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ABSTRACT 17 

The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates 18 

gene expression and participates in DNA double-strand break repair and control of telomere 19 

maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of 20 

the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous 21 

clinical, genetic, biochemical and genomic studies revealed the protein’s essential functions 22 

in cell division and differentiation, its RNA substrates and its relevance to autoimmune 23 

disorders and oncology. However, little is known about the regulatory mechanisms that 24 
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control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, 25 

development and disease and how these mechanisms evolved from yeast to human. Herein, 26 

we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 27 

during cell division, development and nutritional stress, and we summarize interaction 28 

networks and post-translational modifications across species. Additionally, we discuss how 29 

known and predicted protein interactions and post-translational modifications influence the 30 

stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 31 

alleles, which potentially alter cellular protein levels or affect protein function, might 32 

influence human development and disease progression. In this review we interpret 33 

information from the literature together with genomic data from knowledgebases to inspire 34 

future work on the regulation of this essential protein’s stability in normal and malignant 35 

cells.  36 

 37 
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 61 

I. INTRODUCTION 62 

When eukaryotic cells divide and differentiate they synthesize, process and degrade 63 

messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) in a highly coordinated 64 

fashion. The conserved 3'-5'exoribonuclease ribosomal RNA-processing protein 6 (Rrp6, 65 

termed exosome component 10 (EXOSC10) in mammals) participates in these processes as a 66 

catalytic and RNA-binding subunit of the nuclear RNA exosome (Kilchert, Wittmann & 67 

Vasiljeva, 2016; Wasmuth & Lima, 2017) and in cooperation with other regulatory RNA 68 

binding proteins (Wagschal et al., 2012; Eberle et al., 2015). There is also evidence that Rrp6 69 

acts independently of the RNA exosome (Callahan & Butler, 2008; Wang et al., 2020). 70 

Extensive work in yeast, fly and mouse model organisms has identified a wide range of 71 

protein-coding and non-coding EXOSC10/Rrp6 substrates (Pefanis et al., 2015; Xu et al., 72 

2009; Neil et al., 2009; Kuai, Das & Sherman, 2005; Gudipati et al., 2012; Schneider et al., 73 

2012; Lardenois et al., 2011; Davidson et al., 2019), revealed a mechanism for how the 74 
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protein selects its substrates (Axhemi et al., 2020), and identified numerous protein–protein 75 

interactors (Meldal et al., 2015). Moreover, the three-dimensional structure of the enzyme 76 

associated with the RNA exosome, its co-factors and RNA substrates has been resolved using 77 

samples from bacteria, yeast and humans (Makino, Baumgartner & Conti, 2013; Midtgaard et 78 

al., 2006; Wasmuth, Januszyk & Lima, 2014). The structure and subunit composition of the 79 

RNA exosome is remarkably conserved between yeast and humans (Fig. 1A) (Burley et al., 80 

2021). 81 

EXOSC10/Rrp6 contains several conserved functional domains [see www.ebi.ac.uk/interpro/ 82 

(Mitchell et al., 2019)] (Fig. 1B). In yeast Rrp6, the polycystin 2 N-terminal (PMC2NT) 83 

domain is bound by Rrp47 (C1D in mammals) (Stead et al., 2007). The central region of 84 

Rrp6 is highly homologous to that of E. coli RNase D and includes the exoribonuclease 85 

(EXO) domain and the regulatory helicase and RNase D carboxy terminal (HRDC) domain. 86 

The EXO domain harbours the DEDD active site (carrying aspartate and glutamate residues) 87 

that is conserved in a variety of enzymes, such as the Klenow fragment of E.coli DNA 88 

polymerase I (Derbyshire, Grindley & Joyce, 1991). Negatively charged DEDD residues 89 

coordinate two metal ions in the active site, which deprotonate and activate a water molecule 90 

that carries out a nucleophilic attack on the RNA phosphodiester bond (Steitz & Steitz, 91 

1993). Rrp6 is also classified as a DEDD-Y enzyme, because an additional tyrosine residue 92 

(Y361) is employed near the active site to orient the nucleophilic water and stabilize the 93 

transition state intermediate (Phillips & Butler, 2003). The HRDC domain interacts via a 94 

conserved aspartic acid residue (D457) within the EXO domain and regulates its activity 95 

(Midtgaard et al., 2006). The C-terminal domain formed by Rrp6 residues 518–623 96 

comprises the exosome associating region (EAR) domain, which interacts with the RNA 97 

exosome (Wasmuth et al., 2014; Wasmuth & Lima, 2017; Makino et al., 2013). The highly 98 

basic and unstructured Rrp6 C-terminal tail (termed Lasso; Fig. 1B) comprises 100 amino 99 
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 5 

acids. It binds RNA, activates the exosome and contains a putative bipartite nuclear 100 

localization signal (NLS) (Wasmuth & Lima, 2017; Phillips & Butler, 2003). There are no 101 

structural data showing direct contacts between the human EXOSC10 catalytic domain and 102 

the RNA exosome core subunits; however, Weick et al. (2018) proposed that mammalian 103 

EXOSC10 is located at a similar position to yeast Rrp6, given that the orthologous proteins 104 

show similar ultra violet (UV) light-crosslinking patterns and are inhibited by an altered 105 

exosome core central channel [Fig. 1A; (Weick et al., 2018) and references therein].  106 

Despite playing important and highly diverse cellular roles and evolutionary conservation, 107 

budding yeast RRP6 is not essential for mitotic cell division at permissive temperature; 108 

however, rrp6 mutant cells display temperature-sensitive (ts) phenotypes (Assenholt et al., 109 

2008; Briggs, Burkard & Butler, 1998). Recent publications reveal a novel role for Rrp6 in 110 

regulating protein glycosylation and maintenance of cell wall stability; these findings 111 

elegantly explain why rrp6 mutant cells fail to divide at elevated temperatures (Wang et al., 112 

2020; Novacic et al., 2021). Furthermore, rrp6 mutant cells show decreased growth rates as 113 

compared to wild-type cells even at the permissive temperature; a phenotype that is 114 

exacerbated on media containing ethanol or glycerol as carbon sources and on synthetic 115 

complete medium (Qian et al., 2012; Briggs et al., 1998). It is interesting that slow growth 116 

and temperature sensitivity appear to be at least partially unrelated phenotypes, since rrp6 117 

mutants lacking catalytic activity also grow slowly but show a much weaker ts phenotype 118 

(Assenholt et al., 2008; Phillips & Butler, 2003). Finally, diploid yeast cells lacking Rrp6 fail 119 

to proceed normally through meiosis and gametogenesis (Lardenois et al., 2011). Genetic 120 

data indicate that the gene is essential for development in Drosophila melanogaster 121 

(Nakamura et al., 2008). More specifically, fly Rrp6 is important for cultured cell 122 

proliferation, mRNA splicing and maintenance of heterochromatin (Graham, Kiss & 123 

Andrulis, 2009; Eberle et al., 2010, 2015). Consistently, very recent work on the malaria 124 
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 6 

parasite Plasmodium falciparum also revealed a role for Rrp6 in the epigenetic control of 125 

heterochromatic gene expression via a long non-coding RNA (lncRNA) termed RNA of 126 

unknown function 6 (RUF6) (Fan et al., 2020). The mouse ortholog is required for 127 

spermatogonial cells, oocyte maturation and long-range enhancer function in B-cells and 128 

pluripotent embryonic stem cells (Jamin et al., 2017; Wu & Dean, 2020; Pefanis et al., 2015).  129 

In the case of human EXOSC10, initial evidence argued against an essential role in cell 130 

division but later work showed that the gene is required for cell division in mitotically 131 

growing cultured cells (Blomen et al., 2015; van Dijk, Schilders & Pruijn, 2007). The initial 132 

study by van Dijk et al. (2007) was based on small interfering RNA (siRNA)-mediated 133 

mRNA knock-down experiments that revealed strong inhibition of cell division for EXOSC2 134 

(RRP4), EXOSC4 (RRP41), and EXOSC9 (PM/Scl-75), while only moderate inhibition was 135 

observed following depletion of EXOSC10 (PM/Scl-100) (see fig. 3C in (van Dijk et al., 136 

2007). van Dijk et al. concluded that this phenomenon was reminiscent of the non-essential 137 

growth phenotype initially reported for yeast mutants lacking RRP6 (Briggs et al., 1998) but 138 

they pointed out that residual EXOSC10 mRNA levels may have prevented a more 139 

pronounced effect on mitosis. Later work by Blomen et al. (2015) employed a high-140 

throughput gene-trap retrovirus mutagenesis screen using cultured haploid cells to identify 141 

loci important for optimal cell division, which clearly identified human EXOSC10 as being 142 

important for progression through the mitotic cell cycle.  143 

More recently, the protein was also shown to be involved in the repair of DNA double-strand 144 

breaks (DSBs) by homologous recombination (HR) in a cancer cell line. These studies 145 

revealed that recruitment of radiation damage 51 (RAD51) to DSBs requires the 3'-5' 146 

exoribonucleolytic activity of EXOSC10 and the authors proposed that this might occur by 147 

processing of small non-coding RNAs [sncRNAs, also called damage-induced RNAs 148 

(diRNAs)] (Marin-Vicente et al., 2015; Domingo-Prim et al., 2019). This interesting finding 149 

Acc
ep

ted
 m

an
us

cri
pt



 7 

implicates EXOSC10 in a ncRNA-based DNA repair mechanism, which might be relevant 150 

for cancer cell resistance against DNA-damage-inducing chemotherapeutical agents, such as 151 

5-fluorouracil (5-FU), which was proposed to decrease the efficiency of HR repair (Srinivas 152 

et al., 2015). This is in keeping with inhibition of the exoribonucleolytic activity of 153 

EXOSC10 by 5-FU (Silverstein, Gonzalez de Valdivia & Visa, 2011; Kammler, Lykke-154 

Andersen & Jensen, 2008), and recent work that revealed EXOSC10 to be a prognostic 155 

marker for liver and thyroid cancer (Uhlen et al., 2017) and a cancer driver gene with 156 

tumour-suppressive potential in bladder urothelial carcinoma (Wang et al., 2018). 157 

Clinical interest in EXOSC10 also includes autoimmune disorders because the gene is 158 

associated with polymyositis/scleroderma overlap (PM/Scl) syndrome, which is why the 159 

protein also referred to as PM/Scl-100. PM/Scl syndrome affects skeletal muscle and skin 160 

and involves the production of antibodies against EXOSC10 (Bluthner & Bautz, 1992; Ge et 161 

al., 1992; Mahler & Raijmakers, 2007). Finally, recent work has demonstrated a role for the 162 

protein (as part of the RNA exosome) in frontotemporal lobar degeneration (FTLD) and 163 

amyotrophic lateral sclerosis (ALS) via degradation of pathogenic repeat RNA and telomere 164 

maintenance via degradation of the telomeric RNA component (hTERC) (Kawabe et al., 165 

2020; Kroustallaki et al., 2019; Shukla et al., 2016).  166 

Previous excellent reviews have covered the cellular functions and catalytic activity of 167 

EXOSC10/Rrp6, its role in autoimmune conditions and its three-dimensional structure when 168 

associated with the RNA exosome (Fox & Mosley, 2016; Mahler & Raijmakers, 2007; Staals 169 

& Pruijn, 2011; Januszyk & Lima, 2014; Chlebowski et al., 2010). Here, we focus on what is 170 

known about, or points to transcriptional, translational and post-translational mechanisms 171 

controlling the expression and stability of EXOSC10/Rrp6 across species from yeast to 172 

humans. We elaborate on possible effects of the protein’s cellular concentration on mitotic 173 

cell division, meiotic cell differentiation, response to nutritional signalling and cancer. We 174 
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 8 

interpret data from the primary and secondary scientific literature, general and species-175 

specific genome annotation and RNA expression databases and genome viewers that 176 

accompany individual RNA/protein/network profiling studies. These sources are referenced 177 

in the text and summarized in Table 1; in important cases report pages from databases are 178 

provided as annotated and/or visually enhanced figures or supporting information. The reader 179 

is referred to annotation databases for gene and protein nomenclature in different species.  180 

 181 

II. YEAST RRP6  182 

(1) Budding yeast RRP6 mRNA transcription during the mitotic and meiotic cell cycles 183 

The RRP6 5'-region contains a core promoter (Chromosome XV: 326787–326828, + strand) 184 

located immediately upstream of the single-exon open reading frame. An adenine at position 185 

326792 is thought to be the consensus transcription start site (TSS) determined in several 186 

growth conditions, as annotated in the Yeast Transcription Start Site database [Fig. 2A; 187 

www.yeastss.org (McMillan et al., 2019)]. A nucleosome-depleted region (NDR) upstream 188 

of the core promoter contains multiple transcription factor (TF) binding sites at its boundary 189 

(Venters et al., 2011). Consistently, the epigenetic marks tri‐methylation of lysine 4 on 190 

histone H3 (H3K4me3) and acetylation of lysine 14 on histone H3 (H3K14ac) that are 191 

associated with active transcription are enriched within the RRP6 promoter and the gene’s 5'-192 

region (Kirmizis et al., 2007; Pokholok et al., 2005).  193 

RRP6 shows a mitotic expression pattern that peaks during the G2/M phase similar to B-type 194 

cyclin CLB2 [Fig. 2B; https://cyclebase.org/ (Santos, Wernersson & Jensen, 2015)], while its 195 

mRNA concentration decreases during meiotic M-phase and then increases again during later 196 

post-meiotic stages [Fig. 2C, upper panel; see also Saccharomyces Genomics Viewer (SGV) 197 

at www.germonline.org (Lardenois et al., 2010)]. RRP6 is broadly expressed in all haploid 198 

and diploid yeast mating types under various growth, stress-response and developmental 199 
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 9 

conditions [for an overview, see Saccharomyces Genome Database (SGD) at 200 

www.yeastgenome.org (Wong et al., 2019)]. As one would expect based on these diverse 201 

expression patterns, a search for DNA binding regulators that participate in the transcriptional 202 

control of RRP6 using Yeastract yielded 26 transcription factors, including some that are 203 

known to act during mitosis and meiosis [(Reimand et al., 2010; Lardenois et al., 2011); 204 

www.yeastract.com (Teixeira et al., 2018)]. The presence of DNA binding motifs recognized 205 

by the G2/M phase cell cycle regulator forkhead 2 (Fkh2) is consistent with fluctuating RRP6 206 

mRNA expression levels observed in haploid cells undergoing the mitotic cell cycle 207 

(Lardenois et al., 2011; Cho et al., 1998; Granovskaia et al., 2010; Spellman et al., 1998; 208 

Brar et al., 2012) www.yeastract.com). A deeper understanding of forkhead transcription 209 

factors Fkh1 and Fkh2 or other DNA binding activators in the transcriptional regulation of 210 

RRP6 – and the biological significance of this control for cell division and differentiation – 211 

remains to be established.  212 

The sense RRP6 mRNA overlaps an antisense meiotic unannotated transcript (MUT). This 213 

RNA is up-regulated in meiosis and peaks during spore formation but its function is as yet 214 

unknown (Fig. 2C; see also SGV at www.germonline.org). MUT1312 is considered to be a 215 

ncRNA, confirmed by ribosome profiling data that show only weak ribosome binding to the 216 

extreme 5'-end of the transcript (Brar et al., 2012). ncRNAs are important for the onset of the 217 

meiotic developmental pathway (Moretto et al., 2018; van Werven et al., 2012). It currently 218 

remains poorly understood how and why lncRNAs are induced during meiosis and spore 219 

formation in budding yeast and what roles they might play.  220 

In fission yeast, genome-wide RNA profiling studies using microarrays show little change of 221 

wild-type rrp6 mRNA levels during the mitotic cell cycle (see online Supporting 222 

Information, Fig. S1A). However, the rrp6 transcript is down-regulated during chemical and 223 

temperature stress (Fig. S1B). The mRNA also decreases approximately twofold in 224 
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 10 

sporulating as compared to vegetatively growing wild-type cells but not in a mutant strain 225 

lacking the serine/threonine protein kinase Pat1, which is a negative regulator of meiosis 226 

[Fig. S1C; see also http://bahlerweb.cs.ucl.ac.uk/cgi-bin/SPGE/geexview (Mata et al., 2002; 227 

Rustici et al., 2004; Chen et al., 2003)]. These data indicate that fission yeast rrp6 mRNA 228 

levels are affected by environmental cues. It is currently unclear if this is due to 229 

transcriptional repression or altered mRNA stability. Given the importance of RNA 230 

processing and degradation in response to environmental cues that alter cell fate from 231 

division to differentiation, studies that provide further insights into the transcriptional 232 

mechanisms that control rrp6 in fission yeast are warranted. 233 

 234 

(2) Budding yeast RRP6 mRNA and Rrp6 protein levels are affected by nutritional 235 

signals 236 

Diploid budding yeast cells enter the meiotic developmental pathway in the absence of 237 

nitrogen and a fermentable carbon source (Neiman, 2011). Rrp6 is important for efficient 238 

meiosis and spore formation and exerts its function associated with the RNA exosome during 239 

early meiosis (Frenk, Oxley & Houseley, 2014; Lardenois et al., 2011). RRP6 mRNA peaks 240 

during fermentation in rich medium in the presence of glucose (YPD), decreases during 241 

respiration in pre-sporulation medium where glucose is replaced by acetate (YPA) and 242 

further diminishes during the onset of meiosis, before it increases again during late meiosis 243 

and spore formation (Fig. 2D) (Becker et al., 2017; Brar et al., 2012; Lardenois et al., 2011). 244 

It is noteworthy that the carbon source-dependent decrease, but not the late-meiotic increase 245 

of RRP6 mRNA is observed in a sporulation-deficient ume6 mutant, which lacks the DNA 246 

binding subunit of a trimeric complex containing the conserved histone deacetylase Rpd3 and 247 

the co-repressor Sin3 (Fig. 2D) (Kadosh & Struhl, 1997; Strich et al., 1994). 248 
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 11 

The level of Rrp6 protein decreases accordingly when cells switch from fermentation to 249 

respiration but then drops below the threshold level of detection by Western blot as cells 250 

progress through later stages of meiosis and spore formation (Frenk et al., 2014; Lardenois et 251 

al., 2011). This pattern coincides with the meiotic ncRNA expression program where early, 252 

middle and late ncRNAs accumulate to peak levels akin to the classical expression profile 253 

observed for meiotic mRNAs, including stable/cryptic unannotated transcripts (SUTs/CUTs) 254 

and a novel subclass of meiotic unannotated transcripts (MUTs) (Lardenois et al., 2011; Chu 255 

et al., 1998; Primig et al., 2000); for review, see (Mitchell, 1994). Taken together, the data 256 

indicate that Rrp6 is important for normal progression through meiotic development and that 257 

the protein becomes unstable during later stages of gametogenesis (Frenk et al., 2014; 258 

Lardenois et al., 2011). 259 

These observations raise three questions. First, what renders Rrp6 unstable in late-260 

differentiating diploid cells? A plausible answer to this question is that Rrp6 is targeted for 261 

late meiotic destruction via the ubiquitin and/or the small ubiquitin-like modifier (SUMO) 262 

pathway, in a similar way to how Ume6 is targeted by the anaphase-promoting 263 

complex/cyclosome (APC/C) during the onset of meiosis (Lardenois et al., 2011; Mallory, 264 

Cooper & Strich, 2007). 265 

Second, what prevents the protein’s re-accumulation during spore formation even though the 266 

mRNA continues to be detectable and appears to associate with ribosomes until the end of the 267 

process (Fig. 2C) (Brar et al., 2012)? It is unclear why – in contrast to Ume6 – Rrp6 is not 268 

detectable during advanced stages of gametogenesis. Perhaps the proteolytic activities 269 

targeting Ume6 and Rrp6 are not identical. We note that Ume6 and Rrp6 are both 270 

ubiquitinated but Rrp6 is also SUMOylated (see Section II.3 for more details).  271 

Third, why did meiotic protein down-regulation of Rrp6 evolve, that is, do yeast cells need to 272 

degrade Rrp6 to progress through meiosis and spore formation rapidly and efficiently? Two 273 
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 12 

possibilities that are not mutually exclusive are conceivable. First, in the absence of Rrp6 274 

activity, a subset of non-coding substrate RNAs may be able to accumulate to greater levels 275 

and fulfil certain regulatory roles (Davis & Ares, 2006; Gudipati et al., 2012; Wyers et al., 276 

2005; Schneider et al., 2012). Second, the production of ribosomes may be attenuated 277 

because ribosomal RNAs are not processed and ribosomes are not efficiently assembled any 278 

more (Briggs et al., 1998). The latter would make sense given that the endpoint of 279 

sporulation is the formation of transcriptionally and translationally inert gametes, as opposed 280 

to the rapidly growing and dividing cells that are generated during mitosis. 281 

Growth under suboptimal conditions is also a negative regulator of protein translation, since 282 

this process consumes a lot of energy. Therefore, Rrp6 protein levels should be negatively 283 

affected by limiting growth conditions. A recent meta-analysis of protein profiling data by 284 

Ho et al. (2018) quantified the number of yeast proteins per cell in the S288C reference strain 285 

cultured in rich medium (YEPD; (Webb et al., 2013; Lee et al., 2011; Nagaraj et al., 2012), 286 

synthetic defined (SD; (de Godoy et al., 2008; Thakur et al., 2011), synthetic complete (SC; 287 

(Peng et al., 2012) and minimal C-limiting medium (F1; (Lawless et al., 2016) (Ho, 288 

Baryshnikova & Brown, 2018). The level of Rrp6 protein was highest in three studies that 289 

measured the protein in YEPD [9205, 9194 and 7640 proteins/cell (p/c)], progressively lower 290 

in SD (6865 and 4681 p/c) and SC (2296 p/c) and at its lowest level during starvation in F1 291 

(880 p/c) (Fig. 2E; see also www.yeastgenome.org). It would be interesting to determine if 292 

the nutritional signal that controls Rrp6 protein levels acts via transcriptional or post-293 

translational mechanisms (or a combination of both).  294 

These findings are consistent with the roles of Rrp6 in ribosome biogenesis and accumulating 295 

evidence that the control of protein translation is different in dividing, starving and 296 

differentiating cells (Jin & Neiman, 2016). The hypothesis that persistent Rrp6 protein levels 297 

might perturb gametogenesis is verifiable by monitoring meiotic landmarks in cells that over-298 
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 13 

express RRP6 and strains that harbour stable rrp6 mutant alleles that fail to be degraded as 299 

efficiently as the wild-type protein. 300 

 301 

(3) Yeast Rrp6 is subject to multiple post-translational modifications 302 

Rrp6 undergoes at least four post-translational modifications. First, by protein 303 

phosphorylation and de-phosphorylation, which are catalysed by kinases and phosphatases, 304 

respectively. These enzymes are often involved in regulating a variety of functions and 305 

physical properties of their target proteins; large-scale analyses of this type of modification 306 

by phosphoproteomics have identified numerous substrates (reviewed in (Ribeiro et al., 2017; 307 

Offley & Schmidt, 2019). Specifically, Rrp6 is phosphorylated at serine (S110, S412, S417, 308 

S640, S645, S709), threonine (T410, T520) and tyrosine (Y406) residues as shown by mass 309 

spectrometry-based analyses (Synowsky et al., 2006; Albuquerque et al., 2008; Swaney et 310 

al., 2013; Holt et al., 2009). However, in the case of Rrp6, the roles of amino acid 311 

phosphorylation have not yet been functionally analysed, except in Schizosaccharomyces 312 

pombe where the rrp6S112A mutant allele did not show a measurable effect on RNA 313 

degradation or processing (Telekawa, Boisvert & Bachand, 2018). 314 

Second, Synowsky et al. (2006) reported the presence of an N-terminal acetyl group in Rrp6. 315 

The acetyl group (provided by acetyl-coenzyme A) is covalently attached either to an N-316 

terminal α-amino group or to the ε-amino group of lysines. Protein acetylation and 317 

deacetylation is catalysed by acetyltransferases and deacetylases that typically act in a 318 

balanced fashion to control numerous biological processes (Drazic et al., 2016). This 319 

modification could be relevant for the roles of Rrp6 since acetylation is critical for protein 320 

function and stability.  321 

Third, Rrp6 is a substrate for protein SUMOylation and Rrp6 interacts directly with 322 

suppressor of mif two 3 (Smt3), a protein of the SUMO family (Gonzales-Zubiate et al., 323 
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2017; Pabst et al., 2019; Wohlschlegel et al., 2004). During this modification process SUMO 324 

proteins are attached to their targets by multi-component complexes. Global SUMOylation of 325 

proteins occurs under conditions of genotoxic stress, hypoxia, heat shock and hypothermia 326 

(Enserink, 2015). SUMOs are conserved in eukaryotes and play roles in development and 327 

disease by affecting their target protein’s function, stability, interactions and localization. 328 

Importantly, SUMOs are also involved in the DNA damage response, which is particularly 329 

relevant for cancer therapies that introduce DNA lesions (Jalal, Chalissery & Hassan, 2017; 330 

Flotho & Melchior, 2013) and the assembly of messenger ribonucleoparticles (mRNPs), 331 

which is a critical step in the regulation of gene expression (Bretes et al., 2014). 332 

SUMOylation may therefore be relevant for the role of EXOSC10/Rrp6 in the response to 333 

chemotherapy by DNA damage-inducing drugs such as 5-FU and the quality control of 334 

mRNP assembly (Marin-Vicente et al., 2015; Domingo-Prim et al., 2019; Mosrin-Huaman, 335 

Honorine & Rahmouni, 2009; Stuparevic et al., 2013).  336 

Fourth, Rrp6 is ubiquitinated at as yet undetermined lysine (K) residues (Kolawa et al., 337 

2013). Ubiquitylation requires so-called E3 ligases (writers), ubiquitin-binding effectors 338 

(readers), and deubiquitylases (erasers) that work together to establish the protein 339 

concentration, conformation and localisation needed for robust cell growth and development 340 

(Oh, Akopian & Rape, 2018). Rrp6 physically interacts with binds ubiquitin ligase 2 (Bul2), 341 

a subunit of the reverses spt phenotype 5 (Rsp5) E3-ubiquitin ligase important for growth 342 

during stress (Frattini et al., 2017; Kaida, Toh-e & Kikuchi, 2003), the ubiquitin-activating 343 

enzyme (E1) Uba1, the ubiquitin conjugating enzyme (E2) Ubc1, which is associated with 344 

the APC/C (Gonzales-Zubiate et al., 2017; Girard, Tenthorey & Morgan, 2015) and Grr1, a 345 

glucose-responsive subunit of the Skp1-Cullin-F-box protein (SCF) ubiquitin-ligase complex 346 

(Gonzales-Zubiate et al., 2017; Fey & Lanker, 2007).  347 
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The ubiquitination of Rrp6 is intriguing because it resembles the case of Ume6, which 348 

represses meiosis-specific genes and meiotic mRNA isoforms with extended 5'-untranslated 349 

regions (5'-UTRs) during mitosis in cooperation with Rpd3 and Sin3 (Lardenois et al., 350 

2015b; Strich et al., 1994). In the absence of glucose, Ume6 is acetylated by the Spt-Ada-351 

Gcn5 acetyltransferase (SAGA)-dependent complex, which stimulates the protein’s 352 

ubiquitination by the cell division cycle 20 (Cdc20)-activated ubiquitin ligase APC/C during 353 

the onset of meiosis (Mallory et al., 2012; Law et al., 2014; Mallory et al., 2007). Contrary to 354 

Rrp6, Ume6 is degraded during meiosis but subsequently re-accumulates at later stages of 355 

spore maturation and ascus formation; this is likely due to its important role during spore 356 

germination (Lardenois et al., 2011; Mallory et al., 2007; Strich, Khakhina & Mallory, 2011).  357 

Given the collective evidence, it is a distinct possibility that Rrp6 might be controlled in part 358 

by regulated and targeted proteolysis, especially under stress conditions which typically 359 

involve extensive remodelling of the transcriptome. The precise mechanisms and functional 360 

implications of ubiquitination and SUMOylation in fine-tuning Rrp6 protein levels during 361 

mitotic growth, meiotic development and stress responses remain to be determined. 362 

 363 

(4) Rrp6 is a hub protein and its stability depends on protein interactions 364 

Protein networks based on direct or indirect physical contacts have been established using 365 

yeast two-hybrid (Y2H) screens and tandem affinity purification (TAP) tagging (Williamson 366 

& Sutcliffe, 2010). The former is based on in vivo binding of two fusion proteins that are 367 

tethered to DNA binding and gene activation domains, respectively. The latter works by co-368 

immunoprecipitating (Co-IP) a given target protein with its interactors and identifying them 369 

by mass spectrometry. Initial studies based on these methods revealed that the majority of 370 

yeast proteins can form complexes (Goll & Uetz, 2006). More recent work in the field of 371 

computational biology has addressed the crucial question of how relevant such interactions 372 
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are under physiological conditions and if it is possible to predict the robustness of network 373 

architecture under different conditions using systems biological approaches (Rizzetto & 374 

Csikasz-Nagy, 2018). While protein networks built from Y2H and Co-IP data reveal 375 

interactions that are physically possible, they do not prove that these complexes are stable in 376 

vivo; they rather inspire further in vivo work to gain insights into a given protein’s functions. 377 

One particularly interesting aspect of network biology focusses on the extent to which 378 

interactions of multi-subunit complexes (notably hub proteins) are conserved. The 379 

extraordinary degree of functional and structural conservation of the RNA exosome and the 380 

positioning of its core- and catalytic subunits makes it a prime example for an essential 381 

protein complex (Weick et al., 2018; Wasmuth et al., 2014).  382 

The frequency of protein–protein interactions varies from at least one to large numbers in the 383 

case of so-called hub proteins that tend to be essential for cell growth and development 384 

(Ekman et al., 2006; Song & Singh, 2013). The BioGrid database currently references for 385 

Rrp6 502 direct and indirect physical interactions of which 74% were identified by high-386 

throughput methods [Fig. 3A; www.thebiogrid.org v. 3.5.184 (Oughtred et al., 2019); the 387 

reader is referred to the Saccharomyces Genome Database (SGD; www.yeastgenome.org) for 388 

full gene names]. This vast network reflects a wide variety of known, putative and possibly 389 

novel functions attributed to Rrp6 in RNA processing and degradation (Csl4|EXOSC1, Dis3, 390 

Mpp1, Mtr3|EXOSC6, Mtr4, Nab2, Nab3, Pab1, Pab2, Rrp4|EXOSC2, Rrp40|EXOSC3, 391 

Rrp42|EXOSC7, Rrp43|EXOSC8, Rrp45|EXOSC9, Rrp46|EXOSC5, Rrp47|Lrp1|C1D, Ski7, 392 

Ski6|EXOSC4), transfer RNA (tRNA) synthesis and maturation (Cdc60, Dps1, Dtd1, Gln4, 393 

Grs1, Gus1, Hts1, Ils1, Krs1, Lhp1, Ths1, Hyp2, Yhr020w, Ynl247w), ribosome biogenesis 394 

and translation (Eft1, Gis2, Krr1, Nop4, Nop15, Nop53, Pno1, Rps8a, Rrb1, Sbp1, Ssb2, 395 

Urb1, Utp14, Utp21), chromatin assembly and modification (Hht1, Hht2, Isw1, Rtt109, 396 

Tra1), mitotic and meiotic chromosome cohesion (Hop1, Irr1), transcription (Rpc40, Rpo21), 397 
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mitotic and meiotic recombination (Exo1, Hpr1, Mei5, Mnd1, Rad54), and the onset of 398 

meiosis and gametogenesis (Emi2) (Fig. 3A; www.thebiogrid.org v. 3.5.184).  399 

Similar experiments in Schizosaccharomyces pombe, Drosophila melanogaster and humans 400 

unsurprisingly also identified interactions between EXOSC10/Rrp6 and RNA exosome 401 

subunits and associated co-factors (Fig. 3B–D). Interestingly, in fission yeast Rrp6 protein 402 

interacts with Mmi1, Red1 and Red5, which are components of a regulatory complex that 403 

actively degrades meiotic RNAs in mitotically growing cells (Fig. 3B) (Harigaya et al., 2006; 404 

Sugiyama & Sugioka-Sugiyama, 2011; Sugiyama et al., 2013; Shichino et al., 2020; Lee et 405 

al., 2020). These data highlight the role of Rrp6 as a suppressor of meiosis by targeting 406 

transcripts that are involved in this conserved developmental pathway.  407 

While certain interactions, for example with the RNA exosome core, mediate the 408 

exoribonucleolytic activity of Rrp6 in budding yeast, others mostly affect its stability. For 409 

example, Rrp6 and Rrp47 form a heterodimer after they are independently imported into the 410 

nucleus (Feigenbutz et al., 2013a; Feigenbutz et al., 2013b; Kumar et al., 2002). The N-411 

terminal domains of Rrp6 and Rrp47 assemble into a globular heterodimer formed mostly by 412 

intertwining alpha helices. This complex ensures mutual stabilization of the proteins and 413 

forms a conserved surface groove, which tethers the helicase Mtr4 to the core RNA exosome 414 

(Feigenbutz et al., 2013a; Feigenbutz et al., 2013b; Stead et al., 2007; Stuparevic et al., 2013; 415 

Dedic et al., 2014; Schuch et al., 2014). The interaction is conserved between EXOSC10 and 416 

the human ortholog of Rrp47 (C1D), which is implicated in DNA repair and RNA processing 417 

(Fig. 3D) (Schilders, van Dijk & Pruijn, 2007).  418 

Deleting either RRP6 or RRP47 mutually destabilizes the proteins: in rrp6 mutant cells, 419 

Rrp47 is undetectable and in rrp47 cells the level of Rrp6 is reduced by up to 90% 420 

(Stuparevic et al., 2013; Feigenbutz et al., 2013a; Feigenbutz et al., 2013b; Stead et al., 421 

2007). This effect is predominantly due to altered protein stability, because RRP6 and RRP47 422 
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mRNA levels in general do not decrease under the experimental conditions used to determine 423 

protein concentrations (Stuparevic et al., 2013; Feigenbutz et al., 2013a). In the absence of 424 

Rrp6, Rrp47 is degraded via a proteasome-mediated pathway, since treating rrp6 mutant cells 425 

with the proteasome inhibitor MG132 increases Rrp47 protein levels (Feigenbutz et al., 426 

2013b). Rrp6 interacts with Rrp47’s functionally important N-terminal Sas10/C1D domain 427 

(amino acids 10–100) (Costello et al., 2011; Mitchell, 2010) via its N-terminal PMC2NT 428 

(amino acids 13–102) domain that was shown to be necessary and sufficient for normal 429 

expression of Rrp47 protein (Stead et al., 2007). Rrp47 is thought to function specifically to 430 

support the activities of Rrp6, since rrp47 mutant cells show the same temperature-sensitive 431 

and RNA-processing phenotypes as rrp6 cells (Mitchell et al., 2003; Erdemir et al., 2002; 432 

Phillips & Butler, 2003). In line with their non-redundant functions, a rrp47–rrp6 double-433 

mutant strain is viable and displays a growth rate similar to that of the rrp6 single-mutant 434 

background (Mitchell et al., 2003). Finally, Rrp47 levels are not determined solely by Rrp6 435 

since its overexpression does not increase the cellular Rrp47 protein concentration 436 

(Feigenbutz et al., 2013b).  437 

In summary, Rrp6 is a highly interactive protein that associates with a wide variety of co-438 

factors, which mediate its stability and influence its enzymatic activity when exerting diverse 439 

cellular functions in RNA processing and degradation, chromatin modification, gene 440 

expression and DNA recombination.  441 

 442 

III. MAMMALIAN EXOSC10 443 

(1) EXOSC10 expression varies among tissues, during mitotic cell cycle stages and 444 

within cancer/control sample pairs 445 

Human EXOSC10 is located on chromosome 1 and spans 33 kb. The gene comprises 22 446 

exons and encodes 11 transcripts [Fig. 4A; www.ensembl.org (Yates et al., 2020)]. 447 
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Transcriptional data for EXOSC10 indicate that the full-length transcript 448 

(ENST00000376936.8) is expressed in all tissues assayed [www.gtexportal.org (Yizhak et 449 

al., 2019); Fig. S2A]. Expression levels determined by RNA sequencing are fairly 450 

homogenous and vary approximately within a twofold range among somatic and reproductive 451 

organs, with the exception of a peak signal in the cerebellum [www.proteinatlas.org (Uhlen et 452 

al., 2016); Fig. S2B].  453 

EXOSC10 mRNA levels fluctuate moderately during the mitotic cell cycle and show a profile 454 

reminiscent of B-type cyclin (CCNB1) with a G2/M peak (www.cyclebase.org; Fig. 4B). The 455 

biological significance of this variation is unclear but the timing of transcriptional mRNA 456 

induction is consistent with the role of Drosophila Rrp6 in mitotic chromosome segregation 457 

where the protein shows a dynamic pattern of localisation (Graham et al., 2009).  458 

If EXOSC10 plays a role in human cell cycle progression it should be deregulated in 459 

abnormal cells that undergo rapid and uncontrolled cell divisions. Indeed, expression patterns 460 

in healthy versus tumour cells available at the Tumor Immune Estimation Resource (TIMER, 461 

https://cistrome.shinyapps.io/timer/ (Li et al., 2017)] show a significant difference in the 462 

signal distributions. EXOSC10 expression is elevated in bladder urothelial carcinoma, 463 

cholangiocarcinoma, colon adenocarcinoma, oesophageal carcinoma, head and neck 464 

squamous cell carcinoma, liver hepatocellular carcinoma and lung and stomach 465 

adenocarcinoma samples. The only exception is renal cancer (kidney chromophobe) that 466 

shows the opposite pattern (Fig. S3). Increased expression in liver cancer is associated with 467 

EXOSC10 being an unfavourable prognostic factor (www.proteinatlas.org).  468 

Why do certain tumours contain more EXOSC10 mRNA than healthy cells? An obvious 469 

reason might be that normal differentiated post-mitotic cells express the gene at lower levels 470 

than actively growing and dividing cancer cells, because differentiated cells do not need 471 

EXOSC10 activity to be at peak levels, notably as far as ribosome biogenesis is concerned. 472 
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However, the pattern observed in renal cancer argues against this possibility. Other 473 

explanations might be that epigenetic or regulatory alterations occurring in cancer cells affect 474 

the transcriptional activation of EXOSC10 or that its mRNA is destabilized, for example by 475 

pairing with regulatory microRNAs (MIRs).  476 

TarBase [www.microrna.gr/tarbase (Karagkouni et al., 2018)], a resource that provides 477 

experimentally validated miRNA/mRNA interactions, annotates 37 miRNAs for EXOSC10 478 

that were analysed in 13 cell lines from eight different tissues (bone marrow, cervix, embryo, 479 

intestine, kidney, mammary gland, pancreas, pleura). The majority of these interactions 480 

(19/37) were observed in three kidney cell lines (HEK293, HEK293T, 293S) (Karginov & 481 

Hannon, 2013; Grosswendt et al., 2014; Krishnan et al., 2013). Among them, hsa-miR-182-482 

5p is associated with anti-cancer drug resistance and hsa-miR-17-5p is an oncogenic MIR 483 

(Dhawan et al., 2018; Uhr et al., 2019). The RNA interactome database RISE 484 

[http://rise.life.tsinghua.edu.cn (Gong et al., 2018)] provides two experimentally validated 485 

interactions with MIRs for EXOSC10 mRNA: hsa-miR-222 and hsa-miR-193b. The former is 486 

relevant to cancer radiotherapy and the metastasis of oral tongue squamous cell carcinoma 487 

(Shi et al., 2019; Liu et al., 2009). Down-regulation of the latter MIR affects blood cancer 488 

(Gonzalez-Gugel et al., 2013).  489 

These examples illustrate a promising route for further analyses that aim at a better 490 

understanding of the post-transcriptional regulation of EXOSC10 by MIRs in normal and 491 

cancer cells.  492 

 493 

(2) The promoter architecture of EXOSC10 associates the gene with transcription 494 

factors involved in cell division, development and cancer 495 

The EXOSC10 promoter region is poorly characterized and no enhancer regions have been 496 

described. Regulatory motif predictions associate 11 DNA-binding transcription factors (TFs) 497 
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with the up-stream promoter region of EXOSC10 [www.swissregulon.org (Pachkov et al., 498 

2013); Fig. S4; please refer to NextProt (www.nextprot.org) for full gene names]. This group 499 

includes KLF4, which is a transcriptional regulator that reprograms differentiated cells into 500 

induced pluripotent stem (iPS) cells when co-expressed with POU5F1/OCT4, SOX2 and 501 

MYC (reviewed in (Takahashi & Yamanaka, 2016). KLF4 was also shown to play a role in 502 

cell proliferation and early cerebellar development (Zhang et al., 2015). Critically, the 503 

predicted KLF4 motif is confirmed by in vivo protein/promoter DNA interaction data from 504 

normal skin cells, keratinocytes and in a pancreatic ductal adenocarcinoma (PDAC) cell line 505 

[see ChIP-Atlas, which provides access to a comprehensive set of published chromatin 506 

immunoprecipitation and sequencing (ChIP-Seq) data sets; https://chip-atlas.org (Oki et al., 507 

2018)]. These results argue in favour of a role for KLF4 in the activation of EXOSC10, 508 

notably in brain cells, where the exoribonuclease is present at high levels (see Fig. S2B and 509 

http://proteinatlas.org).  510 

The remaining 10 TFs are potentially interesting candidates for regulators contributing to the 511 

transcriptional control of EXOSC10 because of their association with cell division, 512 

development and cancer (Table 2).  513 

 514 

(3) EXOSC10 protein levels vary among healthy tissues, fluctuate during mitotic cell 515 

division and decrease progressively during meiotic development  516 

Currently, three human EXOSC10 protein isoforms are known. They comprise 885 517 

(Q01780), 860 (Q01708-2) and 679 (B4DKG8) amino acids [www.proteomicsdb.org 518 

(Samaras et al., 2020)]. Two large-scale mass spectrometry-based protein-profiling analyses 519 

of the human proteome across several tissues and cell lines, show that EXOSC10 levels vary 520 

approximately twofold between cytotoxic T-lymphocytes [5.2 expression units (eu)] and the 521 

adult spinal cord (2.8 eu) (Fig. 5A,B; (Wilhelm et al., 2014; Kim et al., 2014); 522 
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www.proteomicsdb.org; www.humanproteomemap.org). The protein expression studies show 523 

the same results apart from bladder, heart and rectum samples where the protein was detected 524 

in only one of the analyses (Fig. 5A,B). These protein data are concordant with similar 525 

patterns observed at the mRNA level and concur with the genes’ important role in 526 

mammalian embryonic and adult cell growth and division (Wu & Dean, 2020; Jamin et al., 527 

2017).  528 

In asynchronously growing and non-transformed mammalian cells, EXOSC10 proteins are 529 

localized in the nucleus, particularly to distinct nucleolar-like structures in all cells except 530 

those in mitosis (Fig. 5C). Nucleolar localization is consistent with earlier reports using 531 

immunofluorescence, cell fractionation and transfection experiments (reviewed by 532 

(Raijmakers, Schilders & Pruijn, 2004) and data from a proteomic profiling experiment 533 

designed to identify nucleolar proteins (Tafforeau et al., 2013). Furthermore, we and others 534 

have reported that yeast Rrp6 colocalizes with the nucleolar RNA polymerase Rpa190 [see 535 

fig. 9 in (Okuda et al., 2020)] and that mouse and human EXOSC10 colocalize with the 536 

nucleolar markers nucleophosmin (B23) (Jamin et al., 2017), nucleolin (C23) (von Kopylow 537 

et al., 2012) and fibrillarin (FBL; Fig. 5D). Finally, a nuclear/nucleolar distribution is also at 538 

least partially confirmed by immunohistochemical assays provided by the Human Protein 539 

Atlas (HPA), although we note that the HPA also shows localization in the cytoplasm 540 

(www.proteinatlas.org). The possibility that EXOSC10 is also present in the cytoplasm was 541 

raised by Lejeune, Li & Maquat (2003), who showed that nonsense-mediated mRNA decay 542 

in mammalian cells involves decapping, deadenylating, and cytoplasmic exonucleolytic 543 

activities. This is contradictory to the presence of a putative nuclear localization signal in 544 

EXOSC10 (Raijmakers et al., 2004). We have been unable to confirm any cytoplasmic 545 

localization of EXOSC10 in a range of normal and transformed cells. In a more detailed 546 

analysis using non-chemically induced cell synchrony, the nucleolar localisation is observed 547 
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weakly in cells in G0 (at quiescence) but rapidly rises and then remains constant in nucleoli 548 

throughout G1, S-phase and G2, in which yeast Rrp6 and mammalian EXOSC10 associated 549 

with the RNA exosome and the ribonuclease Dis3 exert roles in nucleolar ribosomal RNA 550 

(rRNA) processing (Davidson et al., 2019; Okuda et al., 2020; Tafforeau et al., 2013; Briggs 551 

et al., 1998).  552 

However, as cells enter mitosis, in prophase EXOSC10 begins to redistribute from nucleoli 553 

within the nucleus; by prometaphase nucleolar staining is lost completely and the protein 554 

distributes equally between mitotic cytoplasm and near the condensed but not aligned 555 

chromatin. It also clearly does not localize with CCNB1 at any point in the mitotic process 556 

although the mRNA expression profiles of these genes are similar (Figs 4B and 5C). At 557 

metaphase, EXOSC10 surrounds the chromosomes aligned on the metaphase plate and 558 

segregates with the chromosomes during anaphase A and B. No nucleolar staining for 559 

EXOSC10 protein can be detected until late telophase and the formation of the midbody.  560 

These findings suggest that with the loss of nucleolar integrity, human EXOSC10 localizes to 561 

the prophase nucleus and then the mitotic cytoplasm after nuclear envelope breakdown. 562 

However, a proportion of EXOSC10 remains associated with the condensed DNA although 563 

not in the form of specific association with the chromosomes since the staining around the 564 

condensed DNA is diffuse. These localization patterns raise the possibility that EXOSC10 565 

exerts molecular functions in the mitotic cytoplasm and on condensed mitotic chromosomes 566 

that are independent from the nuclear RNA exosome. 567 

During mouse meiosis and gametogenesis, Exosc10 mRNA is highly expressed in mitotic, 568 

meiotic and early post-meiotic germ cells (peaking in spermatocytes and then diminishing in 569 

round spermatids); the protein’s cellular concentration decreases in early round spermatids 570 

and subsequently drops below the threshold level for detection at late post-meiotic stages of 571 

the developmental pathway (Jamin et al., 2017; Chalmel et al., 2007) (www.germonline.org). 572 
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This is reminiscent of the pattern observed for budding yeast Rrp6 in diploid cells, which 573 

undergo meiosis and spore formation, and points to an evolutionarily conserved mechanism 574 

of regulation of Rrp6 and EXOSC10 during gametogenesis (Lardenois et al., 2011).  575 

 576 

(4) EXOSC10 undergoes extensive protein modifications 577 

According to PhosphoSite, EXOSC10 is monomethylated on arginine 79 and tri-methylated 578 

on lysines 754 and 835 [Fig. 6A; www.phosphosite.org (Hornbeck et al., 2015); (Larsen et 579 

al., 2016; Santos et al., 2015; Cao, Arnaudo & Garcia, 2013)]. Arginines are methylated by 580 

protein methyltransferases (PRMTs) that transfer methyl groups from S-adenosyl methionine 581 

to the side chains of arginine residues. Arginine methylation is important for protein–protein, 582 

protein–RNA, and protein–DNA interactions, and is therefore of considerable clinical 583 

interest, especially in oncology (reviewed in (Guccione & Richard, 2019).  584 

EXOSC10 contains 28 serine, threonine and tyrosine residues that are phosphorylated (Fig. 585 

6A; www.phosphosite.org). These amino acids include tyrosine 90, which is located in the N-586 

terminal PMC2NT domain, serines 370/402 and tyrosines 419/448 in the DNA_pol_A_exo1 587 

3’5’-exoribonuclease domain and serine 530 in the HDRC domain (Fig. 6A). Human 588 

EXOSC10 is also phosphorylated on serine 821, which is conserved in the mouse (Zhou et 589 

al., 2013). However, we are unaware of any data to date on the functional significance of 590 

these phosphorylation events.  591 

Four lysines in EXOSC10 are acetylated, including lysine 109 located in the PMC2NT 592 

domain; the remaining residues are at the extreme N- (lysine 37) and C-termini (lysines 593 

851/865) (Fig. 6A). Again, nothing is known about the roles of these modifications during 594 

cell division, differentiation and in malignant tissues.  595 

21 lysines modified by ubiquitin are referenced in the PhosphoSite database (Fig. 6A; 596 

www.phosphosite.org). In this context it is noteworthy that the proteasome, a multi-subunit 597 
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protease that normally degrades ubiquitinated proteins but that can also act as an 598 

endonuclease within mRNA surveillance, co-localizes with EXOSC10 in cultured Hela 599 

cancer cells (Brooks, 2010). EXOSC10 is in fact ubiquitinated by the APC/C and therefore 600 

likely is targeted for proteolytic destruction during the mitotic cell cycle (Kim et al., 2011). 601 

Given the classical role of the APC/C as a cell cycle regulator that targets cyclins (regulatory 602 

subunits of cell division kinases) it is conceivable that EXOSC10 is subject to cell cycle 603 

stage- or developmental stage-specific proteolytic destruction (Watson et al., 2019). This has 604 

interesting implications regarding the protein’s RNA exosome-dependent and independent 605 

roles during the mitotic cell cycle and meiotic differentiation (Graham et al., 2009). 606 

Earlier mass spectrometry-based studies identified EXOSC10 and other RNA exosome 607 

subunits as SUMO targets (Zhao et al., 2004; Golebiowski et al., 2009; Impens et al., 2014; 608 

Lamoliatte et al., 2014) and 10 SUMOylated lysines are currently referenced in the 609 

PhosphoSite database (Fig. 6A; www.phosphosite.org). Indeed, EXOSC10 has several 610 

glycyl-lysine isopeptides, which are implicated in interactions with the C-terminus of 611 

SUMO2. Several lines of evidence show that EXOSC10 protein stability is directly 612 

controlled by SUMOylation. First, culturing mammalian cells at a low temperature results in 613 

increased conjugation of SUMO1 to EXOSC10, which decreases the cellular concentration of 614 

EXOSC10 and thereby leads to incomplete 3' pre-rRNA processing and a reduced ratio of 615 

40S to 60S ribosomal subunits. Second, overexpression of SUMO1 decreases EXOSC10 616 

levels. Third, a mutant allele of EXOSC10 lacking three putative SUMO target lysines 617 

(K168, K201 and K583) located between the PMC2NT domain and the catalytic domain, 618 

within the core catalytic domain and at the end of the HRDC domain, respectively, is 619 

stabilized under physiological and cold-stress conditions (Knight et al., 2016). Upon cooling, 620 

expression of exosome core proteins EXOSC3, EXOSC5 and EXOSC8 is reduced in a 621 
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manner similar to EXOSC10, while expression of DIS3 does not change (Knight et al., 622 

2016). 623 

In summary, an array of high-throughput studies provide solid evidence for extensive protein 624 

modifications in EXOSC10 and are consistent with the notion that this protein is subject to 625 

targeted proteolysis during cell division and differentiation. Mutant alleles that change target 626 

residues involved in protein stability are therefore of particular interest because they might 627 

explain variable EXOSC10 protein levels in normal and malign tissues.  628 

 629 

(5) EXOSC10 mutant alleles associated with cancer affect amino acids undergoing post-630 

translational modifications 631 

Major advances in DNA sequencing technologies have spawned projects aiming to decipher 632 

the allelic composition of genomes from diverse human populations and the mutation load of 633 

malign tumours, from whole organs and tissues down to the single-cell level. Much work has 634 

focused on the protein-coding part of the human genome (exome sequencing) but data for 635 

entire genomes have been generated at an increasing pace (Mallick et al., 2016; Rozenblatt-636 

Rosen et al., 2020).  637 

The Catalog of Somatic Mutations in Cancer [COSMIC, https://cancer.sanger.ac.uk/cosmic/ 638 

(Tate et al., 2019)] provides data on single nucleotide variants/polymorphisms (SNVs/SNPs) 639 

associated with protein-coding genes in cancer samples. A total of nine mutations affect 640 

EXOSC10 amino acids subject to PTMs (Fig. 6A; Table 3). Four alleles that alter 641 

phosphorylated amino acids were discovered in liver (S370P missense mutation), colon 642 

(S402T), lung (Y448C) and intestinal (S785I) cancers. The S402T mutation replaces the 643 

serine with a threonine and therefore effects of this mutation on EXOSC10 should be due to 644 

structural changes rather than an altered phosphorylation pattern. Serines 402 and 370 are 645 

located at the extreme ends of alpha-helices, while tyrosine 448 is within an alpha helix (Fig. 646 
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6B). Three out of four mutations affecting amino acids modified by kinases and phosphatases 647 

are found within the catalytic exoribonuclease domain and consequently might alter the 648 

enzyme’s activity (see Fig. 6A; https://cancer.sanger.ac.uk/cosmic/). Four alleles that affect 649 

lysines subject to ubiquitination were found in brain (K136N), oesophagus (K136* 650 

nonsense), thyroid (K218E) and breast (K592N) cancer. Finally, a lysine that is both 651 

ubiquitinated and SUMOylated is mutated in bone cancer (K583E) (Fig. 6A; 652 

https://cancer.sanger.ac.uk/cosmic/).  653 

It is not known if these mutant alleles are homo- or heterozygous in the sample tissues, but a 654 

mutation that affects protein stability could have a dominant effect on cellular EXOSC10 655 

protein levels. These tumour-linked mutations are intriguing, given that cancer samples 656 

assayed by immunohistochemistry for EXOSC10 show large variations in intensity levels, 657 

indicating that altered protein concentrations are a frequent event in malign tissues 658 

(www.proteinatlas.org). EXOSC10 mutant alleles that escape normal proteolytic degradation 659 

because their structure is altered, their protein–protein interactions are affected or their 660 

destruction box motifs are changed may deregulate cell growth, division and differentiation. 661 

This important question clearly merits further investigation using engineered cell lines and 662 

corresponding transgenic mouse models.  663 

 664 

IV. CONCLUSIONS 665 

(1) EXOSC10/RRP6 mRNA and protein are detected in dividing and differentiating cells 666 

across the vast majority of samples assayed.  667 

(2) EXOSC10/RRP6 mRNA fluctuates during the mitotic cell cycle 668 

(3) The gene is likely regulated by multiple mechanisms at the transcriptional, translational 669 

and post-translational level.  670 
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(4) Altered EXOSC10/Rrp6 protein levels during normal cell division and differentiation and 671 

in pathological tissues have implications for RNA exosome-dependent and independent 672 

cellular functions in RNA processing and degradation.  673 

(5) EXOSC10/RRP6 alleles that affect protein stability will likely yield information on this 674 

protein’s roles during cell division, development and disease and will facilitate the design of 675 

novel therapeutical concepts.  676 
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VII. SUPPORTING INFORMATION 1306 

Additional supporting information may be found online in the Supporting Information section 1307 

at the end of the article. 1308 

Fig. S1. Schizosaccharomyces pombe RNA profiling data for rrp6. 1309 

Fig. S2. Human EXOSC10 gene annotation and expression. 1310 

Fig. S3. EXOSC10 expression in normal versus cancer samples. 1311 

Fig. S4. Regulatory motif predictions for the EXOSC10 promoter region. 1312 
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Figure legends 1314 

Fig. 1. RNA exosomes and EXOSC10/Rrp6 structure and domain composition. (A) Overall 1315 

structures of RNA exosomes from yeast [Protein Databank (PDB) identifier 6FSZ] and 1316 

humans (6D6Q) are shown as examples. Rrp6 and Dis3 in yeast and EXOSC10 and DIS3 in 1317 

humans are highlighted in purple and green, respectively. The structures were visualized 1318 

using the Mol* viewer from PDB at www.rcsb.org. (B) Schematic summarizing structural 1319 

motifs in the N-terminal (NTD), catalytic (CAT) and C-terminal (CTD) domains of Rrp6 1320 

(Wasmuth & Lima, 2017). Structures of yeast Rrp6 (2HBM) and human EXOSC10 (3SAG) 1321 

catalytic domains are shown at the bottom using the NGL (WebGL) viewer. Amino-acid 1322 

coordinates are indicated for each protein fragment. EAR, exosome-associating region; EXO, 1323 

exoribonuclease; HRDC, helicase and RNase D carboxy terminal; Lasso is the name of the 1324 

domain; NLS, nuclear localization signal; PMC2NT, polycystin 2 N-terminal. 1325 

 1326 

Fig. 2. Promoter architecture and gene expression data for RRP6 in Saccharomyces 1327 

cerevisiae. (A) Schematic showing the RRP6/MUT1312 locus on chromosome XV, with 1328 

genome coordinates indicated. Data defining the transcription start site (TSS) were retrieved 1329 

from the Yeast Transcription Start Site (YeasTSS) database (www.yeastss.org). (B) Graph of 1330 

log-transformed colour-coded expression data provided by CycleBase (https://cyclebase.org) 1331 

against cell cycle phase. Horizontal red lines indicate zero expression. (C) Colour-coded 1332 

diagram showing strand-specific RNA-sequencing expression data (in blue) and ribosome 1333 

profiling data (in red) from Brar et al. (Brar et al., 2012) for RRP6 (top two panels, grey 1334 

rectangle) and its antisense long non-coding RNA (lncRNA) MUT1312 (bottom two panels, 1335 

yellow rectangle). The data were visualized using the Integrated Genomics Viewer (IGV) 1336 

2.8.0 (Thorvaldsdottir, Robinson & Mesirov, 2013). DNA rep, DNA replication; Meiotic rec, 1337 

Meiotic recombination. (D) Colour-coded bar diagram showing normalized expression data 1338 
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in red (YPD rich medium), blue (YPA pre-sporulation medium) and green (4 h, 8 h and 10 h 1339 

in SPII sporulation medium) from (Lardenois et al., 2015a). Error bars show standard 1340 

deviation. Percentiles and linear signal intensities as shown on the y-axis. The SK1 triplicate 1341 

wild-type and ume6 mutant samples are indicated on the x-axis. Image retrieved from the 1342 

GermOnline 4.0 database (www.germonline.org). (E) Colour-coded bar diagram showing 1343 

Rrp6 protein molecules per cell (y-axis) for samples cultured in rich medium (YEPD, yellow) 1344 

and synthetic defined (SD, blue), synthetic complete (SC, green) and minimal C-limiting 1345 

media (F1, violet) from the different listed references included in a meta-analysis by Ho et al. 1346 

(2018). 1347 

 1348 

Fig. 3. Protein networks for EXOSC10/Rrp6 across species. (A) Protein–protein interaction 1349 

data from the BioGrid database (www.thebiogrid.org) for Saccharomyces cerevisiae. 1350 

Interactions were limited for readability using the ‘hide genetic experiments’ and ‘minimal 1351 

evidence 2’ filters and the ‘circular layout’ option. Nodes are in blue and edges are in yellow. 1352 

The thickness of the yellow edges represents the number of experiments (pieces of evidence) 1353 

that demonstrate the interaction. Colour-coded halos mark proteins involved in certain 1354 

biological processes or molecular functions as indicated in the legend. (B–D) Equivalent data 1355 

using the same filtering criteria for Schizosaccharomyces pombe (B), Drosophila 1356 

melanogaster (C) and humans (D). DSB, double strand break. 1357 

 1358 

Fig. 4. EXOSC10 mRNA levels in mitosis. (A) The mRNA isoforms and antisense long non-1359 

coding RNAs (lncRNAs) currently annotated by Ensembl. Full-length mRNAs are 1360 

highlighted with yellow arrows. The legend shows the colour-coding for genome annotation. 1361 

(B) Expression data compiled and processed by CycleBase for the two genes EXOSC10 and 1362 

CCNB1. Expression units (y-axis) are plotted against samples taken at different stages of the 1363 
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mitotic cell cycle. Horizontal red lines indicate zero expression. The colour-coded lines 1364 

represent data reported by the publication shown in the legend (Whitfield et al., 2002). 1365 

 1366 

Fig. 5. Human EXOSC10 protein expression. (A) Graphical display showing quantitative 1367 

mass spectrometry signal intensity values plotted for the samples identified on the left. Graph 1368 

retrieved from www.proteomicsdb.org. Green arrows highlight reproducible protein detection 1369 

data, while red arrows highlight proteins that were detected in only one of the protein 1370 

profiling studies. (B) A heatmap retrieved from www.humanproteomemap.org (Kim et al., 1371 

2014) showing EXOSC10 protein levels in foetal and adult samples. (C) 1372 

Immunofluorescence data for EXOSC10 and Cyclin B1 (CCNB1). Normal human fibroblasts 1373 

(HS68) growing asynchronously on glass coverslips were fixed in formalin, extracted and 1374 

incubated with a polyclonal anti-EXOSC10 antibody (Abcam) and a monoclonal anti-1375 

CCNB1 antibody (Santa Cruz Biotechnology) before visualization with affinity-purified 1376 

Alexa-fluor-488 anti-mouse and Alexa-fluo-555 anti-rabbit antibodies (ThermoFisher). The 1377 

images are fluorescence micrographs of a typical field stained for DNA (blue), EXOSC10 1378 

(red), CCNB1 (green,) and merged (EXOSC10/DNA or all) images. (D) 1379 

Immunofluorescence data obtained by staining normal fibroblasts, cultured and processed as 1380 

in C, for EXOSC10 and the nucleolar marker fibrillarin (FBL). We used the anti-FBL 1381 

monoclonal antibody from SantaCruz (sc-166001). DNA in C and D was stained using 1382 

Hoechst 33342 (Sigma-Aldrich, Merck). Scale bars, 10 µM. 1383 

 1384 

Fig. 6. EXOSC10 alleles and cancer. (A) A lollipop blot retrieved from www.phosphosite.org 1385 

showing the number of references for given post-translational modifications (PTMs) (y-axis) 1386 

along the complete primary sequence of EXOSC10. Amino acids identified in COSMIC as 1387 

related to somatic cancers are highlighted in violet. Colour code for PTMs and cancer-related 1388 
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residues is given in the key. EXO, exoribonuclease; HRDC, helicase and RNase D carboxy 1389 

terminal; PMC2NT, polycystin 2 N-terminal. (B) Structure of human EXOSC10 catalytic 1390 

domain containing a point mutation at position 313 (D313N) as provided by PDB. The 1391 

positions of three amino acids known to be mutated in cancer are indicated. 1392 

 1393 

Figure legends for supporting information 1394 

Fig. S1. Schizosaccharomyces pombe RNA profiling data for rrp6. (A) Gene expression for a 1395 

mitotic time course (x-axis) shown as ratios of data from asynchronous cells and time points 1396 

from synchronized cells (exp asynch/timepoint, y-axis). (B) Gene expression for different 1397 

stress conditions (x-axis) shown as ratios of data from untreated cells (0 minute time point) 1398 

and treated cells (15 and 60 minute time points) indicated using colour-coded bars (y-axis, 1399 

exp 0/time point). Cd, 0.5 mM cadmium sulphate CdSO4; H202, oxidative stress by 0.5 mM 1400 

hydrogen peroxide; Heat, temperature shift within two minutes from 30ºC to 39ºC in a water 1401 

bath; MMS, alkylating agent methylmethane sulphonate at 0.02% (weight per volume); Sb, 1402 

osmotic stress in 1M sorbitol. (C) Gene expression for mitosis and meiosis in wild-type (WT, 1403 

blue) and pat1 mutant cells (red, x-axis) shown as ratios of vegetatively growing mitotic cells 1404 

and timepoints of meiotic cells (exp mitosis/meiosis). 1405 

 1406 

Fig. S2. Human EXOSC10 gene annotation and expression. (A) Expression data obtained in 1407 

different tissues clustered according to signal intensities. Isoform identifiers are given on the 1408 

right, and a schematic of RNA isoforms at the bottom. (B) Colour-coded chart showing 1409 

expression levels in RNA-Seq normalized expression (NX) units for different tissues. 1410 

 1411 

Fig. S3. EXOSC10 expression in normal versus cancer samples. Expression data given as the 1412 

log2 of transcript count per million (log2 TPM) from cancer (red) or healthy (blue) samples 1413 
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are shown for the samples indicated on the left, with sample names annotated in the box on 1414 

the right. BRCA Basal, Luminal and Her2 are molecular subtypes of breast cancer defined by 1415 

characteristic gene expression patterns in the basal (outer) layer of the mammary gland, the 1416 

luminal (inner) cells lining the mammary ducts or the presence of epidermal growth factor 1417 

receptor 2 (HER2). HNSC HPVpos and neg subtypes are positive or negative for human 1418 

papilloma virus (HPV). The number of asterisks indicates the level of statistical significance 1419 

for the observed differential gene expression between normal and cancer samples. Green 1420 

arrows highlight examples of EXOSC10 overexpression, while red arrows highlight samples 1421 

where there was decreased expression in cancer. 1422 

  1423 

Fig. S4. Regulatory motif predictions for the EXOSC10 promoter region. The image shown is 1424 

a screenshot from www.swissregulon.org, which was edited for clarity. The EXOSC10 locus 1425 

region is highlighted with the yellow arrow. Transcription factors that bind predicted motifs 1426 

are marked by green arrows. 1427 

 1428 

1429 
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Table 1. Data sources, including the type, name and web address for relevant databases. MIR, 1430 

microRNA. 1431 

Category Species Name Uniform resource locator 
Annotation Budding 

yeast 
Saccharomyces 
Genome Database 
(SGD) 

www.yeastgenome.org 

 Fission 
yeast 

Pombase  www.pombase.org 

 Fly Flybase www.flybase.org 
 Mouse Mouse Genome 

Database (MGD) 
www.informatics.jax.org 

 
Cancer Human Catalog of Somatic 

Mutations in Cancer 
(COSMIC) 

https://cancer.sanger.ac.uk/cosmic 

 Human Tumor Immune 
Estimation Resource 
(TIMER) 

http://timer.cistrome.org 

 
Data viewers Fission 

yeast 
TranscriptomeViewer http://bahlerweb.cs.ucl.ac.uk/TranscriptomeViewer 

  Geexview http://bahlerweb.cs.ucl.ac.uk/cgi-
bin/SPGE/geexview 

 Multiple GermOnline www.germonline.org 
  Genotype Tissue 

Expression (GTEX) 
portal 

www.gtexportal.org 

 
Interactome Multiple BioGrid www.thebiogrid.org 
 
Knowledge Multiple GeneCards www.genecards.org 
 
Literature All PubMed https://pubmed.ncbi.nlm.nih.gov 
 
MIRs All miRcode www.mircode.org 
 
Protein Human  NeXtprot www.nextprot.org 
 Human Human Protein Atlas 

(HPA) 
www.proteinatlas.org 

 Multiple Interpro www.ebi.ac.uk/interpro 
 Multiple Proteomics Database www.proteomicsdb.org 
 Human Human Proteome Map http://www.humanproteomemap.org 
 Multiple PhosphoSite www.phosphosite.org 
 Multiple The Protein Database www.rcsb.org 
 
Search 
engine 

Multiple Genevestigator www.genevestigator.com 

 
Transcription Multiple CycleBase https://cyclebase.org 
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 Budding 
yeast 

Yeast Search for 
Transcriptional 
Regulators And 
Consensus Tracking 
(Yeastract) 

www.yeastract.com 

 Budding 
yeast 

Yeast Transcription 
Start Site (YeasTTS) 

www.yeastts.org 

 1432 

 1433 

Table 2. Transcription factors (TFs) predicted to bind the EXOSC10 promoter.  1434 

Symbol Summary Reference 

MTF1 Activates its target genes by binding the metal-responsive 
element (MRE). The gene’s up-regulation in ovarian cancer 
is associated with poor patient survival 

Ji et al., (2018) 

MYBL1 Master regulator of male meiosis, was associated with 
cutaneous adenocystic carcinoma 

Kyrpychova et al., (2018); Li et 
al., (2013) 

PLAGL1 Acts as a suppressor for cell growth, paralog of the PLAG1 
oncogene 

for review, see Van Dyck et al., 
(2007) 

PATZ1 Involved in embryogenesis, stem cell biology and cell 
proliferation, was reported to act either as a tumour 
suppressor or as an oncogene 

for review, see Fedele, Crescenzi 
& Cerchia, (2017) 

GATA3 Important for immune- and inflammatory responses and 
associated with metastatic breast cancer 

Bertucci et al., (2019) 

GABPA Involved in nuclear control of mitochondrial function and 
plays roles in bladder and hepatocellular cancers 

Guo et al., (2020) 

ELK4 Regulator that interacts with the serum response factor (SRF) 
on the FOS proto-oncogene 

Treisman, (1994) 

ERF Erythroblast transformation specific (ETS) domain-
containing repressor implicated in cell proliferation 

for review, see Mavrothalassitis & 
Ghysdael, (2000) 

ERG ETS domain TF associated with a variety of cancers, 
including prostate cancer, Ewing’s sarcoma and acute 
myeloid leukemia, as a fusion gene 

Adamo & Ladomery, (2016) 

ETV5 Belongs to an oncogenic subfamily of ETS TFs Oh, Shin & Janknecht, (2012) 
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Table 3. Point mutations in EXOSC10; the mutation, its localization within known domains 1437 

and the cancer type in which the mutation was detected are indicated. 1438 

Mutation Post-translational modification Domain Cancer type 

S370P Phosphorylation Catalytic Liver 

S402T Colon 

Y448C Lung 

S785I CTD Intestine 

K136N Ubiquitination  Brain 

K136*  Oesophagus 

K218E  Thyroid 

K592N  Breast 

K583E Ubiquitination, SUMOylation  Bone 

 1439 
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Fig. S1. Schizosaccharomyces pombe RNA profiling data for rrp6.
(A) Gene expression for a mitotic time course (x-axis) shown as ratios
of data from asynchronous cells and time points from synchronized
cells (exp asynch/timepoint, y-axis). (B) Gene expression for different
stress conditions (x-axis) shown as ratios of data from untreated cells
(0 minute time point) and treated cells (15 and 60 minute time points)
indicated using colour-coded bars (y-axis, exp 0/time point). Cd, 0.5
mM cadmium sulphate CdSO4; H202, oxidative stress by 0.5 mM
hydrogen peroxide; Heat, temperature shift within two minutes from
30ºC to 39ºC in a water bath; MMS, alkylating agent methylmethane
sulphonate at 0.02% (weight per volume); Sb, osmotic stress in 1M
sorbitol. (C) Gene expression for mitosis and meiosis in wild-type (WT,
blue) and pat1 mutant cells (red, x-axis) shown as ratios of vegetatively
growing mitotic cells and timepoints of meiotic cells (exp
mitosis/meiosis).
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Fig. S2. Human EXOSC10 gene annotation and expression. (A) Expression data obtained in different tissues
clustered according to signal intensities. Isoform identifiers are given on the right, and a schematic of RNA isoforms
at the bottom. (B) Colour-coded chart showing expression levels in RNA-Seq normalized expression (NX) units for
different tissues.
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Fig. S3. EXOSC10 expression in normal versus cancer samples. Expression data given as the log2
of transcript count per million (log2 TPM) from cancer (red) or healthy (blue) samples are shown for the
samples indicated on the left, with sample names annotated in the box on the right. BRCA Basal,
Luminal and Her2 are molecular subtypes of breast cancer defined by characteristic gene expression
patterns in the basal (outer) layer of the mammary gland, the luminal (inner) cells lining the mammary
ducts or the presence of epidermal growth factor receptor 2 (HER2). HNSC HPVpos and neg subtypes
are positive or negative for human papilloma virus (HPV). The number of asterisks indicates the level of
statistical significance for the observed differential gene expression between normal and cancer
samples. Green arrows highlight examples of EXOSC10 overexpression, while red arrows highlight
samples where there was decreased expression in cancer.
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Fig. S4. Regulatory motif predictions for the EXOSC10 promoter region. The image shown is a
screenshot from www.swissregulon.org, which was edited for clarity. The EXOSC10 locus region is
highlighted with the yellow arrow. Transcription factors that bind predicted motifs are marked by green
arrows.
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Figure 6
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