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Abstract The Health Simulation Center SimUSanté performs training sessions
for several different healthcare actors. This paper presents in detail the planning
problem concerning time and resources encountered by SimUSanté, proposes 0-1
linear program modelization and the combination of greedy algorithm SimUG
with a local search algorithm SimULS, to solve it. New instances stemmed from
the Curriculum-Based Courses Timetabling Problem (CB-CTT) are generated, in
order to test SimUG and SimULS on representative instances. The computational
results show respectively that SimUG and SimULS schedule on average 93.55%
of the activities on the tested instances. Moreover, SimULS obtains results with
an average gap of 9.97% from the known optimal solution.

1 Introduction

In recent years, research into development of scheduling solutions in the healthcare
sector has become increasingly important. These works discuss problems related to
patient service quality, optimization of resource management and, as in our case,
training time for health professionals. The training center SimUSanté located in
Amiens, France, is one of the biggest multidisciplinary active pedagogy centers in
Europe. This center is used by all kinds of health actors: professionals, students,
patients and carers. The aim of this center is to provide a space where all of its
actors can meet and train together by simulating medical acts in various fields of
healthcare (such as surgical operations, blood sampling, cardiopulmonary resus-
citation, etc.), but also attending regular courses. Thus, the number of different
variables such as the number of activities, resources, and employees, their skills,
and the number of operating rules might come to be important and become a
problem when constructing a coherent and effective schedule.

The purpose of our collaboration with the SimUSanté center is to study pos-
sible solutions to management and planning problems they encounter in all their
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activities. First, we presented and formalized the SimUSanté problem and we pro-
posed a mathematical model related to the model presented in [11]. A dedicated
greedy algorithm SimUG is proposed in order to provide a first suitable and com-
pact solution in a short time. Then, a local search algorithm SimULS was added
to improve solutions obtained by SimUG. It is suited to being used over a short
search time (less than 2 hours) and then uses strong diversification operators com-
bined with an isolated tabu system when the regular diversification phase occurs.
During intensification phases, it generates several neighborhood solutions from a
selected operator and uses random proportionality rules to accept continuing the
search from one of these neighbors. Because there is no realistic benchmark to
our knowledge of the SimUSanté problems, we have generated adequate instances
[13] inspired by those used in the Curriculum-Based Courses Timetabling problem
[47] to train our algorithms. We compared SimUG and SimULS with the results
worked out by our mathematical model implemented in CPLEX.

The paper is organized as follows. Section 2 presents a state-of-the-art related
to issues close to the SimUSanté problem. In section 3, we describe and formalize
the scheduling problem encountered by SimUSanté. The corresponding mathe-
matical model is presented in section 4. In section 5 we present our greedy algo-
rithm SimUG and give the different selection criteria of the construction process.
In section 6, we introduce our local search algorithm SimULS and describe the
movement operators used. Section 7 explains the instance generation and provides
computational results. Section 8 concludes this paper with some final remarks.

2 State of the art

Timetabling is an important field of research which has many applications in real
life problems, like hospitals, universities, airports, etc. Most of the time, schedul-
ing is a difficult process that needs to be done in several stages and requires
coordination and communication between the different groups involved: students,
teachers, administrative department and heads of services for university timeta-
bles for example. In this paper, we are concerned with educational timetabling.
Historically, these kinds of problems have been grouped into three categories: ex-
amination timetabling problems (ETP), school timetabling problems (STP) [42]
and university course timetabling problems (UCTP) [5]. All these problems are
NP-Hard [17]. They are defined as a classroom assignment [15] or a course assign-
ment problem [14]. In recent years, a wide variety of articles related to educational
scheduling problems have been published, as shown in many surveys [43,29,33].
The UCTP has been mostly studied [7] and considers many constraints [4] that
can be classified in two sets. The constraints that must be satisfied are called hard
constraints and make the schedule feasible. The soft constraints are optional and
their optimization ensures timetables of high quality [3]. Although similar in many
ways, UCTP can vary from one institution to another, with the addition of specific
constraints. With the growing interest in this area, two international competitions
have been organized: International Timetabling Competition (ITC-2002 [40] and
ITC-2007 [34]). The objective of ITC-2002 was to formalize problem definition
for the university course timetabling problem, and to generate some instances re-
lated to it. In ITC-2007, university course timetabling problems have been split
into two subproblems [36]: Post-Enrolment-based Course Timetabling (PE-CTT)
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and Curriculum-Based Course Timetabling (CB-CTT) and one of the aims of the
competition was to reduce the differences between practice and research in ed-
ucational scheduling problems [35]. The SimUSanté problem is an extension of
CB-CTT [18]. A curriculum is the set of lectures that students follow and a course
is composed by one or many lectures. The problem consists of finding the best
weekly assignment for lectures, available rooms, time periods, etc. for a set of cur-
ricula while respecting a set of constraints. Even though the hard constraints are
roughly the same, the case of SimUSanté differs in some points from the CB-CTT:
in SimUSanté, there are no periodic schedules and we do not consider many soft
constraints. However we need to consider lectures with room, time and precedence
constraints. We also need to take into account different types of resources (rooms
have specific characteristics like surgical block, pharmacy, etc.), different types of
skills needed to perform lectures, resources with multi-types, scheduling of lunch
breaks, etc.

Due to its importance, many approaches have been studied to solve UCTP and
its subproblems. Most of them are optimization methods and give optimal or near
optimal results. The ITC-2007 instances are often used as UTCP benchmarks to
compare proposed methods. These approaches are split into two categories: exact
method and metaheuristics. Only a few exact methods exist in the literature to
solve UTCP. The Integer Linear Programming (ILP) approach is an exact method
which uses a mathematical model to solve an objective function [41,44,37]. The
ILP given in [12] is adapted to the CB-CTT and can be used with a generic solver.
In [28], a two-step ILP is used to solve the CB-CTT. The first step assigns lectures
to time periods, without taking into consideration rooms, minimizing penalties for
curriculum compactness and working days. The second one assigns lectures to
rooms. A generalized ILP method for the CB-CTT, which is able to handle most
of the ITC-2007 instances is presented in [25]. The graph coloring approach has
also been used. In [6], they use an edge coloring graph algorithm to first distribute
resources to classes and then set time slots for each of them.

Metaheuristics used to solve UTCP can be divided into two groups. The first
one concerns local search-based methods [2,19]. They are characterized by the
definition of several different neighborhood operators allowing switching from one
solution to another (changing the time period assigned to a lecture, or the room
assignment for a lecture, etc.). They are often composed of several phases. The first
one builds an initial solution and the others explore the neighborhoods to improve
it, as shown in [39]. They use different mechanisms to avoid being trapped in a
local minimum. In these kinds of methods, we found simulated annealing (SA)
[8,20], tabu search (TS) [16,23,38], great deluge (GD) [26], hill climbing (HC)
[48], etc. In [2], authors proposed a local search algorithm that starts from an
initial solution and generates a set of neighborhood solutions with the aid of eight
classic neighborhood operators stemmed from the literature [1,46]. Each of these
solutions is compared to the current best solution in order to determine the more
promising search space. From this, the best solution is selected and the process is
iterated until a new best solution is found or if there is no further improvement.
In [19], a multi-neighbourhood local search is used. The method starts with the
first neighbourhood operator and when it has found its best local optimum, starts
the search again with the second neighbourhood operator from this new best local
optimum. This procedure is then repeated over many iterations. With limited
running time, it seems to be better to use local search with robust diversification
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operators [27] like those proposed in [30]. In [38], a tabu search hybridized with
a variable neighborhood search is used. It starts from an initial solution obtained
by a greedy algorithm and generates several neighborhood solutions using shaking
operators. A solution is accepted or set in tabu list. A solution is accepted if it is
better than the current best one or if it satisfied an acceptance criteria. Then the
search continues from here, generating new neighborhood solutions.

The second group is that of population-based methods, which are often bio-
inspired approaches. They consider many solutions at the same time which are
combined to obtain better ones. In these kinds of methods, we found: Ants Colony
Optimization (ACO) [32], Genetic Agorithms (GA) [21], Particle Swarm Opti-
mization (PSO) [22], etc. Local search based and population based algorithms
have two disadvantages [9,45]: early convergence and being stuck in a local op-
timum, so hybrid approaches which combine the two procedures have often been
used [10,24,31].

We also propose a local search algorithm to solve the SimUSanté problem. In-
deed, this kind of algorithm is adapted to real problems and gives good results in
a short time. Nevertheless the quality of the solutions mainly relies on the quality
of the neighborhood operators. In this sense, we have developped several opera-
tors dedicated to the SimUSanté problem, whose principles nevertheless remain
applicable to similar planning problems.

3 SimUSanté: a planning problem with resource constraints

In such a large center of multidisciplinary active pedagogy as SimUSanté, there
are a lot of activities, grouped into training sessions, with some precedence con-
straints, specific skill requirements and specific room equipment. Moreover, be-
cause SimUSanté is a simulation center, the room facilities are both varied and
flexible. Planning all activities while respecting the various constraints is an issue
of primary importance for the proper functioning and success of such a center. It
is important to schedule as many activities as possible in sessions and that ses-
sion timetables are compact. This minimizes the number of days for learners and
teachers. First let’s formally define the data problem:

Horizon: Horizon H corresponds to one week decomposed into working days. Let
D be the set of these working days. So, ∀d ∈ D, we denote Td the set of time
slots of day d and T =

⋃
d∈D Td. startd = mint∈Td{t} represents the first time

slot of day d and endd = maxt∈Td{t}, the last one. d̄ is the last day of H. Each
time slot represents one hour and a day is composed of 9 time slots. Let breakd
be a subset of slots identified as potential time breaks, for day d. One at least
of these time slots should be idle to ensure the existence of a daily lunch break
for any sessions and employees.

Resources: We have a finite set of resources R = Rr ∪ Re with Rr the set
of rooms and Re the set of employees. To Re is associated a set of types
Λe = {λ1, ..., λ|Λe|} which corresponds to the skills of employees. To Rr is also
associated a set of types Λr = {λ|Λe|+1, ..., λ|Λe|+|Λr|} which corresponds to
specific room equipment. We denote Λ = Λr ∪ Λe. Each resource can have
more than one associated type. For example, a room may be equipped with
artificial arms for the simulation of taking blood, but also with artificial ver-
tebral columns for the simulation of lumbar punctures. We denote Rλi = the
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set of resources of type λi, and qtavtλi the quantity of resource λi available at
time slot t. All activities scheduled at time slot t cannot use more than the
available resources. Each employee e ∈ Re is associated with a set of types Λe
and their availability at each time slot is taken into account by isavailablete
which is equal to 1 if employee e is available at time slot t and 0 otherwise.

Activities: Let A be the set of activities and sa the session to which a belongs.
Each activity a ∈ A is characterized by a duration durationa, an earliest
starting date ESa and latest starting date LSa. qtreqaλi is the quantity of
resources of type λi, ∀i = 1, .., |Λ| required by activity a, and Λa = {λi ∈ Λ
/ qtreqaλi 6= 0}, the set of resource types required by a. iseligibleta is equal
to 1 if there are enough resources for scheduling activity a at time slot t (i.e.
∀λi ∈ Λa, qtreqaλi ≤ qtavtλi), 0 otherwise. A precedence relation is defined
between the activities and we denote preda the set of activities that must be
planned before activity a.

Training session: Let S be the set of training sessions to schedule over horizon
H. Each training session s ∈ S is composed of a set of activities As and has a
total duration durations =

∑
a∈As durationa. We denote Λs =

⋃
a∈As Λa, the

set of resource types required per training session s.

4 Mathematical model

The model proposed for the SimUSanté problem is based on [11], that considers
CB-CTT as an extension of the Resources Constrained Project Scheduling Prob-
lem (RCPSP). The two 0− 1 decision variables used in our model are:

– xta = 1 if activity a starts at time slot t, 0 otherwise, ∀a ∈ A and ∀t ∈ T .
– ye,λa = 1 if activity a is assigned to employee e with type λ, 0 otherwise,
∀a ∈ A, ∀e ∈ E and ∀λ ∈ Λe.

The objective is to plan as many activities as possible while minimizing the
completion time (makespan) of each session. This objective is represented by func-
tion in equation (1) where the first term tends to minimize the session makespans
and the second one tends to minimize the number of unscheduled activities. Co-
efficient α is penalty applied to unscheduled activities. startss and ends are two
fictitious activities with duration zero, that respectively represent the beginning
and the end of session s.

minimize
∑
s∈S

∑
t∈T

(xtends × t− x
t
starts × t) +

∑
a∈A

(1−
∑
t∈T

xta)× α (1)

This objective function (see equation (1)) must be minimized while respect-
ing all time and resource constraints that are represented by the following linear
constraints:



6 Simon Caillard et al.

∑
t∈[ESa,LSa]

xta ≤ 1 ∀a ∈ A (2)∑
t∈T\[ESa,LSa]

xta = 0 ∀a ∈ A (3)∑
t∈T

xta ≤ 1 ∀s ∈ S, ∀a ∈ {starts, ends} (4)

Equations (2) and (3) ensure that each activity a is scheduled once at most,
and in [ESa, LSa]. Equation (4) checks that fictitious activities are scheduled once
at most.

∑
t∈T

t.(xta − xtb) ≥ durationb, ∀s ∈ S, ∀a ∈ As ∪ {ends}, ∀b ∈ preda (5)∑
e∈Rλ

ye,λa = qtreqaλ, ∀a ∈ A, ∀λ ∈ ΛE (6)

t∑
t′=endd−durationa+1

xt
′

a +
t∑

t′′=startd+1−durationa+1

xt
′′

a ≤ 1, ∀a ∈ A, ∀d ∈ D \ {d̄}

(7)∑
a∈A

(qtreqaλ ×
t∑

t′=t−durationa+1

xt
′

a ) ≤ qtavtλ, ∀t ∈ T, ∀λ ∈ ΛR (8)

Equations (5), (6), (7) and (8) correspond to constraints related to activities.
Equation (5) ensures that activity a cannot start before all its predecessors. Equa-
tion (6) ensures, for each activity that the required quantity of employees with
type λ is assigned to it. Equation (7) ensures that each activity is not split and
scheduled on two distinct days. Finally, equation (8) verifies that the number of
scheduled activities on time slot t, requiring rooms of type λ does not exceed the
number of available rooms of this type.

t∑
t′=t−durationa+1

xt
′

a +
∑

b∈As\{a}

t∑
t′=t−durationb+1

xt
′

b ≤ 1, ∀t ∈ T, ∀s ∈ S, ∀a ∈ As

(9)∑
a∈As

∑
t∈breakd

t∑
t′=t−durationa+1

xt
′

a ≤ 1 ∀s ∈ S, ∀d ∈ D (10)

Equations (9) and (10) are related to session constraints. Equation (9) verifies that
all activities in the session are serial scheduled and equation (10) ensures that each
session has one lunch break per day if necessary.
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durationa.
∑
λ∈Λe

ye,λa − xta.
t+durationa−1∑

q=t

isavailableqe ≤ (1− xta)×max
a∈A
{durationa}

∀e ∈ E, ∀a ∈ A, ∀t ∈ T
(11)∑

λ∈Λe

ye,λa ≤ 1 ∀e ∈ E, ∀a ∈ A (12)

t∑
t′=t−durationa+1

xta +
t∑

t′=t−durationb+1

xtb + (
∑
λ∈Λe

ye,λa + ye,λb ) ≤ 3

∀e ∈ E, ∀t ∈ T, ∀a ∈ A, ∀b ∈ A \ {a}

(13)

t∑
t′=t−durationa+1

xt
′

a +
t∑

t′=t−durationb+1

xt
′

b +
∑
λ∈Λe

ye,λa +
∑
λ∈Λe

ye,λb ≤ 3

∀e ∈ E, ∀d ∈ D, ∀t ∈ breakd, a ∈ A, b ∈ A \ {a}

(14)

All equations (11), (12), (13) and (14) concern the employee constraints. Equa-
tion (11) ensures that there is no activity assigned to employee e when they are
not available. Equation (12) verifies that employees are assigned to one type at
most per activity. Equation (13) ensures that employee e is assigned at most to
one activity per time slot t. Equation (14) guarantees that each employee has a
lunch break each day.

CPLEX solver (version 12.6) was used to solve this 0-1 linear program. It
provides optimal solutions for small instances, but cannot process larger ones in a
limited run time of 24 hours. However, thanks to the optimal solutions provided,
we were able to measure the efficiency of our heuristic algorithms, SimUG and
SimULS added in sections 5 and 6.

5 SimUG: a greedy algorithm for the SimUSanté problem

Because the real life instances are most often large and consequently unsolvable
by exact methods, we propose a constructive greedy algorithm named SimUG.
The strengths of a greedy algorithm are the simplicity and speed of execution. At
each iteration of the construction process, it is necessary to make choices accord-
ing to local optimality criteria, without guarantee of the global optimality. These
selection criteria must therefore be relevant to the SimUSanté problem. In order
to design them, we mainly focused on making a schedule compact. The training
offered by the SimUSanté center must satisfy their customers, while monopolizing
the learners as few as possible. We explain in this section how these criteria were
constructed for SimUG.
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Algorithm 1 SimUG

Require: S (set of unscheduled training sessions), T (set of time slots)
Ensure: Sol (a feasible solution), UA (set of unscheduled activities)
1: Sol← ∅
2: UA← ∅
3: while S 6= ∅ do
4: s∗ ← sessionChoice(S)
5: S ← S \ {s∗}
6: t∗ ← betterStart(s∗, T )
7: t← t∗

8: UAs∗ ← As∗
9: while (t ≤ |T |) and (UAs∗ 6= ∅) do

10: EAs∗ ← eligibleActivities(UAs∗ , t)
11: if EAs∗ 6= ∅ then
12: (a∗, Ra∗ )← activityChoice(EAs∗ , t)
13: Sol← Sol ∪ (a∗, t, Ra∗ )
14: updateAvalaibility(a∗, t, Ra∗ )
15: UAs∗ ← UAs∗ \ {a∗}
16: t← t+ durationa∗
17: else
18: t← t+ 1
19: end if
20: end while
21: UA← UA ∪ UAs∗
22: end while
23: return (Sol, UA)

5.1 Solution formulation

Constructing a solution is to assign a start date ta (a time slot) to activity a, and
a set of resources Ra, such that all the constraints of resources (number and type)
of precedence and of operating rules are respected. A solution is represented by a
set Sol of triplets (a, ta, Ra), with a ∈ A, ESa ≤ ta ≤ LSa and Ra ⊆ Rr ∪Re. Ra
is a set of available resources assigned to a, which exactly matches the resources
required to execute a. Let SA ⊆ A, SA = {a|(a, ta, Ra) ∈ Sol} be the set of
scheduled activities and UA = A \ SA, the set of unscheduled ones. For session
s ∈ S, Sols ⊆ Sol, represents the set of triplets of the solution related to s, with
Sols = {(a, ta, Ra) ∈ Sol|a ∈ As}. SAs = SA∩As, is the set of scheduled activities
of s, and UAs = As \ SAs, the set of unscheduled activities of s.

For a given session s ∈ S, if at least one activity has been scheduled (SAs 6= ∅),
then the start date tstarts = min(a,ta,Ra)∈Sols{ta} and the end date tends =
max(a,ta,Ra)∈Sols{ta + durationa}, otherwise tstarts = tends = 0. The makespan
of session s is denoted mks = tends − tstarts .

The evaluation of Sol, denoted Makespan(Sol), corresponds to the objective
function presented by equation (1). It is the sum of the makespans of all sessions,
plus the amount of unplanned activities multiplied by penalty α (see equation 15).
The objective is to find a valid solution with a minimum Makespan.

Makespan(Sol) =
∑
s∈S

mks + |UA| × α (15)
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5.2 Principle of SimUG

SimUG, described in algorithm 1, consists of scheduling one by one the sessions in
S, using selection criteria that tend to minimize the objective function presented in
equation (1). These selected criteria aim to compact the schedule obtained rather
than planning as many activities as possible.

Two criteria are used to select the session s∗ to plan - sessionChoice() - and
its better starting date t∗ - betterStart() -. Once s∗ and t∗ are fixed, the criterion
activityChoice() allows the sequential scheduling of activities of s∗ from time slot
t∗. In SimUG, EligibleActivities() simply returns all unplanned activities of s∗,
whose resource demands can all be satisfied at a given time slot t.

5.3 Criterion sessionChoice(S)

The aim of sessionChoice() is to choose among unscheduled sessions in S the
next to schedule. It selects the training session with the lowest difficulty score
difs computed by equation (16). This score represents the difficulty of planning
a session. difs estimates the total number of required resources over durations.
The lower the difs of session s is, the more compact the schedule of s will be
since s doesn’t need many resources or not for a long time. In case of equal difs,
a random choice is made.

difs =
∑
a∈As

∑
λ∈Λa

durationa × qtreqaλ

s∗ = argmin
s∈S

{difs}
(16)

5.4 Criterion betterStart(s∗)

betterStart(s∗) selects the start date t∗ for previously chosen session s∗. This
selection is made according to equation (17) which is based on three indicators
that characterize each time slot t ∈ H: the resource deficiencies Dts∗ , the resource
availability availts∗ and the underestimated makespan underspants∗ of previously
chosen session s∗. The chosen time slot is then the one with the lowest resource
deficiencies and in case of equality between two time slots, those that have the
higher resources availability and finally those that have the lowest underestimation
of makespan. The computation of these indicators is described above.

t∗ = [ argmin
t∈T

{Dts∗}; argmax
t∈T

{availts∗}; argmin
t∈T

{underspants∗} ] (17)

To calculate these three indicators, we define for each time slot t, the earliest
end of session s∗ denoted endts∗ described in equation (18). endts∗ takes into account
the total duration of the activities of s∗ and the mandatory lunch breaks computed
by the function breaks.
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Fig. 1 Computation of the earliest end of session s∗ for each time slot.

endts∗ = t+
∑

a∈UAs∗
durationa + breaks(t,

∑
a∈UAs∗

durationa)− 1 (18)

Figure 1 considers the set of activities As∗ = {a, b}, with respective duration
durationa = 2 and durationb = 2, and shows that if s∗ starts at time slot 1 or at
time slot 4, the earliest end is respectively end1s∗ = 4 and end4s∗ = 8, because a
lunch break is required for the latter.

Lowerbound of chosen session underspants∗ is an underestimation of the makespan
of s∗ if it starts at t and is computed by equation (19).

underspants∗ = endts∗ − t+ 1 (19)

The previous example in figure 1 shows that the earliest ends for time slots
1 and 4 are respectively end1s∗ = 4 and end4s∗ = 8. The underestimation of
corresponding makespans to these time slots is then underspan1

s∗ = 4−1+1 =
4 and underspan4

s∗ = 8− 4 + 1 = 5.

Resource deficiencies Dts∗ scores any time slot t by overestimating resource defi-
ciencies over [t, endts∗ ] if s∗ starts at t. We then consider that session s∗ requires
during its progress the maximum resource quantity over As∗ , for all resource
types λi ∈ Λs∗ .

Dts∗ =

ends
∗
t∑

t′=t

∑
λi∈Λs

max(overeqs
∗

λi − qtav
t′

λi , 0)

overeqs
∗

λi = max
a∈As∗
λi∈Λs∗

{qtreqaλi}
(20)

So the overestimation of resource deficiencies for each time slot t is the sum of
the differences between the over requirement of s∗, overeqs

∗

λi and the available
resource at time slot t, qtavtλi , for each resource type λi, as shown in equation
(20).
Figure 2 illustrates the over requirement and considers the following require-
ments for the previous set of activities As∗ :

activity a needs two rooms of type λ1 (qtreqaλ1
= 2) and one employee of type

λ2 (qtreqaλ2
= 1).
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Fig. 2 Description of session s∗ and its over requirement

activity b needs one room of type λ1 (qtreqbλ1
= 1), one employee of type λ2

(qtreqbλ2
= 1) and two employees of type λ3 (qtreqbλ3

= 2).

The over requirements for session s∗ is then overeqs
∗

λ1
= max(2, 1) = 2 ; overeqs

∗

λ2
=

max(1, 1) = 1 ; overeqs
∗

λ3
= max(0, 2) = 2.

Fig. 3 Resource availabilities for time slots 1 to 9

In figure 3, the white blocks represent the quantity of resources available for
time slot 1 to 9 and for types λ1, λ2 and λ3. The black ones show the over
requirements of session s∗ presented in figure 2. The dashed rectangle repre-
sents the time slots considered to compute deficiencies for time slot 1 and the
hatched blocks are the missing resources that occur in comparison with the
over requirements.
As mentioned in previous examples, the earliest ending time slot, if session s∗

starts at time slot 1, is end1s∗ = 4. To compute the deficiencies for time slot 1, we
then consider time slots in interval [1; 4] and the details of the computation is as
follows : D1

s∗ = (max((2−1), 0)+max((1−1), 0)+max((2−2), 0)) + (max((2−
1), 0)+max((1−1), 0)+max((2−2), 0)) + (max((2−1), 0)+max((1−2), 0)+
max((2− 2), 0)) + (max((2− 1), 0) + max((1− 2), 0) + max((2− 3), 0)) = 4.

Resource availability availts∗ is the average of available resources over [t, endt].
The more resources left, the more opportunities to schedule remaining activities
left. The available resources score of time slot t is given by equation (21).
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availts∗ =

endts∗∑
t′=t

∑
λi∈Λs

(qtavt
′

λi)

underspants∗
(21)

With our previous example, using s∗ presented in figure 2 and the resource
availabilities shown in figure 3, for time slot 1, the resource availability is the
average of the white blocks inside the dashed rectangle, and then avail1s∗ =
((1 + 1 + 2) + (1 + 1 + 2) + (1 + 2 + 2) + (1 + 2 + 3))/4 = 19/4.

5.5 Criterion activityChoice(EAs∗ , t)

Among the set of eligible activities criterion activityChoice() chooses which activ-
ity a∗ ∈ EAs∗ , with its pre-assigned resources Ra∗ , will be scheduled. Its start date
ta∗ is set to t and resource availabilities are updated by function updateAvailability
(a∗, t, Ra∗).

a∗ is activity a such that (a,Ra) ∈ EAs∗ with the lowest scorea (see equa-
tion (22)). scorea overestimates the number of times a could be scheduled in
[t, endts∗ ], thanks to iseligibleta which is equal to 1 when a can start at t. The lower
the score, the fewer possibilities there are to program a at a time slot greater than
t. Note that if scorea = 0, there is no possibility of planning a after t.

Let ∆ = mina|(a,Ra)∈EAS∗ {durationa} be the smallest duration of the activ-
ities in EAs∗ . activityChoice() selects a∗ according to equation (22). If several
activities have the same scorea, one is randomly chosen.

scorea =
∑
d∈D

∑
t′∈Td∩[t+∆;endt

s∗ ]


t′+durationa−1∑

t′′=t′
iseligiblet

′′

a

durationa


a∗ = argmin

a|(a,Ra)∈EAs∗
{scorea}

(22)

5.6 Function updateAvailability(a∗, t, Ra∗)

When activity a∗ is scheduled on t, all resources in Ra∗ are set unavailable over
the period [t, t+ durationa∗ − 1]. Let us note that precedence constraints are also
updated for all activities linked to a∗.

6 SimULS: a local search algorithm

As mentioned in 5, the strengths of a greedy algorithm like SimUG are the simplic-
ity of implementation and the very short run time. They also enable valid solutions
to be built while not violating any constraints of the problem. However, despite the
relevance of criteria exposed in section 5, the resulting solutions remain with some
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unscheduled activities and/or with some idle time slots that damage the session
makespans. To improve the SimUG solutions, we have developed a local search
algorithm SimULS that explores the solution space by applying neighborhood
operators, starting from a solution provided by greedy algorithm SimUG.

From a given valid solution Sol, SimULS operator generates a set of possible
movements. Each of them corresponds to a neighbor solution of Sol. The process
consists of choosing one of these neighbor solutions as the current solution and
continues, with the expectation of meeting a near optimal solution. The effective-
ness of this method depends on the relevance of the operators and the strategy
of their application. Movements and operators are respectively detailed further in
sections 6.2 and 6.3.

6.1 Principle of SimULS

SimULS proposes the following operators : saturator, intra, extra, extra+ and
diversificator. saturator tries to complete the current solution by inserting un-
planned activities into consecutive time slots with sufficient resources available.
intra, extra and extra+ are applied when no movement stemmed from saturator
is possible. They try to insert unplanned activities by removing one or more sched-
uled activities from the current solution. diversificator is applied as a diversifi-
cation way in order to escape a local minimum.

SimULS principle, described in algorithm 2, is the following: until a maxi-
mum preset limitCounter iterations is reached, SimuLS relies on saturator to
plan unscheduled activities. If saturator fails to plan all the unscheduled activities,
SimULS calls function selectOperator to choose one of the following operators:
intra, extra or extra+, in order to plan a randomly selected unscheduled activ-
ity. Each of these operators removes triplets from the current solution according
to some criteria and thus frees resources and unsets time slots associated with
these triplets. Finally, if the best solution ever met is not improved after a preset
noImprov iterations, a dynamic β% of the solution is randomly destroyed by the
destructor operator.

6.2 Movement description

As mentioned in section 5.1, a solution is a set of triplets, so a movement m
will be characterized by a couple m =< (a, ta, Ra) ; Υ >. (a, ta, Ra) repre-
sents a triplet that will be added to the current solution, with a ∈ UA, an
unscheduled activity, ta ∈ T , a time slot from which a could be started, and
Ra, the set of resources assigned to a that exactly matches its resource require-
ment. In order to plan a, we need to remove a set Υ of triplets from the solution.
Υ = {(b1, tb1 , Rb1), . . . , (bn, tbn , Rbn)}, n ∈ {1, . . . |Sol|}. The set of resources Ra
can be composed of resources directly available over H, plus those released by can-
celling all activities of Υ . A movement respects all operational rules and resource
constraints. Note that Υ can be an empty set if triplet (a, ta, Ra) can be added
to the solution without removing any activities. Movements and their scores are
described in the following paragraph.
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Algorithm 2 : SimuLS

Require: Sol (the current solution), S (set of sessions), ∀s ∈ S,UAs (set of unscheduled
activities for session s), UA =

⋃
s∈S UAs (the set of unscheduled activities), noImprov,

limitCounter, βmin, limβmax
Ensure: bestSol (the best solution met during the process)
noBest← 0
counter ← 0
bestSol← Sol
β ← βmin
βmax ← βmin
for all a ∈ UA do
m← saturator(a)
if m 6= mNULL then

(Sol, UA)← applyMove(m,Sol, UA)
end if

end for
bestSol← Sol
while counter < limitCounter do

if (noBest = noImprov) or (UA = ∅) then
β ← randomInterval(βmin, βmax)
(Sol, UA)← diversificator(Sol, UA, β)
noBest← 0
if βmax < limβmax then
βmax ← βmax + 1

end if
end if
if UA 6= ∅ then
a← random(UA)
m← selectOperator({intra, extra, extra+}, a)
if m 6= mNULL then

(Sol, UA)← applyMove(m,Sol, UA)
end if

end if
for all a ∈ UA do
m← saturator(a)
if m 6= mNULL then

(Sol, UA)← applyMove(mvt, Sol, UA)
end if

end for
if Makespan(Sol) < Makespan(bestSol) then
noBest← 0
bestSol← Sol
βmax ← βmin

else
noBest← noBest+ 1

end if
counter ← counter + 1

end while
return bestSol

Each movement m has a score, scorem, computed by equation 23. This score
allows operators to determine which movement to apply, as show in equation 27.
The higher the score associated with m, the greater the probability that m is
applied. This score measures the potential improvement of the solution if this
move is applied. It is composed of 3 indicators: the makespan variation ∆m, the
number of idle time slots idlem generated and the number of removed activities
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|Υm|. The last indicator is considered in order to limit the number of activities to
plan next.

scorem =
1

(1 +∆m)× (1 + idlem)× (1 + |Υm|)
(23)

In details:

∆m computes (see equation (24)) the difference between the new makespanNmkm
of session sa, if a is scheduled, and the estimated minimum makespan lbm of
session sa.

∆m =

{
0 if Nmkm ≤ lbm
Nmkm − lbm otherwise

(24)

This estimated makespan is obtained by relaxing all resource constraints and
considering lunch-breaks computed by function breaks(). Nmkm and lbm are
detailed in equations 25.

Nmkm = max
t′∈{ta+durationa,tendsa }

{t′} − min
t′′∈{ta,tstartsa }

{t′′}

lbm = durationsa + breaks( min
t′∈{ta,tstartsa }

{t′}, durationsa)
(25)

idlem counts the number of free time slots unusable if movement m is applied.
A set of contiguous free time slots is considered unusable if it is not possible
to plan any unscheduled activities of sa over it, because the duration of each
of them exceeds the quantity of free slots in the set. idlem is computed at
equation 26.

idle(m) =
∑
t∈Td

1−
⌊
|[t; t+ durationmin[∩usedd|

durationmin

⌋
(26)

With d, the day to which ta belongs, durationmin = mina′∈UAsa {durationa′},
the smallest duration of the set of unscheduled activities of s(a) and usedd =
Td∩

⋃
a′∈SAsa

[ta′ ; ta′+durationa[, the set of previously assigned time slots for
day d and session sa.

Υm is the set of activities that m envisages to remove from the solution, freeing
up resources to plan a. The larger |Υ |m is, the more the unplanned activities
could weigh negatively on the objective function Makespan(Sol).

Each of our operators, described in the next section, builds a set of movements
according to different criteria, and selects one of them (see equation 27) to be
applied to the current solution Sol.
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6.3 Description of scheduling operators

As mentioned previously, operators generate a set of movements M . Each move-
ment m ∈ M , with m =< (a, ta, Ra);Υ >, is composed of (a, ta, Ra) the activity
to plan at ta with resource consumption Ra, and Υ the set of activities to re-
move from the current solution.The main difference between the four scheduling
operators saturator, intra, extra, and extra+ is the composition of Υ . Note that
if there is no possible movement for an operator (M = ∅), it returns the empty
movement mNULL. This paragraph formally details these four operators.

saturatora: This operator tends to place activity a ∈ UA without changing the
current solution. It builds a set of movements M={< (a, t1a, R

1
a); ∅ >, . . . , <

(a, tka, R
k
a); ∅ >}. Because all activities of a same session must be planned in

series, for each movement < (a, tia, R
i
a) ; ∅ >∈ M , with i = 1, . . . , k, the

following property must be respected:

– [tia; tia + durationa[∩[tb; tb + durationb[= ∅ ∀(b, tb, Rb) ∈ Sols(a).

intraa: This operator removes one or more scheduled activities from s(a) in order
to plan activity a ∈ UA. It builds a set of movements M={< (a, t1a, R

1
a);Υ 1 >

, . . . , < (a, tka, R
k
a);Υ k >}, where Υ i are the sets of activities belonging to ses-

sion s(a) to be removed from the solution. In addition to the seriality constraint,
it is clear that only the activities of s(a) scheduled on the time slots of [tia; tia+
durationa[ must be deleted. So, for each movement < (a, tia, R

i
a);Υ i > ∈M ,

with i = 1, . . . , k, and Υ i ⊆ SAs(a), the following properties are verified:

– [tia; tia + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ i
– [tia; tia + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols(a) \ Υ i}

extraa: The principle of this operator is based on that of intra(a). To schedule
activity a, it builds a set of movements M for which each set Υ i of removed
activities belongs to the same randomly selected session s′ 6= s(a). For each
movement < (a, tia, R

i
a);Υ i >∈M , with i ∈ [1; k] and Υ i ⊆ SAs′ , the following

properties are verified:

– [tia; tia + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ i
– [tia; tia + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ Sols(a)

extra+a : This operator differs from intra and extra because canceled activities
come from different sessions. For each movement, the removed activities belong
to S. It builds a set of movementsM={< (a, t1a, R

1
a);Υ 1 >, . . . , < (a, tka, R

k
a);Υ k >

} in order to plan activity a ∈ UA. For each movement < (a, tia, R
i
a);Υ i >∈M ,

with i ∈ [1; k] and Υ i ⊆ SA, the properties below are verified :

– [tia; tia + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ i
– [tia; tia + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols(a) \ Υ i}

So, each operator defined above, first generates a set M of movements, then
chooses one of them to apply to the current solution, according to the rule of
random proportionality. This rule is built on probability pm, associated with each
movement and computed by equation 27.

pm =
scorem∑

m′∈M
scorem′

(27)
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The strategy of scheduling operator selection during the iterative process of al-
gorithm 2 still remains to be defined. This is provided by the function selectOperator
described in section 6.5.

6.4 Diversification operator

diversificator is the diversification operator. Its purpose is to partially modify the
solution in order to escape from a local minimum. diversificator has two operating
modes depending on UA, because the latter could be empty when diversificator
is called. The first mode schedules all the activities in UA. The second one is used
when UA = ∅ and moves some scheduled activities to other time slots. Both of
these operating modes use extra+ operator to schedule or move activities. Below,
the details of these modes:

if UA = ∅: it selects a set {(a1, ta1 , Ra1), . . . , aβ , taβ , Raβ )} of triplets to remove
from the current solution. For each canceled triplet (ai, tai , Rai), with i ∈ [1;β],
it uses operator extra+ to plan activity ai.
Note that tai , the previous time slot where ai was scheduled, is considered as
tabu and cannot be used by extra+ at this step. This restriction was made to
prevent diversificator from scheduling ai on the time slot tai where it was
previously planned.

if UA 6= ∅: in this mode, there is no need to remove triplets from the solution. For
each unscheduled activity a ∈ UA, extra+ operator is used to schedule it.

Note that whatever the mode used, each time extra+ is used and then a move-
ment m is applied, the canceled activities belonging to Υm are added to UA and
are not yet considered by diversificator.

β represents the number of removed activities and is randomly generated be-
tween limits βmin and βmax which represent respectively the minimum and the
maximum quantity of triplets canceled. βmax evolves according to the number of
times destructor has been applied without an improvement of the solution. Each
time the solution is improved, βmax is set to its initial value βmin, otherwise βmax
increases by 1 each time destructor is used, until it reaches its preset limit limβmax .

6.5 Function : selectOperator()

Function selectOperator is used when saturator can’t schedule all activities, as
shown in algorithm 2. Its purpose is to determine which operator will be the most
suitable to plan unscheduled activity a. In order to choose which operator to apply
between intra, extra, extra+, SelectOperator function uses two specific counters:

csextra counts the number of times where intra has been consecutively applied to
session s. When it reaches its associated limit, it activates operator extra to
schedule a.

caextra+ determines how many iteration activities a remained consecutively un-
scheduled. When its limit is reached, it uses extra+ to plan a.

By default, selectOperator uses intra, except if the counters reach their limits.
Note that in case of equality between the two counters, extra+ is always used first.
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7 Instances & Computational results

7.1 Instances

In order to test our algorithms, we needed instances close to the SimUSanté prob-
lem. However, the current operation of the training center does not provide real
instances. For this reason, we have generated new instances [13], from the classic
instances of the CB-CTT problem [47]. These generated instances include char-
acteristics inherent to the SimUSanté problem, and are accessible on the website
[13]. Their construction process is now briefly described.

We generate an initial instance D0T0C0A0 which has as many employees (the
teachers), rooms, time slots, sessions (the curricula) and activities (the lectures)
as the original CB-CTT instance, and ensure that all the characteristics described
in section 3 are present: An employee-type matches to a single employee. So there
are as many employee-types as employees. Each employee is available over the
horizon and their employee-type is associated with activities that correspond to
the lectures the relative teacher/employee was performing on the original CB-CTT
instance. All rooms have the same unique room-type. Because such an instance
represents a ’too special’ case of the SimUSanté instances, we have extended it
and thus made it more general using the following criteria:

– Criterion C1 adds one random employee-type to a set of randomly chosen
employees.

– Criterion D1 halves the availabilities to a set of randomly selected employees.
– Criterion T1 adds one or two new room-types, distributes the rooms into all

these existing types and sets activity requirements accordingly.
– Criterion T2 allows the rooms to have more than one type and then adds to

each randomly chosen room one existing room-type.
– Criterion A1 selects a set of randomly chosen activities and for each of them

increases by 1 the quantity required in a randomly selected room-type. Some
activities then require more than one room-type or two rooms of the same type.

– Criterion A2 uses the same set of activities considered by criterion A1 and
increases by 1 the quantity required in a randomly selected employee-type.

These criteria are combined to provide different instances. As an illustration,
D0T1C0A1 +D1 provides a new instance D1T1C0A1. Because the criteria involve
random choices, it is possible to generate several different instances from a single
variant criterion.

To test SimUG and SimULS we use 6 new instances derived from those of
the CB-CTT: Brazil1, Italy1, Brazil2, Brazil6, Finland1 and StPaul. The charac-
teristics of the new generated instances are presented in table 1:

7.2 Results

The mathemathical model presented in section 4 was implemented with the CPLEX
solver 12.8. SimUG and SimULS were written in Java, and tested on an Intel
I7 7500U processor. The tests of CPLEX, SimUG and SimULS are reported on
tables 2 to 7. Column Instancename corresponds to the label associated with
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Table 1 Characteristics of the tested instances

Instance name Sessions Employees Rooms Activities Time slots

Brazil1 3 8 3 27 36

Italy1 3 13 3 36 45

Brazil2 6 14 , 6 57 36

Finland1 10 18 13 139 45

Brazil6 14 30 14 126 36

StPaul 67 68 67 589 36

Table 2 Results for Brazil1 - average gap from CPLEX - SimUG: 37.52%, SimULS: 7.10%

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 83 89 0 0 84.2 0 0 1.62

D0T1C0A1 84 124 3.70 36 91.1 0 0 1.67

D0T1C1A1 84 124 3.70 36 90.3 0 0 2.01

D0T1C1A2 84 124 3.70 36 91.3 0 0 1.71

D0T2C0A1 83 159 7.41 72 91.5 0 0 1.63

D1T0C0A0 83 86 0 0 84.3 0 0 1.68

D1T1C0A1 84 132 3.70 36 91.5 0 0 1.59

D1T1C1A1 84 168 7.41 72 90.5 0 0 1.73

D1T1C1A2 84 168 7.41 72 90.9 0 0 1.62

D1T2C0A1 83 164 7.41 72 91.4 0 0 1.67

average 83.6 133.8 4.44 43.2 89.99 0 0 1.69

Table 3 Results for Italy1 - average gap from CPLEX - SimUG: 63.09%, SimULS: 9.99%

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 101 109 0 0 104.9 0 0 1.38

D0T1C0A1 103 199 5.56 90 113.8 0 0 1.65

D0T1C1A1 103 245 8.33 135 114.4 0 0 1.41

D0T1C1A2 103 244 8.33 135 114.3 0 0 1.64

D0T2C0A1 103 474 22.22 360 113.9 0 0 2.03

D1T0C0A0 101 107 0 0 105.1 0 0 1.87

D1T1C0A1 103 248 8.33 135 116.1 0 0 1.76

D1T1C1A1 103 294 11.11 180 117 0 0 1.73

D1T1C1A2 103 294 11.11 180 118.4 0 0 1.74

D1T2C0A1 103 566 27.78 450 118.2 0 0 1.69

average 102.6 278 10.28 177.4 113.99 0 0 1.69

the criteria used in the generating instance process, as explained before. Column
CPLEX gives the optimal solution when attainable in the running time limits of
24 hours. na specifies a non available result. For SimUG and SimULS, the results
are respectively decomposed into 3 and 4 parts: column Makepsan is the value
for SimUG and the average over 20 runs for SimULS of the objective function
(equation 1), column |UA| is the percentage (SimUG) and the average percentage
(SimULS) of unscheduled activities, column pen is the penalization induced by
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Table 4 Results for Brazil2 - average gap from CPLEX - SimUG: 46.88%, SimULS: 10.96%

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 163 288 5.28 108 174.4 0 0 1.72

D0T1C0A1 166 395 10.53 216 188.1 0 0 1.70

D0T1C1A1 166 431 12.28 252 186.9 0 0 1.75

D0T1C1A2 166 431 12.28 252 188.3 0 0 1.12

D0T2C0A1 164 259 8.77 180 186.6 0 0 1.75

D1T0C0A0 163 220 1.75 36 175.8 0 0 1.33

D1T1C0A1 166 260 3.51 72 188.7 0 0 1.68

D1T1C1A1 166 264 3.51 72 188.1 0 0 1.56

D1T1C1A2 166 301 5.26 108 188.4 0 0 1.95

D1T2C0A1 164 257 3.51 72 187.8 0 0 1.64

average 165 310.6 6.67 136.8 185.31 0 0 1.71

Table 5 Results for Finland1

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 na 525 2.88 180 345.9 0 0 1.62

D0T1C0A1 na 619 4.32 270 367.8 0 0 1.59

D0T1C1A1 na 575 3.60 225 368.4 0 0 0.98

D0T1C1A2 na 489 2.16 135 367.9 0 0 1.24

D0T2C0A1 na 619 4.32 270 366.5 0 0 1.29

D1T0C0A0 na 720 5.76 360 346.7 0 0 1.48

D1T1C0A1 na 770 6.47 405 368.3 0 0 1.41

D1T1C1A1 na 720 5.76 360 370.3 0 0 1.23

D1T1C1A2 na 715 5.76 360 370.1 0 0 1.31

D1T2C0A1 na 770 6.47 405 369.5 0 0 1.27

average na 652.2 4.75 297 364.14 0 0 1.34

UA (with pen = |UA| × α and α = |H| on equation (15)), and column SD rep-
resents the standard deviation over 20 runs from column Makespan (SimULS).

CPLEX provided optimal solutions only for the smaller instance families such
as Italy1, Brazil1 and Brazil2 (see tables 2, 3 and 4). Note that in the optimal
solution, all activities are scheduled. For the others, the optimal solutions are not
attained because of the prohibitive execution time of the solver.

The greedy algorithm SimUG worked out valid but non optimal solutions in
less than one second. SimUG schedules all activities for only 4 of the 60 tested
instances and schedules on average 93.55% of the activities with a standard de-
viation of 4.96 over all instances. The differences in number of scheduled activ-
ities between the tested instances are caused partly by criteria betterStart and
ActivityChoice(). The first one returns a time slot t∗ from which a session s∗

can start to be planned and then time slots before t∗ are never considered by
SimUG in order to plan s∗. As an example, in the solution proposed by SimUG
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Table 6 Results for Brazil6

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 383 710 6.35 288 428.5 0 0 1.03

D0T1C0A1 390 1030 13.49 612 435.3 0 0 0.86

D0T1C1A1 390 958 11.90 540 437.6 0 0 0.65

D0T1C1A2 na 1031 13.49 612 437.8 0 0 0.98

D0T2C0A1 na 886 10.32 468 437.3 0 0 0.91

D1T0C0A0 na 584 4.76 216 429.2 0 0 0.92

D1T1C0A1 na 841 8.73 396 438.2 0 0 0.89

D1T1C1A1 na 760 7.14 324 438.9 0 0 0.85

D1T1C1A2 na 873 9.52 432 438.5 0 0 0.94

D1T2C0A1 na 841 8.73 396 438.1 0 0 0.93

average na 851.4 9.44 428.4 435.94 0 0 0.90

Table 7 Results for StPaul

Instance name CPLEX
SimUG SimULS

Makespan |UA|% pen Makespan |UA|% pen SD

D0T0C0A0 na 1591 1.02 216 1433.2 0 0 0.82

D0T1C0A1 na 1639 1.19 252 1458.7 0 0 0.89

D0T1C1A1 na 1587 1.02 216 1458.7 0 0 0.84

D0T1C1A2 na 2125 3.40 720 1462.5 0 0 0.92

D0T2C0A1 na 1639 1.19 252 1463.4 0 0 0.85

D1T0C0A0 na 2401 4.41 936 1438.1 0 0 0.92

D1T1C0A1 na 2331 4.07 864 1468.6 0 0 0.98

D1T1C1A1 na 2334 4.07 864 1468.6 0 0 0.95

D1T1C1A2 na 2785 6.11 1296 1470.2 0 0 1.01

D1T2C0A1 na 2331 4.07 864 1469.5 0 0 0.96

average na 2076.3 3.06 648 1459.1 0 0 0.92

on Brazil1−D0T1C0A1 instance, each session starts at, or after, 1/6 of the horizon.
The second one schedules the unplanned activities of s∗ based on their remain-
ing planning possibilities. These are computed from a restricted interval of time
slots: the current time slot t, with t∗ ≤ t and the earliest end endts∗ of s∗. The
time slots after endts∗ are then not considered for these computations and lead
activityChoice to misplace activities.

The restricted horizon mainly generates the differences in results observed be-
tween the instances. However, although the criteria betterStart and activityChoice()
lead sometimes to solutions that have more unscheduled activities than others,
they provide compact timetables. Indeed, without penalty pen added to the score
of SimUG in equation 15 which have few idle time slots, than others with more
scheduled activities but a lot of idle time slots. That is why we used SimUG
solutions as initial solutions for SimULS.

The running time limit for SimULS has been set at two hours. SimULS
always schedules all activities and always improves results of SimUG. We note an
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average divergence of 9.97% between SimULS and the optimal solution when it
exists, with a standard deviation of 2.68. Moreover, considering the column SD,
we observe for each instance that the standard deviation remains less than 2, which
means that SimULS always provides solutions of equivalent quality. Futhermore
for each table, the results obtained are roughly the same (except for D0T0C0A0

and D1T0C0A0), which means that SimULS is efficient in most cases.

For small instances, like Brazil1, Italy1, Brazil2 (cf. table 2, 3, 4), the main
difference between the optimal solutions and that of SimULS is that the number
of lunch breaks is not minimized. Indeed, to obtain the optimal solution, it is
necessary to start the sessions from specific time slots that allow lunch breaks
to be minimized. For example: start a session on the first afternoon time slot
and end it on the last morning time slot of the following day. Nevertheless the
schedules obtained by SimULS, in all instances, are compact and quite revelant
for SimUSanté.

Table 8 Operator use rate

Instance name diversificator
selectOperator

intra extra extra+

Brazil1 23.36 89.26 8.33 2.41

Italy1 16.37 86.09 8.10 5.81

Brazil2 17.74 88.17 8.55 3.28

Finland1 13.38 84.70 7.97 7.33

Brazil6 15.64 85.95 8.32 5.73

StPaul 10.12 82.84 8.81 8.55

Table 8 shows the average use rate of each operator compared to the total
number of iterations. The results have been grouped into instances that have been
generated from the same CB-CTT instance. We note nbit the total number of
iterations made by SimULS in a running time of two hours and nbintra, nbextra,
nbextra+ , nbdiversificator respectively the number of iterations where intra, extra,
extra+ and diversificator have been used . Column selectOperator gives the
percentage of use for the set of operators: nboperator/nbit × 100. They have been
grouped together because they are only called by function selectOperator which
is called at each iteration. Column diversificator is the percentage of use for
diversificator operator. Note that the rate of saturator is always 100% because
it is called at each iteration.

We observe that the larger the size of the instance, the less the diversificator
is used. Indeed, on the smaller and easier instances, once diversificator has been
used, SimULS succeeds very quickly in planning all the activities and therefore
in using diversificator again. Likewise, we note that the larger and more difficult
the instances, the more extra+ is used to obtain a solution without unscheduled
activities. This is mainly because SimULS needs several iterations to success-
fully plan all the activities once diversificator has been used, and therefore some
activities remain unscheduled for quite a long time.
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8 Conclusion

In this paper we have presented a study of a planning problem with resource con-
straints, for the health training center SimUSanté. We proposed a mathematical
model and greedy algorithm SimUG, based on a set of choice criteria aimed at re-
ducing the overall Makespan of training sessions, while respecting all resource and
time constraints. SimUG is interesting for SimuSanté because it allows immediat
solutions to be obtained, in particular on easier instances. To improve the results
obtained by SimUG, we have developed SimULS, a local search algorithm based
on 5 movement operators, in order to plan all the activities, while minimizing
the general Makespan. We experimented SimUG and SimULS on new instances,
generated from those of CB-CTT, and integrating the SimUSanté problem char-
acteristics. The results obtained were compared to the optimal solutions provided
by the CPLEX solver. SimUG schedules on average 93.55% of the activities and
produced a suitable and compact basic solution in a very short time. SimULS
always schedules all activities, enhances results of SimUG in all cases and has
an average divergfence of 9.97% from optimal solutions. SimULS is a good com-
promise because it obtains good results quickly thanks to our operators which
efficiently explore the search space.

References

1. Abdullah, S.: Heuristic approaches for university timetabling problems. Ph.D. thesis,
University of Nottingham (2006)

2. Abuhamdah, A., Ayob, M., Kendall, G., Sabar, N.: Population based local search for
university course timetabling problems. Applied Intelligence 40, 44–53 (2014)
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