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Abstract 16 

Rivers are representative of the overall contamination found in their catchment area. 17 

Contaminant concentrations in watercourses depend on numerous factors including land use 18 

and rainfall events. Globally, in Mediterranean regions, rainstorms are at the origin of fluvial 19 

multipollution phenomena as a result of Combined Sewer Overflows (CSOs) and floods. 20 

Large loads of urban-associated microorganisms, including faecal bacteria, are released 21 

from CSOs which place public health – as well as ecosystems – at risk. The impacts of 22 

freshwater contamination on river ecosystems have not yet been adequately addressed, as 23 

is the case for the release of pollutant mixtures linked to extreme weather events. In this 24 

context, microbial communities provide critical ecosystem services as they are the only 25 

biological compartment capable of degrading or transforming pollutants. Through the use of 26 

16S rRNA gene metabarcoding of environmental DNA at different seasons and during a 27 

flood event in a typical Mediterranean coastal river, we show that the impacts of 28 

multipollution phenomena on structural shifts in the particle-attached riverine bacteriome 29 

were greater than those of seasonality. Key players were identified via multivariate statistical 30 

modelling combined with network module eigengene analysis. These included species highly 31 

resistant to pollutants as well as pathogens. Their rapid response to contaminant mixtures 32 

makes them ideal candidates as potential early biosignatures of multipollution stress. Multiple 33 

resistance gene transfer is likely enhanced with drastic consequences for the environment 34 

and human-health, particularly in a scenario of intensification of extreme hydrological events. 35 

 36 

Keywords 37 

microbial ecotoxicology; water quality; multipollution phenomena; coastal Mediterranean 38 

rivers; sewer overflow; multiple stressors.  39 
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1. Introduction 40 

Rivers are representative of the overall pollution in their catchment area (Giri and Qiu, 41 

2016). Freshwaters near urban areas are particularly impacted by contaminants, from river 42 

sediments derived from leakage and runoff as well as from in-sewer solids resuspension 43 

when the sewerage system overflows during heavy rainfalls or during snow melting periods 44 

(Madoux-Humery et al., 2013; Osorio et al., 2012; Oursel et al., 2014; Taghavi et al., 2011). 45 

Globally, in Mediterranean climate regions, urban system overflows often occur because of 46 

the recurrence of intense rainfalls (Cowling et al., 2005; Gasith and Resh, 1999; Reoyo-Prats 47 

et al., 2017), while combined sewers, which simultaneously carry wastewater and 48 

stormwater, are also common around the world (Commissariat Général au Développement 49 

Durable, 2011; U.S. Environmental Protection Agency, 2016). When CSOs occur, large 50 

loads of contaminant mixtures are discharged into surface waters not only from runoff but 51 

from private residences as well (Llopart-Mascaró et al., 2014; Pailler et al., 2009; Phillips and 52 

Chalmers, 2009; Reoyo-Prats et al., 2017; Weyrauch et al., 2010).  53 

Mixtures of contaminants are recognised as a new major threat for freshwater 54 

ecosystems (Sabater et al., 2019), but only heterotrophic microorganisms contribute to the 55 

degradation or transformation of these organic or inorganic xenobiotics (Carles et al., 2019; 56 

Díaz, 2004). As such, microbial communities provide critical ecosystem services. 57 

Nevertheless, most environmental microbial ecotoxicology studies analyse a single 58 

substance or contaminant family type, through a functional approach (Lambert et al., 2012; 59 

Pesce et al., 2010a; Widenfalk et al., 2008) or through structural changes in microbial 60 

communities together with contaminant concentrations (Amaral-Zettler et al., 2010; Lambert 61 

et al., 2012; Palacios et al., 2008; Pesce et al., 2010b). Only few studies have examined the 62 

in situ effect of pollutant mixtures with a focus on periphyton biofilms or sediment microbes 63 

(Dorigo et al., 2010; Pesce et al., 2008). This highlights the need to assess shifts in the river 64 

water bacteriome in response to multiple contaminants (Staley et al., 2014). 65 

The impact of urban water discharges during storm and flood events on faecal 66 

bacterial contamination (Baudart et al., 2000; Chu et al., 2011; Masters et al., 2016), nitrogen 67 
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or carbon cycles (Eyre and Ferguson, 2006; Fouilland et al., 2012), as well as on temporal 68 

succession changes in microbial communities through microscopic enumeration (Fisher et 69 

al., 1982; Muylaert and Vyverman, 2006), has been widely studied and has made clear the 70 

negative impact of rainstorms on water quality and thus on human health (Ahern et al., 71 

2005). Recent studies have focused on tracking sources of urban-associated bacteria 72 

released through sewer discharges or storm water (Besemer et al., 2005; Wu et al., 2010; 73 

Newton et al., 2013; Fisher et al., 2015; Marti et al., 2017a, 2017b) but only two studies have 74 

described bacterial community dynamics throughout the course of a rainstorm event (Kan, 75 

2018; Ulrich et al., 2016). Although contaminant mixtures released during CSOs occur mainly 76 

at first flushes compared to other moments of the event (Ashley et al., 1992; Reoyo-Prats et 77 

al., 2017), bacterial community changes at first flushes have yet to be addressed.  78 

In the transfer of chemical substances during storm events, suspended particles play 79 

a fundamental role (Turner and Millward, 2002) as sediments and in-sewer solids act as both 80 

sources and sinks for nutrients and contaminants (see above and also Amalfitano et al., 81 

2017). Particulate matter thus offers a broader niche differentiation to which microbes can 82 

respond, resulting in a more diverse compartment of the fluviatile microbiome (Savio et al., 83 

2015). Particle-associated bacteria, which refers to bacteria that form biofilms around 84 

particles and large aggregates (Bartram and Ballance, 1996), are more reactive to changes 85 

in water composition in both marine and limnetic environments (Besemer et al., 2005; Crump 86 

et al., 1999; Savio et al., 2015). For these reasons and given the main purpose of our study, 87 

rather than describing the whole microbial community, we concentrated on particle-attached 88 

bacteria.  89 

Our main objective was to finely assess shifts in the fluviatile bacteriome evolution 90 

along seasons and during a typical intense Mediterranean rainstorm event in comparison to 91 

the dynamics of physicochemical parameters, including a large variety of contaminants. The 92 

following questions were addressed: how is the diversity of the particle-attached bacterial 93 

community impacted by the flood event when compared to seasonal diversity? Are structural 94 

patterns of diversity driven by physicochemical dynamics along the extreme event? Do 95 
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contaminant mixtures impact the watercourse bacteriome differently at the beginning of a 96 

storm in comparison to the flow peak? Are there specific ecotypes significantly related to 97 

physicochemical dynamics?  98 

 99 

2. Material and Methods 100 

2.1. Study site and sampling campaigns 101 

Campaigns took place at the Têt River, a typical Mediterranean coastal watercourse 102 

with a torrential regime that discharges into the Gulf of Lion (Southeast of France) (Dumas et 103 

al., 2015; Reoyo-Prats et al., 2017), at a site downstream from the Perpignan city wastewater 104 

treatment plant, the main threat to the water quality of this river (Conseil Général des 105 

Pyrénées Orientales (CG66), 2012, 2009; Reoyo-Prats et al., 2018, 2017). For a review on 106 

the hydrology, biogeochemistry and anthropogenic impacts on the Têt River, as well as for 107 

further details on sampling methodology, see Reoyo-Prats et al. (2017). Today, this river is 108 

still predominantly impacted by agriculture and urbanisation void of any major industries or 109 

farms within its catchment area. Samples were named according to sampling time (Fig. 1 for 110 

details). Ten litres water samples for both chemicals and microbiology were collected during 111 

periods of drought, in summer on the 17th September 2013 (SD sample) and in winter, on the 112 

13th of February 2014 (WD sample). Then, in autumn, from 16th-21st November 2013, using 113 

the same sampling protocol, we sampled a 5-year flood event 13 times over the course of 114 

109 hours, with a high frequency sampling (1 h minimum intervals) at strategic moments: 115 

before the event (t0 sample), at first flushes (t17-t19-t23), before the flow peak (t32-t37), 116 

during the flow peak (t38-t41) and during the return to basal level water discharges (from t44 117 

to t109).  118 

 119 

2.2. Field water samples processing and nucleic acids extraction 120 

Field samples were processed less than 2 hours after sampling. One litre mixed-121 

water sample from 10 L tank was entirely (or until clogged) filtered through 3 µm and 0.22 122 

µm porosity cellulose acetate MF-Millipore membrane filters (Merck Darmstadt, Germany) 123 
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using a vacuum pump and a polysulfone filtration column (previously cleaned with HCl and 124 

thoroughly rinsed with Milli-Q Water) placed in a bleach-cleaned bench of a laminar flow 125 

hood. This operation was carried out three times to obtain three replicates per sample. Filters 126 

were stored at -80 °C until nucleic acid extraction. Environmental nucleic acid extraction was 127 

performed by resuspending filters in 425 µl lysis buffer (0.04 M EDTA, 0.05 M Tris, 0.75 M 128 

sucrose). Filters were then subject to three 65°C liquid nitrogen cycles to mechanically break 129 

cells. Lysozyme (Sigma-Aldrich, Merk) solution (1 mg/ml) was then added and placed in a 130 

rotary mixer at 37°C (45 min). Next, Proteinase K (Sigma-Aldrich, Merk) was added (0.2 131 

mg/ml) and filters were incubated at 55°C (1 h) with agitation every 10 minutes. AllPrep 132 

DNA/RNA extraction kit (Qiagen, Hilden Germany) was finally used following manufacture 133 

recommendations. DNA quantification was performed using a Nanodrop 2000 (Thermo 134 

Fisher Scientific Wilmington, USA). A bacteria-targeted 16S rDNA PCR was performed to 135 

verify DNA amplification of water samples and DNAs were stored at -80°C before sending 136 

samples for sequencing. 137 

 138 

2.3. Metabarcoding of environmental DNA using the 16S rRNA gene and sequence 139 

processing to form Operational Taxonomic Units (OTUs) 140 

DNA extractions were paired-end sequenced using Next Generation Sequencing 141 

(NGS) Illumina MiSeq method (PE250). A pilot study with a single set of replicates from all 142 

samples was first sent to Research and Testing Laboratories (RTL, Texas, USA). Two more 143 

replicates were later sent to Genome Quebec laboratory (GQ, Montreal, Canada). Three 144 

sample replicates already sequenced at RTL were also sent to GQ to be sequenced again. 145 

These three double-sequenced replicates aimed to identify if differences in sequencing 146 

methods between laboratories would yield different sequencing results in the same 147 

replicates, which would impede a conjoint analysis. Sequencing targeted V3 and V4 148 

hypervariable regions of the 16S rDNA by using 357wF (5’-CCTACGGGNGGCWGCAG-3’) 149 

and 785R (5’-GACTACHVGGGTATCTAATCC-3’) universal bacterial primers (primer assay 150 

list provided by RTL). To process sequences to form OTUs, we used FROGS (Find Rapidly 151 
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OTU pipeline v. r3.0-3.0, Escudié et al., 2018, see Supplementary A1). When relevant, multi-152 

affiliated OTUs were blasted using blastn on the NCBI nucleotide collection database 153 

optimised for the highly similar sequences program. 154 

 155 

2.4. Bacterial diversity analyses  156 

Diversity analyses were performed using the output OTUs matrix, tree and 157 

dissimilarity matrices calculated using FROGS as input for Phyloseq R package 1.24.2 158 

(McMurdie and Holmes, 2013) and a collection of additional R functions 159 

(https://github.com/mahendra-mariadassou/phyloseq-extended). Sequencing depth largely 160 

influences alpha diversity, therefore we first checked reads number and rarefaction curves 161 

for all replicates. While saturation was achieved in all of them, sequence depth was lower for 162 

RTL sequenced replicates. Therefore, we analysed alpha diversity using non-filtered, non-163 

normalised replicates from GQ laboratory only. Alpha diversity was estimated using Fisher, 164 

Simpson, Shannon and Pielou diversity indices and the non-parametric Chao1 species 165 

richness estimator. The evolution of the diversity through time was statistically tested using 166 

Kruskall-Wallis test (KW) followed by a post-hoc Dunn test on R software (v. 3.5.1, R Core 167 

Team, 2018). Beta diversity was assessed after filtering out singletons/doubletons OTUs and 168 

abundance normalisation to the sample with the lowest number of reads. Qualitative 169 

(Jaccard and Unifrac) and quantitative (Bray-Curtis, Morisita and Weighted-Unifrac) indices 170 

were first calculated with replicates separately. Outliers were neither observed for identical 171 

replicates sent to both sequencing laboratories nor were they observed for all replicates of 172 

the same sample, independent of sequencing laboratory origin. Thus, OTU abundances 173 

were averaged over replicates. Sample dissimilarities were visualized using Principal 174 

Coordinates Analysis (PCoA) and hierarchical clustering Ward.D2 method. A one-way 175 

analysis of similarity (ANOSIM, Clarke, 1993) was performed to test for significant 176 

differences between sample groups. The average abundances on filtered and normalised 177 

counts were used for further analyses. 178 

 179 
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2.5. Statistical analyses for inference 180 

2.5.1. Constrained (canonical) ordination analyses 181 

Bacterial community diversity was assessed using the same samples as those used 182 

to assess physicochemical environmental parameters in the 2013 storm event described 183 

elsewhere (Reoyo-Prats et al., 2018, 2017). Analyses were processed with vegan R package 184 

2.5-3 (Oksanen et al., 2018). To infer the relationship between environmental variables and 185 

bacterial OTU abundances, we first checked collinearity through a statistical analysis of 186 

environmental parameters only. The first step in constrained ordination was to resolve 187 

collinear issues with environmental data. To do this, we performed a Principal Components 188 

Multivariate Analysis (PCA) to explore the relationship among samples and physicochemical 189 

parameters. We then performed Spearman correlations due to the non-normality and non-190 

homoscedasticity of the data. Finally, we tested for collinearity using variance inflation factor 191 

(VIF) when performing constrained analyses. Variables with VIF > 10 were partialled out 192 

(O’brien, 2007). The matrix of retained variables was standardised for further analyses. 193 

Constrained ordination methods are robust multivariate analyses that facilitate both 194 

pattern recognition in noisy data and statistical testing of the relationships between 195 

organisms and the environment. Using detrended correspondence analysis, (DCA) the 196 

gradient length of OTUs dataset was 3.58, so both canonical correspondence (CCA) and 197 

redundancy analyses (RDA) were performed (ter Braak, 1987). For RDA, a Hellinger 198 

transformation (Legendre and Gallagher, 2001) was performed. Also, a distance-based 199 

redundancy analysis (dbRDA) was performed with dissimilarity indices from the previous 200 

section. We then used permutation analyses of variance to evaluate significance of full 201 

constrained models, constrained axis and terms. Variables were tested by adding each 202 

variable independently. Triplots were then obtained with scaling focused on inter-species 203 

distances. We further determined what OTUs best responded to environmental variables by 204 

dividing the OTU matrix into ≥ 0.005% and < 0.005% of total read number (1 017 326 reads) 205 

following Bokulich et al. (2012) and repeating CCA/RDA modelling (DCA rendered a gradient 206 

length of 3.42), to finally calculate, over most performant model, each OTU goodness of fit 207 
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(GOF). OTUs retained for further analyses had a GOF ≥ GOFaverage, which constitutes a 208 

conservative approach to OTU selection. 209 

 210 

2.5.2. Network and module eigengene analyses 211 

In order to group OTUs with same abundance profiles, network analysis was 212 

conducted on OTUs with GOF ≥ GOFaverage (see 2.5.1 section), using the Molecular 213 

Ecological Network Analyses Pipeline (MENAP: http://ieg4.rccc.ou.edu/MENA/, Deng et al., 214 

2012) with default parameters with two exceptions. First, zero counts were replaced by 0.01. 215 

Second, as we used an already curated dataset according to environmental parameters, 216 

OTUs present in at least one sample were retained to do not loose OTUs specific to one 217 

sample. Random matrix theory (RMT)-based method was used to construct the network 218 

using the automatically generated similarity threshold value (0.89). For network modularity 219 

properties, greedy modularity optimization (Newman, 2006) rendered the highest modularity 220 

value (0.46). To reveal a higher order of organisation among modules through an analysis of 221 

their relationship with environmental parameters, a module eigengene analysis (Langfelder 222 

and Horvath, 2007) was performed on MENAP using default parameters. This constrained 223 

network was visualised in Cytoscape software (v. 3.7.1, Shannon et al., 2003). 224 

 225 

3. Results 226 

3.1. Particle-attached bacterial diversity changes in the Têt River 227 

To study urban bacteriome dynamics, a high-resolution sampling of river water was 228 

performed during a heavy rain event in autumn 2013. A pilot study demonstrated that 229 

particle-attached bacteria were more diverse and heterogeneous than free-living bacteria 230 

(Reoyo-Prats, 2014), which supported our decision to focus on this part of the community 231 

only. Summer and winter drought periods were also sampled for comparison. A total of 392 232 

443 operational taxonomic units (OTUs) corresponding to 1 084 527 reads were identified of 233 

which 92% were singletons and 3% were doubletons. The vast majority of OTUs (99.8%) 234 

was assigned to the bacterial domain. Chloroplasts, which represented 64 928 reads, were 235 
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removed. Alpha diversity statistical analyses showed significant differences among samples 236 

for all indices (Table B1, KW<0.05) except Fisher (p=0.068, not shown). Fisher had the same 237 

evolution pattern along time as the observed OTU number (Fig. B1a), which significantly 238 

decreased just before the flow peak (t37) with respect to samples t17-t23. Estimated OTU 239 

number (Chao1 index) significantly increased at the flow peak (Fig. B1b) and significantly 240 

decreased only at the end of the flood. Shannon, Simpson and Pielou indices (Fig. B1c-e 241 

respectively) revealed a significantly low diversity and evenness at t19 compared to t32. 242 

While the Simpson index was significantly higher from t32 onward, Shannon and Pielou 243 

indices decreased later at the flow peak and then increased significantly at t44. Alpha 244 

diversity at drought periods did not show any major differences from t0.  245 

For beta diversity, 9 211 OTUs (8 479 sequences/sample) were obtained after 246 

filtering and normalisation. Jaccard and Unifrac qualitative dissimilarities differentiated two 247 

communities, one included summer and winter drought samples (SD, WD) and a second 248 

included samples collected at the beginning of the autumn storm event (t0-t37), from the rest 249 

of the autumn samples (Fig. A1a-b). Flow peak samples (t38-t41), clustered together only 250 

when phylogeny with Unifrac was considered. When OTU abundances were applied using 251 

Morisita and Bray Curtis dissimilarities (Fig. A1c-d), autumn t0 sample clustered with summer 252 

and winter droughts while the other relationships among samples remained largely 253 

unchanged except that t38 clustered closer to post-flood samples with Morisita only. When 254 

phylogenetic relationships using Weighted-Unifrac (Fig. 2a-b) were also considered: i) t0, as 255 

well as summer and winter drought samples, clustered together; ii) t38 and t41 formed 256 

another group; iii) t32 and t37 clustered with samples at the end of the flood (t44-t109); and 257 

iv) t17 to t23 samples formed a new a more divergent group when compared with results 258 

obtained with other dissimilarity measures. Analysis of similarity (ANOSIM) confirmed all four 259 

(i to iv, above) community groups (Fig. 2) were significantly different among one another 260 

(p<0.001, R=0.78). Phyla relative abundances and heatmap plot confirmed structuration in 261 

four groups (Fig. 2c-d). Although the summer drought sample was slightly different from t0 262 

and winter drought samples as a result of a larger amount of Actinobacteria, the first major 263 
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structural change occurred at t17 and lasted until t23, with a gain in Epsilonbacteraeota and 264 

Firmicutes at the expense of Proteobacteria and, to a lesser extent, Bacteriodetes. These 265 

last two phyla remained proportionally high at t32 and t37 to decrease only at the flow peak. 266 

Proteobacteria abundance increased at these two intermediate samples, but really exploded 267 

at t38 and t41, thus representing the second major temporal bacteriome change, reflected 268 

also by the increase of Planctomycetes and the decrease of all other major phyla. Then, we 269 

observed an inverse in the pattern, where Proteobacteria decreased and most other major 270 

phyla increased.  271 

 272 

3.2. Linking the bacteriome to multiple contaminants dynamics through constrained 273 

multivariate analyses 274 

During the same flood event of autumn 2013, Reoyo-Prats et al. (2018, 2017) studied 275 

the dynamics of all known contaminant families. A statistical analysis of these parameters 276 

(Supplementary A2 for details) allowed seven major environmental dynamics to be retained 277 

(Fig. 1). To determine if different environmental dynamics could statistically explain observed 278 

community shifts in diversity through time, we used several constrained multivariate 279 

analyses. Significance and percentage of variance explained by all models tested are 280 

summarised in Table 1a. Although all models were significant with the exception of CCA, 281 

Morisita and Weighted-Unifrac dbRDA models performed best (p<0.001). A strong 282 

relationship between the two significant canonical axes and the environmental parameters 283 

could be observed, with up to six dynamics being significant, Dyn1 to 3, 2.4-284 

Dichlorophenoxyacetic acid (2.4D), Diuron and NO3
- (Table 1b, Fig. A3). 285 

 286 

3.3. Revealing OTUs significantly related to environmental parameters 287 

To further explore the relationship between the fluviatile bacteriome and the 288 

environmental parameters, we split the normalised abundance OTU matrix into OTUs ≥ 289 

0.005% of total abundance and those < 0.005%. While no-significant models were obtained 290 

with the second dataset, RDA and CCA models, which allow for the calculation of OTUs 291 
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goodness of fit (GOF), gained resolution with the ≥ 0.005% dataset (602 OTUs) (Table A1). 292 

The RDA model best explained our data (Fig. 3). A total of 260 OTUs best fitted to this model 293 

(GOF≥0.26) and were submitted to network analysis in order to determine biological 294 

interactions. The resulting network (R2 of the power law=0.874) was composed of 17 295 

modules with 167 nodes and 725 links (Fig. A4). Module membership and eigengene 296 

correlations obtained from module eigengene analysis identified OTUs that were significantly 297 

represented in each module (Table C1). Only the 13 modules that were significantly 298 

correlated to environmental dynamics were retained for further analyses. Module 1 was 299 

correlated to Dyn2, Dyn3 and Diuron and included 38 OTUs of which 13 were significant 300 

(Fig. 4) comprising a total of 17 851 out of 24 625 reads from retained OTUs (72.5%, Table 301 

C1). Most OTUs in this module were in samples t17, t19 and t23 and belonged to 302 

Epsilonbacteraeota phylum. Bacteroidetes, Firmicutes and Patescibacteria phyla were also 303 

abundant (Fig. C1a). OTU5, assigned to Arcobacter cryaerophilus (Epsilonbacteraeota), was 304 

particularly abundant (75.3% of reads in Module 1 and 55.6% of retained OTU abundances, 305 

Table C1). Three out of six Bacteroidetes OTUs were the most abundant, OTU41, 306 

Bacteroides graminisolvens, OTU126, Macellibacteroides fermentans and OTU95, 307 

Cloacibacterium normanense. Module 2 was related to Dyn 1. It included 33 OTUs from 308 

which 24 were significant (Fig. 4) comprising a total of 3 585 reads (15% of retained OTU 309 

abundances, Table C1). OTUs from this module were present in the summer drought 310 

sample, at the beginning of the flood, and even more so at the flow peak (t38, Fig. C1b). 311 

Proteobacteria was by far the most abundant phylum, particularly Rhodobacteraceae and 312 

Sphingomonadaceae families within class Alphaproteobacteria. Two OTUs were highly 313 

present from these families, respectively, OTU146 affiliated to Trabizicola sp. and OTU90 314 

Porphyrobacter donghaensis, while OTU145, Cloacibacillus sp. was unique from the second 315 

most abundant phylum, Synergistetes. Modules 3, 5, 7, 8, 9 and 11 comprised 6.4% of 316 

retained OTU abundances (1 571 reads, Table C1) and were related to 2.4D dynamic (Fig. 317 

4). OTUs in these modules peaked mainly at t41 (Fig. C1c). The most abundant were 318 

OTU1184 belonging to Rickettsiales order and OTU790 belonging to Gemmataceae family, 319 
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with no clear phylogenetic affiliations. The rest of the modules, overall represented less than 320 

7% of retained OTU abundances (Table C1, Fig. C1d-g).  321 

 322 

4. Discussion 323 

4.1. Particle-attached riverine bacterial community shifts are driven by water 324 

discharges and sewer overflows during Mediterranean rainstorms 325 

Studies that follow the ecological succession of microbial communities throughout 326 

rainstorms are very scarce in the literature (Kan, 2018; Ulrich et al., 2016). Earlier studies 327 

that described temporal changes throughout the duration of flood events using microscopic 328 

enumeration found bacteria invariant along the succession (Fisher et al., 1982; Muylaert and 329 

Vyverman, 2006). The impact of stormwater and floods on faecal bacteria loads are a major 330 

sanitary concern and have earned sustained attention from researchers for decades (Ahern 331 

et al., 2005). Comparatively, the non-faecal counterpart has received little attention, yet they 332 

can be used as biosignatures to track sources of faecal pollution (Fisher et al., 2015; Newton 333 

et al., 2013) perhaps to a better extent than the current faecal indicators used as sentinels of 334 

human pathogens (McLellan et al., 2015; McLellan and Eren, 2014; Staley et al., 2014; Wu 335 

et al., 2010). In this study, we sought to evaluate temporal succession in particle-attached 336 

riverine bacteria using high-throughput sequencing of water samples from summer, winter 337 

and autumn as well as during an autumn storm event that included a 5-year flood which led 338 

to a peak instantaneous discharge of more than 250 m3/s. A thorough knowledge of the 339 

coastal Mediterranean Têt River hydrodynamics (Dumas et al., 2015) allowed for fine-scale 340 

sampling at crucial moments of the rainstorm and we observed that major changes in the 341 

community diversity coincided with major changes in river flow. The base level autumn 342 

community captured at t0 (where starting sampling time actually began before the storm 343 

event), was more similar to bacterial assemblages associated with winter and summer 344 

droughts than to those which emerged during the storm event (p<0.001, Fig. 2). Throughout 345 

the storm, a first major community shift occurred at first flushes (t17-t23, Fig. 2), coinciding 346 

with CSOs (Reoyo-Prats et al., 2017). At this point in time we noticed the highest proportion 347 



14 

 

of Epsilonbacteraeota and Firmicutes, commonly detected in sewage and sewer biofilms 348 

(McLellan and Roguet, 2019). During this phase, observed diversity and Fisher index were 349 

the highest, while Shannon, Pielou and Simpson indices were significantly lower indicating a 350 

community skewness (Fig. B1a-e). We hypothesize that CSOs brought new microorganisms 351 

into waters derived not only from runoff and wastewater, but also from the washout of in-352 

sewer deposits, destabilizing the fluviatile bacterial consortium (Fig. B1). This hypothesis is 353 

reinforced by Escherichia coli counts, which were highest at this same moment (Fig. A2). 354 

Ulrich et al. (2016) performed a microbial study on a Pennsylvania stream (USA) during a 355 

100-year river flood of 200 m3/s, where E. coli abundance peaked at the highest flow level, 356 

which according to authors originated from previous sewer overflows. In our study, E. coli 357 

also peaked at the highest river discharge but counts were much lower than those during first 358 

flushes (Reoyo-Prats et al., 2017), which thus far, have not been studied in-depth. Ulrich et 359 

al. (2016) concluded that hydrodynamic changes structured bacterial communities as a result 360 

of differences in composition and diversity after the flow peak, with an increase of Firmicutes 361 

observed in some flow peak samples. In our study, a second major community shift occurred 362 

at the highest water discharge (t38-t41), where we observed an increase of Proteobacteria 363 

and Planctomycetes. As in the Pennsylvania stream, we also noticed the highest presence of 364 

Firmicutes before and after this specific moment (t37, t44-t61, Fig. 2c). In contrast, t38 and 365 

t41 had the lowest observed and Shannon diversities but the highest Chao1 index (Fig. B1a-366 

b), in other words, the Chao1 considered that not all the diversity had been sampled although 367 

saturation of rarefaction curves was reached. One hypothesis which may explain these 368 

contradictory results between parametric and non-parametric diversity indices, is that high 369 

quantities of attached-bacteria are washed-out from particles at the flow peak. This 370 

hypothesis is supported by the low equitability of these samples (Fig. B1e) in spite of having 371 

the lowest number of OTU counts among all samples (Fig. B1a). In the Pennsylvania storm 372 

event, both the highest evenness, Chao1 and observed diversities were obtained at the flow 373 

peak (Ulrich et al., 2016). Similarly, Kan (2018), who studied two small floods, obtained 374 

inversed patterns for Simpson and Shannon indices compared to ours. These results 375 
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reinforce our hypothesis because they studied the whole community and not only attached 376 

bacteria. However, as we used replicates, statistical analyses were possible. Shannon, 377 

Simpson and Pielou indices at the flow peak samples were not significantly different to most 378 

of the other samples. After t38 and t41 samples, alpha diversity increased significantly, 379 

demonstrating the contribution of a more diverse upstream bacteriome (Savio et al., 2015) 380 

following runoff and rapid downflow. Finally, bacterial composition at the end of our sampling 381 

time, 4.5 days after t0 i.e. sample t109, was similar to t32 and t37, pointing towards 382 

community resilience (Fig. 2). Additionally, when summer and winter drought samples were 383 

excluded and only autumn samples were analysed (not shown), t0 (the flow base level 384 

community) grouped together with t32 and t37 samples, further supporting the evidence of 385 

the evolution towards a recovery of the fluviatile community after the rainstorm. Apart from 386 

Ulrich et al. (2016), who also noticed community resilience five days after the storm, fluviatile 387 

bacteriome recovery upon perturbation is hardly addressed in the literature and needs further 388 

attention. 389 

 390 

4.2. Tracking microbial structural community changes according to environmental 391 

parameters: what is new? 392 

Along with the study of riverine bacteriome shifts during a typical Mediterranean 393 

heavy rain event, we analysed a large selection of physicochemical parameters including 394 

pollutants such as pesticides, trace metals or pharmaceuticals. Studies with such a detailed 395 

follow-up are rare (Staley et al., 2014). Thanks to advances in NGS methods, research in 396 

environmental microbiology has entered into a new era where the driving forces exerted by 397 

environmental parameters can now be deeper explored than never envisaged before. 398 

Although the explanatory power of constrained multivariate gradient analysis for inference on 399 

how environmental parameters shape microbial community structures had already been 400 

demonstrated (Besemer et al., 2005; Ghiglione et al., 2008), how riverine communities are 401 

finely shaped by chemical inputs remained poorly studied prior to the NGS era, with few 402 

exceptions in extreme habitats with low diversity (Amaral-Zettler et al., 2010; Palacios et al., 403 
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2008). As predicted by Ramette (2007), the power of high-throughput sequencing to capture 404 

most diversity opened new possibilities for inference (Newton et al., 2013; Savio et al., 2015; 405 

Staley et al., 2014). Most studies suggested that only very few taxa were influenced by 406 

physicochemical parameters, while biotic interactions were the primary drivers of variation in 407 

bacteriome structure, at least at a local scale (Fortunato and Crump, 2011; Staley et al., 408 

2014). In a comprehensive literature review of the influence of environmental factors on 409 

stream microbiota, Zeglin (2015) raised the importance of pollutants such as metals 410 

compared to nutrient load in altering these communities. Our results demonstrate that six 411 

abiotic environmental dynamics linked to multicontamination phenomena derived from CSOs 412 

and runoff (Fig. 1) acted as environmental driving forces of the particle-attached bacteriome 413 

during a storm event (Fig. A4). Constrained analyses models based on beta diversity 414 

dissimilarities matrix (dbRDA) were used to achieve these results (Table 1). Instead, models 415 

CCA and RDA based on OTU abundance matrix were effective only when background noise 416 

was reduced keeping OTUs ≥ 0.005% of total reads (Fig. 3 and next section). Using 417 

qualitative Jaccard dissimilarity index, 2.4D and Diuron dynamics significantly shaped 418 

bacterial presence/absence differences among samples, but dynamics Dyn2 and Dyn3 419 

became significant only when considering phylogeny with Unifrac dissimilarity (Table 1). 420 

Quantitative Bray-Curtis, Morisita and Weighted-Unifrac indices also consider OTU 421 

abundances, revealing which parameters affect bacterial growth. Globally, all parameters 422 

except Dyn4, became significant in structuring samples. Surprisingly, Morisita rendered 423 

similar results to Weighted-Unifrac, both captured nearly the same variance of the diversity 424 

matrix (Table 1, 77% vs 73%). Thus, when phylogeny is not available, the Morisita 425 

dissimilarity index is a very interesting alternative (Palacios et al., 2008).  426 

 427 

4.3. Key players involved in the response of particle-attached riverine bacteria to 428 

environmental perturbations 429 

One of the greatest difficulties in the analysis of large high-throughput sequencing 430 

datasets resides in deciding how to extract, analyse and synthesise the data to identify taxa 431 
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which play a key role in the studied processes. Here, we sought to identify ecotypes that 432 

could act as key players in the riverine bacteriome response to rainstorm events. As such, 433 

we first used an aggregation distance of 1 for clustering sequences into OTUs instead of the 434 

classic 97% similarity. This method had a double purpose: 1) overcome the difficulty of using 435 

a similarity cut-off criterion for defining significant units in microbial ecology (Cohan, 2006); 436 

and 2) use an appropriate intraspecific level to find ecologically significant units (Acinas et 437 

al., 2004; Palacios et al., 2008). We then reduced the dataset to OTUs ≥ 0.005% of total 438 

reads following Bokulich et al. (2012) and reconducted statistical analyses to retain OTUs 439 

best adjusted to the most significant multivariate model. We finally used network analysis to 440 

determine OTU associations according to their abundance profiles, that we then constrained 441 

by module eigengene analysis (Deng et al., 2016; Zhou et al., 2011) to reveal key OTU 442 

players driven by major environmental processes. This analysis allows for the calculation of 443 

the significant correlation between module consensus abundance profile and environmental 444 

constraints. Thus, it enabled us to go a step further, invoking identical driving forces which 445 

underpin OTUs with strong memberships to the same module. This has been widely 446 

assumed in functional genomics network analyses (Wolfe et al., 2005; Zhou et al., 2011). 447 

According to our findings, shifts in particle-attached bacterial communities during 448 

typical rainstorms in coastal Mediterranean rivers are driven by: 1) runoff and in-sewer solids 449 

resuspension from CSOs at first flushes, and 2) runoff and riverbed sediment resuspension 450 

at the flow peak (Fig. 5). The most notable key player driven by CSOs was Arcobacter 451 

cryaerophilus, with significant membership to Module 1. Arcobacter genus is known to 452 

represent a sewer signature (McLellan and Roguet, 2019; Newton et al., 2013) and A. 453 

cryaerophilus is a human pathogen (Collado et al., 2010) with 25 antibiotic resistance 454 

categories (Millar and Raghavan, 2017) and high potential capacity for horizontal gene 455 

transfer to distant phylogenetic organisms (Jacquiod et al., 2017). Furthermore, Modules 1 456 

and 4, correlated to Diuron, and/or Dyn2-3 released during CSOs (Fig. 5), contained several 457 

Bacteroidetes which is commonly used as faecal indicator due to its high abundance in 458 

warm-blooded animal faeces (Dick and Field, 2004). Bacteroides graminisolvens, 459 
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Cloacibacterium normanense and Macellibacteroides fermentans were particularly abundant. 460 

These are relatively resistant species that are capable of surviving in extreme environments. 461 

C. normanense removes heavy metals via production of extracellular polymeric substances 462 

(Nouha et al., 2016) and M. fermentans degrades isosaccharinic acids linked to radioactive 463 

wastes (Rout et al., 2017). Other key players during CSOs belonged to Firmicutes and 464 

Fusobacteria, including OTUs from Ruminococcaceae a faecal-associated bacterial family 465 

(McLellan et al., 2010; Newton et al., 2013) and Leptotrichiaceae, an underexplored family 466 

common in gastrointestinal or urogenital tracts and oral cavities of humans and animals 467 

(Eisenberg et al., 2016) (Fig. 5). The most remarkable finding from Module 2 was the 468 

majority of Sphingomonadaceae and Rhodobacteraceae, which peaked at the flow peak, 469 

suggesting these Alphaproteobacteria originated from terrestrial environments (Fig. 5). 470 

Synergistaceae family was particularly abundant at the flow peak and during CSOs only, 471 

concordant with Synergistetes frequent detection in wastewater (Jumas-Bilak and 472 

Marchandin, 2014). In Modules linked to 2.4D, Gemmataceae, which are known for their 473 

radiotolerance and complex cellular architectures (Mahajan, 2019), were highly abundant. 474 

For instance, Gemmata massiliana (identity 87%) is a species isolated from hospital water 475 

and resistant to beta-lactam antibiotics (Aghnatios et al., 2015). Rickettsiales, also a major 476 

order in these modules, is known to include mammalian pathogens such as Orientia 477 

tsutsugamushi (identity 91%) causing scrub typhus (Darby et al., 2007). Finally, we also 478 

found genera Novosphingobium and Flavobacterium, which are known to degrade 2.4D (Dai 479 

et al., 2015; Silva et al., 2007). Flavobacterium sp. is also linked to the degradation of 480 

organophosphate compounds such as pesticides (glyphosate, AMPA…) (Singh and Walker, 481 

2006) (Fig. 5). In summary, key bacterial players from suspended solids emerging at crucial 482 

moments of the rainstorm event consisted of highly pathogenic and/or resistant to pollutants 483 

taxa. Marti et al. (2017a) also noted in sediments accumulated in a detention basin, a 484 

bacteriome evolution towards a specific community better adapted to a disturbed 485 

environment. In a scenario such as the one described in the present study (Fig. 5), where 486 

multipollution phenomena associated with CSOs and floods disturb resident particle-487 
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associated communities, cross-resistance and co-resistance – leading to multiple resistance 488 

bacteria – (SCENIHR, 2009), are enhanced because horizontal gene transfer is i) induced by 489 

stressors such as antibiotics, metals or biocides (Bengtsson-Palme et al., 2018), and ii) 490 

preferentially facilitated in particle-attached bacteria (Stewart, 2013; Amalfitano et al., 2017). 491 

Our results therefore reveal that CSOs and floods pose a non-negligible threat to the 492 

capacity of resident fluviatile communities to prevent the spread of resistances (Jørgensen et 493 

al., 2018), with significant consequences to both ecosystems and public-health. Further 494 

research on community changes in association with extreme events will help to confirm key 495 

players identified in this study as indicators of multipollution, a major challenge in combined 496 

stressors research (Sabater et al., 2019).  497 

 498 

5. Conclusions 499 

This study is the first to identify a significant relationship between the in situ fluviatile 500 

bacteriome, river hydrodynamics and the major changes of physicochemical parameters, 501 

including several families of contaminants (faecal indicators, trace metals, pesticides and 502 

pharmaceuticals) and nutrients during a typical Mediterranean storm event. The combination 503 

of tools used in this work was crucial to the success of the results: a finely designed 504 

fieldwork, a focus on the particle-attached bacteriome compartment through 16S rRNA gene 505 

metabarcoding sequencing, together with an inference analysis using constrained 506 

multivariate and network module eigengene statistical tools. The riverine bacteriome reacted 507 

stronger to changes in pollutant dynamics during the storm event than to environmental 508 

changes according to seasons. We highlight major community shifts linked to multipollution 509 

phenomena at two critical moments of the storm event: the flow peak and the CSOs. 510 

Particle-attached resident bacterial communities became more specialised towards pollutant-511 

resistant bacteria, some of which were pathogenic and/or capable of transforming chemical 512 

molecules. Our results clearly illustrate how urban wastewater management practices can 513 

trigger shifts from resident riverine communities to perturbed microbial assemblages, a 514 

situation which is of particular concern with respect to human-health. Even though resilience 515 
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was achieved, ecosystems and human-health are likely at risk because co-resistance and 516 

cross-resistance are typically enhanced in a scenario of continuous disturbance of resident 517 

bacterial communities subjected to multipollution phenomena from CSOs and floods. 518 

Furthermore, given the current trend towards the intensification of extreme hydrological 519 

events as a consequence of climate change and the increase in anthropogenic impacts such 520 

as urbanisation, deforestation and agriculture, not only in Mediterranean regions but also 521 

elsewhere in the world, the conclusions drawn from our study are of the utmost importance 522 

for urban management practises. For instance, as CSOs happen frequently in coastal rivers 523 

of Mediterranean regions around the world due to their particular torrential regimes under this 524 

climate, our study’s findings highlight the need to transition from combined towards separate 525 

sewers as a priority for conservation action at least in these regions. The rapid and 526 

significant response of riverine particle-attached bacteria to environmental perturbations 527 

enhance the potential use of these microorganisms for rapid assessment of environmental 528 

risk in aquatic ecosystems. 529 
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Table caption 917 

Table 1 Summary of constrained multivariate statistical analyses. (a) Permanova 918 

significance of the five models tested and the percentage of biological variance that is 919 

explained by each model. (b) Axes and modelled variables significance after permanova 920 

analyses from significant models in (a). p-values significance codes: 921 

(***<0.001<**<0.01<*<0.05). 922 

 923 

Figure captions 924 

Fig. 1 Environmental parameter dynamics in the Têt River. Seven representative dynamics 925 

of environmental parameters along the flood. Samples were named as follows: tX, where X is 926 

the number of hours after starting sampling time at t0, for the flood; and, on the left, SD and 927 

WD for summer and winter drought samples, respectively. Dyn1 corresponds to parameters 928 

with a dynamic similar to particulate organic carbon (/20 mg/l), Dyn2 to AMPA (µg/l), Dyn3 to 929 

Pb (/150 µg/g), Dyn4 to pH (/70). Three parameters, Diuron, 2.4D and NO3
-, had a unique 930 

dynamic (Supplementary A2 for details, modified from Reoyo-Prats et al., 2017). 931 

 932 

Fig. 2 Composition and structure of microbial communities averaged across replicates. (a) 933 

Principal Coordinate Analyses (PCoA) and (b) hierarchical clustering with Ward D2 linkage 934 

method using Weighted-Unifrac dissimilarity computed on OTU average abundances. 935 

Coloured lines indicate ANOSIM significant groups (R=0.78, p<0.001). (c) Histogram of 936 

relative abundances of seven major phyla and (d) heatmap based on PCoA. For (c) and (d) 937 

samples are organised according to sampling time: from summer drought (SD) to autumn 938 

flood samples (tX where X is the number of hours after t0) and concluding with the winter 939 

drought (WD) sample. The dotted profile is the flow level of the flood (see Fig. 1). 940 

 941 

 942 

 943 

 944 
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Fig. 3 Redundancy analysis (RDA) biplot with scaling by species on normalised matrix of 945 

OTUs with an abundance higher than 0.005%. The model explained 66.2% of the variance 946 

under constraints (p<0.001). Environmental variables dynamics retained are plotted in Fig. 1. 947 

Significance for axes and environmental dynamics after permanova analyses are indicated, 948 

p-values significance codes: ***<0.001<**<0.01<*<0.05. For sample and environmental 949 

parameter names, see Fig. 1. 950 

 951 

Fig. 4 Module eigengene analysis. Eigengene network of thirteen modules (ModX, where 952 

X=module number) significantly positively correlated to environmental dynamics from Fig. 1. 953 

Each environmental dynamics is followed by module eigengene correlation value and the p-954 

value significance code as follows: ***<0.001<**<0.01<*<0.05. OTUs are represented by 955 

coloured fill according to phylum. Ellipse or round rectangle shape, respectively, represents 956 

significantly and non-significantly correlated OTU abundance profiles to module eigengene. 957 

The connectivity between OTUs is indicated by lines and their length is arbitrary. 958 

 959 

Fig. 5 Illustration of the impact of combined sewer overflows and floods on particle-attached 960 

riverine bacterial communities in coastal Mediterranean rivers. Network modules contain only 961 

significantly correlated OTUs to environmental dynamics represented as black rectangles 962 

(see Fig. 4 for details). For each dynamic, all retrieved parameters are listed. Treemaps 963 

display phyla linked to relevant taxa and their relative abundance within each module or 964 

group of modules. 965 













Table 1 Summary of constrained multivariate statistical analyses. 

(a) Permanova significance of the five models tested and the percentage of biological variance that is explained by each model. 

(b) Axes and modelled variables significance after permanova analyses from significant models in (a). 

p-values significance codes: (*** < 0.001 < ** < 0.01 < * < 0.05).

a
OTUs matrice 

transformation
Model significance Variance (%)

Jaccard 0.0120* 55.19

Unifrac 0.003** 58.92

Bray-Curtis 0.007** 59.70

Morisita 0.001*** 72.84

Weighted Unifrac 0.001*** 76.72

CCA 0.212

RDA Hellinger 0.018* 58.66

CAP1 CAP2 Dyn1 Dyn2 Dyn3 Dyn4 2.4D Diuron NO3
-

Jaccard 0.006** (25.98) 0.203 (16.53) 0.090 0.065 0.050 0.428 0.002** 0.011* 0.284

Unifrac 0.004** (30.62) 0.107 (17.89) 0.056 0.034* 0.035* 0.204 0.001*** 0.010* 0.146

Bray-Curtis 0.001** (28.85) 0.147 (17.65) 0.013* 0.012* 0.034* 0.269 0.001*** 0.004** 0.142

Morisita 0.001** (39.65) 0.031* (24.10) 0.001*** 0.001*** 0.003** 0.085 0.001*** 0.001*** 0.011***

Weighted Unifrac 0.001** (43.04) 0.003* (21.87) 0.001*** 0.001*** 0.003** 0.104 0.002** 0.002** 0.001***

RDA1 RDA2 Dyn1 Dyn2 Dyn3 Dyn4 2.4D Diuron NO3
-

RDA Hellinger 0.008** (29.12) 0.160 (17.99) 0.034* 0.068 0.080 0.441 0.002** 0.007** 0.179

Axes significance and variance explained (%) Modelled variables significance

b

dbRDA

OTUs matrice 

transformation

Axes significance and variance explained (%) Modelled variables significance

dbRDA






