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Introduction

Facial landmark detection has been a highly active research topic in the last decade and plays an important role in most face image analysis applications e.g. face recognition, face editing and face 3D reconstructions, etc.. Recently, neural network-based Heatmap Regression Models (HRMs) outperform other methods due to their strong capability of handling large pose variations. Unlike Coordinate Regression CNNs which directly estimate the numerical coordinates using fully-connected layers at the output, HRMs usually adopt a fully-convolutional CNN structure. The training targets of HRMs are heatmaps composed of Gaussian distributions centered at the ground truth position of each landmark [START_REF] Duffner | A connexionist approach for robust and precise facial feature detection in complex scenes[END_REF].

Recently, HRMs have brought the performance on current benchmarks to a very high level. However, maintaining robustness is still challenging in the practical use, especially with video streams that involve motion blur, self-occlusions, changing lighting conditions, etc.

We think that the use of geometric information is the key to further improve the robustness. As faces are 3D objects bound to some physical constraints, there exists a natural correlation between landmark positions in the 2D images. This correlation contains important but implicit geometric information. However, the L2 loss that is comonly used to train state-of-the-art HRMs is not able to exploit this geometric information. Hence, we propose a new loss function based on the 2D Wasserstein distance (loss).

The Wasserstein distance, a.k.a. Earth Mover's Distance, is a widely used metric in Optimal Transport Theory [START_REF] Villani | Optimal transport: old and new[END_REF]. It measures the distance between two
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Ground truth Distribution Predicted Distribution probability distributions and has an intuitive interpretation. If we consider each probability distribution as a pile of earth, this distance represents the minimum effort to move the earth from one pile to the other. Unlike other measurements such as L2, Kullback-Leibler divergence and Jensen-Shannon divergence, the most appealing property of the Wasserstein distance is its sensitivity to the geometry (see Fig. 1).

The contribution of this article is two-fold:

• We propose a novel method based on the Wasserstein loss to significantly improve the robustness of facial landmark detection.

• We propose several modifications to the current evaluation metrics to reflect the robustness of the state-of-the-art methods more effectively.

Related work

Heatmap Regresion Models (HRMs)

Recently, HRMs have superseded other facial landmark detection methods with the advent of very powerful deep neural network models. Bulat et al. [START_REF] Bulat | How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks)[END_REF][START_REF] Bulat | Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources[END_REF] proposed to use the stacked Hourglass Model [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF] for facial landmark detection.

Their method is now widely used in lots of face related applications.

To improve the accuracy, Wu et al. [START_REF] Wu | Look at boundary: A boundary-aware face alignment algorithm[END_REF] proposed to predict the boundary of the face and facial components on the heatmap rather than a Gaussian distribution of a landmark, which increases the model sensitivity to the boundary. Liu et al. [START_REF] Liu | Semantic alignment: Finding semantically consistent ground-truth for facial landmark detection[END_REF] also proposed a method to improve accuracy of the detection by searching the real ground truth position along the boundary. Compared to learning the boundary explicitly, Dapogny et al. [START_REF] Dapogny | Decafa: Deep convolutional cascade for face alignment in the wild[END_REF] proposed to integrate landmark-wise attention maps with a cascaded heatmap regression model. The attention map resembles the boundary map. Their method is able to learn the boundary in an end-to-end manner without explicitly training the boundary as a target. Recently, HRNet [START_REF] Sun | High-resolution representations for labeling pixels and regions[END_REF] superseded most of the state-of-the-art methods by addressing the importance of the high-resolution heatmap for accuracy.

Deng et al. [START_REF] Deng | Joint multi-view face alignment in the wild[END_REF] proposed a joint multi-view HRM to estimate both semifrontal and profile facial landmarks. Tang et al. [START_REF] Tang | Quantized densely connected u-nets for efficient landmark localization[END_REF] proposed quantized denselyconnected U-Nets to significantly accelerate the inference of the heatmap regression models. In their network, not only the parameters but also the gradients are quantized.

Robust facial landmark detection

Robust facial landmark detection in images is a long-standing research topic.

Numerous works [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF][START_REF] Asthana | Robust discriminative response map fitting with constrained local models[END_REF][START_REF] Smith | Nonparametric context modeling of local appearance for pose-and expression-robust facial landmark localization[END_REF][START_REF] Zhao | Cascaded shape space pruning for robust facial landmark detection[END_REF][START_REF] Yu | Consensus of regression for occlusion-robust facial feature localization[END_REF][START_REF] Wu | Simultaneous facial landmark detection, pose and deformation estimation under facial occlusion[END_REF][START_REF] Wu | Simultaneous facial landmark detection, pose and deformation estimation under facial occlusion[END_REF][START_REF] Zhou | Exemplar-based graph matching for robust facial landmark localization[END_REF][START_REF] Feng | Face detection, bounding box aggregation and pose estimation for robust facial landmark localisation in the wild[END_REF][START_REF] Yang | Robust face alignment under occlusion via regional predictive power estimation[END_REF][START_REF] Wu | Robust facial landmark detection under significant head poses and occlusion[END_REF][START_REF] Baltrusaitis | Constrained local neural fields for robust facial landmark detection in the wild[END_REF] propose methods to improve the overall detection robustness on Active Appearance Models [START_REF]Active appearance models[END_REF],

Constrained Local Models (CLM) [START_REF] Cristinacce | Feature detection and tracking with constrained local models[END_REF], Exemplars-based Models [START_REF] Belhumeur | Localizing parts of faces using a consensus of exemplars[END_REF] and Cascaded Regression Models [START_REF] Dollár | Cascaded pose regression[END_REF]. For Coordinate Regression CNNs, Lee et al. [START_REF] Lee | Lightweight and effective facial landmark detection using adversarial learning with face geometric map generative network[END_REF] improved the robustness by using a geometric prior-generative adversarial network, which estimates a segmentation-like geometric map.

Specifically, the heatmap used in HRMs is conceptually connected to the response map used in CLMs in terms of local activation. Both RLMS [START_REF] Saragih | Deformable model fitting by regularized landmark mean-shift[END_REF] and DRMF [START_REF] Asthana | Robust discriminative response map fitting with constrained local models[END_REF] made effort to alleviate the robustness problem in CLM models.

To ensure the robustness of HRMs, many researchers focus on the representation of the heatmaps. Merget et al. [START_REF] Merget | Robust facial landmark detection via a fully-convolutional local-global context network[END_REF] proposed a fully-convolutional localglobal context network, which introduces a more global context in the heatmap regression model. One advantage of this method is that this method does not require face detection as a pre-precessing step. Two approaches [START_REF] Chen | Face alignment with kernel density deep neural network[END_REF][START_REF] Wang | Adaptive wing loss for robust face alignment via heatmap regression[END_REF] concerned the uncertainty on the Gaussian distribution of each landmark. Wang et al. [START_REF] Wang | Adaptive wing loss for robust face alignment via heatmap regression[END_REF] proposed a novel Weighted Loss Map, which assigns high attentions on the pixels around the center of the Gaussian distribution. It helps the training process to be more focused on the pixels that are crucial to landmark localization. Chen et al. [START_REF] Chen | Face alignment with kernel density deep neural network[END_REF] introduced the Kernel Density Deep Neural Network that produces target probability map, without assuming a specific parametric distribution such as Gaussian distribution. Zou et al. [START_REF] Zou | Learning robust facial landmark detection via hierarchical structured ensemble[END_REF] concerned the structural information in the heatmap regression models. To obtain robust landmark prediction, they proposed to add a structural constraint based on Hierarchical Structured Landmark Ensemble. Recently, in order to ensure the robustness for downstream tasks, Kumar et al. [START_REF] Kumar | Luvli face alignment: Estimating landmarks' location, uncertainty, and visibility likelihood[END_REF] proposed to estimate the uncertainty and the visibility of the landmarks given by the HRMs. Wan et al. [START_REF] Wan | Robust face alignment by multiorder high-precision hourglass network[END_REF][START_REF] Wan | Robust facial landmark detection by multiorder multiconstraint deep networks[END_REF] integrated multi-order cross information into the HRM to model facial geometric constraints. Park et al. [START_REF] Park | Acn: Occlusion-tolerant face alignment by attentional combination of heterogeneous regression networks[END_REF] used spatial attention mechanism to reject impeditive local features caused by the occlusion.

Several works have been proposed for robust facial landmark detection [START_REF] Zhu | Robust facial landmark detection via occlusion-adaptive deep networks[END_REF][START_REF] Xiao | Robust facial landmark detection via recurrent attentive-refinement networks[END_REF][START_REF] Kowalski | Deep alignment network: A convolutional neural network for robust face alignment[END_REF][START_REF] Yang | Stacked hourglass network for robust facial landmark localisation[END_REF][START_REF] Wang | Adaptive wing loss for robust face alignment via heatmap regression[END_REF] by carefully designing CNN models, by balancing the data distribution and other specific techniques. Dong et al. [START_REF] Dong | Style aggregated network for facial landmark detection[END_REF] proposed a styleaggregated face generation module coupled with a heatmap regression model to predict robust results on large variance of image styles. The key idea is to develop an unsupervised data augmentation methods, which is able to apply distinct style (including gray scale/color, light/dark, intense/dull etc.) change on the training images. Zhang et al. [START_REF] Zhang | Robust facial landmark detection via heatmapoffset regression[END_REF] proposed a global constraint network for refining the detection based on offset estimation. Chen et al. [START_REF] Chen | Deep structured prediction for facial landmark detection[END_REF] combined Conditional Random Field with the CNNs to produce structured probabilistic prediction. Zou et al. [START_REF] Zou | Towards unconstrained facial landmark detection robust to diverse cropping manners[END_REF] concerned the robustness problem with diverse cropping manners (related to face detection). They proposed an approach to handle the out-of-bounds landmarks and achieve transformation-invariant detection.

Tong et al. [START_REF] Tong | Face alignment using two-stage cascaded pose regression and mirror error correction[END_REF] used a mirror image to determine whether the localization of each landmark is reliable.

For video sequence, FAB [START_REF] Sun | Fab: A robust facial landmark detection framework for motion-blurred videos[END_REF] introduced Structure-aware Deblurring to enhance the robustness against motion blurs. Zhu et al. [START_REF] Zhu | Learning spatial-temporal deformable networks for unconstrained face alignment and tracking in videos[END_REF] proposed a spatialtemporal deformable network to achieve shape-informative and robust feature representation.

Motivation

Robustness problem of HRMs

Figure 2 shows some example results of the state-of-the-art method HR-Net [START_REF] Sun | High-resolution representations for labeling pixels and regions[END_REF]. HRNet can handle most of the challenging situations (e.g. Fig. 2 (a)).

However, we observed that a well-trained HRNet still has difficulties in the practical use when facing extreme poses (Fig. 2 (b)(d)), heavy occlusions (Fig. 2 (b)(c)) and motion blur (Fig. 2 (e)(f)).

These observed robustness issues are rather specific to HRMs. When using Cascaded Regression Models or Coordinate Regression CNNs, even if the prediction is poor, the output still forms a plausible shape. On the contrary, with HRMs, there may be only one or several landmarks that are not robustly detected whereas the others are. In addition, they may be located at completely unreasonable positions according to the general morphology of the face. This is a well-known problem. Tai et al. [START_REF] Tai | Towards highly accurate and stable face alignment for high-resolution videos[END_REF] proposed to improve the robustness by enforcing some temporal consistency. And the approach of Liu et al. [START_REF] Liu | Semantic alignment: Finding semantically consistent ground-truth for facial landmark detection[END_REF] tries to correct the outliers by integrating a Coordinate Regression CNN at the end. Recently, Zou et al. [START_REF] Zou | Learning robust facial landmark detection via hierarchical structured ensemble[END_REF] introduced Hierarchical Structured Landmark En-semble to impose additional structural constraints on HRMs. In these methods, the constraints are imposed in a post-processing step, which is not integrated into the HRM itself. Therefore, all these methods either add complexity to the models or require learning on a video stream.

We propose to use Waserstein loss to regularize the output of HRMs. Compared to aforementioned methods, our approach is more general by imposing additional geometric and global contextual constraints into the loss function.

This adds no complexity during inference and can be trained on both image and video datasets. With exactly the same model structure, our models can effortlessly substitute the existing ones. Besides that, we found that smoother heatmap and proper landmark sampling method also help to improve the model robustness.

Problem of current evaluation metrics for robustness

The most common metric for robustness is Failure Rate (FR). It measures the proportion of images in a (validation) set whose error is greater than a threshold. Table 1 shows the FR with an error threshold of 0.1 (FR 0.1 ) of HRNet. We find that this widely used FR 0.1 measure is almost "saturated" on several benchmarks such as COFW [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF], 300W [START_REF] Sagonas | 300 faces in-thewild challenge: The first facial landmark localization challenge[END_REF], 300W-Test and AFLW [START_REF] Martin Koestinger | Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization[END_REF].

That is, there are only 

Proposed evaluation metrics

Dataset

The dataset is crucial to evaluate the robustness of the model. The most common robustness issues treated in the literature concern partial occlusions and large pose variations. COFW [START_REF] Burgos-Artizzu | Robust face landmark estimation under occlusion[END_REF] is one of the first datasets that aims at benchmarking the performance of facial landmark detection under partial occlusion. 300W [START_REF] Sagonas | 300 faces in-thewild challenge: The first facial landmark localization challenge[END_REF] comprises a challenging validation subset with face images with large head pose variations, heavy occlusion, low resolution and complex lighting conditions. AFLW [START_REF] Martin Koestinger | Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization[END_REF] is a large-scale dataset including face images in extreme poses. WFLW [START_REF] Wu | Look at boundary: A boundary-aware face alignment algorithm[END_REF] is a recently released dataset with even more challenging images. All the images are annotated in a dense format (98 points). The validation set of WFLW is further divided into 6 subsets based on the different difficulties such as occlusion, large pose or extreme expressions. 300VW [START_REF] Shen | The first facial landmark tracking in-the-wild challenge: Benchmark and results[END_REF] is a video dataset annotated in the same format as 300W. The validation dataset is split into three scenarios, where the third one (300VW-S3) contains the videos in highly challenging conditions.

Current evaluation metrics

The main performance indicator for facial landmark detection is the Normalised Mean Error: NME = 1 N i NME i , an average over all N images of a validation set, where for one image i the error is averaged over all M landmarks:

NME i = 1 M j NME i,j , (1) 
and for each landmark j:

NME i,j = S i,j -S * i,j 2 d i , (2) 
where S i,j , S * i,j ∈ R 2 denote the j-th predicted and the ground truth landmarks respectively. For each image, we consider the inter-occular distance as normalisation distance d i for 300W, 300VW, COFW, WFLW and the face bounding box width for AFLW.

As mentioned before, Failure Rate FR θ measures the proportion of the images in the validation set whose NME i is greater than a threshold θ. We will denote this classical failure rate: FR I in the following. In the literature, FR I 0.1 and FR I 0.08 are the principle metrics to measure the prediction robustness as they focus on rather large errors (i.e. 8%/10% of the normalisation distance).

It is also very common to compute the FR I θ over the entire range of θ, called the Cumulative Error Distribution (CED), which gives an overall idea on the distribution of errors over a given dataset. Finally, for easier quantitative comparison of the performance of different models, the total area under the CED distribution can be computed, which is usually denoted as the Area Under Curve (AUC).

Proposed modifications to the current evaluation metric

We propose three modifications to these measures:

Landmark-wise FR: Instead of computing the average failure rate per image: FR I , we propose to compute this measure per landmark. That is, for each landmark j, the proportion of NME i,j larger than a threshold is determined.

Finally, an average over all landmarks is computed, called FR L in the following. There are two advantages of computing the failure rate in this way: [START_REF] Duffner | A connexionist approach for robust and precise facial feature detection in complex scenes[END_REF] With HRMs, it happens that only one or few landmarks are not well detected (outliers). However, the FR I (per image) may still be small because the rest of the landmarks are predicted with high precision and an average is computed per image. Thus, possible robustness problems of some individual landmarks are not revealed by the FR I measure. (2) FR L can provide a finer granularity for model comparison, which is notably beneficial when the state-of-the-art methods have an FR I that is very close and almost zero on several benchmark datasets (see FR (%) per Image/Landmark in Tab. 1).

Cross-dataset validation:

Leveraging several datasets simultaneously is not new and has already been adopted by some previous works [START_REF] Smith | Collaborative facial landmark localization for transferring annotations across datasets[END_REF][START_REF] Zhu | Transferring landmark annotations for cross-dataset face alignment[END_REF][START_REF] Zhang | Leveraging datasets with varying annotations for face alignment via deep regression network[END_REF][START_REF] Wu | Leveraging intra and inter-dataset variations for robust face alignment[END_REF][START_REF] Wu | Look at boundary: A boundary-aware face alignment algorithm[END_REF][START_REF] Liu | Mtfh: A matrix tri-factorization hashing framework for efficient cross-modal retrieval[END_REF]. Most of them focus on unifying the different semantic meanings among different annotation formats. In [START_REF] Zhu | Robust facial landmark detection via occlusion-adaptive deep networks[END_REF], the authors validated the robustness of their model by training on 300W and validating on the COFW dataset.

We assume the reason why the performance of HRNet has "saturated" on several datasets is that the data distributions in the training and validation subsets are very close. Therefore, to effectively validate the robustness of a model, we propose to train it on a small dataset and test on a different dataset with more images to avoid any over-fitting to a specific dataset distribution. Thus, two important aspects of robustness are better evaluated in this way: firstly, the number of possible test cases, which reduces the possibility to "miss out" more rare real-world situations. And secondly, the generalisation capacity to different data distributions, for example corresponding to varying application scenarios, acquisition settings etc.

We propose four cross-dataset validation protocols: COFW→AFLW (trained on COFW training set, validated on AFLW validation set with 19 landmarks), 300W→300VW, 300W→WFLW, and WFLW→300VW. The annotation of 300W and 300VW has identical semantic meaning. On the other three protocols, we only measure the errors on the common landmarks between two formats. There are indeed slight semantic differences on certain landmarks. However, in our comparing study this effect is negligible because: (1) We mainly focus on the large errors when validating the robustness. That is, these differences are too small to influence the used indicators such as FR L same protocol for each compared model, this systematic error is roughly the same for all models.

Synthetic occlusion and motion blur: Occlusion and motion blur are big challenges for robust facial landmark detection. However, annotating the ground truth landmark positions of occluded/blurred faces is very difficult in practice. To further evaluate the robustness of the model against these noises, we thus propose to apply synthetic occlusions and motion blur on the validation images. For occlusion, a black ellipse of random size is superposed on each image at random positions. For motion blur, inspired by [START_REF] Sun | Fab: A robust facial landmark detection framework for motion-blurred videos[END_REF], we artificially blur the 300VW dataset. For each frame at time t, the blurring direction is based on the movement of the nose tip (the 34th landmark) between the frame t -1 and t + 1. We adopt two protocols for both perturbations: large and medium, illustrated in Fig. 3. Obviously, the landmark detection performance of a model is deteriorated by these noises. But more robust models should be more resilient to these noise.

Proposed method

We propose to add geometric and global constraints during the training of HRMs. Our method consists of the following three parts: We propose to train HRMs using a loss function based on the Wasserstein distance. Given two distributions u and v defined on M , the first Wasserstein distance between u and v is defined as:

l 1 (u, v) = inf π∈Γ(u,v) M ×M |x -y|dπ(x, y), (3) 
where Γ(u, v) denotes the set of all joint distributions on M ×M whose marginals are u and v. The set Γ(u, v) is also called the set of all couplings of u and v.

Each coupling π(x, y) indicates how much "mass" must be transported from the position x to the position y in order to transform the distributions u into the distribution v.

Intuitively, the Wasserstein distance can be seen as the minimum amount of "work" required to transform u into v, where "work" is measured as the amount of distribution weight that must be moved, multiplied by the distance it has to be moved. This notion of distance provides additional geometric information that cannot be expressed with the point-wise L2 distance (see Fig. 1).

To define our Wasserstein loss function for heatmap regression, we formulate the continuous first Wasserstein metric for two discrete 2D distributions u , v representing a predicted and ground truth heatmap respectively:

L W (u, v) = min π ∈Γ (u,v) x,y |x -y| 2 π (x, y) (4) 
where Γ (u, v) is the set of all possible 4D distributions whose 2D marginals are This highlights the largest pixel value and suppresses other pixels whose values are inferior.

Smoother target heatmaps

Smoother target heatmaps: To improve convergence and robustness, the values of the ground truth heatmaps of HRMs for facial landmark detection are generally defined by 2D Gaussian functions, where the parameter σ is commonly set to 1 or 1.5 (see Fig. 5).

Intuitively, enlarging σ will implicitly force the HRM to consider a larger local neighborhood in the visual support throughout the different CNN layers.

Therefore, when confronting partial interferences (e.g. occlusion, bad lighting conditions), the model should consider a larger context and thus be more robust to these types of noise. Nonetheless, the Gaussian distribution should not be too spread out to ensure some precision and to avoid touching the map boundaries.

We empirically found that σ = 3 is an appropriate setting for facial landmark detection. In our experiments, we systematically demonstrate the effectiveness of using σ = 3 compared to σ = 1 or σ = 1.5 for robust landmark detection under challenging conditions.

Landmark sampling

Landmark sampling: In the early work of HRM [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF][START_REF] Bulat | How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks)[END_REF], the position of a predicted landmark p is sampled directly at the position of the maximum value of the given heatmap H:

(p x , p y ) = arg max p (H). (5) 
However, this inevitably leads to considerable quantization error because the size of the heatmap is generally smaller than the original image (usually around 4 times). An improvement is to use interpolation and resample the numerical coordinates using 4 neighbouring pixel (bilinear interpolation). We denote this method as "GET MAX".

Liu et al. discussed in [START_REF] Liu | Semantic alignment: Finding semantically consistent ground-truth for facial landmark detection[END_REF] that using a target Gaussian distribution with bigger σ decreases the overall NME. Indeed, using bigger σ flattens the output distribution and therefore obfuscates the position of the peak value. As a result, the predictions are locally less precise.

To compensate this local imprecision when using bigger σ, we propose another approach to sample numerical coordinates from the heatmap. Inspired by [START_REF] Sun | Integral human pose regression[END_REF], we propose to use the spatial barycenter of the heatmap:

(p x , p y ) = q∈Ω q • H(q) , (6) 
where Ω denotes the set of pixel positions on the heatmap. We denote this method as "GET BC" (BaryCenter).

GET BC enables sub-pixel prediction, which effectively improves the local precision of the model trained with Wasserstein loss and big σ. On the other hand, GET BC considers the entire heatmap and thus involves a global context for a more robust final detection.

Experiments

In this section, we compare our method with other state-of-the-art methods and realize ablation studies using both traditional and proposed evaluation metrics. We also apply our method on various HRMs to demonstrate that our method can be directly used for any structures without further adjustments.

To provide a general idea on the NME and the threshold of FR in this section, we demonstrate the error normalised by inter-ocluar distance at different scales in Fig. 7. The ground truth position is the inner corner of the right eye. The errors within 5% are relatively small ones. From 10%, the errors might be larger than the distance between adjacent landmarks. The errors larger than 20% completely violate the reasonable face shape and needs to be avoided in most applications.

Effectiveness of barycenter sampling

Effectiveness of barycenter sampling: The GET BC method for estimating the predicted landmark coordinates is able to significantly improve the precision of the model trained with Wasserstein loss and larger σ (see Tab. 2, NME is improved from 4.00% to 3.46%).

In contrast, GET BC is not compatible with the output trained with heatmap L2 loss (FR L 0.2 is largely increased from 0.58% to 16.83% using GET BC). Please note that, in Tab. 2, we only compare the sampling methods. Comparision of using different σ and loss functions will be done later in this paper.

Training with L2 is less robust and generally leads to spurious activations far away from the ground truth position, which prevents GET BC from estimating good positions. Figure 6 from a vanilla HRNet (trained with L2 loss, σ = 1) and our HRNet (trained with Wasserstein loss, σ = 3) on a occluded landmark (outer right eye-corner).
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We observe that our strategy effectively removes the spurious activation on the unrelated regions, so that the prediction will be more robust and GET BC can be effective. Consider that GET BC significantly improves the precision of the landmarks prediction, especially when using large σ is used. Therefore, in the following experiments, we will by default use GET MAX for models trained Red: 5% Orange: 8% Green: 10% Purple: 20% 

Comparison with the state-of-the-art

Comparison with the state-of-the-art: We performed an ablation study using a "vanilla" HRNet (trained with heatmap L2 loss and σ = 1) as our baseline. We also tested a recent method called CoordConv (CC) [START_REF] Liu | An intriguing failing of convolutional neural networks and the coordconv solution[END_REF] to integrate geometric information to the CNN. To this end, we replaced all the convolutional layers by CoordConv layers. We benchmark our method with standard evaluation metrics NME on 300VW in Tab. 3, WFLW in Tab. 4, AFLW in Tab. 5 and 300W in Tab. 6 .

On 300VW (Tab. 3), our method shows promising performance, especially under challenging conditions on Scenario 3. On S3, by using Wasserstein loss, the NME drops by 0.48 point. By using a bigger σ, the NME drops by 0.37 point. By using both, the NME can be further improved for a small margin.

Using the Wasserstein loss combined with a larger σ, our method outperforms the vanilla HRNet by a significant margin of 0.39%, 0.15% and 0.5% points on scenario 1, 2 and 3 respectively, and outperforms state-of-the-art methods. On WFLW (Tab. 4), our method achieves good performances by using a strong baseline. Nonetheless, using Wasserstein loss (4.57%) only achieves marginal improvement compared to using L2 loss (4.60%). We think that it is because the predictions are already "regularized" by the dense annotation of WFLW. We will analyze this issue in detail in Sect. 7.

On AFLW (Tab. 5) and 300W (Tab. 6) datasets, our model shows comparable performance to the state-of-the-art methods using traditional evaluation metrics. Here, using the Wasserstein loss only achieves a marginal improvement. And using a larger σ even slightly decreases the NME performance. As discussed in Sect. 2, the performance of vanilla HRNet has already reached a high level on these datasets. Thus, there are only very few challenging validation images for HRNet. The NME is dominated by a large amount of small errors, which is the disadvantage of using a larger σ, and it can thus no longer reflect the robustness of the models. In the following parts, the robustness of these models were validated by using cross-dataset validation.

Cross-dataset validation

Cross-dataset validation: We use cross-dataset validation to measure the robustness of our HRNet trained on 300W. We present the landmark-wise CEDs of protocol 300W→WFLW (Fig. 8), protocol 300W→300VW (Tab. 7), protocol 375 COFW→AFLW (Fig. 9) and protocol WFLW→300VW (Fig. 10).

From protocol 300W→WFLW (Fig. 8), we find that using larger σ (L2 Loss, σ = 3) and Wasserstein loss (W Loss, σ = 1) can respectively improve the NME by 0.5 point. Using both (W Loss, σ = 3) further improves the NME to be 1 point inferior than the vanilla HRNet. Notably, the improvement on larger errors 380 (error >= 20%) is more significant the the errors < 20%, which demonstrates the superior robustness against large errors of our HRNet compared to vanilla HRNet. From protocol 300W→300VW (Tab. 7), we obtain similar conclusions.

Both bigger σ and Wasserstein Loss improve the robustness. of Wasserstein Loss is more important than the larger σ (see FR L 0.1 ). However, even GET BC is used, a larger σ still slightly decreases the local precision. As a result, on the less challenging datasets such as 300VW-S1 and 300VW-S2, we found that the best performance can be obtained by using a combination of small σ, Wasserstein loss and CoordConv. On more challenging datasets such as WFLW and 300VW-S3, the best performance is obtained by using a combination of the Wasserstein loss and a larger σ.

The landmark-wise CED of the protocol COFW→AFLW is presented in Fig. 9. Our method achieves a bigger improvement on COFW→AFLW-All compared to COFW→AFLW-Frontal. This is because AFLW-All contains nonfrontal images, which is more challenging than AFLW-Frontal.

On COFW→AFLW-All (Fig. 9 can further improve the performance by 0.08% to 3.33%. Specifically, the improvement is significant at the NME from 6% to 25%. However, using big σ will still decrease the local precision. We notice that the models using big σ perform 400 worse than the models using small σ at NME=5%.

The landmark-wise CED of the protocol WFLW→300VW is shown in Fig. 10.

We observe that by using Wasserstein Loss and CordConv, the HRNet trained on WFLW can be better generalized on the 300VW dataset. However, the improvement is less significant compared to the protocol 300W→300VW. We will 

Synthetic occlusions and motion blur

Synthetic occlusions and motion blur: We further evaluated the robustness against synthetic perturbations that we described in Sect. 4 (see Tab. 8 and Tab. 9). We find that the model is more robust to occlusion and motion blur by using a larger σ and Wasserstein loss. For example, the FR L 0.2 is improved from 2.66% to 1.72% under large occlusions. Under large motion blur perturbations, the FR L 0.2 is improved from 36.63% to 31.32%. 

Comparision with other loss functions

Comparision with other loss functions: Besides Heatmap L2, we note that there exists several other loss functions for HRMs. Jensen-Shannon divergence (loss) is a common metric for measuring the distance between two probabilistic distributions. Soft ArgMax [START_REF] Sun | Integral human pose regression[END_REF] a more robust detection when confronted to extreme poses and motion blur. By using the Wasserstein loss, a larger σ and GET BC, the predicted landmarks 435 are more regularized by the global geometry compared to the prediction from the vanilla HRNet. Figure 11: Cross-dataset validation of HG [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF], CPN [START_REF] Chen | Cascaded pyramid 715 network for multi-person pose estimation[END_REF] and SimpleBaselines(SB) [START_REF] Xiao | Simple baselines for human pose estimation and tracking[END_REF]. 

HRNet Vanilla

Recommended settings

We recommend to use the Wasserstein loss and GET BC to improve the robustness of the model in all cases. Using a larger σ will significantly improve the robustness under challenging conditions. Nonetheless, it deteriorates the local precision at the same time. In fact, the value of σ is a trade-off between robustness and precision. Therefore, we recommend to use a larger σ only when confronting crucial circumstances. When facing less challenging conditions, we recommend to use a combination of Wasserstein loss and small σ. Complementing CoordConv with Wasserstein loss and small σ will further improve the NME performance. However, it adds slight computational complexity to the HRMs. Specifically, when using small σ, the models with CoordConv are less robust against large occlusions compared to those without CoordConv.

Strengths and Weaknesses:

Strengths: Our method is simple and efficient. It significantly improves the robustness without introducing any structural modification or complexity during the inference stage.

Weaknesses: During training, the calculation of Wasserstein loss is relatively time-consuming, even with GPU. We also tested our method for the task of human pose estimation, we do not observe improvement on the MPII dataset [START_REF] Andriluka | 2d human pose es-720 timation: New benchmark and state of the art analysis[END_REF]. It is probably due to the fact that human joints have more articulations and left/right confusions than facial landmarks, thus involving limited geometric information and global context.

Future work can be focused on how to generalize this approach on more complicated tasks such as human pose estimation.

Conclusions

In this paper, we studied the problem of robust facial landmark detection regarding several aspects such as the use of datasets, evaluation metrics and methodology. Due to the performance saturation, we found that the widely used FR and NME measures can no longer effectively reflect the robustness of a model on several popular benchmarks. Therefore, we proposed several modifications to the current evaluation metrics and a novel method to make HRMs more robust. Our approach is based on the Wasserstein loss and involves training with smoother target heatmaps as well as a more precise coordinate sampling method using the barycenter of the output heatmaps.

Figure 1 :

 1 Figure 1: An illustration of the Wasserstein loss between two 1D distributions. Standard L2 loss only considers the "activation" difference (point-wise value difference, vertical gray arrows), whereas the Wasserstein loss takes into account both the activation and the geometry differences (distance between points, horizontal blue arrow).

Figure 2 :

 2 Figure 2: Examples of HRNet detection on 300VW-S3.

Figure 3 :

 3 Figure 3: An illustration of synthetic occlusion and motion blur protocol.

5. 1 .

 1 2D wasserstein loss 2D Wasserstein Loss: Sun et al.[START_REF] Sun | Integral human pose regression[END_REF] discussed the use of different loss functions for HRM. The most widely used loss function is heatmap L2 loss. It simply calculates the L2 norm of the pixel-wise value difference between the ground truth heatmap and the predicted heatmap.

  our heatmaps u and v, and |•| 2 is the Euclidean distance. The calculation of the Wasserstein distance is usually solved by linear programming and considered to be time-consuming. Previous work on visual tracking have developed differential Wasserstein Distance[START_REF]Differential earth mover's distance with its applications to visual tracking[END_REF] and iterative Wasserstein Distance[START_REF] Yao | Visual tracking using sparse coding and earth mover's distance[END_REF] to boost the computation. Cuturi[START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] proposed to add an entropic regularization and calculate an approximation of the loss by Sinkhorn iteration. This drastically 260 accelerates the calculation and enables the gradient back-propagation through the loss calculation. Further, in our case, having discrete 2D distributions of size 64 2 leading to a joint size of 64 4 ≈ 1.67 × 10 7 (for "weights" and distances) as well as existing GPU implementations[START_REF] Viehmann | Implementation of batched sinkhorn iterations for entropyregularized wasserstein loss[END_REF][START_REF] Daza | Approximating wasserstein distances with pytorch[END_REF] make the computation of Wasserstein distance tractable. A visual comparison of Wasserstein Loss and heatmap 265 L2 loss on 2D distribution is presented in Fig.4. Ground truth (green) and predicted (red) distributions overlap. Ground truth and predicted distributions do not overlap.

Figure 4 :

 4 Figure 4: Comparison of heatmap L2 loss and Wasserstein loss on 2D distributions. We observe that the value of L2 loss saturates when the two distributions do not overlap. However, the value of Wasserstein Loss continues to increase. The Wasserstein loss is able to better integrate the global geometry on the overall heatmap. (Figure taken from [63] with slight modifications.)

Figure 5 :

 5 Figure 5: Illustration of ground truth target heatmaps defined by Gaussian functions with different σ.
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Figure 6 :

 6 Figure 6: Output heatmap comparisons under occlusion. We show the heatmaps of the landmark marked in red.

Figure 7 : 49 σ

 749 Figure 7: Demonstration of the normalised error from 5% to 20%.

  (a)), by using Wasserstein loss, the NME performance can be improved by 0.13% from 3.54% to 3.41%. Using CordConv 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0CED on WFLW Valid L2 Loss, =1, NME = 9.84 L2 Loss, =3, NME=9.33 W Loss, =1, NME=9.34 W Loss, =3, NME = 8.84 W Loss, =1, CordConv, NME=9.01 W Loss, =3, CordConv, NME=8.93

Figure 8 :

 8 Figure 8: Landmark-wise CED of 300W→WFLW validation.
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 10 Loss, =3, NME=2.22 W Loss, =1.5, CordConv, NME=2.14 W Loss, =3, CordConv, NME=2.17

Figure 9 :

 9 Figure 9: Landmark-wise CED of COFW→AFLW cross-validation with HRNet.

Figure 10 :

 10 Figure 10: Cross-dataset validation of HRNet trained on WFLW (WFLW→300VW).

  Does dense annotation naturally ensure the robustness? We find 440 that our method shows less significant improvement on the model trained on WFLW. Intuitively, we presume that by training with a dense annotation (98 landmarks), the model predictions are somewhat regularized by the correlation between neighbouring landmarks. In Tab. 11, we compare the models trained 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0CED on 300VW-S3 HG: L2 Loss, =1, NME=6.09 HG: W Loss, =3, NME = 5.64 CPN: L2 Loss, =1, NME=7.30 CPN: W Loss, =3, NME = 7.00 SB: L2 Loss, =1, NME=7.27 SB: W Loss, =3, NME = 6.58 (b) 300W→300VW-S3

Figure 12 :

 12 Figure 12: Visual comparison of vanilla HRNet (L2 Loss and σ = 1) and our HRNet (Wasserstein loss and σ = 3).

Table 1 :

 1 Numerical details of the facial landmark datasets and the Failure Rate (FR) of HRNet on each dataset.

	1 , 3 , 1 and 2 failure images respectively (bold numbers
	in Tab. 1). This means that there are only very few challenging images for the
	state-of-the-art model HRNet in these datasets. At this level, this indicator is
	saturated and becomes difficult to interpret when comparing the robustness of
	different methods as it is sensitive to random statistical variations. Therefore, it
	becomes necessary to modifiy the current evaluation metrics on these datasets
	and to find more challenging evaluation protocols to further decrease the gap
	with real-world application settings.

  shows an example comparing the output heatmaps

	σ Loss	Method	NME(%) FR L 0.05 (%)
	1 Heatmap L2 GET MAX 3.34	18.33
		GET BC	20.15	93.70
	3 Wasserstein	GET MAX 4.00	24.69
		GET BC	3.46	19.42

Table 2 :

 2 Performance of HRNet on the 300W validation set when using different coordinate sampling methods. GET BC improves the local precision (see FR L 0.05 ) of the model trained with Wasserstein loss (W Loss) and large σ. However, it harms the performance of the model trained with Heatmap L2 loss (HM L2).

Table 3 :

 3 

NME (%) on 300VW. W Loss -Wasserstein Loss. CC -CoordConv.

Table 4 :

 4 

NME (%) on WFLW. W -Wasserstein Loss. CC -CoordConv.

Table 5 :

 5 

NME(%) performance comparision on AFLW. W -Wasserstein Loss. CC -Coord-Conv.

Table 6 :

 6 NME (%) comparison on 300W. W Loss -Wasserstein Loss. CC -CoordConv.

Table 7 :

 7 NME (%) and FR L 0.1 (%) comparision of 300W→300VW cross-dataset validation using HRNet. W -Wasserstein Loss. CC -CoordConv.

  transforms the heatmap regression into

					Occlusion (300W)	
	Protocol σ Loss CC NME FR I 0.1	FR L 0.1	FR L 0.15	FR L 0.2
		1 L2	×	4.63	4.31	10.11 4.83	2.66
	Large	3 W	×	4.48	2.95	9.62	3.88	1.72
		3 W		4.60	3.79	9.89	4.26	2.03
		1 L2	×	3.57	0.97	5.58	1.94	0.83
	Medium	3 W	×	3.62	0.46	5.46	1.74	0.63
		3 W		3.60	0.58	5.11	1.65	0.61
	420							
	a numeric integral regression problem, which we think might be beneficial for
	model robustness. From Tab. 10, we find that the HRNet trained with Wasser-
	stein loss delivers more robust predictions compared to the HRNet trained with
	other loss functions.						

Table 8 :

 8 Results of the HRNet with synthetic occlusion (validated on 300W dataset).

	Blur (300VW-S3)

Table 9 :

 9 Results of the HRNet with synthetic motion blur (validated on 300VW-S3).

	6.6. Different models

Table 10 :

 10 

Cross-dataset validation (300W→WFLW & 300W→300VW) of the HRNet using different loss functions. †: Trained with Gaussian Distribution σ = 1 without CoordConv. * : Trained with σ = 3 with CoordConv. JS: Jensen-Shannon divergence (loss). S. AM: Soft ArgMax Loss. W: Wasserstein Loss.

Table 11 :

 11 Comparison of HRNets trained with different number of landmarks on WFLW. W:

	Wasserstein Loss.

with the L2 loss and GET BC for models trained with the Wasserstein loss.
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Different models: To demonstrate that our method can be used on a variety of HRMs regardless of the model structure, we test our method on three popular HRMs: HourGlass [START_REF] Newell | Stacked hourglass networks for human pose estimation[END_REF], CPN [START_REF] Chen | Cascaded pyramid 715 network for multi-person pose estimation[END_REF] and SimpleBaselines [START_REF] Xiao | Simple baselines for human pose estimation and tracking[END_REF]. In Fig. 11 we can see that all of the three models benefit from our method. This indicates that our approach is quite general and can be applied to most existing HRMs.