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Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems

The notion of traveling wave, which refers to some particular spatio-temporal connections between two stationary states (typically, entire solutions keeping the same profile's shape through time), is essential in the mathematical analysis of propagation phenomena. They provide insight on the underlying dynamics, and an accurate description of large time behavior of solutions of the Cauchy problem, as we will see in this paper. For instance, in an homogeneous framework, it is well-known that, given a fast decaying initial datum (for instance, compactly supported), the solution of a KPP type reaction-diffusion equation converges in both speed and shape to the traveling wave with minimal speed. The issue at stake in this paper is the generalization of this result to some one-dimensional heterogeneous environments, namely spatially periodic or converging to a spatially periodic medium. This result fairly improves our understanding of the large-time behavior of solutions, as well as of the role of heterogeneity, which has become a crucial challenge in this field over the past few years.

Introduction

We consider the following spatially heterogeneous reaction-diffusion equation in (0, +∞) × R:

∂ t u = ∂ xx u + f (x, u).
(1.1)

Throughout this work, we will assume that f = f (x, u) is locally Lipschitz-continuous in u, f (x, 0) ≡ 0 and f is of class C 1 in a neighborhood of u = 0 uniformly with respect to x, so that in particular the derivative ∂ u f (x, 0) is well-defined. Moreover, f is of the heterogeneous KPP type in the following sense: (1.

∀s 2 > s 1 > 0, inf x∈R f (x, s 1 ) s 1 - f (x, s 2 ) s 2 > 0, ∃! p(x) ∈ L ∞ (R, R * + ) such that lim inf
2)

The initials KPP stand for Kolmogorov, Petrovski and Piskunov, who in the seminal work [START_REF] Kolmogorov | A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem[END_REF] not only constructed traveling wave solutions for the homogeneous equation by using phase plane analysis, but even proved convergence to a traveling wave in the particular case of a Heaviside function as initial datum.
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In a biological context where u may refer to the population density of some species, the first hypothesis means that the growth rate of this species decreases as soon as its density increases, which is the main wanted property of KPP type nonlinearities. In other words, some saturation effect appears as soon as the population is positive. The second hypothesis states the existence of some positive and bounded stationary state, toward which propagation will occur. Our assumption on the right behavior of p means that it stays away from the other equilibrium state zero as x → +∞, that is in the direction of the propagation.

A typical f which satisfies these hypotheses is the logistic growth law f (x, u) = µ(x)u(q(x) -u), where µ and q are regular and satisfy 0 < min inf x∈R µ(x), inf x∈R q(x) < max sup x∈R µ(x), sup x∈R q(x) < +∞.

From [START_REF] Berestycki | Liouville type results for semilinear elliptic equations in unbounded domains[END_REF], there then indeed exists a unique steady state p as in (1.2) and, moreover, spreading occurs to p from any nonnegative and non trivial initial datum. Our goal in this paper will be to look at the spreading properties of such solutions of the Cauchy problem to the right, when f is either spatially periodic, or strongly converges to a spatially periodic nonlinearity as x → +∞. We will not only address the question of the spreading speed, but also the problem of the shape of the profile of propagation in large time, which will converge to a pulsating travelling wave whose definition will be recalled below.

We will first begin with the periodic case, which as we will see has been much studied in the past decade. In such a setting, the notion of pulsating traveling wave is well defined, and allows to describe very accurately the large time behavior of solutions for large classes of initial data, even fast decaying ones, which was an awaited result (see also the parallel work [START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF]). We will then look, as mentioned above, at some particular but strongly heterogeneous problem, where f only exponentially converges (with a high enough rate that we will precise later) to some periodic nonlinearity as x → +∞. As one may expect, we will show that the large time behavior of solutions of the Cauchy problem is still given by traveling waves of the limiting periodic problem. This is, up to the author's knowledge, an entirely new result and one of the first stating the convergence of the profile of a solution in a non periodic environment (see also [START_REF] Mellet | Stability of generalized transition fronts[END_REF][START_REF] Zlatos | Generalized traveling waves in disordered media: existence, uniqueness, and stability[END_REF] for the quite different case of ignition type nonlinearities). The study of such heterogeneities is a challenging but essential open problem in the mathematical area of reaction-diffusion equations and propagation phenomena.

In periodic media

We will first consider the periodic case, that is f is L-periodic with respect to the x-variable. The KPP periodic reaction-diffusion equation has been well-studied in the past decade [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating travelling fronts[END_REF][START_REF] Weinberger | On spreading speed and travelling waves for growth and migration models in a periodic habitat[END_REF], in particular the existence of pulsating traveling waves. This notion is a generalization of traveling waves in the homogeneous environment, which meant particular solutions of a reaction-diffusion equation moving through the domain with both a constant speed and a constant profile. The notion of pulsating traveling wave is slightly more intricate, as the shape of the profile fluctuates (or "pulses") due to the periodic heterogeneity. We recall it rigorously below: Definition 1.1 A pulsating traveling wave solution (or pulsating traveling front) of (1.1) connecting 0 to p(x) > 0 is an entire solution u satisfying, for some T > 0, u(t, x -L) = u(t + T, x), for any x ∈ R and t ∈ R, along with the asymptotics u(-∞, •) = 0 and u(+∞, •) = p(•), where the convergence is understood to hold locally uniformly in the space variable. The ratio c := L T > 0 is called the average speed (or simply the speed) of this pulsating traveling wave.

Remark 1.2 One can easily check that, for any c > 0, u(t, x) is a pulsating traveling wave connecting 0 to p with speed c if and only if it can be written in the form u(t, x) = U (x -ct, x), where U (z, x) satisfies

U (•, x + L) ≡ U (•, x), U (+∞, •) = 0 and U (-∞, •) = p(•),
along with the following equation that is equivalent to (1.1):

(∂ x + ∂ z ) 2 U + cU z + f (x, U ) = 0, ∀(z, x) ∈ R 2 .
Roughly speaking, this definition means that a pulsating traveling wave also moves through the domain with a constant speed, while its profile is no longer constant but periodic in time instead. Of course, this definition requires p to be a periodic stationary solution of (1.1). This is clearly the case of the function p whose existence we stated in our KPP hypothesis (1.2), since we also assumed its uniqueness and thanks to the periodicity of f . In other words, our problem immediately reduces to the periodic one, although we did not assume a priori the periodicity of our positive equilibrium state. Furthermore, if s → f (x,s) s is decreasing for any x ∈ R (by periodicity, this is clearly equivalent to the first part of (1.2)), there exists at most one positive bounded stationary solution p of (1.1) [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF]. This means that in the periodic case, (1.2) reduces to

∀x ∈ R, s > 0 → f (x, s) s is decreasing, ∃p(x) ∈ L ∞ (R, R * + ) such that ∂ xx p + f (x, p) = 0.
(1.3)

Let now the following principal eigenvalue problem:

   -∂ xx φ λ + 2λ∂ x φ λ - ∂f ∂u (x, 0)φ λ = µ(λ)φ λ in R,
φ λ > 0 and L-periodic.

(1.4)

Note first that our KPP hypothesis (1.2) also implies that µ(0) < 0, that is 0 is linearly unstable (if µ(0) ≥ 0, then there is no positive and bounded stationary solution of (1.1) [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF]). Conversely, if µ(0) < 0 and if, moreover, there exists some M > 0 such that f (x, M ) ≤ 0 for all x ∈ R, then it again follows from [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF] that there exist a stationary solution 0 < p(x) ≤ M . In other words, we know explicit conditions for our KPP hypothesis (1.2) to hold true. In fact, similar conditions are given by [START_REF] Berestycki | Liouville type results for semilinear elliptic equations in unbounded domains[END_REF] in the general heterogeneous framework, using a generalized principal eigenvalue to play the same role as µ(0) here.

We can now define

c * := min λ>0 λ 2 -µ(λ) λ > 0.
Note that for c = c * , the equation λ 2 -µ(λ) -c * λ = 0 admits a unique solution λ * > 0. For c > c * , the equation λ 2 -µ(λ) -cλ = 0 admits two positive solutions, one larger than λ * and one smaller than λ * (see Lemma 2.1 in [START_REF] Hamel | Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity[END_REF]).

It is known that there exists a pulsating traveling wave with speed c if and only if c ≥ c * [START_REF] Berestycki | Analysis of the periodically fragmented environment model : II -Biological invasions and pulsating travelling fronts[END_REF]. Moreover, for each c, this pulsating front is unique up to shift in time and increasing in time [START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF]. In the following, we will denote by U c (t, x) the unique front with speed c such that

U c (0, 0) = p(0) 2 .
It was also shown in [START_REF] Hamel | Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity[END_REF] that for any c > c * , there exists some constant B(c) > 0 such that U c has the following asymptotic behavior on the right:

U c (t, x + ct) ∼ B(c)e -λcx φ λc (x + ct) as x → +∞ uniformly in t ∈ R,
where 0 < λ c < λ * is the smallest λ such that λ 2 c -µ(λ c ) -cλ c = 0, and φ λc the associated principal eigenfunction, normalized so that max φ λc = 1.

Those speeds, in particular the minimal speed c * , play an important role in spreading dynamics in the Cauchy problem associated with equation (1.1). It is indeed known that any compactly supported initial datum will spread with the speed c * in both directions: we refer the reader to the celebrated papers [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion and nerve propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusions arising in population genetics[END_REF] for the homogeneous equation, and to [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF][START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF][START_REF] Weinberger | On spreading speed and travelling waves for growth and migration models in a periodic habitat[END_REF] for the periodic case. More precisely, if we look in a moving frame with speed less than c * , we see u go to p as t → +∞, while if we look in a moving frame with speed larger than c * , we see u go to 0 in large time. The interested reader should note that the references above also deal with spreading speeds in multidimensional domains, which we do not consider here.

However, convergence of the profile of solutions of the Cauchy problem to that of a pulsating traveling wave is much less known. Most results in the past few years were concerned with initial data which behave similarly to a pulsating traveling wave as x → +∞ [START_REF] Hamel | Uniqueness and stability properties of monostable pulsating fronts[END_REF], or when it is trapped between two shifts of a pulsating front [START_REF] Bages | Large-time dynamics for a class of KPP type equations in periodic media[END_REF][START_REF] Bages | How traveling waves attract the solutions of KPP-type equations[END_REF]. The issue at stake in this paper will be the more physically relevant case of compactly supported or fast decaying initial data, which are expected to converge to the pulsating wave with minimal speed. A first step was proven as a corollary in [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF], that is the case of an Heaviside type initial datum. By analogy with the proof of Lau in the homogeneous case [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF] and for fast decaying initial data, this will lead us to prove the following theorem: Theorem 1.3 Assume that f is KPP and periodic, and denote by U c * the pulsating front with minimal speed. Let some non trivial differentiable initial datum 0 ≤ u 0 ≤ p such that

|u 0 (x)| + |u 0 (x)| ≤ Ae -λ * x ,
for some A > 0 and with λ * the unique solution of λ 2 * -c * λ * = µ(λ * ). Then there exists m(t) = o(t) such that the associated solution of the Cauchy problem (1.1)

satisfies u(t, •) -U c * (t -m(t), •) L ∞ (R + ) → 0 as t → +∞.
Remark 1.4 Note that it is immediate, as the symmetric problem is also KPP and periodic, that a similar result holds when looking at propagation to the left of the domain.

Moreoever, the regularity assumption on u 0 could actually be weakened, as our proof will only need the estimate on |u 0 (x)| to be satisfied for x large enough. In particular, if the initial datum is compactly supported, it needs not be differentiable, and not even continuous.

This result is also proven, at least for compactly supported initial data, in a parallel work by Hamel, Nolen, Roquejoffre and Ryzhik [START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF]. Furthermore, they provide an estimate on the shift m(t), namely that m(t) = 3 2c * λ * log t + O(1). This logarithmic shift had only been proven before in the homogeneous case using probabilistic techniques [START_REF] Bramson | The convergence of solutions of the Kolmogorov nonlinear diffusion equation to travelling waves[END_REF].

Our method will roughly show that the convergence holds as soon as the average spreading speed of u is getting close to c * , that is as soon as the position of the profile is close to c * t, up to some o(t). This fact will be needed in the second part of this paper, where we will consider perturbed periodic equations.

In asymptotically periodic media

In this section, we no longer assume that f is periodic in its x-variable. We will now make the assumption that f , although it may now be strongly heterogeneous, converges to some KPP and L-periodic function f as x → +∞. By KPP, we mean here that f satisfies (1.2) or, recalling the equivalence in the periodic case, (1.3). Furthermore, we assume that there exists some C > 0 such that for any u ≥ 0,

|f (x, u) -f (x, u)| ≤ Ce -2λ * x u, (1.5) 
where λ * is given as above from the periodic equation with reaction term f , that is it is the unique solution of λ 2 * -c * λ * = µ(λ * ), where µ is defined as µ with f replaced by f , and c * the minimal speed of pulsating traveling waves of this KPP periodic equation.

We will refer to this situation as asymptotically periodic, and to the following periodic reactiondiffusion equation

∂ t u = ∂ xx u + f (x, u) (1.6) 
as the limiting problem. Because f is KPP, this problem admits a unique positive stationary solution p which is also L-periodic. It is clear from this uniqueness that p(x)-p(x) → 0 as x → +∞.

Here, we consider any non trivial initial datum 0 ≤ u 0 ≤ p such that there exists some D > 0 with u 0 ≡ 0 on the half line [D, +∞). Our goal is to show that the associated solution of the Cauchy problem (1.1) still converges to the traveling wave U c * with minimal speed of the limiting periodic problem (1.6). We first begin with a theorem describing the large time behavior of u in the non moving frame: Theorem 1.5 Assume that f is KPP and asymptotically periodic in the sense of (1.5), and let 0 ≤ u 0 ≤ p some non trivial initial datum. Then the associated solution u(t, x) of the Cauchy problem (1.1) converges locally uniformly to p.

The theorem above describes the large time behavior of u where p may not be close to p, thus where we cannot expect u to be close to U c * , in order to give a more complete picture of the dynamics. We will in fact prove the more general Lemma 4.1, which states that for any fast decaying initial datum, the associated solution of the asymptotically periodic problem (1.1) spreads to p with speed c * . This result in fact holds as long as f (x,u)-f (x,u) u → 0 as x → +∞ uniformly with respect to u, and does not require the stronger assumption (1.5).

We now state our main result in the asymptotically periodic case, on the convergence of the profile of propagation: Theorem 1.6 Assume that f is KPP and asymptotically periodic in the sense of (1.5), and denote by U c * the pulsating front, connecting 0 to p with minimal speed c * , of (1.6). Let 0 ≤ u 0 ≤ p some non trivial continuous initial datum such that ∀x ≥ D, u 0 (x) = 0, for some D > 0.

Then there exists m(t) = o(t) such that the associated solution of the Cauchy problem (1.1) satisfies, for any α(t) → +∞ as t → +∞,

u(t, •) -U c * (t -m(t), •) L ∞ (α(t),+∞) → 0 as t → +∞.
Theorem 1.3 is partly (recall that it dealt with larger classes of initial data) a corollary of Theorems 1.5 and 1.6 in the particular case f ≡ f . One could also consider, following the method presented in this work, roughly periodic environments with a varying period l(x), such as in [START_REF] Garnier | Maximal and minimal spreading speeds for reaction diffusion equations in nonperiodic slowly varying media[END_REF] where spreading speeds where studied in slowly varying media. If the period converges quickly enough to some finite value l ∞ , one would get convergence to the pulsating traveling wave with minimal speed of the l ∞ periodic problem. If the period converges to +∞, one would get, in some extremal cases, either convergence to some homogeneous traveling waves around each point (when the period grows very quickly) or convergence to the pulsating waves of the problem with large periods (when the period grows very slowly).

However, note that our asymptotically periodic assumption (1.5) is quite strong, as one may expect convergence to the pulsating wave U c * even if f converges more slowly to f . Hence, we expect such results to hold in more general situations, which unfortunately could not be dealt with our method, as it will be made clearer from the proof. Moreover, it is not known how the delay term m(t) behaves in this context, and in particular if and how it is affected by non periodic heterogeneities. This further highlights the difficulty of studying strongly heterogeneous problems rigorously, and gives further motivation in the present work.

Some short preliminaries

We quickly begin by introducing the steepness argument, on which our proofs will strongly rely. This argument directly comes from the zero-number (or intersection-number) argument, which has become a powerful tool in the convergence proofs in semilinear parabolic equations [START_REF] Angenent | The zero set of a solution of a parabolic equation[END_REF][START_REF] Matano | Convergence of solutions of one-dimensional semilinear parabolic equations[END_REF].

Let us first define what we will mean by steepness:

Definition 2.1 Let two functions u 1 : R → R and u 2 : R → R. We say that u 1 is steeper than u 2 if, for any x ∈ R such that u 1 (x) = u 2 (x), then u 1 (y) ≥ u 2 (y) for any y ≤ x and u 2 (y) ≥ u 1 (y) for any y ≥ x.
The main idea behind the zero-number argument is that the number of intersections of two solutions of a parabolic equation is non increasing in time, and can therefore serve as a Lyapunov function. We refer to [START_REF] Angenent | The zero set of a solution of a parabolic equation[END_REF] for details and proofs. As we will aim to compare steepness of some solutions in the sense defined above, we will only consider the particular case of a number of intersections never exceeding one. In the same setting, this powerful tool was previously used by the author in an earlier work [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF], in order to get the convergence to pulsating traveling waves given an Heaviside type initial datum (or, for more complex multistable nonlinearities, to a layer of several fronts that we chose to call a propagating terrace). As mentioned above, our work will rely on this earlier result. Furthermore, the following lemma on the intersection number and steepness properties was shown: Lemma 2.2 Let two solutions u 1 and u 2 of (1.1) with initial data respectively u 0,1 piecewise continuous and bounded, and u 0,2 continuous and bounded. If u 0,1 is steeper than u 0,2 , then u 1 (t, •) is steeper than u 2 (t, •) for any t > 0.

We refer the reader to [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF] for the detailed proof. Although this is the only result from the zeronumber theory that we will need here, it will be used extensively throughout this work, which is why we state it explicitly here.

Convergence to the pulsating wave in a periodic medium

Let us first consider the case of the periodic equation, that is f ≡ f is L-periodic, so that (1.1) and (1.6) are the same. As we mentioned before, our result of convergence of the profile is also the subject of another paper [START_REF] Hamel | The logarithmic delay of KPP fronts in a periodic medium[END_REF]. However, as we consider a larger class of initial data, and as our second main result Theorem 1.6 will rely on the alternative proof we propose here in the periodic case, we include it here. We refer the reader to Lau's paper [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF], from which our method is inspired.

Beginning the proof

For each k ∈ N, let t k = inf{t ≥ 0 | u(t k , kL) = p(0)/2}.
It is clear from our choice of initial data that t k → +∞ as k → +∞ and furthermore, thanks to the results of [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF][START_REF] Freidlin | On the propagation of concentration waves in periodic and random media[END_REF][START_REF] Weinberger | On spreading speed and travelling waves for growth and migration models in a periodic habitat[END_REF], we even know that [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF][START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF], we look at the steepness of the solution. We separate the proof in two parts and show that any limit of u(t k , •) is both steeper and less steep than U c * (0, •), in the sense defined above, which will immediately give the wanted equality.

t k ∼ kL c * . Our first goal is to show that u(• + t k , • + kL) converges to U c * . As in
The fact that it is less steep is in fact a straightforward consequence of a previous paper [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF], where it was proven that U c * is steeper than any other entire solution of (1.1). Indeed, both U c * and our initial datum u 0 are clearly less steep than H(a -x)p(x) for any a ∈ R, where H denotes the Heaviside function. Let u(t, x; a(t k )) be the solution of the Cauchy problem with such an initial datum, with a(t k ) chosen so that u(t k , kL; a(t k )) = p(0)/2. It then follows from Lemma 2.2 than

u(t k , x) ≤ u(t k , x; a(t k )), x ≤ kL, ≥ u(t k , x; a(t k )), x ≥ kL, and 
U c * (0, x -kL) ≤ u(t k , x; a(t k )), x ≤ kL, ≥ u(t k , x; a(t k )), x ≥ kL.
Besides, up to extraction of some subsequence, u(t + t k , x + kL; a(t k )) converges locally uniformly in time and space to an entire solution of (1.1). As U c * is steeper than any other entire solution, and from the inequalities above, we get that u(t k , x + kL; a(t k )) converges to U c * (0, x) (even the whole sequence, as it is relatively compact in C 1 loc (R)) locally uniformly in space. One can check that this convergence is in fact uniform from the asymptotics of U c * and the fact that u(t k , x -L; a(t k )) ≥ u(t k , x; a(t k )) for any x (this inequality follows from the comparison principle, the L-periodicity of (1.1) and the fact that it is satisfied for the initial datum u(0, •; a(t k ))).

We finally conclude that

u(t k , x) ≤ U c * (0, x -kL) + ζ(t k ), x ≤ kL, ≥ U c * (0, x -kL) -ζ(t k ), x ≥ kL. with ζ(t k ) = u(t k , •; a(t k )) -U c * (0, • -kL) ∞ → 0 as t k → +∞.
Note that ζ does not depend on the choice of u 0 other than through the time t k , a fact which will be used in the asymptotically periodic case.

We now want to show some converse inequalities. As mentioned above, this part is inspired by [START_REF] Lau | On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov[END_REF], which dealt with the homogeneous case.

Steeper than the pulsating wave

By choosing the right shift in time, we assumed that U c * (0, 0) = p(0)/2. Moreoever, it is known that all pulsating waves are monotonically increasing in time, so that ∂ t U c * (0, 0) ≥ 2γ for some γ > 0. By uniqueness of the front with speed c * , one can check that the

U c normalized such that U c (0, 0) = p(0)/2 converges to U c * in C 1 loc (R 2 ) as c → c * .
It clearly follows that there exists > 0 small enough, for any c * ≤ c ≤ c * + and -≤ t ≤ , one has

∂ t U c (t, 0) ≥ γ > 0. One also has, as c → c * , that λ c the smallest solution of λ 2 c -cλ c = µ(λ c ) converges to λ * the unique solution of λ 2 * -c * λ * = µ(λ * ).
More precisely, as λ → λ 2 -µ(λ) is known to be analytic and not constant, there exists K > 0 and [START_REF] Pinsky | Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions[END_REF].

N ∈ N such that c -c * ∼ K(λ * -λ c ) N as c → c * . Furthermore, one has that N = 2 from
Remark 3.1 The inequality N ≥ 2 is more straightforward, and one could actually check that it would be sufficient for the purpose of our proof. Let us briefly prove it for the sake of completeness. Note that

λ 2 c -λ 2 * + c * λ * -cλ c + µ(λ * ) -µ(λ c ) = 0
and, as 2λ * -c * = µ (λ * ), one gets by a simple computation that:

(λ c -λ * ) 2 1 - µ (λ * ) 2 + λ c (c * -c) = o((λ c -λ * ) 2 ).
This clearly implies that N ≥ 2.

It also follows that the eigenfunction φ λc of (1.4) with λ = λ c and normalized such that φ λc ∞ = 1, converges to the unique eigenfunction φ λ * of (1.4), with λ = λ * . Up to reducing , one can thus assume that for any

c * ≤ c ≤ c * + , min φ λ * 2 ≤ min φ λc ≤ φ λc ∞ ≤ 2 φ λ * ∞ and 2λ * 3 < λ * - 2 √ K (c-c * ) 1/2 < λ c < λ * - 1 2 √ K (c-c * ) 1/2 . (3.7) Let now 0 < δ < min{ c * 20 , √ c *
5 , 1 1600 , }. We want to show that u is steeper than U c the pulsating traveling wave with speed c = c * + δ for any such δ. However, this is clearly not true that u 0 is steeper than any traveling wave. In order to use Lemma 2.2, let us introduce a new initial datum u 0,r (x) := min p(x), u 0 (x) + φ λc (x)e -δr e -λ x , where r ≥ 0 and λ

= λ * -1 2 √ K δ, so that    λ ∈ (λ c , λ * ) , c := λ 2 -µ(λ ) λ < c * + δ 2 .
Indeed, recall that δ < , thus by (3.7) we obtain λ c < λ * -1 2 √ K δ 1/2 < λ . This also insures that c * ≤ c ≤ c * + and furthermore, using again the last inequality of (3.7), that c < c * + δ 2 .

Denote by u r the solution of (1.1) with initial datum u 0,r . Similarly as before, let

t k (r) = inf{t ≥ 0 | u r (t k (r), kL) = p(0)/2}.
Note that u 0 ≤ u 0,r ≤ min{p(x), Ae -λ * x + e -λ x } for any r ≥ 0. As it is already known that the solutions of the periodic reaction-diffusion equation associated with those initial data spread respectively with speed c * and c < c * + δ 2 , it follows that kL c * +δ 2 ≤ t k (r) ≤ t k ∼ kL c * as k → +∞, uniformly with respect to r. Hence, from the choice of δ and for k large enough, we can choose

r k := 4λ * δt k , so that r k 5λ * δ ≤ t k (r k ) ≤ t k = r k 4λ * δ .
It is clear that r k → +∞ as k → +∞, and u 0,r → u 0 locally uniformly as r → +∞. Let us now show the following lemma, which states that u and u r k are close from each other: Lemma 3.2 There exists η 1,δ (r k ) → 0 as k → +∞, which does not depend on u 0 , and such that for any k large enough and

x ∈ [(c * -δ 2 )t k (r k ), +∞), one has |u(t k (r k ), x) -u r k (t k (r k ), x)| ≤ η 1,δ (r k ).
Proof. The function v(t, x) = u r k (t, x) -u(t, x) ≥ 0 satisfies

∂ t v = ∂ 2 x v + f (x, u r k ) -f (x, u
). Furthermore, the KPP hypothesis implies that for any x,

f (x, u r k ) -f (x, u) ≤ ∂ u f (x, 0)(u r k -u). Therefore, v satisfies ∂ t v -∂ 2 x v -∂ u f (x, 0)v ≤ 0. Besides, one can check that v(t, x) := φ λ * (x) min φ λ * e -δr k e -λ (x-c t) satisfies ∂ t v -∂ 2 x v -∂ u f (x, 0)v = 0. Since v(0, x) ≤ v(0, x), one gets from the parabolic comparison principle that for any x ≥ (c * -δ 2 )t k (r k ) ≥ (c -2δ 2 )t k (r k ): 0 ≤ u r k (t k (r k ), x) -u(t k (r k ), x) ≤ φ λ * (x) min φ λ * e -δr k e -λ (-2δ 2 t k (r k )) ≤ 1 min φ λ * e -δr k +2λ δ 2 t k (r k ) ≤ 1 min φ λ * e -δ 2 r k =: η 1,δ (r k ).
This concludes the proof of the lemma.

We now only need to "cut" U c to make it less steep than u 0,r . Let r k such that

U c (t, x + ct) ≤ min φ λ * 2 e -δr k , (3.8) 
for any t ∈ R and x ≥ r k . From the asymptotics of U c , there exists D such that

U c (t, x + ct) ≤ 2B(c)e -λcx ,
for any t ∈ R and x ≥ D . Therefore, (3.8) holds if

r k ≥ D and 2B(c)e -λcr k ≤ min φ λ * 2 e -δr k ,
that is,

r k ≥ max D , ln(4B(c)/ min φ λ * ) λ c + δr k λ c .
For instance, as r k → +∞ as k → +∞, one can choose

r k = 2 δr k λ c .
Let now U c be defined as

U c (t, x) = U c (t, x) if x ≥ r k + ct, 0 otherwise. 
Choose s k such that U c (s k + t k (r k ), kL) = u r k (t k (r k ), kL) = p(0)/2. We now claim the following lemma:

Lemma 3.3 For k large enough (depending on u 0 only through A), the function U c (s k , •) is less steep than u 0,r k .

Proof. Let us first estimate s k . Since U c moves with speed c = c * + δ, one has that

kL s k + t k (r k ) = c * + δ for each k ∈ N. We have also already seen that c * ≤ lim inf kL t k (r k ) ≤ lim sup kL t k (r k ) ≤ c * + δ 2 as k → +∞. It follows that c * c * + δ ≤ lim inf s k + t k (r k ) t k (r k ) ≤ lim sup s k + t k (r k ) t k (r k ) ≤ c * + δ 2 c * + δ as k → +∞. Hence, lim sup k→+∞ s k t k (r k ) + δ c * ≤ δ 2 c * + δ + δ 2 c * (c * + δ) < 1 10 
δ c * .
Hence, from the choice of δ and r k , we get for k large enough that

s k ≤ - r k 6 c * λ * .
We can now check that U c (s k , x) is less steep than u 0,r k . First, it is clear from its construction that U c (s k , 0) lies below u 0,r k (0). Indeed, this is trivial if U c (s k , 0) = 0; otherwise, r k + cs k ≤ 0 and it then follows from (3.8). Moreover, as U c has a slower decay than u 0,r k as x → +∞, the front U c lies above u 0,r k on the far right of the domain. Thus, there exists some y k ≥ 0 such that U c (s k , y k ) = u 0,r k (y k ). Since u 0,r k > 0 and U c < p, this means that

U c (s k , y k ) = u 0 (y k ) + φ λc (y k )e -δr k e -λ y k . Since cs k → -∞ as k → +∞, one has U c (s k , x) ≤ 2B(c)e -λc(x-cs k )
for any x ≥ 0 and k large enough. Therefore,

u 0 (y k ) + φ λc (y k )e -δr k e -λ y k ≤ 2B(c)e -λc(y k -cs k ) . Hence min φ λ * 2 e -δr k e (λc-λ )y k ≤ 2B(c)e cλcs k and y k ≥ -1 λ -λ c (ln(4B(c)/ min φ λ * ) + δr k + λ c cs k ) .
We get for k large enough, and since

cλ c 6c * λ * -δ ≥ 1 9 -δ > 1 10 , that y k ≥ r k 10(λ -λ c ) → +∞.
It also follows from the asymptotics of U c that

∂ x U c (s k , y k ) U c (s k , y k ) = ∂ x U c (s k , y k ) U c (s k , y k ) = -λ c + φ λc (y k ) φ λc (y k ) + o(1)
as k → +∞. Besides,

∂ x u 0,r k (y k ) = u 0 (y k ) + φ λc (y k ) -λ φ λc (y k ) e -δr k e -λ y k ≤ Ae -λ * y k + -λ + φ λc (y k ) φ λc (y k ) φ λc (y k )e -δr k e -λ y k , ≤ Ae -λ * y k + -λ + φ λc (y k ) φ λc (y k ) (u 0,r k (y k ) -u 0 (y k )) , ≤ A 1 + λ - φ λc (y k ) φ λc (y k ) e -λ * y k + -λ + φ λc (y k ) φ λc (y k ) u 0,r k (y k ),
for large k. Thus, since u 0,r k (y k ) = U c (s k , y k ):

∂ x U c (s k , y k ) -∂ x u 0,r k (y k ) U c (s k , y k ) ≥ λ -λ c -A 1 + λ - φ λc (y k ) φ λc (y k ) × e -λ * y k u 0,r k (y k ) + o(1) ≥ λ -λ c - 2A min φ λ * 1 + λ - φ λc (y k ) φ λc (y k ) e δr k e (λ -λ * )y k + o(1) ≥ λ -λ c - 2A min φ λ * 1 + λ + φ λc ∞ min φ λc e δr k e (λ -λ * ) r k 10(λ -λc) + o(1) as k → +∞. Recall that λ -λ * = -1 2K δ and λ * -λ c ≤ 2 K δ 1/2 , hence 2A min φ λ * 1 + λ + φ λc ∞ min φ λc e δr k e (λ -λ * ) r k 10(λ -λc) ≤ 2A min φ λ * 1 + λ + φ λc ∞ min φ λc e δr k e -δ 1/2 4-δ 1/2 r k 10 ≤ 2A min φ λ * 1 + λ + 4 φ λ * ∞ min φ λ * e r k (δ-δ 1/2 40 )
→ 0 as k → +∞ provided that δ 1/2 < 1 40 , which is true from our choice of δ. We conclude that for k large enough,

∂ x U c (s k , y k ) -∂ x u 0,r k (y k ) > 0 for any point y k where U c (s k , •) intersects u 0,r k (•). Namely, u 0,r k (•) is steeper than U c (s k , •) for k large enough. From Lemma 2.2, one immediately gets that u r k (t k (r k ), •) is steeper than u(t k (r k ), •)
, where u is the solution of the Cauchy problem with initial datum U c (s k , x). It remains to prove that

u(t k (r k ), •) is close to U c (s k + t k (r k ), •
) to be able to conclude. This is the purpose of the next lemma: Lemma 3.4 There exists η 2,δ (r k ) → 0 as k → +∞, which does not depend on u 0 , such that for any k large enough and x > (c * -δ 2 )t k (r k ), one has

0 ≤ U c (s k + t k (r k ), x) -u(t k (r k ), x) ≤ η 2,δ (r k ). Proof. As before, the function w(t, x) = U c (s k + t, x) -u(t, x) is a subsolution of ∂ t w = ∂ 2
x w + ∂ u f (x, 0)w. On the other hand, for any positive constant β, the above equation admits the following solution:

w(t, x) := βφ λ * (x)e -λ * (x-c * t) .
Hence, by the comparison principle, w ≤ w provided that w(t = 0, •) ≤ w(t = 0, •). This is true for

β = e λ * (r k +cs k ) min φ λ * × p ∞ .
Indeed, one then has w(t = 0, x) ≥ p ∞ ≥ w(t = 0, x) for any x ≤ r k + cs k , and w(t = 0, x) ≥ w(t = 0, x) = 0 for any x ≥ r k + cs k . It follows that for any

x > (c * -δ 2 )t k (r k ), 0 ≤ w(t k (r k ), x) ≤ p ∞ min φ λ * × e λ * (r k +cs k ) × e -λ * (x-c * t k (r k )) ≤ p ∞ min φ λ * × e λ * (r k +cs k ) × e λ * δ 2 t k (r k ) ≤ p ∞ min φ λ * × e 2λ * δr k λc +λ * cs k + δr k 2 .
Recall that s k ≤ -r k 6 c * λ * . We conclude, again from the choice of δ small enough, that for any

x > (c * -δ 2 )t k (r k ): 0 ≤ w(t k (r k ), x) ≤ p ∞ × e 2λ * δr k λc - cr k 6c * + δr k 2 ≤ p ∞ × e 3δr k -cr k 6c * + δr k 2 ≤ p ∞ × e -r k 7 
which ends the proof by letting η 2,δ this last expression.

From all the above, and by noting that kL ≥ (c * -δ 2 /2)t k (r k ) for k large enough, we get that for any small δ and large k,

u(t k (r k ), x) ≤ U c * (0, x -kL) + η(r k ) + 1 (δ), x ≥ kL, ≥ U c * (0, x -kL) -η(r k ) -1 (δ), kL - δ 2 2 t k (r k ) ≤ x ≤ kL.
where η = η 1,δ + η 2,δ and 1 (δ) → 0 as δ → 0 comes from the uniform convergence of U c * +δ (0, •) to U c * (0, •). We also have an opposite inequality, as in the previous subsection:

u(t k (r k ), x) ≥ U c * (0, x -kL) -ζ(t k (r k )), x ≥ kL, ≤ U c * (0, x -kL) + ζ(t k (r k )), x ≤ kL,
where ζ(t) → 0 as t → +∞.

We aim to conclude by passing to the limit as δ → 0 and k → +∞. To do so, one needs to proceed carefully as r k and η actually also depend on δ.

Let some sequence δ n → 0 such that 1 (δ n ) < 1 2n . From the above, one can find k n such that for any k ≥ k n , we have η(r k ) < 1 2n and ζ(t k (r k )) < 1 2n . We can easily assume without loss of generality that k n → +∞ as n → +∞. Before we can conclude, it remains to check that

t k -t k (r k ) → 0 for k ≥ k n as n → +∞.
Recall first that t k (r k ) ≤ t k . Moreover, from our choice of δ n and k n , we have for any k ≥ k n that

u(t k (r k ), kL) > p(0) 2 - 1 n .
From standard parabolic estimates, ∂ x u is globally bounded and we can put a non trivial compactly supported function u 0 (x) below u(t k (r k ), x + kL) for any k, such that the associated solution u(t, x) of the Cauchy problem converges to p locally uniformly in time (this is true for any non trivial compactly supported function [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF]). In particular, there exists T such that u(T, 0) > p(0) 2 . It follows that for any k ≥ k n , one now has that 0 ≤ t k -t k (r k ) ≤ T .

We then show, as announced, that t k -t k (r k ) converges to 0 as δ n → 0 uniformly with respect to k ≥ k n . Let any subsequence n j and k n j ≥ k n j such that t k n j -t k n j (r k n j ) converges to some constant T . Up to extraction of a subsequence and thanks to parabolic estimates, one can assume that the sequence u(• + t k n j , • + k n j L) converges in C 1 loc (R) to an entire solution u ∞ of (1.1). By passing to the limit in the inequalities above, one gets that

u ∞ (-T , x) = U c * (0, x), x ≥ 0.
It is known that the zeros of a solution of a second order linear parabolic equation with bounded coefficients do not accumulate, unless this solution is identically equal to 0 [START_REF] Angenent | The zero set of a solution of a parabolic equation[END_REF]. It follows that u ∞ (•, •) ≡ U c * (• + T , •) is a shift of the front U c * . Hence, from the monotonicity of U c * , we have that ∂ t u(t + t k n j (r k n j ), k n j L) ≥ γ/2 > 0 for large j and |t| ≤ . But we know that for j large enough, u(t k n j (r k n j ), k n j L) > p(0)/2 -1/n j and thus

u(t k n j (r k n j ) + 2/(γn j ), k n j L) ≥ p(0) 2 .

It immediately follows that t k n j

-t k n j (r k n j ) ≤ 2 γn j , hence T = 0. We can now even conclude that t k -t k (r k ) converges to 0 uniformly with respect to k ≥ k n .

Let us now check that the sequence u(t k , •) converges uniformly in the right half-space to U c * (0, •). Let any ε > 0. Recall that

u(t k , x) ≤ U c * (0, x -kL) + 1 n + 2 (n), x ≥ kL, ≥ U c * (0, x -kL) - 1 n -2 (n), kL - δ 2 n 2 t k ≤ x ≤ kL, and 
u(t k , x) ≥ U c * (0, x -kL) - 1 n , x ≥ kL, ≤ U c * (0, x -kL) + 1 n , x ≤ kL,
where k ≥ k n and 2 (n) → 0 as n → +∞ comes from the uniform convergence of u(t k (r k ), •) to u(t k , •) (since t k -t k (r k ) → 0). We choose n large enough so that

1 n + 2 (n) ≤ ε.
Up to increasing k n , we can assume from the fact that u spreads with speed c * , that

u(t k , x) ≥ p(x) -ε, 0 ≤ x ≤ kL - δ 2 n 2 t k , U c * (0, x) ≥ p(x) -ε, x ≤ - δ 2 n 2 t k ,
for any k ≥ k n . From all the inequalities above, one can then conclude that for any ε > 0, there exists k n such that sup

k≥kn u(t k , •) -U c * (0, • -kL) L ∞ (R + ) ≤ ε.
We conclude that u(t k , •+kL) converges uniformly in the half-space R + to U c * (0, •). From parabolic estimates, this convergence is also locally uniform in time.

Remark 3.5 When lim inf u 0 > 0 as x → -∞, it is known that the associated solution u of the Cauchy problem converges uniformly to p in the half-space x ≤ ct for any c < c * . Hence, by proceeding exactly as above, we would get the convergence to U c * uniformly in the whole space R.

Ending the proof

Finally, to get the wanted convergence result as t → +∞, let j(t) ∈ N such that

j(t) L c * ≤ t < (j(t) + 1) L c * ,
and m(t) the piecewized affine function defined by

m(t) = t j(t) -j(t) L c * + c * L t j(t)+1 -t j(t) - L c * t -j(t) L c * for any t ≥ 0.
In particular, it is chosen so that for any k ∈ N,

m k L c * = t k -k L c * ,
which is the difference between the times needed for the solution and the traveling wave to reach the point kL.

Note that from the previous section and the convergence to the pulsating traveling wave with minimal speed around the times t k , it easily follows that t k+1 -t k → L c * as k → ∞. Recall also that t j(t) ∼ j(t)L c * . Therefore, m(t) = o(t) and t + m(t) -t j(t) ∼ t -j(t) L c * . It follows from the convergence of u(t j(t) , •) to U c * (0, • -kL) uniformly in R + and locally in time that

u(t + m(t), x) -U c * t -j(t) L c * , x -j(t)L → 0, thus u(t + m(t), x) -U c * (t, x) → 0,
where the convergence holds uniformly in R + as t → +∞. This concludes the proof of the convergence to the pulsating wave with minimal speed in a purely periodic environment.

Spreading in an asymptotically periodic medium

In this section and the next, the function f is no longer periodic but asymptotically periodic.

In the present section, we only look at the spreading speed of solutions. Instead of the stronger hypothesis (1.5), we only assume that

f (x, u) -f (x, u) u → 0 (4.9)
as x → +∞, uniformly with respect to u > 0. Recall that f is the limiting periodic reaction term, and µ(λ) will now denote the following principal eigenvalue:

   -∂ xx φ λ + 2λ∂ x φ λ - ∂ f ∂u (x, 0)φ λ = µ(λ)φ λ in R,
φ λ > 0 and L-periodic.

(4.10)

We recall that λ → λ 2 -µ(λ) is an analytic and non constant function of λ, and that we assumed that µ(0) < 0 ( f is KPP), so that there exists a unique solution

λ * of λ 2 -c * λ = µ(λ) with c * = inf λ>0 λ 2 -µ(λ) λ
, and two solutions of λ 2 -cλ = µ(λ) for any c > c * .

We show that the solution u(t, x) of the Cauchy problem with equation (1.1) and fast decaying initial datum (in particular, any initial datum satisfying the assumptions of Theorem 1.6) spreads with speed c * in the following sense: Lemma 4.1 Assume that f is KPP and asymptotically periodic in the sense of (4.9). Let u(t, x) the solution of (1.1) associated with a non trivial initial datum 0 ≤ u 0 ≤ p such that u 0 (x) ≤ Ae -Λx for all x ∈ R, where A > 0 and Λ > λ * . Then u(t, x) converges locally uniformly to p and spreads to the right with speed c * :

∀c < c * , lim t→+∞ sup 0≤x≤ct |u(t, x) -p(x)| = 0, ∀c > c * , lim t→+∞ sup x≥ct |u(t, x)| = 0.
Remark 4.2 Theorem 1.5 is an immediate corollary of this lemma. Indeed, for any non trivial initial datum u 0 between 0 and p, we can put below it a compactly supported initial datum, which satisfies the assumptions of this lemma. We clearly get, using the comparison principle, the locally uniform convergence to p (and even in the moving frames with speed smaller than c * to the right).

Proof. For any ε > 0 small enough, the function f (x, u) + εu is periodic and KPP. Indeed, µ(0) -ε < 0 and, in other words, 0 is a linearly unstable stationary state of the equation

∂ t u = ∂ xx u + f (x, u) + εu. (4.11)
Furthermore, one can check that the function 2 p is a supersolution of the same equation:

2∂ xx p(x) + f (x, 2 p(x)) + 2ε p(x) ≤ 2(∂ xx p(x) + f (x, p(x))) -2ρ × p(x) + 2ε p ∞ < 0.
where p is the unique positive stationary state of (1.6) and ρ > 0 comes from the fact that u → f (x, u)/u is decreasing for all x. The last inequality above holds as long as ε < ρ. Following the same arguments as in [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -Species persistence[END_REF], there exists a positive stationary solution of (4.11) and the function f (x, u) + εu is KPP, in the sense that it also verifies (1.3).

We can now denote by c * ε the minimal speed of pulsating traveling wave solutions of the periodic reaction-diffusion equation with reaction term f (x, u) + εu. It is clear that it can also be computed as

c * ε = inf λ>0 λ 2 -µ(λ) + ε λ ,
and thus c * ε ≥ c * and c * ε → c * as ε → 0. Thanks to (4.9), we can introduce y ε → +∞ as ε → 0 such that for all x ≥ y ε and u ≥ 0,

|f (x, u) -f (x, u)| ≤ εu.
The main idea of the proof is that whatever the spreading speed is before the profile reaches the remote point y ε , the spreading speed will then become very close to c * . Let us first fix c > c * , and c * < c < c. Since c * ε converges to c * as ε goes to 0, one can define, for ε small enough, λ c ,ε the smallest solution of λ 2 -c λ -µ(λ) + ε = 0. It immediately follows that λ c ,ε → λ c as ε → 0, with λ c given by the smallest solution of λ 2 -c λ -µ(λ) = 0. Besides, it is easy to see that λ c < λ * , hence λ c ,ε < λ * < Λ for any ε small enough. Let now

u(t, x) := min p(x), φ λ c ,ε (x) p ∞ min φ λ c ,ε e -λ c ,ε (x-yε-c t)
where φ λ c ,ε is normalized so that φ λ c ,ε ∞ = 1.

Without loss of generality and up to decreasing ε, we can assume that u(0, x) ≤ u(0, x) for any x ∈ R. Moreover, the function u(t, x) is a supersolution of (1.1). Indeed, p is a solution of (1.1) and, whenever u(t, x) =

φ λ c ,ε (x) p ∞ min φ λ c ,ε
e -λ c ,ε (x-yε-c t) , then x ≥ y ε + c t ≥ y ε and one can check that

∂ t u -∂ xx u -f (x, u) ≥ ∂ t u -∂ xx u -f (x, u) -εu ≥ 0.
Therefore, for any t > 0 and x ∈ R, one has from the parabolic comparison principle that u(t, x) ≤ u(t, x).

In particular, as t → +∞,

u(t, x + ct) ≤ p ∞ min φ λ c ,ε e -λ c ,ε (x+(c-c )t-yε) → 0
uniformly with respect to x ≥ 0. This concludes the first part of the proof of our lemma, namely that u spreads with speed less than c * .

In order to construct a subsolution and prove that the spreading speed is in fact exactly c * , we use the method in Section 4 of [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF]. We introduce the following principal eigenvalue problem, for any 0 ≤ c < c * :

           ∂ t φ c,R,y -∂ xx φ c,R,y -c∂ x φ c,R,y -∂ u f (x + y + ct, 0)φ c,R,y = µ c,R φ c,R,y , φ c,R,y (t, x) > 0 in R × (-R, R), φ c,R,y is L c -periodic in t, φ c,R,y = 0 on R × {-R, R}. (4.12)
It has been proved in [START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF] that µ c,R → max λ∈R ( µ(λ) -λ 2 + cλ) as R → +∞. Since 0 ≤ c < c * and by definition of c * , we know that max λ≥0 ( µ(λ) -λ 2 + cλ) < 0 and in fact, by the same argument that has been used to prove that c * > 0 [START_REF] Hamel | Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity[END_REF], one can also check that max λ≤0 ( µ(λ) -λ 2 + cλ) < 0. Therefore, one can find R large enough such that µ c,R < 0. Extend φ c,R,y by 0 outside (-R, R), and let ψ c,R,y (t, x) = φ c,R,y (t, x -y -ct).

One can check that for any κ and ε small enough, and y ≥ y ε + R, the function κψ c,R,y is a subsolution of (1.1), since for any t ≥ 0 and -R < x -y -ct < R:

∂ t κψ c,R,y -∂ xx κψ c,R,y -f (x, κψ c,R,y ) ≤ ∂ t κψ c,R,y -∂ xx κψ c,R,y -f (x, κψ c,R,y ) + εκψ c,R,y ≤ ∂ t κψ c,R,y -∂ xx κψ c,R,y -∂ u f (x, 0)κψ c,R,y + o(κψ c,R,y ) + εκψ c,R,y ≤ κψ c,R,y × ( µ c,R + o(κ) + ε) < 0.
Note that we made use of the fact that the support of ψ c,R,y (t, •) is included in the set {x ≥ y ε } for any t ≥ 0.

Choose first c = 0. It is clear that φ c,R,y actually does not depend on time by uniqueness of the principal eigenfunction up to multiplication by a factor. By the parabolic comparison principle, one then gets that the solution of (1.1) with initial datum κψ 0,R,y is increasing in time provided that R and y are large and κ is small enough. As it is also bounded from above by p (up to decreasing κ), and positive for any t > 0 by the strong comparison principle, we get that it converges locally uniformly to a stationary solution 0 < q ≤ p of (1.1). Let us check that lim inf x→+∞ q(x) > 0, proceeding by contradiction. If there exists some sequence y n → +∞ such that q(y n ) → 0, one can find κ n → 0 such that κ n ψ 0,R,yn ≤ q with equality on some point. But for n large enough, we know that κ n ψ 0,R,yn is a subsolution for (1.1), so that q ≡ κ n ψ 0,R,yn according to the strong maximum principle. This is a clear contradiciton with the fact that q is positive. We conclude that lim inf x→+∞ q(x) > 0 and hence, by uniqueness, we get that q ≡ p. Finally, as it is clear that u(1, •) > 0 from the strong maximum principle, one can choose κ small enough so that p(•) ≥ u(1, •) ≥ κψ 0,R,y (1, •), so that u also converges locally uniformly to p. Now choose any 0 < c < c * and let us prove that u converges to p as t → +∞ on the domain 0 ≤ x ≤ ct. Proceed by contradiction and assume that there exists some sequence (t n , x n ) such that t n → +∞, 0 ≤ x n ≤ ct n and inf n∈N |u(t n , x n ) -p(x n )| > 0. Note that, since we already know that u converges locally uniformly to p, we have that x n → +∞. Moreover, up to extraction of some subsequence, there exists 0 ≤ c < c * such that

x n = c t n + o(t n ).
Let now c ∈ (c , c * ), so that t n -xn c → +∞. As above, we can assume that u(1, •) ≥ κψ c ,R,y (1, •). From the comparison principle, we get that for any t > 1, κ and ε small enough, R large and y ≥ y ε + R, one has that u(t, •) ≥ κψ c ,R,y (t, •). In particular, for n large enough and any x,

u x n -y c , x + x n ≥ κφ c ,R,y x n -y c , x .
Thus,

u(t n , x n ) ≥ u 1 t n - x n -y c , 0; x n where u 1 (•, •; x n ) is the solution of ∂ t u 1 = ∂ xx u 1 + f (x + x n , u 1 ) (4.13) 
with initial datum κ inf t∈R φ c ,R,y (t, x). Up to extraction of another subsequence, we can assume that

x n -xn L L → l ∈ [0, L) and (recall that t n -xn-y c → +∞) that u 1 t + t n -xn-y c , x; x n converges locally uniformly to an entire solution u ∞ of ∂ t u ∞ = ∂ xx u ∞ + f (x + l, u ∞ ). (4.14) 
We now prove that u ∞ (x) ≡ p(x + l). As above, since c * > 0 and up to increasing R and y, we can assume provided that κ is small enough that κ φ 0,R/2,xn is a subsolution of (4.13), and also that it lies below κ inf t∈R φ c ,R,y (t, x). It follows that for any n, u 1 (•, •; x n ) ≥ κ φ 0,R/2,xn . Note that s → φ 0,R/2,s is periodic with respect to s: this comes from the periodicity of f and the uniqueness of the principal eigenfunction of (4.12) up to multiplication by some factor (here, we always choose it normalized so that φ 0,R/2,s ∞ = 1). By passing to the limit, we get that for any

(t, x) ∈ R 2 : u ∞ (t, x) ≥ κ inf s∈R φ 0,R/2,s (x)
where the right hand side is positive on a neighborhood of 0. Therefore, for any t ∈ R, the function u ∞ (t, x) lies above the limit in large time of the solution of (4.14) with initial datum κ inf s∈R φ 0,R/2,s (x), which is known to be p(• + l) from the KPP hypothesis on f . We conclude that u ∞ (t, x) = u ∞ (x) ≡ p(x + l) = lim x→+∞ p(x + x n ). Therefore, lim n→+∞ u(t n , x n ) ≥ u ∞ (0, 0) = lim n→+∞ p(x n ). As we also know from the comparison principle that u(t n , x n ) ≤ p(x n ) we have finally reached a contradiction, and we can conclude that u spreads to the right with speed c * . This ends the proof of Lemma 4.1.

Remark 4.3 For a similar result, one could also use the characterization of spreading speeds using generalized eigenvalues as in [START_REF] Berestycki | Spreading speeds for one-dimensional monostable reactiondiffusion equations[END_REF], where much more heterogeneous problems were considered but with the additional assumption that f is positive between the two stationary states, which is not always satisfied here.

Convergence in an asymptotically periodic medium

We now begin the proof of Theorem 1.6. In particular, the function f is now asymptotically periodic in the stronger sense of (1.5), and the initial datum u 0 now satisfies the additional assumption that u 0 (x) = 0 for all x ≥ D and some D > 0.

Let us fix any small ε > 0 and show that for t large enough, the difference between u and some shift of U c * is less than ε. The main idea is the same as in the periodic case. For each k ∈ N, we again let

t k = inf{t ≥ 0 | u(t k , kL) = p(0)/2},
where p is the unique positive and periodic stationary solution of (1.6). The fact that t k is welldefined, at least for any large k, comes from the fact that p(kL) → p(0) > 0 as k → +∞, and the fact that u converges to p in large time from Lemma 4.1. This even gives us that t k ∼ kL c * as k → +∞.

As before, we show that any limit of u(• + t k , • + kL) is both steeper and less steep than U c * . As before, the fact that it is less steep is a consequence of [START_REF] Ducrot | Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations[END_REF][START_REF] Nadin | Critical travelling waves for general heterogeneous one-dimensional reactiondiffusion equations[END_REF], where it has been shown that U c * is steeper than any other entire solution of (1.6), and of the fact that any limit of u(• + t k , • + kL) is an entire solution of (1.6).

To prove the other part, that is that it is steeper than U c * , is far more intricate. We will need to introduce, for each k, another initial datum v 0,k less steep than u 0 , and such that the associated solutions of both the periodic and asymptotically periodic problems stay very close from each other. We will then conclude using Section 3.

Choice of v 0,k

We will introduce here another compactly supported initial datum, namely v 0,k . Its support will be always chosen to the right of the support of u 0 , so that v 0,k is less steep than u 0 . Moreover, in order to use our intersection number argument, that is Lemma 2.2, v 0,k will be chosen so that t k is roughly the first time such that v k (t k , kL) = p(0) 2 , and v k (t, kL) < p(0) 2 for any 0 ≤ t < t k , where v k is the solution of (1.1) with initial datum v 0,k . This means that u(t k , •) will lie above v k (t k , •) on the left of x = kL, and below on the right. If v k (t k , •) is close to the pulsating traveling wave U c * , this will give the wanted conclusion.

To show this, we will need to prove that v k stays close to v k (the solution of the limiting periodic reaction-diffusion equation with initial datum v 0,k ) up to the time t k , and that v k (t k , •) is already close enough to U c * (it is known from our first main theorem that v k converges to U c * in large time, but here, both the initial datum and the time when we look at the solution depend on k).

Roughly speaking, on one hand, the first part requires the support of v k to be far enough to the right of the domain, so that f is very close to f . On the other hand, the second part requires, to apply the same proof we used in the periodic case, that the ratio of the distance between kL and the support of v 0,k over the time t k (needed for the profile of v k to reach kL) is close to c * : in other words, as kL t k ∼ c * from Lemma 4.1, the support of v 0,k needs to be relatively close to x = 0. Therefore, one needs to proceed very carefully in the choice of v 0,k to match both requirements simultaneously.

As mentioned above, we know that kL t k ∼ c * . Furthermore, provided that ε is small enough and using again Lemma 4.1, there exists δ(k) → 0 as k → +∞, such that

∀0 ≤ x ≤ kL -δ(k)k , |u(t, x) -p(x)| ≤ ε, ∀x ≥ kL + δ(k)k , |u(t, x)| ≤ ε, |kL -t k c * | ≤ δ(k)k.
Similarly, fix R > 0 and look at the solution of the limiting periodic reaction-diffusion equation with initial datum pχ (-R,R) . There exists δ (k) → 0 as k → +∞ such that the smallest time t k when this solution reaches the value p(0) 2 at the point x = kL satisfies

|kL -t k c * | ≤ δ (k)k.
We can also assume without loss of generality that δ is decreasing with respect to k.

We let y k such that

y k ∼ max{ √ kL, δ(k)k, δ (k/2)k}, y k = j k L with j k ∈ N.
We then define v

0,k = γ k p × χ (y k -R,y k +R)
with R fixed independently of k and 0 < γ k ≤ 1 chosen so that

t k = inf t > 0 | v k (t, kL) = p(0) 2 .
Recall that v k denotes the solution of the limiting periodic reaction-diffusion equation with initial datum v 0,k . The fact that γ k is well-defined follows from the fact that, for γ k = 1 and k large enough,

inf t > 0 | v k (t, kL) = p(0) 2 = t k-y k L ≤ kL -y k + δ (k -y k L )(k -y k L ) c * ≤ kL -y k + δ ( k 2 )k c * ≤ t k - y k c * + o(y k ) < t k ,
while this same infimum goes to infinity as γ k gets closer to 0. In a similar fashion, one could actually even show that γ k → 0 as k → +∞.

The second property of y k , namely that it is a multiple of the period L is mostly to simplify the computations. The first property implies that y k is very small compared to kL, which will give the fact that v(t k , •) will be close to U c * , but is very large compared to δ(k)k, which will allow us to show that v -v does not have time to spread up to x = kL before time t k .

Asymptotically periodic solution

In this section, we show the following lemma, which states that v k and v k are close from each other at the time t k . Lemma 5.1 There exists ζ 1 (k) → 0 as k → +∞ such that for any choice of 0

< γ k ≤ 1 and x ≥ kL -δ(k)k, one has |v k (t k , x) -v k (t k , x)| ≤ ζ 1 (k). Proof. Denote by w(t, x) = v k (t, x) -v k (t, x) which satisfies ∂ t w = ∂ xx w + f (x, v k ) -f (x, v k ), w(t = 0, x) ≡ 0.
Moreover, if w ≥ 0, then from the KPP hypothesis,

f (x, v k (t, x)) -f (x, v k (t, x)) ≤ ∂ u f (x, 0)w(t, x)
for any t ≥ 0 and x ∈ R; using also the asymptotically periodic hypothesis, one gets

∂ t w = ∂ xx w + f (x, v k ) -f (x, v k ) + f (x, v k ) -f (x, v k ) ≤ ∂ xx w + min{2 ∂ u f (•, 0) ∞ , Ce -2λ * x }v k (t, x) + ∂ u f (x, 0)w.
Therefore, for any nonnegative supersolution w of

∂ t w ≥ ∂ xx w + min{2 ∂ u f (•, 0) ∞ , Ce -2λ * x }v k (t, x) + ∂ u f (x, 0)w (5.15) 
and since w(0, •) ≡ 0 ≤ w(0, •), one can use the comparison principle to conclude that w ≤ w for all times. Proceeding as above when w ≤ 0, one also has that w ≥ -w, hence |w| ≤ w.

Before giving such a w, let us first estimate v k (t, x). Let λ * > 0 be the unique solution of λ 2 -c * λ = µ(λ). Then let c > 0 such that λ 2 * -c λ * = -∂ u f (•, 0) ∞ . One can check that the following function v k (t, x) := min{p(x) , p ∞ e λ * (x+R-y k +c t) } is a supersolution of (1.1) and is such that v k (0, •) ≥ v k (0, •). Hence, from the comparison principle, v k (t, x) ≤ p ∞ e λ * (x+R-y k +c t) for any t > 0 and x ∈ R.

Define now

w 1 (t, x) := p ∞ × max{C , 2 ∂ u f (•, 0) ∞ } × min{1 , e -λ * x } × te λ * (R-y k +c t) ≥ 0.
Let us check that this is indeed a supersolution for the equation (5.15). First, for any x < 0:

∂ t w 1 -∂ xx w 1 -min{2 ∂ u f (•, 0) ∞ , Ce -2λ * x }v k (t, x) -∂ u f (x, 0)w 1 ≥ ∂ t w 1 -2 p ∞ ∂ u f (•, 0) ∞ e λ * (x+R-y k +c t) -∂ u f (x, 0)w 1 ≥ ∂ t w 1 -2 p ∞ ∂ u f (•, 0) ∞ e λ * (R-y k +c t) -∂ u f (x, 0)w 1 ≥ ∂ t w 1 -2 p ∞ ∂ u f (•, 0) ∞ e λ * (R-y k +c t) -∂ u f (x, 0)w 1 ≥ w 1 t -2 p ∞ ∂ u f (•, 0) ∞ e λ * (R-y k +c t) + c λ * w 1 -∂ u f (•, 0) ∞ w 1 ≥ λ 2 * w 1 ≥ 0. 21 
Besides, for any x > 0:

∂ t w 1 -∂ xx w 1 -min{2 ∂ u f (•, 0) ∞ , Ce -2λ * x }v k (t, x) -∂ u f (x, 0)w 1 ≥ ∂ t w 1 -∂ xx w 1 -C p ∞ e -2λ * x e λ * (x+R-y k +c t) -∂ u f (x, 0)w 1 ≥ w 1 t + c λ * w 1 -λ 2 * w 1 -C p ∞ e λ * (-x+R-y k +c t) -∂ u f (•, 0) ∞ w 1 ≥ w 1 t -C p ∞ e λ * (-x+R-y k +c t)
≥ C p ∞ e λ * (R-y k +c t) × e -λ * x -e -λ * x ≥ 0.

Remark 5.2 Note that this is where we need our strong "asymptotically periodic" hypothesis (1.5), that is that f converges to a periodic function at least exponentially with some factor larger than 2λ * as x → +∞. It is likely that this assumption could be slightly weakened, although it is not clear up to what extent if using a similar proof.

Therefore, it follows from the parabolic comparison principle and the fact that

|w(t = 0, •)| ≡ 0 ≤ w 1 (t = 0, •),
that for any t > 0 and x ∈ R:

|w(t, x)| ≤ w 1 (t, x).
However, although small at first, w 1 then spreads with the speed c which is larger than c * , which means that it will catch up with v k before the time t k . Another supersolution is needed.

Let us estimate the smallest time s k such that w 1 (s k , 0) = p ∞ . One then has that

s k e λ * (-y k +c s k ) = e -λ * R max{C, 2 ∂ u f (•, 0) ∞ } .
It is straightforward to check that c s k ∼ y k . We now want to find a supersolution w 2 to be used from the time s k . Define It follows from the fact that c s k ∼ y k and the choice of y k that ζ 1 (k) → 0 as k → +∞, independently of the choice of 0 < γ k ≤ 1. This ends the proof of our lemma.

Convergence to the pulsating front

We first state some lemma, which relies on the same proof as in the periodic case: Proof. Recall that

t k = inf t > 0 | v k (t, kL) = p(0) 2 .
As we apply the same method as in the periodic section to the shifted solution v k (t, x + y k ) of the limiting periodic reaction-diffusion equation, we will omit here the details. Note that, since 0 < γ k ≤ 1 for any k, there exists A such that for any k, v k (0, x + y k ) ≤ Ae -λ * x . Let

δ k = 2 y k t k → 0, r k = 2λ * δ k t k → +∞,
where the limits hold as k → +∞. Since we already know that t k ∼ kL c * ∼ kL-y k c * , and because we have a uniform bound on the initial data v k (0, • + y k ), we can use the same method as in Section 3 to get that

| v k (t k , x) -U c * (0, x -kL)| ≤ ζ(t k (r k )) + η 1,δ k (r k ) + η 2,δ k (r k ) + 1 (δ k ) + 2 (k)
uniformly with respect to x ≥ kL -δ 2 k 2 t k = kL -y k , where all the terms of the right-hand side have been introduced in Sections 3.1 and 3.2 and still converge to 0 as k → +∞ (in Section 3, we used the fact that δ did not depend on k, but one can directly check here the convergence to 0 as k → +∞ thanks to our choice of parameters). Lastly, since δ(k)k = o(y k ), the conclusion of our lemma easily follows.

We can now conclude the proof of Theorem 1.6. From all the above, we know that u(t k , •) is steeper than v k (t k , •), which is close to the pulsating traveling wave for any x ≥ kL -δ(k)k:

u(t k , x) ≤ U c * (0, x -kL) + ζ 1 (k) + ζ 2 (k), x ≥ kL, ≥ U c * (0, x -kL) -ζ 1 (k) -ζ 2 (k), kL -δ(k)k ≤ x ≤ kL,
where ζ 1 (k) + ζ 2 (k) → 0 as k → +∞. On the other hand, we have mentioned that u(t + t k , x + kL) converges locally uniformly to an entire solution of (1.6), which is necessarily less steep than any shift of U c * (as it is the steepest of all entire solutions). It follows that u(t k , x + kL) converges locally uniformly to U c * (0, x).

Let us check that this convergence is in fact uniform in the right half space {x ≥ α(t k )}, for any α(t) → +∞ as t → +∞. Recall that p(x) ≥ u(t k , x) ≥ p(x) -ε for any 0 ≤ x ≤ kL -δ(k)k. For k large enough, one has that | p(x) -p(x)| ≤ ε for any x ≥ α(t k ). It follows that p(x) + ε ≥ u(t k , x) ≥ p(x) -2ε for all α(t k ) ≤ x ≤ kL -δ(k)k.

From the asymptotics of U c * , there exists D > 0 such that U c * (0, x) ≤ ε for any x ≥ D, and p(x) ≥ U c * (0, x) ≥ p(x) -ε for any x ≤ -D. In particular, |u(t k , x + kL) -U c * (0, x)| ≤ 2ε for all -kL + α(t k ) ≤ x ≤ -δ(k)k.

As u(t k , x) is steeper in the weaker sense above, and stays between 0 and p from the comparison principle, we get for k large enough that |u(t k , x + kL) -U c * (0, x)| ≤ 2ε for all x ≥ D, |u(t k , x + kL) -U c * (0, x)| ≤ 2ε for all -δ(k)k ≤ x ≤ -D.

Lastly, we have seen that u(t k , x + kL) converges locally uniformly to U c * (0, x), so that the same inequality as above also holds for k large enough and kL -D ≤ x ≤ kL + D. Since ε could be chosen arbitrarily small, we conclude that u(t k , x) -U c * (0, x -kL) L ∞ (α(t k ),+∞) → 0 as k → +∞. One can then easily proceed as in Section 3.3 to get the wanted convergence result. This finally ends the proof of Theorem 1.6.

  x→+∞ p(x) > 0 and ∂ xx p + f (x, p) = 0.

w 2 2 ≥ ∂ t w 2 -∂ xx w 2 - 2 ≥ c * λ * w 2 + 2 ≥

 2222222 (t, x) := p ∞ (1 + Ct) φ λ * (x) min φ λ * e -λ * (x-c * t) ≥ 0.It is clear from the choice ofs k that w(s k , •) ≤ w 1 (s k , •) ≤ w 2 (0, •).Denote by x(t), for each time, the smallest point x such that w 2 (t, x) ≤ p ∞ . It is well-defined, nonnegative and increasing with respect to t. It is clear from the definition of w that |w(t, x)| ≤ p ∞ for all t and x. Therefore, one only needs to check that w 2 is a supersolution of the equation (5.15) on the domain{(t, x) | x ≥ x(t)}.In any point of this domain, one has:∂ t w 2 -∂ xx w 2 -min{2 ∂ u f (•, 0) ∞ , Ce -2λ * x }v k (t + s k , x) -∂ u f (x, 0)w Ce -2λ * x p ∞ -∂ u f (x, 0)w Ce -λ * (x-ct) p ∞ -λ 2 * w 2 + 2λ * ∂ x φ λ * φ λ * w 2 -∂ xx φ λ * φ λ * w 2 -C -2λ * x p ∞ -∂ u f (x, 0)w w 2 µ(λ * ) + c * λ * -λ 2 * + Ce -λ * (x-ct) p ∞ -Ce -2λ * x p ∞ ≥ C p ∞ (e -λ * x -e -2λ * x ) ≥ 0.We conclude that for any t > 0 and x ∈ R:|w(s k + t, x)| ≤ min{ p ∞ , w 2 (t, x)}. Therefore, for any x ≥ kL -δ(k)k, |w(t k , x)| ≤ w 2 (t k -s k , x) ≤ p ∞ (1 + Ct k ) 1 min φ λ *e -λ * (kL-δ(k)k-c * (t k -s k ))≤ p ∞ (1 + Ct k ) 1 min φ λ * e -λ * (-2δ(k)k+c * s k ) =: ζ 1 (k).

Lemma 5 . 3

 53 There exists ζ 2 (k) → 0 as k → +∞ such that for any choice of 0 < γ k ≤ 1 and x > kL -δ(k)k, one has| v k (t k , x) -U c * (0, x -kL)| ≤ ζ 2 (k).
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