabouts to the
inherent limitations of the approach.

Acknowledgments

This work has been supported by the following projects: French ANR 16-CE40-0023-03 DESCARTES,
devoted to modular structures in distributed computing, INRIA-UNAM Équipe Associée LiDiCo (at the
Limits of Distributed Computing), and UNAM PAPIIT IN109917 and IN106520.

References
[1] Alistarh D., Brown T., Kopinsky J., Li J. and Nadiradze G., Distributionally linearizable data structures.

Proc. 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA’15), ACM Press, pp. 133–
142 (2018)

[2] Alpern B. and Schneider F.B., Defining liveness. Information Processing Letters, 21(4):181-185 (1985)

24



[3] Akkoyunlu E.A., Ekanadham K., and Huber R.V., Some constraints and tradeoffs in the design of net-
work communications. Proc. 5th ACM Symposium on Operating Systems Principles (SOSP’75), ACMPress,
pp. 67-74 (1975)

[4] Attiya H., Bar-Noy A., and Dolev D., Sharing memory robustly in message-passing systems. Journal of the
ACM, 42(1):121-132 (1995)

[5] Attiya H. and Welch J., Distributed computing: fundamentals, simulations and advanced topics, (2d Edi-
tion), Wiley, 414 pages (2004)

[6] Avizienis A., Design of fault-tolerant computers. Proc. Fall Joint Computer Conference AFIPS, pp. 733–743
(1967)

[7] Ben-Or M., Another advantage of free choice: completely asynchronous agreement protocols. Proc. 2nd
ACM Symposium on Principles of Distributed Computing (PODC’83), pp. 27-30 (1983)

[8] Bernstein Ph. A. and Goodman N., An algorithm for concurrency control and recovery in replicated dis-
tributed databases. ACM Transactions on Database Systems 9(4):596–615 (1984)

[9] Bernstein Ph. A., Hadzilacos V., and Goodman N., Concurrency control and recovery in database systems.
Addison-Wesley, 370 pages, ISBN 978-0201107159 (1987)

[10] Bernstein, Ph. A. and Goodman, N., Concurrency control in distributed database systems. ACM Computing
Surveys, 13(2):85–221. (1981)

[11] Brinch Hansen P. (Editor), The origin of concurrent programming. Springer, 534 pages (2002)

[12] Brinch Hansen P., The nucleus of a multiprogramming system. Communications of the ACM, 13(4):238–
241. (1970)

[13] Cachin Ch., State machine replication with Byzantine faults. In Replication, Springer LNCS 5959, pp. 169-
184 (2011)

[14] Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and secure distributed programming, Springer, 367
pages, ISBN 978-3-642-15259-7 (2011)

[15] Cachopo J. and Rito-Silva A., Versioned boxes as the basis for transactional memory. Science of Computer
Programming, 63(2):172-175 (2006)

[16] Calciu I., Sen S., Balakrishnan M., and Aguilera M., How to implement any concurrent data structure for
modern servers. ACM Operating Systems Review, 51(1):24-32 (2017)

[17] Castañeda A., Rajsbaum S., and Raynal M., Unifying concurrent objects and distributed tasks: interval-
linearizability. Journal of the ACM, 65(6):45:1-45:42 (2018)

[18] Castañeda A., Rajsbaum S., and Raynal M., What can be done with consensus number one: relaxed queues
and stacks. arXiv:2OO5.05427v1, 32 pages, submitted to publication (2020)

[19] Chandra T.D., Hadzilacos V., and Toueg S., The weakest failure detector for solving consensus. Journal of
the ACM, 43(4):685-722 (1996)

[20] Chandra T.D. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225-267 (1996)

[21] Charron-Bost N., Pedone F., and Schiper A. (Editors), Replication: theory and practice, Springer LNCS
5959 (2010)

[22] Courtois P.-J., Heymans F., and Parnas D.L., Concurrent control with readers and writers. Communications
of the ACM, 14(10):667-668 (1971)

25



[23] Cremers A. and Hibbard T.N., An algebraic approach to concurrent programming control and related com-
plexity problems, Symposium on Algorithms and Complexity: New Directions and Recent Results, Pitts-
burgh, Pennsylvania (1976)

[24] Dice D., Shalev O., and Shavit N., Transactional locking II. Proc. 20th Int’l Symposium on Distributed
Computing (DISC’06), Springer, LNCS 4167, pp. 194-208 (2006)

[25] Dijkstra E.W., Solution of a problem in concurrent programming control. Communications of the ACM,
8(9):569 (1965)

[26] Dijkstra E.W., Cooperating sequential processes. In Programming Languages, (F. Genuys Ed.), Academic
Press, pp. 43-112 (1968)

[27] Dijkstra E.W., Hierarchical ordering of sequential processes. Acta Informatica, 1(1):115-138 (1971)

[28] Dolev D., Dwork C., and Stockmeyer L., On the minimal synchronism needed for distributed consensus.
Journal of the ACM, 34(1):77-97 (1987)

[29] Durand A., Raynal M., and Taubenfeld G., Set agreement and renaming in the presence of contention-related
crash failures. Proc. 20th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS’18), Springer LNCS 11201, pp. 269-283 (2018)

[30] Dwork C., Lynch N. and Stockmeyer L., Consensus in the presence of partial synchrony. Journal of the
ACM, 35(2), 288-323 (1988)

[31] Eswaran, K.P., Gray J.N., Lorie R.A, and Traiger I.L., The notions of consistency and predicate locks in a
database system. Commun. ACM 19(11) (November 1976), 624–633.

[32] Fatourou P. and Kallimanis N.D., Highly-efficient wait-free synchronization. Theory of Computing Systems,
55:475-520 (2014)

[33] Fernández Anta A., Konwar K., Georgiou Ch., and Nicolaou N., Formalizing and implementing distributed
objects layers. ACM SIGACT News, 49(2):58-76 (2018)

[34] Fischer M.J. and Lynch N.A., A lower bound for the time to assure interactive consistency. Information
Processing Letters, 14(4):183-186 (1982)

[35] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.
Proc. 2d ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, ACM Press, pp. 1-7 (1983)

[36] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382 (1985)

[37] Fourastié J., Comment mon cerveau s’informe, Journal d’une recherche. Robert Laffont, 262 pages (1974)

[38] Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference on Concurrency Theory
(CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

[39] Gafni E. and Rajsbaum S., Recursion in distributed computing. Proc. 12th Int’l Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS’10), Springer LNCS 6366, pp. 362-376 (2010)

[40] Garg V.K., Elements of Distributed Computing. Wiley-Interscience, 423 pages (2002)

[41] Gilbert S. and Lynch N., Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant
web-services. ACM SIGACT News, 33(2):51-59 (2002)

[42] Gilbert S. and Lynch N., Perspectives on the CAP theorem. IEEE Computer 45(2):30-36 (2012)

[43] Gray J. and Reuter A., Transactions processing: concepts and techniques, Morgan Kaufmann, 1070 pages,
ISBN 978-1558601901 (1992)

26



[44] Haas A., Henzinger T.A., Holzer A., Kirsch Ch.M, Lippautz M., Payer H., Sezgin A., Sokolova A., and
Veith H., Local linearizability for concurrent container-type data structures. Proc. 27th Int’l Conference on
Concurrency Theory, (CONCUR’16), LIPIcs Vol. 59(6)1-:15 (2016)

[45] Hadzilacos V. and Toueg S., A modular approach to fault-tolerant broadcasts and related problems. Tech
Report 94-1425, 83 pages, Cornell University (1994) Extended version of “Fault-Tolerant Broadcasts and
Related Problems”, in Distributed systems, 2nd Edition, Addison-Wesley/ACM, pp. 97-145 (1993)

[46] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149 (1991)

[47] Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended queues as an
example. Proc. 23th Int’l IEEE Conference on Distributed Computing Systems (ICDCS’03), IEEE Press,
pp. 522-529 (2003)

[48] Herlihy M.P. and Moss J.E.B., Transactional memory: architectural support for lock-free data structures.
Proc. 20th ACM Int’l Symposium on Computer Architecture (ISCA’93), ACM Press, pp. 289-300 (1993)

[49] Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing shared memory models.
Theoretical Computer Science, 509:3-24 (2013)

[50] Herlihy M. and Shavit N., The art of multiprocessor programming. Morgan Kaufmann, 508 pages, ISBN
978-0-12-370591-4 (2008)

[51] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects. ACM Transac-
tions on Programming Languages and Systems, 12(3):463-492 (1990)

[52] Imbs D., Raynal M., and Taubenfeld G., On asymmetric progress conditions. Proc. 29th ACM Symposium
on Principles of Distributed Computing (PODC’10), ACM Press, pp. 55-64 (2010)

[53] Knuth D.E., Additional comments on a problem in concurrent programming control. CACM, 9(5):321-322
(1966)

[54] Kshemkalyani A.D. and Singhal M., Distributed computing: principles, algorithms and systems. Cambridge
University Press, 736 pages (2008)

[55] Lamport L., A new solution of Dijkstra’s concurrent programming problem. Communications of the ACM,
17(8):453-455 (1974)

[56] Lamport L., Concurrent reading and writing. Communications of the ACM, 20(11):806-811 (1977)

[57] Lamport L., Time, clocks, and the ordering of events in a distributed system. Communications of the ACM,
21(7):558–565 (1978)

[58] Lamport L., How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691 (1979)

[59] Lamport L., On interprocess communication, Part I: basic formalism. Distributed Computing, 1(2):77-85
(1986)

[60] Lamport L., A fast mutual exclusion algorithm. ACM Transactions on Computer Systems, 5(1):1-11 (1987)

[61] Lamport L., The part-time parliament. ACM Transactions on Computer Systems, 16(2):133-169 (1998)

[62] Lamport L., Shostack R. and Pease M., The Byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3)-382-401 (1982)

[63] Lampson B., Sturgis H., Crash Recovery in a Distributed Data Storage System. Technical Report, Computer
Science Laboratory, Xerox, Palo Alto Research Center (1976)

[64] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asynchronous pro-
cesses. Advances in Computing Research, 4:163-183, JAI Press (1987)

27



[65] Lynch N. A., Distributed algorithms. Morgan Kaufmann Pub., 872 pages, ISBN 1-55860-384-4 (1996)

[66] Lynch N. A., Some perspectives on PODC. Distributed Computing, 16(2):71–74 (2003)

[67] Merkle, R.F., A digital signature based on a conventional encryption function. Proc. Int’l Conference on
Advances in Cryptography, Springer LNCS 293, pp. 369-378 (1987)

[68] Nakamoto S., Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf (2008)

[69] Mostéfaoui A., Rajsbaum S. and Raynal M., Conditions on input vectors for consensus solvability in asyn-
chronous distributed systems. Journal of the ACM 50(6):922–954 (2003)

[70] Mostéfaoui A., Moumen H., and Raynal M., Signature-free asynchronous binary Byzantine consensus with
t < n/3, O(n2) messages, and O(1) expected time. Journal of the ACM, 62(4), Article 31, 21 pages (2015)

[71] Papadimitriou C.H., The serializability of concurrent database updates. Journal of the ACM, 26(4): 631–653,
(1979)

[72] Pease M., R. Shostak R. and Lamport L., Reaching agreement in the presence of faults. Journal of the ACM,
27:228-234 (1980)

[73] Peterson G.L., Myths about the mutual exclusion problem. Information Processing Letters, 12(3):115-116
(1981)

[74] Peterson G.L., Concurrent reading while writing. ACM Transactions on Programming Languages and Sys-
tems, 5:46-55 (1983)

[75] Rabin M., Randomized Byzantine generals. Proc. 24th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS’83), IEEE Computer Society Press, pp. 116-124 (1983)

[76] Rajsbaum S. and Raynal M., Mastering concurrent computing through sequential thinking: a half-century
evolution. Communications of the ACM, 63(1):52-61 (2020)

[77] Raynal M., Algorithms for mutual exclusion. The MIT Press, 107 pages, ISBN 0-262-18119-3 (1986)

[78] Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, ISBN
978-3-642-32026-2 (2013)

[79] Raynal M., Distributed algorithms for message-passing systems. Springer, 510 pages, ISBN 978-3-642-
38122-5 (2013)

[80] Raynal M., Distributed universal constructions: a guided tour. Bulletin of the European Association of The-
oretical Computer Science (EATCS), 121(1):64-96 (2017)

[81] Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach, Springer, 459
pages, ISBN 978-3-319-94140-0 (2018)

[82] Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica. 76(2):502-535 (2016)

[83] Ritchie D., The evolution of the Unix time-sharing system. Proc. Symposium on Language Design and
Programming Methodology, Springer-Verlag, pp. 25–36 (1979)

[84] Santoro N., Design and analyis of distributed algorithms, Wiley-Interscience, 589 pages, ISBN 0-471-
71997-8 (2007)

[85] Schneider F.B., Implementing fault-tolerant services using the state machine approach. ACM Computing
Surveys, 22(4):299–319 (1990)

[86] Shavit N., Data structures in the multicore age. Communications of the ACM, 54(3):76–84 (2011)

[87] Shavit N. and Touitou D., Software transactional memory. Distributed Computing, 10(2):99-116 (1997)

28



[88] Stearns, R.C., Lewis P.M., and Rosenkrantz D.J., Concurrency control for database systems. Proc. 17th
Symposium on Foundations of Computer Science (FOCS’76), IEEE Press, pp. 19–32 (1976)

[89] Stonebraker M. and Neuhold E.J., A distributed database version of INGRES. Proc. 2nd Berkeley Workshop
on Distributed Data Management and Computer Networks, pp. 19-36 (1977)

[90] Talmage, E. and Welch J. L., Relaxed data types as consistency conditions. Algorithms, 11(5):61 (2018)

[91] Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Prentice-Hall, 423 pages,
ISBN 0-131-97259-6 (2006)

[92] Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23rd Int’l Symposium on Dis-
tributed Computing (DISC’09), Springer, LNCS 5805, pp. 157-171 (2009)

[93] Taubenfeld G., The Computational Structure of Progress Conditions. Porc. 24th Int’l Symposium on Dis-
tributed Computing (DISC’10), Springer LNCS 6343, pp. 221-235 (2010)

[94] Terry D.B., Prabhakaran V., Kotla R., Balakrishnan M., Aguilera M.K., and Abu-Libdeh A., Consistency-
based service level agreements for cloud storage. Proc. 24th ACM Symposium on Operating Systems Prin-
ciples, ACM Press, pp. 309-324 (2013)

[95] J. H. Wensley J.H., Lamport L., Goldberg J. Green M.W., Levitt K.N., Melliar-Smith M., and Weinstock
C.B., SIFT: Design and analysis of a fault-tolerant computer for aircraft control. Proceedings of the IEEE,
66(10):1240-1255 (1978)

[96] Vogels W., Eventually consistent. Communications of the ACM, 52(1):40–44 (2009)

[97] Yourcenar M., Mémoires d’Hadrien. Gallimard Ed., 347 pages (1951)

29


