
HAL Id: hal-03162140
https://hal.science/hal-03162140

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotically Optimal Strategies for Combinatorial
Semi-Bandits in Polynomial Time

Thibaut Cuvelier, Richard Combes, Eric Gourdin

To cite this version:
Thibaut Cuvelier, Richard Combes, Eric Gourdin. Asymptotically Optimal Strategies for Combi-
natorial Semi-Bandits in Polynomial Time. Algorithmic Learning Theory, Mar 2021, Paris, France.
�hal-03162140�

https://hal.science/hal-03162140
https://hal.archives-ouvertes.fr

ar
X

iv
:2

10
2.

07
25

4v
1

 [
st

at
.M

L
]

 1
4

Fe
b

20
21

Asymptotically Optimal Strategies For

Combinatorial Semi-Bandits in Polynomial Time

Thibaut Cuvelier and Richard Combes and Eric Gourdin

February 16, 2021

Abstract

We consider combinatorial semi-bandits with uncorrelated Gaussian rewards.

In this article, we propose the first method, to the best of our knowledge, that

enables to compute the solution of the Graves-Lai optimization problem in polyno-

mial time for many combinatorial structures of interest. In turn, this immediately

yields the first known approach to implement asymptotically optimal algorithms in

polynomial time for combinatorial semi-bandits.

1 Introduction

We consider combinatorial bandits, where a learner repeatedly selects decisions x from

a combinatorial set X ⊂ {0, 1}d, and obtains random rewards with mean θ⊤x, where

θ is an unknown vector. The goal of the learner is to maximize the expected sum of

rewards. In the semi-bandit setting, the learner can see several individual components

of θ instead of only the total reward θ⊤x.

When decisions in X have exactly one nonzero entry, the problem reduces to clas-

sical bandits [13], for which asymptotically optimal strategies such as KL-UCB and

Thompson sampling are known [13, 11, 4]. When X is a general set, then the problem

reduces to linear bandits [8].

Combinatorial semi-bandits have been widely studied. Many authors proposed al-

gorithms and regret upper bounds, including Combinatorial Upper Confidence Bound

(CUCB) [12], Efficient Sampling for Combinatorial Bandits (ESCB) [6, 9], Approxi-

mate Efficient Sampling for Combinatorial Bandits (AESCB) [7] and a combinatorial

version of Thompson sampling (TS) [19]. An information-theoretic regret lower bound

was also provided by [6]. Section 2.4 details algorithms and regret guarantees. While

our work focuses on stochastic rewards, the adersarial case was also considered, see

[1] and references therein.

The main reason why the problem is both interesting and difficult is the combina-

torial structure of the decision set X . Many practical problems can be modeled as a

combinatorial bandit problem with a particular structure for X , for instance resource

allocation (when X is the set of matchings) or network routing (when X is a set of

source-destination paths in a graph). Typically, |X | is exponential in the dimension d,

so that an exhaustive search over X is infeasible in practice, and a major challenge is

1

http://arxiv.org/abs/2102.07254v1

to derive computationally efficient algorithms. Several authors considered particular

structures for X , notably m-sets and matroids, as in this case one can derive stronger

results [20, 17, 14]. We will consider more general structures than these two examples.

Combinatorial semi-bandits are a particular case of structured bandits studied by [10,

5]. It is noted that the Graves-Lai regret lower bound [10] generalizes to all structured

bandits the well-known Lai-Robbins regret lower bound [13] which holds for classical

bandits. For all such problems, there exists asymptotically optimal algorithms such as

Optimal Sampling for Structured Bandits (OSSB) [5] under one condition: one must

be able to solve a given optimization problem, which we refer to as the Graves-Lai opti-

mization problem. Solving this problem yields both a regret lower bound that holds for

any algorithm, as well as an algorithm to attain it, by solving the Graves-Lai problem

repeatedly.

Therefore, we believe that one of the most important question to be solved in combi-

natorial semi-bandits is how to solve the Graves-Lai problem efficiently, in polynomial

time in the dimension d. This issue is paramount in solving high-dimensional prob-

lems. This is far from straightforward, as the number of variables and constraints in

the Graves-Lai problem is proportional to |X |, which is typically exponential in d (see

Section 3).

Our contribution We propose the first method, to the best of our knowledge, that

enables to compute the solution of the Graves-Lai optimization problem in polynomial

time for many combinatorial structures of interest. In turn, this immediately yields the

first known approach to implement asymptotically optimal algorithms (such as OSSB)

in polynomial time for combinatorial semi-bandits.

The rest of the article is organized as follows. In Section 2, we define the model,

give examples of combinatorial structures of interest, and recall the main algorithms for

the problem at hand. In Section 3, we introduce the Graves-Lai optimization problem,

and show that solving this problem is both necessary and sufficient to obtain asymptot-

ically optimal algorithms. In Section 4, we propose and analyze Graves-Lai Projected

Gradient (GLPG), an algorithm to compute the solution to the Graves-Lai optimiza-

tion problem in polynomial time. Section 5 concludes the paper. Complete proofs are

presented in appendix.

2 Model

2.1 Combinatorial Semi-Bandits with Uncorrelated Gaussian Re-

wards

We consider combinatorial semi-bandits with uncorrelated Gaussian rewards. A learner

is given a combinatorial set X ⊂ {0, 1}d, the set of available decisions at each step.

Then, for t = 1, ..., T , (i) the learner chooses a decision x(t) ∈ X , (ii) the environment

draws Y (t) ∼ N (θ, 1
2Id), (iii) the learner observes x(t) ⊙ Y (t) where ⊙ represents

the Hadamard product1, (iv) the learner receives a scalar reward Y (t)⊤x(t). The goal

of the learner is to maximize the expected cumulative reward.

1The Hadamard product of two vectors x and y in Rd is the element-wise product: x ⊙ y =
(x1y1, ..., xdyd)

2

The vectors Y (1), ..., Y (t) are assumed to be drawn in an i.i.d. fashion from

N (θ, 1
2Id), so that Y1(t), ..., Yd(t) are uncorrelated Gaussian random variables with

respective means θ1, ..., θd and variance 1
2 . Vector θ is unknown to the learner, and the

chosen decision x(t) only depends on X and the history of observations up to time t,
i.e. (x(1) ⊙ Y (1)), ..., (x(t − 1) ⊙ Y (t − 1)). In semi-bandit feedback, we observe

x(t) ⊙ Y (t): when xi(t) = 1, we observe Yi(t), a noisy realization of θi that can be

used to estimate θi. Conversely, when xi(t) = 0, we do not observe anything. There-

fore, in order to maximize the reward, we must be able to get accurate estimates of the

initially unknown θ; to do so, we must make sure that xi(t) = 1 often enough to get

sufficient statistical information about each θi.
The goal is to maximize the cumulative reward, or equivalently minimize the total

regret. The total regret is defined as the difference in terms of cumulative reward be-

tween the learner and that of an oracle who knows θ in hindsight and always selects

x⋆ ∈ argmaxx∈X {θ⊤x}, a decision maximizing the expected reward.

R(T, θ) = T

(

max
x∈X

{θ⊤x}
)

−
T
∑

t=1

E
(

θ⊤x(t)
)

The model is summarized in Figure 1.

We introduce some useful notations. For any decision x ∈ X , we denote by

∆x = θ⊤x⋆−θ⊤x the reward gap between x and an optimal decision x⋆. We define the

minimal ∆min = minx∈X :∆x>0 ∆x and maximal reward gap ∆max = maxx∈X ∆x.

Furthermore, we define m = maxx∈X{1⊤x} the maximal size of a decision, as mea-

sured by the number of non-null entries.

Prior knowledge to the learner: combinatorial set X ⊂ {0, 1}d.

For t = 1, ..., T :

1. The learner chooses decision x(t) ∈ X based on history

2. The environment draws Y (t) ∼ N (θ, 1
2Id)

3. The learner observes Y (t)⊙ x(t) and obtains reward Y (t)⊤x(t)
Goal: minimize expected regret: R(T, θ) = T (maxx∈X {θ⊤x}) −
∑T

t=1 E(θ
⊤x(t))

Figure 1: Interaction Between Learner and Environment.

2.2 Combinatorial Structures

Of course, not much can be achieved if the combinatorial set X is arbitrary. For

instance, even when θ is known, if the optimal decision maxx∈X{θ⊤x} cannot be

computed efficiently (e.g., NP-hard), the corresponding combinatorial semi-bandit

problem is highly unlikely to have an efficient algorithm. We now highlight the com-

binatorial structures considered here, which include a large amount of classical and

important structures for applications to real-world problems. We consider the same

combinatorial structures as [7]. More on combinatorial structures and optimization can

3

be found in [15] and references therein. For any structure that is defined using a graph

G = (V,E), by a slight abuse of notation, we identify a subset of edges with the cor-

responding vector x = {0, 1}E. In that case, the ambient dimension is the number of

edges d = |E|. Here are the considered combinatorial structures:

• m-sets. Binary vectors with m non-null entries.

• Spanning trees. Spanning trees of a given graph G = (V,E).

• Matroids. Bases of a matroid over a ground set. This includes spanning trees as

a particular case.

• Source-destination paths. Paths in a directed, acyclic graph G = (V,E) between

a given source and destination.

• Matchings. Matchings in a bipartite graph G = (V,E).

• Intersection of two matroids. Intersection between the sets of bases of two ma-

troids. This includes matchings as a particular case.

2.3 Optimization Problems

As shown below, most if not all of the algorithms for combinatorial semi-bandits in-

volve solving some optimization problems over X . We consider three optimization

problems:

• Linear Maximization Compute maxx∈X {a⊤x} (PLM)

• Index Maximization Compute maxx∈X {a⊤x+
√
u⊤x} (PIM)

• Budgeted Linear Maximization Compute maxx∈X {a⊤x} subject to u⊤x ≥ s
(PBLM)

where a, u are vectors with positive integer entries and s is a positive scalar. Table 1

indicates whether an algorithm to solve these problems in polynomial time is known.

Approximate PBLM means that we can solve PBLM up to a given approximation ratio.

The authors in [7] provide algorithms for the polynomial cases depicted in this table.

Solving PBLM , either exactly or approximately, is the cornerstone of our approach to

design asymptotically optimal algorithms.

PLM PBLM approximate PBLM PIM

m-sets ✓ ✓ ✓ ✗

spanning trees ✓ ✗ ✓ ✗

matroids ✓ ✗ ✓ ✗

s-t paths ✓ ✓ ✓ ✗

matchings ✓ ✗ ✓ ✗

Table 1: Polynomial Solvability of Combinatorial Problems over X .

4

2.4 Algorithms, Regret, and Complexity

To understand the interplay between regret and computational efficiency, we now de-

scribe the most studied algorithms for combinatorial semi-bandits and highlight their

regret guarantees. We define the number of samples obtained up to time t:

ni(t) =

t−1
∑

t′=1

xi(t), i = 1, ..., d

as well as the corresponding empirical mean reward at time t:

θ̂i(t) =
1

max(1, ni(t))

t−1
∑

t′=1

xi(t)Yi(t), i = 1, ..., d

The simplest algorithm is CUCB [12], an extension of the well-known UCB [2] al-

gorithm for stochastic bandits. ESCB [6] is an improved version of CUCB taking

advantage of the fact that rewards are not correlated. AESCB [7] is an approximate ver-

sion of ESCB with lower computational complexity. TS [19] is an algorithm inspired

by Bayesian approaches. OSSB [5] is a general, asymptotically optimal algorithm

designed for general structured bandits and that can be specialized to combinatorial

semi-bandits. These algorithms select a decision x(t) according to the following rules.

• CUCB: x(t) ∈ argmaxx∈X{θ̂(t)⊤x+
∑d

i=1 xi
lnT
ni(t)

}

• ESCB: x(t) ∈ argmaxx∈X {θ̂(t)⊤x+
√

∑d
i=1 xi

lnT
ni(t)

}

• AESCB: x(t) with maxx∈X {θ̂(t)⊤x+
√

∑d
i=1 xi

lnT
ni(t)

} ≤ θ̂(t)⊤x(t)

+ 1
εt

√

∑d
i=1 xi(t)

lnT
ni(t)

, with δt, εt two input parameters.

• TS: x(t) ∈ argmaxx∈X{V (t)⊤x} whereV (t) ∼ N (θ̂(t),diag(1
n1(t)

, ..., 1
nd(t)

))

is a sample from the posterior distribution of θ given the information available at

time t

Table 2 summarizes the regret and complexity of algorithms. OSSB is provably

asymptotically optimal, while ESCB and AESCB enjoy a O(d(lnm)2

∆min
lnT) regret guar-

antee. TS has a larger regret guarantee of O(d
√
m

∆min
lnT), and CUCB has the largest one:

O(dm
∆min

lnT). There is an interesting interplay here between statistical efficiency (re-

gret) and computational complexity. In terms of complexity, for each time step, CUCB

and TS involve solving PLM , while ESCB involves solving PIM , which typically can-

not be solved in polynomial time in the dimension d, and AESCB involves solving (up

to a fixed approximation ratio) PBLM several times, which can be done in polynomial

time. Finally, OSSB involves solving PGL, see section 3.

5

Regret Complexity Asymptotically Optimal

CUCB O(dm
∆min

lnT) Solve PLM once ✗

TS O(d
√
m

∆min
lnT) Solve PLM once ✗

ESCB O(d(lnm)2

∆min
lnT) Solve PIM once ✗

AESCB O(d(lnm)2

∆min
lnT) Approximate PBLM several times ✗

OSSB O(C(θ) ln T) Solve PGL once (see section 3) ✓

Table 2: Algorithms, Regret and Complexity

3 Graves-Lai Formulation: Regret Lower Bound and

Asymptotically Optimal Algorithms

Combinatorial semi-bandits are an instance of structured bandits studied in [5], which

in turn are an instance of the controlled Markov chains studied by the seminal work

of [10]. Those results can be applied to our problem, and in fact doing so yields asymp-

totically optimal algorithms, i.e. whose regret is, asymptotically, the lowest achievable.

We explain how these algorithms function, and explain the challenge of implementing

these algorithms efficiently.

3.1 The Graves Lai Optimization Problem

We first introduce the following optimization problem, which we call the Graves-Lai

optimization problem for combinatorial semi-bandits:

minimize
α∈R

|X|
+

∑

x∈X
αx∆x (PGL)

subject to
∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x , ∀x ∈ X

with

I =

{

i ∈ {1, ..., d} : max
x∈X :xi=1

(θ⊤x) < max
x∈X

(θ⊤x)

}

the set of items i that do not appear in any optimal decision. This type of problem

first appeared in [10] in the more general context of controlled Markov chains, and

was later specialized to combinatorial semi-bandits by [6]. Not only does the Graves-

Lai optimization problem yield a regret lower bound that holds for any algorithm, but

computing its solution also enables to design algorithms achieving this bound and are

hence asymptotically optimal [6].

3.2 Regret Lower Bound

Theorem 1 states that the regret of any uniformly good algorithm (i.e. an algorithm

whose regret scales as o(T a) when T → ∞ for any fixed problem instance and any

6

a > 0) is lower bounded by the optimal value of the Graves-Lai optimization problem.

The proof follows from [6][Theorem 1] and is presented in appendix.

Theorem 1 ([10, 6]). Consider a uniformly good algorithm, in the sense that its ex-

pected regret verifies R(T, θ) = o(T a) for any fixed θ ∈ R
d and a > 0.

Then, its regret verifies for any θ:

lim inf
T→∞

R(T, θ)

lnT
≥ C(θ)

where C(θ) is the optimal value of the Graves-Lai optimization problem PGL.

The analysis of [10] provides the following interpretation of the objective func-

tion and the constraints in PGL. Consider a uniformly good algorithm selecting each

sub-optimal decision x ∈ X an amount of time equal to αx lnT . The regret of this

algorithm is (lnT)
∑

x∈X αx∆x, which is proportional to the objective function of

PGL. The number of observations to estimate θi equals (ln T)
∑

y∈X yiαy . Given a

sub-optimal decision x, in order to be sure that x 6= x⋆, one needs enough statistical

information to estimate θi for all i such that xi = 1 and x⋆
i = 0. To the contrary, if

x⋆
i = 1, then θi can be estimated very accurately without regret, as sampling decision

x⋆ does not incur regret. More precisely, one can show that the number of observations

of any x ∈ X must satisfy
∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x

Otherwise, it is impossible to distinguish between decision x and the optimal decision

x⋆ with high probability. In short, the Graves-Lai optimization problem PGL simply

consists in minimizing regret, subject to the constraint that one can statistically distin-

guish between optimal and sub-optimal decisions.

3.3 Asymptotically Optimal Algorithms

In fact, if one can compute the solution of PGL, there exists asymptotically optimal al-

gorithms attaining the lower bound of Theorem 1 such as the doubling trick algorithm

of [10] and the arguably simpler OSSB algorithm from [5]. Both of these algorithms

are based on certainty equivalence, which involves estimating θ using empirical aver-

ages, and selecting each sub-optimal decision an amount of time α⋆
x lnT , where α⋆ is

an optimal solution of PGL, and where θ is replaced by its estimate. Therefore, the so-

lution of the Graves-Lai optimization problem explicitly gives the way that one should

explore sub-optimal decisions to minimize regret.

Theorem 2 ([10, 5]). Assume that one can compute solutions to the Graves-Lai opti-

mization problem for any θ. Then, there exists asymptotically optimal algorithms in the

sense that their regret verifies for all θ:

lim sup
T→∞

R(T, θ)

lnT
≤ C(θ)

7

3.4 Computational Complexity of Asymptotically Optimal Algo-

rithms

We can conclude that the only difficulty in the design of asymptotically optimal algo-

rithms is a computational one. One must be able to compute solutions to the Graves-

Lai optimization problem PGL efficiently. At first look, this seems like a difficult

task. Namely, PGL involves optimizing a linear function with |X | variables, subject to

|X |+ d convex constraints. Indeed, for any x ∈ X , the function

α 7→
∑

i∈I

xi
∑

y∈X yiαy

is convex. Therefore, simply checking whether or not some solution α is feasible may

require O(|X |) computations, and O(|X |) is not polynomial in d for any of the com-

binatorial structures considered in Section 2.2. Furthermore, even assuming that the

optimal solution α⋆ can be computed, if the size of {x ∈ X : α⋆
x > 0} is close to that

of X , then simply outputting the optimal solution is not possible in polynomial time.

Our main result demonstrates that it is indeed possible to solve PGL in polynomial

time, as shown in the next section.

4 Main Result

4.1 Assumptions

Before stating our results, we discuss some of our assumptions.

Assumption 1 (Covering). For each i ∈ {1, ..., d}, there exists a decision xi ∈ X such

that xi
i = 1.

Assumption 1 states that, for all i, there must exist a decision xi ∈ X with xi
i = 1,

so that θi may be estimated by sampling xi. If this assumption does not hold, we can

simply remove i from consideration, since it plays no role in the Graves-Lai optimiza-

tion problem. Thus, this assumption can be made without loss of generality.

Assumption 2 (Integrality). We have that θ ∈ N
d.

Assumption 2 states that the vector θ has positive integer entries. While this makes

stating our results simpler, we can easily generalize them to the case where θ has contin-

uous values. Proposition 5 in appendix states that if θ is real valued, we can discretize

θ as θε = ε(⌈θ1/ε, ⌉, ..., ⌈θd/ε, ⌉) then solve an approximate version of PGL where θ
is replaced by θε/ε, which has integer entries. This enables us to solve PGL up to an

error of O(1/ε) in time O
(

poly(d, 1/ε)
)

. Hence, one can solve PGL up to any fixed

accuracy in polynomial time using our results.

Assumption 3 (Polynomial-Time Linear Maximization). The exact solution of PLM

can be computed in time O
(

poly(d)
)

.

8

Assumption 4 (Polynomial-Time Budgeted Linear Maximization). The exact solution

of PBLM can be computed in time O
(

poly(d, ‖u‖∞)
)

.

Assumption 5 (Polynomial-Time Approximate Budgeted Linear Maximization). An ε-

optimal solution of PBLM can be computed in time O
(

poly(d, ‖u‖∞)
)

for some fixed

ε > 0, in the sense that we can compute x̃ ∈ X verifying:

a⊤x̃ ≥ ε

(

max
x∈X :u⊤x≥s

{a⊤x}
)

and u⊤x̃ ≥ s

Assumptions 3, 4, and 5 respectively state that one can solve PLM exactly, PBLM

exactly, and PBLM approximately. The cases in which those assumptions hold are

reported in Table 1. In particular, in all considered combinatorial structures, Assump-

tion 5 does hold, as shown in [7].

Assumption 6 (Compact Representation for Convex Hulls). The convex hull of X can

be written in the following form:

conv(X) = {w ∈ R
d : Aw = b, w ≥ 0}

where the size of A and b is polynomial in the dimension d.

Assumption 6 states that the convex hull of X , a polytope, can be represented in a

“compact” manner, i.e. using a polynomial number of linear inequalities. This assump-

tion is verified for all considered combinatorial structures listed above: spanning trees,

matchings, paths, etc. (see for instance [15]).

4.2 Main Result

Our main result is Theorem 3. It states that the solution to the Graves-Lai optimization

problem can be computed in polynomial time up to any given accuracy. To do so,

we design the GLPG (Graves-Lai Projected Gradient) algorithm, which is presented

and analyzed below. More precisely, the complexity of GLPG is polynomial in the

dimension d, the accuracy level δ and the largest entry in θ, denoted by ‖θ‖∞. The

pseudo-code for GLPG is presented in Figure 2.

Our main result comes in two versions: (i) an exact version where one can com-

pute the exact solution up to any given accuracy, when exact Polynomial Time Bud-

geted Linear Maximization is possible, and (ii) an approximate version where one can

compute a solution with a fixed approximation ratio up to any given accuracy, when

approximate Polynomial Time Budgeted Linear Maximization is possible. If one can

only solve the Graves-Lai optimization problem with a fixed approximation ratio, the

yielded algorithm is not asymptotically optimal. However, the asymptotic regret of

such an algorithm is upper bounded by a universal constant times the Graves-Lai lower

bound, which is typically better than what existing algorithms can achieve for large

time horizons.

Theorem 3. Consider δ > 0. Let Assumptions 1, 2, 3 and 6 hold.

9

(Exact version) If Assumption 4 further holds, then the GLPG algorithm outputs α,

an δ-optimal solution to PGL in time poly(d, δ, ‖θ‖∞) in the sense that:

∑

x∈X
αx∆x ≤ C(θ) + δ and

∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x ∀x ∈ X , αx ≥ 0 ∀x ∈ X

(Approximate version) If Assumption 5 further holds, then the GLPG algorithm

outputs α, an (ε, δ)-optimal solution to PGL in time poly(d, δ, ‖θ‖∞) in the sense that:

∑

x∈X
αx∆x ≤ 1

ε
C(θ) + δ and

∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x ∀x ∈ X , αx ≥ 0 ∀x ∈ X

The main steps of the proof are highlighted in the next subsections. We solely prove

the approximate version, as the exact version is a particular case of the approximate one

with ε = 1.

4.3 Step 0: Computing the set of optimal items

It is noted that I can be computed in polynomial time using a penalty method. Indeed,

one can readily check that i ∈ I if and only if

max
x∈X

{θ⊤yi} < max
x∈X

{θ⊤x} where yi ∈ argmax
x∈X

{(θ+ei2d‖θ‖∞)⊤x} and eij = 1{i = j}

From assumption 3, this computation can be done in polynomial time.

4.4 Step 1: Dimensionality Reduction

The first step in the proof is Proposition 1 proven in appendix. This proposition shows

that the solution of PGL, a problem with |X | variables, can be derived by computing

the solution of P
′

GL, another, much simpler optimization problem with only d variables.

The idea behind this reduction is that, instead of optimizing over (αx)x∈X (the amount

of time each decision is selected), we can optimize over (
∑

x∈X xiαx)i=1,...,d (the

amount of samples obtained to estimate θ1, ..., θd).

Proposition 1. Consider w⋆ ∈ R
d the optimal solution to

minimize
w∈Rd

q⊤w (P ′
GL)

subject to
∑

i∈I

xi

wi
≤ ∆2

x ∀x ∈ X , Mw = 0, w ≥ 0,min
i∈I

wi ≥ w

where M ≡ A− bb⊤A
‖b‖2 and q ≡ (θ⊤x⋆) b

⊤A
‖b‖2 − θ and w ≡ (m‖θ‖∞)−2.

Then there exists α⋆ ∈ R
|X | an optimal solution toPGL such that: w⋆ =

∑

x∈X xα⋆
x.

10

4.5 Step 2: Approximate Subgradient Descent

The next step is to solve the reduced form P ′
GL using an iterative scheme. To do so, we

use a combination of penalization as well as projected subgradient descent. For x ∈ X ,

define

hx(w) =

(

∑

i∈I

xi

wi

)

−∆2
x

as the constraint attached to x in P ′
GL. Instead of solving P ′

GL, we solve P ′′
GL in which

the constraints are replaced by a penalty, with λ > 0:

minimize
w∈Rd

{

q⊤w + λmax
x∈X

(

hx(w)
)+
}

(P ′′
GL)

subject to Mw = 0, w ≥ 0,min
i∈I

wi ≥ w.

where (·)+ = max(·, 0) denotes the positive part. The value of λ must be appropriately

large to ensure that the constraints in P ′
GL are satisfied; it will be specified later. Define

the polytope

M = {w : Mw = 0, w ≥ 0,min
i∈I

wi ≥ w}

We solve P ′′
GL using a strategy that resembles the projected subgradient method. The

method is iterative with T iterations 2 and follows the update rule for t = 1, ..., T :

w0 = (w, ..., w)

wt+1 = ΠM
{

wt − ηgt
}

.

gt = q + λε∇hxt(εwt)1(hxt(εwt) > 0)

w̄ =
1

T

T
∑

t=1

wt.

where xt is chosen such that

max
x∈X

hx(w
t) ≤ hxt

(εwt)

and ΠM denotes the orthogonal projection on M. The output of the algorithm is

the average iterate w̄ instead of the last iterate wT . For some combinatorial sets

X , the projection step can be computed exactly in polynomial time; otherwise, it

can be computed using an interior point method, a very efficient method for con-

vex optimization programs (see Section 7.8 for more details). In particular, when

ε = 1, we have xt ∈ argmaxx∈X hx(w
t), so that gt is simply a subgradient of

w 7→ {q⊤w + λmaxx∈X
(

hx(w)
)+

} evaluated at wt and the proposed algorithm

follows projected sub-gradient descent for this function. When ε < 1, our algorithm

guarantees that, for any x, hx(εw
t) cannot become too large.

2In this section t and T denote the iteration number and the total number of iterations of our method.

They should not be confused with t and T as defined in the previous sections.

11

Furthermore, Proposition 2 shows that xt can be computed in polynomial time

under our assumptions, by solving PBLM (exactly or approximately) a polynomial

number of times. The proof is in appendix.

Proposition 2. Under Assumption 2, and either Assumption 4 or 5, xt can be computed

in time poly(d, δ, ‖θ‖∞).

Proposition 3 states that, when λ, η, and T are chosen appropriately, this proce-

dure outputs a solution arbitrarily close to the optimal solution of P ′
GL. Further, this

procedure runs in polynomial time. The proof is involved and is given in appendix.

Proposition 3. Consider any fixed δ > 0. Let

δ2 =
δε

m2d‖θ‖∞
δ1 =

δ

2(1 + δ2)

λ =
1

δ2
(δ1 +m2d‖θ‖∞)

T =
1

δ21
ε−2m5d2‖θ‖2∞

(

‖q‖2 + λ2ε−2dm8‖θ‖8∞
)

η2 =
ε−2m5d2‖θ‖2∞

T (‖q‖2 + λ2ε−2dm8‖θ‖8∞)

Let w̄ denote the output of the above procedure, and let w̄′ = (1 + δ2)w̄.

Then w̄′ is an (ε, δ)-optimal solution to optimization problem P
′

GL in the sense that

q⊤w̄′ ≤ q⊤(w⋆/ε) + δ

Mw̄′ = 0, w̄′ ≥ 0,min
i∈I

w̄′
i ≥ w ,

∑

i∈I

xi

w̄′
i

≤ ∆2
x , x ∈ X ,

and this procedure runs in time poly(d, δ, ‖θ‖∞)

4.6 Step 3: Retrieving the Solution to the Original Problem

Assume that we have computed w⋆ ∈ R
d, the optimal solution to P ′

GL. We now need

to retrieve α∗ ∈ R
|X |, the optimal solution to the original problem PGL. Since α∗ has

|X | entries, and |X | is typically not polynomial in the dimension d, this seems like an

impossible task. However, we can choose α∗ such that most of its entries are zero: the

optimum solution is generally not unique. From Carathéodory’s theorem, any point in

the convex hull of |X | can be written as a convex combination of at most d+1 elements

of X .

We provide an iterative procedure to compute α∗ knowing w⋆ and analyze it in

Proposition 4. We let w̄1 = w⋆ and for k = 1, ..., d: if w̄k = 0, we let αxk = 0
and xk ∈ X chosen arbitrarily; otherwise, we let αxk = mini:w̄k

i
>0 w̄

k
i and w̄k+1 =

w̄k − αxkxk where

xk ∈ argmin
x∈X

{

d
∑

i=1

xi1{w̄k
i > 0}

}

12

The output of this procedure is αx1 , ..., αxd and x1, ..., xd, which is a decomposition

of w⋆ as a linear combination with positive coefficients with at most d elements from

X . The cornerstone of this procedure is the fact that if w̄ =
∑

x∈X xαx with α ≥ 0
then for any x such that αx > 0 we have that xi = 1 implies w̄i > 0. This concludes

the proof of Theorem 3.

Proposition 4. The above procedure is such that w⋆ =
∑d

k=1 x
kαxk with αx1 , ..., αxd

positive numbers and runs in time poly(d, δ, ‖θ‖∞).

5 Conclusion

We have proposed the first method, to the best of our knowledge, to compute the so-

lution of the Graves-Lai optimization problem for combinatorial semi-bandits in poly-

nomial time, which in turn allows to implement asymptotically optimal algorithms

(such as OSSB) for this problem. Our results hold for a large number of combinatorial

structures including m-sets, spanning trees, paths, and matchings. We believe that our

results shed some light on the trade-off between statistical efficiency and computational

complexity in bandit optimization.

References

[1] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online com-

binatorial optimization. Mathematics of Operations Research, 39(1):31–45, 2013.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the

Multiarmed Bandit Problem. Mach. Learn., 47(2-3):235–256, May 2002.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, USA, 2004.

[4] O. Cappé, A. Garivier, O. Maillard, R. Munos, and G. Stoltz. Kullback-leibler

upper confidence bounds for optimal sequential allocation. Annals of Statistics,

41(3):516–541, June 2013.

[5] Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal explo-

ration in structured stochastic bandits. In Proc. of NIPS, 2017.

[6] Richard Combes, Sadegh Talebi, Alexandre Proutière, and Marc Lelarge. Combi-

natorial Bandits Revisited. In Proc. of NIPS, 2015.

[7] Thibaut Cuvelier, Richard Combes, and Eric Gourdin. Statistically efficient,

polynomial time algorithms for combinatorial semi bandits. In Proc. of ACM

SIGMETRICS, 2021.

[8] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under

bandit feedback. In Proc. of COLT, 2008.

13

[9] Remy Degenne and Vianney Perchet. Combinatorial semi-bandit with known

covariance. In Proc. of NIPS, 2016.

[10] Todd L. Graves and Tze Leung Lai. Asymptotically efficient adaptive choice

of control laws in controlled markov chains. SIAM Journal on Control and

Optimization, 35(3):715–743, 1997.

[11] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An

asymptotically optimal finite-time analysis. In Proc. of ALT, 2012.

[12] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret

bounds for stochastic combinatorial semi-bandits. In Proc. of AISTATS, 2015.

[13] T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6(1):4–2, 1985.

[14] Pierre Perrault, Vianney Perchet, and Michal Valko. Exploiting structure of un-

certainty for efficient matroid semi-bandits. In Proc. of ICML, 2019.

[15] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer,

2003.

[16] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:

From Theory to Algorithms. Cambridge University Press, USA, 2014.

[17] Mohammad Sadegh Talebi and Alexandre Proutiere. An optimal algorithm for

stochastic matroid bandit optimization. In Proc. of ICAAMS, 2016.

[18] Fei Wang, Ping Li, Arnd Christian König, and Arnd Christian König. Learning a

bi-stochastic data similarity matrix. In Proc. of IEEE ICDM, 2010.

[19] Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits.

In Proc. of ICML, 2018.

[20] Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale

combinatorial semi-bandits. In Proc. of ICML, 2015.

14

6 Additional Result

To avoid confusion, in this section, for any parameter λ ∈ R
d, we use the notation

∆x(λ) = max
y∈X

(λ⊤y)− λ⊤x

to denote the reward gap of decision x ∈ X under parameter λ.

Proposition 5. Consider ε > 0 and a real valued vector θ = R
d. Define the discretized

vector

θε = ε(⌈θ1/ε, ⌉, ..., ⌈θd/ε, ⌉)
Consider the following optimization problem which approximates PGL:

minimize
α∈R

|X|
+

∑

x∈X ⋆

αx∆x(θ
ε) (P ε

GL)

subject to
∑

i∈I

xi
∑

y∈X yiαy
≤ (∆x(θ

ε))2 , ∀x ∈ X ⋆

with

I =

{

i ∈ {1, ..., d} : max
x∈X :xi=1

(θ⊤x) < max
x∈X

(θ⊤x)

}

X ⋆ = {x ∈ X : ∆x(θ) > 0}

Denote by α⋆,ε an optimal solution to P ε
GL and α⋆ an optimal solution to PGL. Assume

that ε ≤ ∆min

2 . Then α⋆,ε(1 + 2mε
∆min

)2 is a feasible solution to PGL, and it is near

optimal in the sense that:

∑

x∈X ⋆

α⋆,ε
x ∆x(θ) ≤ (1 +

4mε

∆min
)4
∑

x∈X ⋆

α⋆
x∆x(θ)

Proof: We first upper bound the gap differences. For any x we have

|∆x(θ)−∆x(θ
ε)| ≤ |max

y∈X
(θ⊤y)−max

y∈X
((θε)⊤y)|+ |θ⊤x− (θε)⊤x|

≤ max
y∈X

|(θ − θε)⊤y|+ |(θ − θε)⊤x|

≤ 2max
y∈X

|(θ − θε)⊤y|

≤ 2‖θ − θε‖∞ max
y∈X

(1⊤y)

≤ 2mε

Based on the above inequality, for any x ∈ X ⋆ we have:

∆x(θ
ε) = ∆x(θ)

∆x(θ
ε)

∆x(θ)
≤ ∆x(θ)

∆x(θ) + 2mε

∆x(θ)

= ∆x(θ)(1 +
2mε

∆x(θ)
) ≤ ∆x(θ)(1 +

2mε

∆min
)

15

Similarly, for any x ∈ X ⋆ we have:

∆x(θ) = ∆x(θ
ε)

∆x(θ)

∆x(θε)
≤ ∆x(θ

ε)
∆x(θ

ε) + 2mε

∆x(θε)

≤ ∆x(θ
ε)(1 +

2mε

∆x(θε)
) ≤ ∆x(θ

ε)(1 +
4mε

∆min
)

where we used the fact that

∆x(θ
ε) ≥ ∆x(θ)− 2mε ≥ ∆min

2

since ε ≤ ∆min

2m .

We now turn to the relationship between PGL and P ε
GL. Consider x ∈ X ⋆. Since

α⋆,ε is an optimal solution to P ε
GL, we must have

∑

i∈I

xi
∑

y∈X yiα
⋆,ε
y

≤ (∆x(θ
ε))2 ≤ (∆x(θ))

2(1 +
2mε

∆min
)2

using our previous reasoning. We have proven that α⋆,ε(1 + 2mε
∆min

)2 is a feasible solu-

tion to PGL.

Using the same technique, since α⋆ is an optimal solution to PGL, we have that

∑

i∈I

xi
∑

y∈X yiα⋆
y

≤ (∆x(θ))
2 ≤ (∆x(θ

ε))2(1 +
4mε

∆min
)2

We have proven that α⋆(1 + 4mε
∆min

)2 is a feasible solution to P ε
GL.

We can now conclude:

∑

x∈X ⋆

α⋆,ε∆x(θ) ≤ (1 +
4mε

∆min
)
∑

x∈X ⋆

α⋆,ε∆x(θ
ε)

≤ (1 +
4mε

∆min
)3
∑

x∈X ⋆

α⋆∆x(θ
ε)

≤ (1 +
4mε

∆min
)4
∑

x∈X ⋆

α⋆∆x(θ)

where we successively used the inequality derived above, the fact that α⋆(1 + 4mε
∆min

)2

is a feasible solution to P ε
GL and the inequality derived above again.

16

7 Proofs

7.1 Proof of Theorem 1

From [6][Theorem 1], the result holds when C(θ) is the value of the following opti-

mization problem:

minimize
α∈R

|X|
+

∑

x∈X
αx∆x

subject to min
λ∈B(θ)

{

d
∑

i=1

∑

x∈X
αxxiD(θi, λi)

}

≥ 1

where

B(θ) =

{

λ ∈ R
d : λ⊤x⋆ < max

x∈X
{λ⊤x} and θi = λi , ∀i 6∈ I

}

is the set of parameters λ under which x⋆ is not the optimal decision, and such that λ
cannot be distinguished from θ when selecting only optimal decisions under θ. D(θi, λi)
is the Kullback Leibler divergence between the distribution of the rewards for i with

respective means θi and λi. Since rewards are Gaussian with variance 1
2 , the diver-

gence is given by D(θi, λi) = (θi − λi)
2. Furthermore, if i 6∈ I, then θi = λi, so that

D(θi, λi) = 0. Thus, the optimization problem simplifies to:

minimize
α∈R

|X|
+

∑

x∈X
αx∆x

subject to min
λ∈B(θ)

{

∑

i∈I

∑

x∈X
αxxi(θi − λi)

2

}

≥ 1

Decompose B(θ) according to the optimal decision and its value as follows:

B(θ) = ∪v>0 ∪x 6=x⋆ Bx,v(θ)

Bx,v(θ) = {λ ∈ B(θ) : λ⊤x = θ⊤x⋆ + v}

Thus, the optimum solution of

min
λ∈Bx,v(θ)

{

∑

i∈I

∑

x∈X
αxxi(θi − λi)

2

}

is λ ∈ R
d minimizing the quadratic function

∑

i∈I
∑

x∈X αxxi(θi − λi)
2 subject to

the linear equality constraint λ⊤x = θ⊤x⋆ + v. Writing the Karush-Kuhn-Tucker

conditions and solving, we can check that the minimum is:

min
λ∈Bx,v(θ)

{

∑

i∈I

∑

x∈X
αxxi(θi − λi)

2

}

=
(∆x + v)2

∑

i∈I xi(
∑

y∈X yiαy)−1

17

The constraint

min
λ∈B(θ)

{

∑

i∈I

∑

x∈X
αxxi(θi − λi)

2

}

≥ 1

is satisfied if and only if the above is greater than 1 for all x ∈ X and all v > 0, i.e:

∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x , ∀x ∈ X

Therefore, the original optimization problem is, as claimed, the Graves-Lai optimiza-

tion problem

minimize
α∈R

|X|
+

∑

x∈X
αx∆x (PGL)

subject to
∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x , ∀x ∈ X

This concludes the proof.

7.2 Proof of Proposition 1

We start by stating the definition of PGL, and notice that both the objective function

and the constraints solely depend on
∑

x αx and
∑

x xαx.

minimize
α∈R

|X|
+

∑

x∈X
αx∆x (PGL)

subject to
∑

i∈I

xi
∑

y∈X yiαy
≤ ∆2

x, x ∈ X

Those variables live in the following set:

{(

∑

x∈X
xαx,

∑

x∈X
αx

)

: α ∈ R
|X |
+

}

= {(w, v) : w
v

∈ conv(X), v ≥ 0}

=
{

(w, v) : A
w

v
= b,

w

v
≥ 0, v ≥ 0

}

= {(w, v) : Aw = vb, w ≥ 0, v ≥ 0} .

where conv(X) denoted the convex hull of X , and we have used Assumption 6.

If b = 0, we simply have that Aw = 0; otherwise, Aw = vb. Therefore, b⊤Aw =

vb⊤b = v‖b‖2 and v = b⊤Aw
‖b‖2 . This implies that Aw = vb if and only if

0 = Aw − vb = Aw − bb⊤Aw

‖b‖2 = Mw

18

by definition of M . Therefore,

∑

x∈X
αx∆x =

(

θ⊤x⋆
)

(

∑

x∈X
αx

)

− θ⊤
(

∑

x∈X
xαx

)

= (θ⊤x⋆)v + θ⊤w

=
(

θ⊤x⋆
) b⊤Aw

‖b‖2 − θ⊤w

=

(

(

θ⊤x⋆
) b⊤A

‖b‖2 − θ

)⊤
w

= q⊤w

by definition of q.

By Assumption 1, for any i ∈ I, there exists xi such that xi
i = 1. As a consequence,

for any feasible solution w,

1

wi
≤
∑

j∈I

xi
j

wj
≤ ∆2

xi ≤ (θ⊤x⋆)2 ≤ m2‖θ‖2∞

Thus, we can impose the additional constraint that mini∈I wi ≥ w ≡ (m‖θ‖∞)−2 for

i ∈ I.

This yields the claimed reduced form:

minimize
w∈Rd

q⊤w (P ′
GL)

subject to
∑

i∈I

xi

wi
≤ ∆2

x, x ∈ X , Mw = 0, w ≥ 0,min
i∈I

wi ≥ w,

which concludes the proof of the proposition.

7.3 Technical Lemma: Optimal Solution

Lemma 1. Define α⋆
x an optimal solution to PGL. Define w⋆ =

∑

x∈X xα⋆
x the corre-

sponding solution to P ′
GL.

Then, its value is upper bounded by

q⊤w⋆ =
∑

x∈X
α⋆
x∆x ≤ md

∆max

∆2
min

and the norm of the optimal solution is upper bounded by

‖w⋆‖ =

∥

∥

∥

∥

∥

∑

x∈X
xα⋆

x

∥

∥

∥

∥

∥

≤ m
3
2 d

∆max

∆2
min

Furthermore, if Assumption 2 holds, we have

q⊤w⋆ ≤ m2d‖θ‖∞

19

and

‖w⋆‖ ≤ m
5
2 d‖θ‖∞

Define w⋆ =
∑

x∈X xαx. From Assumption 1, for each i ∈ I, consider xi ∈ X
such that xi

i = 1. Consider

w =

d
∑

i=1

m

∆2
min

xi

This implies that for all i = 1, ..., d

wi ≥
m

∆2
min

and in turn for any x:

∑

i∈I

xi

wi
≤ ∆2

min

1

m

∑

i∈I
xi ≤ ∆2

min

1

m
(

d
∑

i=1

xi) ≤ ∆2
min ≤ ∆2

x

Hence, w is a feasible solution, which implies that

q⊤w⋆ ≤ q⊤w =

d
∑

i=1

m
∆xi

∆2
min

≤ md
∆max

∆2
min

Now, by definition the optimal solution can be expressed as:

w⋆ =
∑

x∈X
xαx

First, notice that

q⊤w⋆ =
∑

x∈X
αx∆x ≥ ∆min

∑

x∈X
αx

Consequently,
∑

x∈X
αx ≤ q⊤w⋆

∆min

Using the triangle inequality:

∥

∥

∥

∥

∥

∑

x∈X
xαx

∥

∥

∥

∥

∥

≤
∑

x∈X
αx‖x‖ ≤ √

m
∑

x∈X
αx ≤ m

q⊤w⋆

∆min
≤ m2d

∆max

∆2
min

This proves the first result.

If Assumption 2 holds as well, we have

1 ≤ ∆min ≤ ∆max ≤ m‖θ‖∞

which proves the second result.

20

7.4 Proof of Proposition 2

From Assumption 2, θ has positive integer components: for any x ∈ X , we have θ⊤x ∈
{0, ...,m‖θ‖∞}. In turn, this implies that ∆x ∈ {0, ...,m‖θ‖∞} for all x ∈ X . Now,

we use Assumption 4 or 5 to compute (in polynomial time), for s ∈ {0, ...,m‖θ‖∞},

an ε-approximate solution to PBLM denoted by Xt,s ∈ X with

∑

i∈I

Xt,s
i

wt
i

≥ ε

(

max
x∈X :∆x≤s

∑

i∈I

Xt,s
i

wt
i

)

and ∆x ≤ s

and one may readily check that

xt = Xt,st with st ∈ arg max
s∈{0,...,m‖θ‖∞}

{

∑

i∈I

Xt,s
i

wt
i

− s2

}

satisfies maxx∈X hx(w
t) ≤ hxt(εwt). In summary, xt can be computed in time

O(poly(d, δ, ‖θ‖∞)).

7.5 Technical Lemma: Gradient Descent

We first state a technical lemma due to [16][Lemma 14.1].

Lemma 2. Consider M a convex set, η > 0, ŵ and g1, ..., gT arbitrary vectors, wn a

sequence defined as

wt+1 = ΠM{wt − ηgt}
with ΠM the orthogonal projection onto M.

Then we have:

T
∑

t=1

〈wt − ŵ, gt〉 ≤ ‖ŵ‖2
2η

+
η

2

T
∑

t=1

‖vt‖2

[16][Lemma 14.1] first states the lemma without the projection step, and afterwards

argue that their proof still holds when a projection step is added, which corresponds to

Lemma 2.

7.6 Proof of Proposition 3

The procedure 2 runs in time O(poly(d, δ, ‖θ‖∞)). Indeed, the number of iterations is

T = O(poly(d, δ, ‖θ‖∞)), and each iteration takes time O(poly(d, δ, ‖θ‖∞)).
Define the error:

E = q⊤w̄ − q⊤(w⋆/ε) + λmax
x∈X

(hx(w̄))
+

Using Jensen’s inequality, since w 7→ maxx∈X (hx(w))
+ is convex,

E ≤ 1

T

T
∑

t=1

(q⊤wt)− q⊤(t⋆/ε) + λ
1

T

T
∑

t=1

max
x∈X

(hx(w
t))+

21

We use the following notation for the dot product:

q⊤wt − q⊤(w⋆/ε) = 〈wt − w⋆/ε, q〉

By definition of xt:

max
x∈X

(hx(w
t))+ ≤ (hxt(εwt))+

Using the fact that w 7→ (hxt(εw))+ is a convex function and one of its subgradients

is

ε∇hxt(εw)1(hxt(εw) > 0)

we get, by definition of a subgradient:

(hxt(εw))+ − (hxt(ε(w⋆/ε)))+ ≤ 〈wt − w⋆/ε, ε∇hxt(εwt)1(hxt(εwt) > 0)〉

We have that hx(w
⋆) < 0 for all x by definition of w⋆, so that (hxt(ε(w⋆/ε)))+ = 0

and replacing above we get:

max
x∈X

(hx(w
t))+ ≤ 〈wt − w⋆/ε, ε∇hxt(εwt)1(∇hxt(εwt) > 0)〉

Thus:

E ≤ 1

T

T
∑

t=1

〈wt − w⋆/ε, q + λε∇hxt(εwt)1(hxt(εwt) > 0)〉

Using the fact that:

wt+1 = ΠM
{

wt − ηgt
}

.

gt = q + λε∇hxt(εwt)1(hxt(εwt) > 0)

w̄ =
1

T

T
∑

t=1

wt.

Lemma 2 yields:

E ≤ 1

2T

(

‖w0 − w⋆/ε‖2
η

+ η

T
∑

t=1

‖q + λε∇hxt(εwt)1(hxt(εwt) > 0)‖2
)

so that

E ≤ 1

2T

(

‖w0 − w⋆/ε‖2
η

+ η

T
∑

t=1

(‖q‖2 + (λε)2‖∇hxt(εwt)‖2)
)

We may upper bound each term in the expression above as follows.

Since

∇hxt(εwt) = −
(

xt
1

(εw1)2
, ...,

xt
d

(εwt
d)

2

)

,

22

the gradient term is upper bounded as

‖∇hxt(εwt)‖2 =
∑

i∈I

xt
i

(εwt
i)

4
≤ d

(εw)4
= ε−4dm8‖θ‖8∞.

where we used the fact that wt ∈ M, which implies wt ≥ w.

Since w0 = (w, ..., w) and w⋆/ε ≥ w, we get:

‖w0 − w⋆/ε‖ ≤ ε−1‖w⋆‖ ≤ ε−1m
5
2 d‖θ‖∞

using Lemma 1.

Replacing, we get the upper bound:

E ≤ 1

2T

(

ε−2m5d2‖θ‖2∞
η

+ ηT
(

‖q‖2 + λ2ε−2dm8‖θ‖8∞
)

)

setting η to equalize both terms

η2 =
ε−2m5d2‖θ‖2∞

T (‖q‖2 + λ2ε−2dm8‖θ‖8∞)

so that the optimization error has the following upper bound:

E ≤ ε−2m5d2‖θ‖2∞
ηT

=
1√
T
ε−1m5/2d‖θ‖∞

√

‖q‖2 + λ2ε−2dm8‖θ‖8∞

Recall the definitions:

δ2 =
δε

md‖θ‖∞
and

δ1 =
δ

2(1 + δ2)

Now, setting

T =
1

δ21
ε−2m5d2‖θ‖2∞

(

‖q‖2 + λ2ε−2dm8‖θ‖8∞
)

we get that E ≤ δ1. Replacing E by its definition, this proves that:

E = q⊤w̄ − q⊤(w⋆/ε) + λmax
x∈X

(hx(w̄))
+ ≤ δ1

This allows to upper bound the constraints violation:

λmax
x∈X

(hx(w̄))
+ ≤ δ1 − q⊤w̄ + q⊤(w⋆/ε)

λ
≤ δ1 +m2d‖θ‖∞

λ

using the fact that q⊤w̄ ≥ 0 and q⊤w⋆ ≤ md‖θ‖∞ from Lemma 1. Setting

λ =
1

δ2
(δ1 +m2d‖θ‖∞)

23

this proves that

max
x∈X

(hx(w̄))
+ ≤ δ2

Define w̄′ = (1 + δ2)w̄. Since, for all x,

∑

i∈I

xi

w̄i
≤ ∆2

x + δ2

we have that
∑

i∈I

xi

w̄′
i

≤ ∆2
x + δ2
1 + δ2

= ∆2
x

1
∆2

x
+ δ2

1 + δ2
≤ ∆2

x

using the fact that ∆2
x ≥ 1 from Assumption 2. Hence, maxx∈X (hx(w̄

′))+ = 0, which

means that w̄′ is a feasible solution.

Finally:

q⊤w̄ − q⊤(w⋆/ε) ≤ q⊤w̄ − q⊤(w⋆/ε) + λmax
x∈X

(hx(w̄))
+ ≤ δ1

so that

q⊤w̄′−q⊤(w⋆/ε) ≤ (1+δ2)δ1+δ2q
⊤(w⋆/ε) ≤ (1+δ2)δ1+δ2m

2d‖θ‖∞/ε =
δ

2
+
δ

2
= δ.

Putting it all together, we have proven that w̄′ is a feasible solution which verifies

q⊤w̄′ − q⊤(w⋆/ε) ≤ δ

This concludes the proof.

7.7 Proof of Proposition 4

We prove the result using recursion. Assume that w̄k can be written as a linear combina-

tion with positive coefficients of elements of X . Define J k = {i = 1, ..., d : wi > 0}
the set of its non-null entries. We have xk ∈ argminx∈X

∑

i6∈J xi.

Since, by assumption, w̄k can be written as a linear combination with positive

coefficients of elements of X , there exists x such that
∑

i6∈J k xi = 0. Therefore, by

definition of xk, we must have 0 ≤∑i6∈J k xk
i ≤∑i6∈J k xi = 0, so that

∑

i6∈J xk
i = 0.

We then write

w̄k+1 = w̄k − xkαxk

Now, we have that w̄k+1 ≥ 0 since w̄k+1
i = w̄k

i if i 6∈ J k and w̄k+1
i = w̄k

i −
mini∈J k w̄k

i ≥ 0 if i ∈ J k. Furthermore, we have that

Mw̄k+1 = αxkMxk +Mw̄k = Mw̄k = 0

since xk ∈ conv(X), which implies Mxk = 0. Therefore, w̄k+1 can be written as

a linear combination with positive coefficients of elements of X . Also, |J k+1| ≤
max(0, |J k| − 1): indeed, we have that J k+1 ⊂ J k and, if ik ∈ argmini∈J k wk

i , we

have that wk
ik

> 0 and wk+1
ik

= 0 by construction.

24

Since w1 = w⋆ can be written as a linear combination with positive coefficients

of elements of X , the above argument shows that wk can be written as a linear combi-

nation with positive coefficients of elements of X for all k, and that wd+1 = 0. This

implies that the procedure does terminate after at most d iterations and

w⋆ =

d
∑

k=1

xkαxk

with x1, ..., xd in X and αx1 , ..., αxd positive numbers.

For each iteration, it is noted that xk can be computed by linear maximization

over X , which is feasible in time O(poly(d)) from Assumption 3. Since the above

procedure terminates after at most d iterations, it takes O(poly(d)) time.

7.8 Projection Step

The projection of wt−ηgt on M involves solving the following optimization problem:

minimize
w∈Rd

‖w − wt − ηgt‖2

subject to Mw = 0, w ≥ 0,min
i∈I

wi ≥ w.

There are two possible cases: (i) in some cases, this projection may be computed

exactly, (ii) the projection may be computed using an interior point method using a

logarithmic barrier function and a Newton step [3] Chapter 11.2. By definition, wt ∈
M, so that wt can be used as an initial feasible point to compute the projection. We

also mention that there exists even more efficient algorithms for specific combinatorial

sets, for instance for the matching polytope [18].

25

Inputs: A and b (representation for the convex hull of X), θ (mean reward vector),

δ (accuracy level), ε (approximation ratio)

Parameter choice: set

δ2 =
δε

m2d‖θ‖∞
δ1 =

δ

2(1 + δ2)

λ =
1

δ2
(δ1 +m2d‖θ‖∞)

T =
1

δ21
ε−2m5d2‖θ‖2∞

(

‖q‖2 + λ2ε−2dm8‖θ‖8∞
)

η2 =
ε−2m5d2‖θ‖2∞

T (‖q‖2 + λ2ε−2dm8‖θ‖8∞)

Step 1: Dimensionality Reduction

Compute M = A− bb⊤A
‖b‖2 and q = (θ⊤x⋆) b

⊤A
‖b‖2 + θ and w = (m‖θ‖∞)−2

Step 2: Approximate Gradient Descent

Set w0 = (w, ..., w)
For t = 1, ..., T :

Find xt such that maxx∈X hx(w
t) ≤ hxt

(εwt)
Compute gt = q + λε∇hxt(εwt)1(hxt(εwt) > 0)

Update wt+1 = ΠM
{

wt − ηgt
}

Compute w̄ = 1
T

∑T
t=1 wt and w̄′ = (1 + δ2)w̄

Step 3: Retrieving the Solution to the Original Problem

Set w̄1 = w̄′

For k = 1, ..., d:

Find xk ∈ argminx∈X
∑d

i=1 xi1{w̄k
i > 0}

If w̄k > 0 let αxk = mini:w̄k
i
>0 w̄

k
i , otherwise let αxk = 0.

Update w̄k+1 = w̄k − αxkxk.

Output: A (δ, ε)-optimal solution to the Graves Lai optimization problem

αx1 , ..., αxd and x1, ..., xd.

Figure 2: The GLPG Algorithm: Computing the Solution to PGL in Polynomial Time.

26

	1 Introduction
	2 Model
	2.1 Combinatorial Semi-Bandits with Uncorrelated Gaussian Rewards
	2.2 Combinatorial Structures
	2.3 Optimization Problems
	2.4 Algorithms, Regret, and Complexity

	3 Graves-Lai Formulation: Regret Lower Bound and Asymptotically Optimal Algorithms
	3.1 The Graves Lai Optimization Problem
	3.2 Regret Lower Bound
	3.3 Asymptotically Optimal Algorithms
	3.4 Computational Complexity of Asymptotically Optimal Algorithms

	4 Main Result
	4.1 Assumptions
	4.2 Main Result
	4.3 Step 0: Computing the set of optimal items
	4.4 Step 1: Dimensionality Reduction
	4.5 Step 2: Approximate Subgradient Descent
	4.6 Step 3: Retrieving the Solution to the Original Problem

	5 Conclusion
	6 Additional Result
	7 Proofs
	7.1 Proof of Theorem 1
	7.2 Proof of Proposition 1
	7.3 Technical Lemma: Optimal Solution
	7.4 Proof of Proposition 2
	7.5 Technical Lemma: Gradient Descent
	7.6 Proof of Proposition 3
	7.7 Proof of Proposition 4
	7.8 Projection Step

