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Social contagion on higher-order structures

Alain Barrat, Guilherme Ferraz de Arruda, Iacopo Iacopini and Yamir Moreno

Abstract In this Chapter, we discuss the effects of higher-order structures on SIS-
like processes of social contagion. After a brief motivational introduction where we
illustrate the standard SIS process on networks and the difference between simple
and complex contagions,we introduce spreading processes on higher-order structures
starting from themost general formulation on hypergraphs and thenmoving to several
mean-field and heterogeneous mean-field approaches. The results highlight the rich
phenomenology brought by taking into account higher-order contagion effects: both
continuous and discontinuous transitions are observed, and critical mass effects
emerge. We conclude with a short discussion on the theoretical results regarding
the nature of the epidemic transition and the general need for data to validate these
models.

1 Introduction

The standard modeling and study of social or biological contagion processes in
populations is based on two types of ingredients. First, the evolution of the process
within each individual is often described through compartmental models [1, 2], such
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that each individual is at any time in one of several possible compartments or states.
For instance, in the description of many infectious diseases, the considered states
include susceptible (S, healthy), infectious (I, having the disease and able to transmit
it to others), or recovered (R, cured from the disease and immunized). This type
of modeling gives a simplified description of the disease course, abstracting the
continuous growth and decrease of the viral load and viral shedding of an individual.
The modeling also defines the possible transitions between states: in the SIR model,
an S individual can become I upon interactionwith I individual(s), and an I individual
becomes R upon recovery. In the SIS model instead, an I individual becomes again
susceptible upon recovery.

The second type of modeling hypothesis concerns the definition and represen-
tation of the interactions between individuals. This representation is crucial as it
describes the way in which the process spreads between individuals. Numerous
results have been obtained under the simplest homogeneous mixing hypothesis, in
which any individual can interact with any other, and contagion occurs with a certain
probability per unit time upon each contact [1, 2]. Even within this simplistic picture,
the SIS and SIR models exhibit an interesting phenomenology, with a continuous
phase transition at the so-called epidemic threshold: when the ratio of the contagion
to the recovery rate is smaller than the epidemic threshold, the spread dies out, while
it reaches a finite fraction of the population above the threshold. In the SIS case, a
steady state is then reached, in which the epidemic is sustained by a non-zero number
of individuals.

One of the most successful impacts of network science has been to go beyond
the homogeneous mixing hypothesis and study how more realistic structures of
interactions between individuals affect the dynamics of compartmental models of
contagion processes, and in particular the epidemic threshold [3, 4, 5, 6]. Indeed,
network-based representations are conveniently used to describe many systems of
various nature, including the social structures on which many dynamical processes
occur, such as the spread of diseases and of information, the formation of opinions
and the diffusion of innovations [7, 8, 4]. In the resulting modeling, the transmission
process is assumed to occur through pairwise interactions and through a single
exposure: in other words, an infectious individual can transmit the disease to a
susceptible one upon a single interaction (along one of the links of the network
representation).

While such “simple contagion” frameworks are still widely used in the model-
ing of infectious diseases, the situation is more complex when dealing with social
contagion phenomena, such as the adoption of norms or new products, or the dif-
fusion of rumors. Indeed, empirical evidence has shown that simple epidemic-like
contagion processes do not provide a satisfactory description of the complex dy-
namics occurring when peer influence and reinforcement mechanisms are at work
[9, 10, 11, 12, 13, 14, 15]. Complex contagion mechanisms have been proposed
to account for these effects: broadly speaking, they are defined as any process in
which exposure to multiple sources presenting the same stimulus is needed for the
contagion to occur [9]. Modeling of complex contagion has been developed in two
main directions. On the one hand, threshold models consider that an individual can
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be convinced to adopt e.g. a new behaviour if and only if a fraction of their con-
tacts larger than a given threshold is already convinced (have already adopted the
behaviour) [16, 9, 17, 13, 18, 19]. On the other hand, epidemic-like processes have
been generalized, with contagion rates that depend on the number of sources of
exposure to which an individual is linked [12, 20, 21, 22, 23, 19, 24].

From the homogeneous mixing simple contagion models to the complex con-
tagion occurring on complex networks, the assumption of transmission processes
occurring along pairwise interactions has remained an ubiquitous and most often
undiscussed norm. It fits well with the representation of social groups as networks,
since links of the networks are pairwise associations of nodes (the individuals of the
population). However, a number of social phenomena occur as the result of group
interactions. Let us consider for instance the adoption of a product or a norm. An
individual might be convinced by a single interaction with an adopter (simple conta-
gion), or by successive interactions with two distinct adopters (complex contagion),
along the links of their social networks. However, a qualitatively different process is
at work if the individual gets convinced as part of a social group of three individuals,
the other two being adopters. It might occur because the individual wants to be sim-
ilar to the rest of the group, or, in a group discussion, the two adopters’ arguments
might reinforce each other in a way that would be impossible in separate pairwise
discussions.

To account for such interactions between individuals occurring in groups of
various sizes, it is thus necessary to expand the representation of the social struc-
ture from networks, which can only encode pairwise interactions, to higher-order
structures, namely hypergraphs [25]: the building blocks of hypergraphs are indeed
hyperedges that can join an arbitrary number of nodes. Clearly, the modeling of
spreading processes on hypergraphs also implies to generalize contagion processes
from pairwise to group processes: one needs for instance to define which contagion
events can take place on a hyperedge joining = nodes among which < are infectious.
A number of recent works have focused on the definition and study of such models
[26, 27, 28, 29, 30, 31], and we review in this chapter some of the corresponding ap-
proaches and results, highlighting in particular how the obtained behaviour is richer
than in the usual (network-based) contagion models. The emerging phenomenology
indeed includes both continuous and discontinuous transitions, hysteresis phenom-
ena and critical mass phenomena reminiscent of the recently observed minimal size
of committed minorities required to initiate social changes [32].

2 Spreading processes on higher-order structures

Group interactions can be encoded as hyperedges of an hypergraph, where each hy-
peredge is thus a set [80, 81, . . . , 8:−1] that involves : elements. In this language,
pairwise interactions are called 1-hyperedges, 3-body interactions are called 2-
hyperedges, etc. In the broadest definition, there are no limitations to the size and
relative inclusions of hyperedges. In some cases, it can be convenient to represent a
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social structure using the more restricted framework of simplicial complexes: such a
representation assumes that in any group interaction all the sub-interactions among
the group members should be considered as well [33]. While this hypothesis has
been used in Ref. [26], further developments have shown that similar dynamical out-
comes for contagion processes can be found even under the more general framework
of hypergraphs [27]. Thus, in this chapter the latter setup will be used.

As the interactions are not necessarily pairwise anymore, but can occur in groups
of more than two individuals, this implies moreover that the models used to describe
the contagion processes need to be redefined. In this section, we present a rather
general mathematical formulation of such possible contagion models on higher-
order structures, defining it in terms of Bernoulli random variables and Poisson
processes. Obtaining results directly from these definitions is, however, very hard,
so that we mainly restrict this subsection to the definition of the models and of
the quantities of interest, leaving to the following subsections the development of
analytical approximations and the numerical simulations.

Mathematically, in the social contagion process the states of the nodes aremodeled
as Bernoulli random variables, .8 = 1 (with its complementary -8 = 0) if the
node is active and .8 = 0 otherwise (and then -8 = 1). Individual states change
either spontaneously or as a consequence of their interactions. Formally, this is
a collection of independent Poisson processes. First, we associate to each active
node 8 a Poisson process with parameter X8 , modeling its spontaneous deactivation,
{.8 = 1}

X8−−→ {-8 = 1}. This transition is similar to the healing in disease spreading
dynamics. On the other hand, spreading processes occur along the hyperedges as
follows. For each hyperedge 4 9 we define a random variable )9 =

∑
:∈4 9 .: : )9 is

by definition the number of active nodes in the hyperedge. If )9 is equal to or above
a given threshold Θ 9 , we model the contagion by a Poisson process with parameter

_ 9 . In other words, if )9 ≥ Θ 9 , then {-: = 1}
_ 9−−→ {.: = 1}, ∀: ∈ 4 9 . This

corresponds to a threshold process that becomes active only above a critical mass of
active nodes. Finally, if |4 9 | = 2, we assume directed Poisson processes, recovering
a traditional SIS contagion process. For the sake of simplicity, we assume that X8 = X
and _ 9 = _ × _∗ ( |4 9 |), where _ is the control parameter and _∗ ( |4 9 |) is an arbitrary
function of the cardinality of the hyperedge. The first assumption considers that
every individual deactivates at the same rate. The second condition assumes that a
hyperedge that is above its critical-mass threshold activates its nodes with a rate that
depends only of its cardinality (scaled by a global control parameter _). The exact
equation describing the resulting dynamics can be written as

3E (.8)
3C

= E
©«−X.8 + _ (1 − .8)

∑
4 9 |8∈4 9

_∗ ( |4 9 |)
∑
�

1{.8=0,)9 ≥Θ 9 }
ª®¬ , (1)

where the first summation is over all hyperedges containing node 8 and the second over
the set � of all possible dynamicalmicro-states inside the hyperedge 4 9 . Furthermore,
1{.8=0,)9 ≥Θ 9 } is an indicator function depending on both the specific node and the
hyperedge, taking the value 1 if .8 = 0 and the critical mass in the hyperedge is
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Fig. 1 Example of a phase diagram and parameter space for the hyperblob (See Section 3.2 for
details). Panel (a) shows the solutions for a fixedΘ∗ = 0.5. The red and blue curves show respectively
dUpper and dLower. The lower solution presents a second-order phase transition at _2 = 0.2. When
increasing _ from 0 to 1 the transition from the lower to the upper solution occurs at the intersection
of the lower solution with a value of d in which the upper solution becomes the only stable one, d2 .
The jump between the two solutions is&; (_!2 ) . Similarly, when decreasing back _, the jump from
dUpper to dLower takes place when dUpper crosses the value d2 and becomes unstable, and the density
jump is&; (_*2 ) . Panel (b) shows a sketch of the parameter space. Region I: the system reaches the
absorbing state, d = 0; Region II: only the lower solution is stable; Region III: d*??4A is stable
and dLower = 0 (bistable region below the critical point); Region IV: d*??4A > d!>F4A > 0 and
both are stable (bi-stable); Region V: only the upper solution is stable.

reached (i.e., if node 8 is inactive and can potentially become active), and 0 otherwise.
We also use for convenience a global threshold ratio Θ∗, with Θ 9 =

⌈
Θ∗ |4 9 |

⌉
.

The order parameter is defined as the expected fraction of active nodes, i.e.,
d = 1

#

∑
8 E (.8). Although a formal proof is yet lacking, we observed, through

simulations and numerical solutions of several analytical approaches, a rather general
phenomenology when _ is varied at fixedΘ∗, as illustrated in Figure 1. Two solutions
for d as a function of _ are generically obtained, here called dLower and dUpper

(dUpper > dLower). Moreover, under certain conditions, the dLower solution presents
a continuous phase transition between the absorbing state, where all the individuals
are deactivated (dLower = 0), and an active state (dLower > 0). This transition occurs
at a critical value of the parameter _ denoted _2 . A bistable region can also exist, in
which the final state depends on the initial condition d(C = 0) being below or above
a so-called global critical-mass denoted d2 . Let us denote by dF the solution that
is obtained if d(C = 0) < d2 and by d∗ solution obtained if d(C = 0) ≥ d2 . In the
bistable region _U2 < _ < _L2 , dF = dUpper and d∗ = dLower, while for _ < _U2 we
have dF = d∗ = dLower, and for _ > _L2 , dF = d∗ = dUpper.

When increasing _ from 0 (forward phase diagram), the system thus first follows
dLower and jumps to dUpper at _L2 when dLower becomes unstable. When decreasing
back _ (backward phase diagram), the system follows dUpper and jumps back to
dLower at _U2 where dUpper becomes unstable. The length of these two jumps are
defined as

&; (_-2 ) =
(
dUpper − dLower

)
_=_-2

, (2)
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where &; (_-2 ) can be &; (_L2 ) or &; (_U2 ). These quantities give the sudden change
in the fraction of active nodes at these jumps. These concepts are exemplified in
Fig. 1(a), where we show an example obtained for a homogeneous hypergraph
composed of a random regular network and a hyperedge containing all the nodes.
This structure’s symmetries allow us to analytically explore their solutions following
a first-order approximation and serve as a didactic example of the behaviors present
in our model. In Fig. 1(b), we show a sketch of the (_,Θ∗) parameter space for the
same structure. We present the analytical aspects of this solution in Section 3.2.

3 Individual-based or quenched mean-field approach

Asmentioned above, the exact formulation provides only a conceptual understanding
of our model but fails to provide a quantitative characterization. Here we consider the
individual-based or also called quenched mean-field approximation. This approach
neglects dynamical correlations but takes into account the structural correlations
of the interactions of the nodes. It is possible to solve the resulting equations nu-
merically (without resorting to stochastic numerical simulations), obtaining a better
understanding of the model’s behaviour. We first derive the general dynamical equa-
tions of this approximation in Section 3.1; we then consider a toy example and solve
numerically the corresponding equations in Section 3.2 in order to exemplify the
variety of behaviors present in our model. Finally, in Section 3.3 we consider a hy-
pergraph with power-law distributed cardinalities of hyperedges, which has a more
complex and heterogeneous structure than the toy example of Section 3.2.

3.1 The general formulation

Since Eq.(1) cannot be numerically solved, here we assume that the random variables
are independent, allowing us to significantly reduce the complexity of our model.
Denoting H8 = E (.8), this first-order approximation is given by

3H8

3C
= −XH8 + _ (1 − H8)

∑
4 9 |8∈4 9

|4 9 |∑
:=Θ 9

_∗ ( |4 9 |)P4 9 ( = :) , (3)

where P4 9 ( = :) is the probability that the hyperedge 4 9 has : active nodes. In this
formulation, we have used that the expectation of the indicator function in Eq. (1)
follows a Poisson binomial distribution, which can be formally expressed as
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E
(
1{()9−.: ) ≥Θ 9 }

)
≈
|4 9 |∑
<=Θ 9

P4 9 ( = <) (4)

P4 9 ( = <) =
∑
�∈�<

∏
8∈�

H8

∏
8′∈�2
(1 − H8′), (5)

where �< is the set of all subsets of< integers in {1, 2, ..., |4 9 |} and �2 is the comple-
mentary of �. The summation in Eq. (5) considers all possible micro-configurations
in a given hyperedge, with � accounting for the active nodes and �2 for the inactive
ones. Using it directly for numerical computations can introduce numerical stability
problems for large hyperedges [34]. Fortunately, this issue can be solved by con-
sidering the discrete Fourier transform, obtaining the following numerically stable
solution [34]:

P4 9 ( = :) =
1

= + 1

=∑
;=0

�−;:
=∏
<=1

(
1 + (�; − 1)H<

)
, (6)

where � = exp
(
28 c
=+1

)
. This expression allows to compute the solution for arbitrarily

large hyperedges. Although the whole argument is quite intricate, Eq. (6) is sim-
ple and robust enough, allowing the numerical evaluation of Eq. (3) for arbitrary
hypergraphs and parameters.

3.2 The hyperblob

For the sake of simplicity, let us focus here on a very particular and homogeneous
structure: the hyperblob. The hyperblob is a hypergraph constructed as a homo-
geneous set of pairwise interactions with average degree 〈:〉, to which a single
additional hyperedge containing all nodes is added. This structural simplicity allows
us to solve the model analytically. Indeed, given the symmetry of the system, all H8
are equal (H8 = d ∀8 ) and their evolution can be expressed by the following single
equation:

3d

3C
= −Xd + _(1 − d) [〈:〉d + _∗� (Θ∗, d)] . (7)

Here _∗ stands for _∗ ( |4 9 |) and

� (Θ∗, d) = 1 −
Θ−1∑
;=0
P#−1 ( = ;) ≈

{
1, if d ≥ Θ∗

0, otherwise
, (8)

where the approximation on the right-most part of the equation assumes that the
hypergraph is sufficiently large (for more on this approximation, we refer to the
supplemental material of [27]).
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The approximation in Eq. (8) suggests the possibility of having two solutions,
one such that � (Θ∗, d) = 0, and another one such that � (Θ∗, d) = 1. Note that the
first solution represents the case in which the largest hyperedge is inactive, while
it is active in the second case. We remark that, as the only higher-order structure
contains all the nodes, the global critical-mass is here d2 = Θ∗. In other words,
the activation of this hyperedge determines which solution the system is in, and
the jumps between upper and lower solutions happen when they “cross” the value
d = Θ∗. From the approximation in Eq. (8) and Eq. (7), we can analytically obtain
the model’s parameter space, obtaining the two solutions (see [27])

dLower =

{
1 − X

〈: 〉_ , if _
X
≥ 1
〈: 〉

0, otherwise
(9)

dUpper =
−X + 〈:〉_ − _∗_ +

√
4〈:〉_∗_2 + (X + (−〈:〉 + _∗)_)2
(2〈:〉_) . (10)

As anticipated in Section 2, a second-order phase transition is obtained for dLower
as the feasibility condition _

X
≥ 1
〈: 〉 [35]. We remark that this lower solution is here

simply the solution of a mean-field approach for an homogeneous structure with
average degree 〈:〉. The next quantity of interest are the limits of the bistable region,
which can be calculated as

_L2 =
X

〈:〉 − Θ∗〈:〉 (11)

_U2 = −
XΘ∗

_∗Θ∗ − _∗ + (Θ∗)2〈:〉 − Θ∗〈:〉
. (12)

Finally, the jump length is expressed as

&; (_-2 ) =
(
X − _(_∗ + 〈:〉) +

√
(X + _(_∗ − 〈:〉))2 + 4_∗〈:〉_2
2〈:〉_

)
_=_-2

, (13)

where _-2 can be _L2 or _U2 . Although these equations are reasonably simple, the
upper solution depends on a quadratic equation, where only one of the solutions is
physical. The details for the complete derivation of these results can be found in the
supplemental material of [27]. In the same reference, the interested reader can also
find similar results when the considered lower-order structure is a star graph.

Figure 2 shows the phase diagram for a hyperblob with # = 103, 〈:〉 = 5, X = 1
and _∗ ( |4 9 |) = log2 ( |4 9 |). This result complements Fig. 1 and exemplifies the five
regions of the diagram in Fig. 1(b). As predicted by our solutions, in (a), we observe
that the absorbing state plays a major role in the forward diagram, dF, as there is
a region of the parameter space that is not active, which is a consequence of the
second-order phase transition present in dLower. This is also depicted as Regions
I and III in Fig. 1(b). Conversely, for the backward phase diagram, d∗, the set of
parameters in which the system can reach the absorbing state is rather reduced, being
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Fig. 2 Phase diagram for the Hyperblob with 〈: 〉 = 5, X = 1 and _∗ ( |4 9 |) = log2 ( |4 9 |) . In (a)-(c)
the colormaps are obtained changing _ and Θ∗. In (a) the solution of forward phase diagram, in (b)
the solution of the backward one and in (c) the jump length (i.e., difference between (b) and (a)),
emphasizing the bi-stability region.

restricted to Region I in Fig. 1(b). We highlight that substituting the random regular
network by a star would slightly change the parameter space as the second-order
phase transition of dLower vanishes in the limit # → ∞, thus implying that the
Regions I and III in Fig. 1(b) vanish as well.

3.3 Example of a hypergraph with a power-law distribution of
cardinalities
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Fig. 3 Comparison of the numerical solution of the ODE system Eq. (3) with Monte Carlo (MC)
simulations for a hypergraph with # = 104, power-law distributed cardinalities, % ( |4 9 |) ∼ |4 9 |−W
with W = 2.25, and min{ |4 9 | } = 2. The spreading rates are taken as _ 9 = _ × log2 ( |4 9 |) and the
deactivation parameter is fixed as X = 1. We show in panel (a) shows the phase diagram for both
the upper and lower solutions, and in panel (b) the temporal behavior for _ = 0.25.

In order to consider more complex and heterogeneous structures, we show in
Figure 3 an example of the solutions of the system of equations (3) for a hypergraph
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with # = 104, power-law distributed cardinalities, %( |4 9 |) ∼ |4 9 |−W with W = 2.25,
and min{|4 9 |} = 2. Here we use spreading rates _ 9 = _ × log2 ( |4 9 |) and, we
fix the deactivation parameter as X = 1. Figure 3(a) shows the phase diagram,
while Figure 3(b) displays the temporal behavior for _ = 0.25. The agreement is
qualitatively good, with the upper solution being well captured. Both _U2 and _L2 seem
to be underestimated by the ODE.We however remark that an accurate determination
of the transition points from numerical simulations is not an easy task and requires
more sophisticated algorithms (see Ref. [27] and its supplemental material for more
details). The temporal behavior shown in Fig. 3(b) suggests that the upper solution is
better captured by our approach even at the dynamical level. For the lower solution,
the steady-state value is very well captured, but the duration of the transient is longer
in Monte Carlo simulations.

In summary, these examples highlight that the first-order approximation can pro-
vide a qualitative picture of the phenomenology at work, but that its limitations still
need to be further evaluated. For instance, the accuracy of the estimated discontinu-
ities’ might be related to specificities of the considered structure (e.g., low average
degree or hyperedge intersections). The strong interest of this approximation lies in
the relatively easy numerical implementation, as the system of equations (3) can be
solved, e.g., by using Runge-Kutta methods. The qualitative picture obtained also
suggests that the first-order approximation might be a good starting point for further
analytical explorations of this type of models.

4 Annealed mean-field approach

4.1 Homogeneous mean-field

We now focus on the simplest analytical framework, the mean-field (MF) approach,
in which we assume that the population is fully mixed such that nodes are statistically
equivalent, their states are independent, and all interactions can happenwith identical
probabilities. This is indeed the simplest scenario, which completely neglects the
underlying structure. The mean-field form of Eq. (1) is given by

3d

3C
= −Xd + %a (d) = −Xd +

a∑
<=2

_<2(<) (1 − d)d<−1, (14)

where a = max 9 {|4 9 |} is the maximum cardinality and 2(<) is the ratio between
the average number of hyperedges with cardinality < and the average number of
pairwise interactions incident on a node 8, which characterizes the structure of the
hypergraph. In the steady-state this is a polynomial equation whose solutions are the
fixed points of the process.

We now restrict our attention to a tractable case in which we can find a solution
to the MF approximation. To do this, we consider a hypergraph formed solely by
1-hyperedges (standard pairwise links) and 2-hyperedges (3-body interactions). In
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this case, the maximum cardinality is a = 3, and Eq. (14) simplifies to:

3d

3C
= −Xd + _22(2) (1 − d)d + _32(3) (1 − d)d2. (15)

Notice that 2(2) = 1 by definition, while 2(3) is given by the ratio between the
average number of 2-hyperedges and the average number of 1-hyperedges adjacent
to a node, so that 2(3) = 〈:3〉/〈:2〉. We can thus rewrite Eq. (15) as

3d

3C
= −Xd + _2 (1 − d)d +

〈:3〉
〈:2〉

_3 (1 − d)d2. (16)

After defining V2 = _2〈:2〉/X and V3 = _3〈:3〉/X, we can rewrite Eq. (16) as:

3d

3C
= −d + V2 (1 − d)d + V3 (1 − d)d2. (17)

From Eq. (17) it is evident that we can recover the standard MF equation for the
SIS model by setting V3 = 0. In this case, we get back the two standard stationary
solutionswhich correspond to the absorbing state with no infected nodes d∗[V3=0]1 = 0
and the endemic state d∗[V3=0]2 = 1−1/V2. When V2 < 1, d∗[V3=0]1 is the only (stable)
solution; it becomes unstablewhen V2 > 1 and d∗[V3=0]2 appears (stable). The standard
epidemic threshold V2 = 1 represents the points at which the system undergoes a
continuous transition between the two regimes.

Let us now consider the more interesting case in which there are contributions
coming from the higher-order interactions (2-hyperedges), i.e., V3 > 0. In this case,
there are up to three stationary solutions of the steady state equation 3C d = 0 that fall
within the range d ∈ [0, 1]. One is the trivial solution d∗1 = 0, which corresponds
to the usual absorbing state where the epidemics dies out. The other two non-trivial
solutions are given by

d∗2± =
V3 − V2 ±

√
(V2 − V3)2 − 4V3 (1 − V2)

2V3
. (18)

These correspond to the lower (d∗2−) and upper (d∗2+) branch that have been
previously discussed. This simple mean-field description allows to go further and
study the stability of the system (see [26] for details), confirming that:

• When V3 ≤ 1, if V2 < 1 there is only one acceptable solution, that is the trivial
absorbing state d∗1 = 0. If instead V2 > 1, the non-trivial solution d

∗
2+ is positive

and stable, while d∗1 becomes unstable. Thus, when moving–using the standard
control parameter–from V2 < 1 to V2 > 1, it is possible to show that the system
undergoes a continuous transition at the standard epidemic threshold V2 = 1.
While this is similar to what happens when V3 = 0 (standard SIS model), if
0 < V3 ≤ 1 there is a higher density of infected nodes in the endemic state.
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• When V3 > 1, algebraic manipulations of Eq. (18) shows that if V2 < V2 =

2
√
V3 − V3, d∗2± are not in the acceptable domain and the only (stable) solution

is, again, the trivial one d∗1 = 0. Contrarily, if V2 > V2 , the system presents two
different regimes. If V2 > 1, we have a scenario similar to the one above, where d∗1
is unstable and the stable state is d∗2+ > 0. If instead V2 < V2 < 1, both solutions
d∗2± are positive (0 < d

∗
2− < d

∗
2+). More precisely, d∗2− is an unstable solution that

splits the phase space into two regions and determines–according to the initial
conditions–in which one of the other two stable solutions d∗1 and d

∗
2+ the system

will end up. We can thus confirm what we had previously observed, that is the
presence of a discontinuous transition at V2 and of a bistable region in which the
system reaches d∗2+ only if the initial seed of infected nodes is above a critical
mass (d(C = 0) > d∗2−).

Fig. 4 Analytical solution in the mean-field approximation. Three-dimensional phase diagram,
where the density of infected nodes in the stationary state d∗ is plotted as a function of the 1-
hyperedges rescaled infectivity V2 = _2 〈:2 〉/X and the 2-hyperedges rescaled infectivity V3 =
_3 〈:3 〉/X. When V3 = 0 the dynamics obeys the one of the standard SIS model on networked
systems with no higher-order interactions (links only). Two example curves are shown (at constant
values of V3 = 0.8 and V3 = 2.5), where MF results (black lines) are compared to results of
stochastic simulations on random simplicial complexes (white circles) [26].

These results are also illustrated in Fig. 4, which gives a three-dimensional rep-
resentation of the phase diagram associated to the system. These are the solutions of
Eq. (17) just described, representing the density of infected nodes in the large time
limit as a function of the rescaled infectivity parameters V2 and V3. For visualization
purposes only stable solutions are shown when V2 > 1. We also plot two representa-
tive curves (black lines) that highlight the possible types of transitions. For V3 = 0.8
the system still presents the standard continuous transition at V2 = 1, while for
greater values (V3 = 2.5 shown in the figure) the transition becomes discontinuous.
The presence of a bistable region is evident from the “folding” of the surface, in
which a line parallel to the vertical axes can cross the surface in two distinct points.
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We also compare the MF results with average stationary values extracted from
multiple runs of stochastic simulations (white circles). Notice how, despite the over-
simplified MF approach, the analytical predictions–on the position of the epidemic
threshold and the nature of the transition–are in good agreement with the simulations
when higher-order structures with homogeneous degree distributions are consid-
ered, such as the random simplicial complex structure used in this case (# = 2000,
〈:2〉 = 20, 〈:3〉 = 6). More details on the construction of this random structure are
given in Ref. [26].

4.2 Heterogeneous mean-field

The MF approach can be improved by relaxing the assumption that all nodes
are equivalent, and considering instead that nodes within the same hyperdegree
class behave similarly [3]. Let us thus call k8 the vector containing all the gen-
eralized degrees associated to node 8 up to the maximum cardinality a, such that
k8 = [:2,8 , :3,8 , . . . , :a,8]. By doing that, we are effectively removing the actual
structure and describing it in terms of the probabilities of nodes to share a hyper-
edge. The equation for the heterogeneous mean-field (HMF) approach, as introduced
in Ref. [31], reads:

3dk
3C

= −Xdk + (1 − dk) ×
a∑
<=2

_<
(<−1)!

∑
k1 ,...,k<

<−1∏
ℓ

%(kℓ) 5< (k, k1, . . . , k<−1)� (dk1 , . . . , dk<−1 ) (19)

where dk denotes the density of active nodes having hyperdegree k, and %(k) the
number of nodes with hyperdegree k. In the second term of the r.h.s. of Eq. (19), the
first summation runs over all hyperedges of size< that can infect a node having hyper-
degree k. This means that for each hyperedge there are<−1 other nodes that could be
infected, and their combinations are counted by the second summation. The ability to
actually transmit the infection depends on the fraction of hyperedges (among all their
possible combinations) that include the given node, given by 5< (k, k1, . . . , k<−1),
and the probability � (dk1 , . . . , dk<−1 ) that the given hyperedge can transmit the
infection. If we assume that a hyperedge can infect a node only if all the remaining
nodes composing it are infected, this reads � (dk1 , . . . , dk<−1 ) =

∏<−1
ℓ=1 dkℓ . In ad-

dition, if we consider as before a hypergraph containing 1- and 2-hyperedges only
(a = 3), and we assume that the connection probabilities are only determined by the
links, i. e., 5< (k, k1, . . . , k<−1) = 5< (:, :1, . . . , :<−1), Eq. (19) simplifies to
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3d:

3C
= −Xd: + (1 − d: )_2

∑
:1

%(:1) 52 (:, :1)d:1

+ (1 − d: )
_3
2

∑
:1 ,:2

%(:1)%(:2) 53 (:, :1, :2)d:1d:2
(20)

where it is now possible to explicitly distinguish the contributions coming from links
and “triangles”, respectively the second and third term of the r.h.s. of Eq. (20).

The process described by Eq. (20) can be analyzed using linear stability analysis.
Although an analytical solution for the fixed points of Eq. (20) is not possible, we
can restrict our analysis to the inactive state, i.e., d: = 0 for all : . And as it turns
out [31], the inactive state becomes unstable for

_2
X
>
〈:2〉
〈:22〉

, (21)

where :2 is the pairwise degree. Interestingly, the take-homemessage from this anal-
ysis is that only pairwise interactions are responsible for the inactive state’s stability.
In this case, the parameter _3 is responsible for the presence or absence of bi-stable
solutions. As _3 increases, the dynamics allow for a discontinuity, bi-stability, and
hysteretic behavior. These results are in agreement with the approach of Ref. [30],
where the authors arrived at a similar conclusion using a quenched formalism. Fur-
thermore, in Ref. [31], the authors used the HMF formalism to investigate the effect
of heterogeneity in hypergraph contagion models. They showed that in the extreme
case where a hyperedge can transmit infection if there is at least one infectious node
(as opposed to < − 1 discussed here), the bi-stability disappears, and the critical
point depends on both _2 and _3. Interestingly, they also showed that the explosive
transition could disappear for specific heterogeneous structures, e.g., when power-
law distributions of pairwise interactions are used as a starting structure to construct
the hypergraph. This can also happen when 2-hyperedges are placed at random, as
opposed to degree-correlated structures where higher-order interactions are more
likely to involve nodes that have a high pairwise degree (more details on the effects
of heterogeneity and the HMF formalism can be found in Ref. [31]).

5 Simulations on real-world structures

While the analytical approximations developed in the above sections correspond
to simplified structures of interactions between nodes, real-world interactions are
expected to involve complex and intricate structural correlations at various scales
that are not easily reproduced by models. Therefore, we now briefly investigate
the dynamics of the higher-order social contagion model on empirical higher-order
structure. We focus in particular on the simplicial contagion model in its original
formulation, where the social structure is modeled as a simplicial complex and
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Fig. 5 Simulations on real-world social structures. Density of infected nodes d∗ in the stationary
state as a function of the 1-hyperedges rescaled infectivity V2 = _2 〈:2 〉/X and for three different
values of the 2-hyperedges rescaled infectivity V3 = _3 〈:3 〉/X. When V3 = 0 the dynamics
obeys the one of the standard SIS model on networked systems with no higher-order interactions.
Points and shaded areas correspond to median values and standard deviations as extracted from
stochastic simulations on top of four different empirical simplicial complexes constructed from the
SocioPatterns data sets: a workplace (a), a conference (b), a hospital (c) and a high school (d). See
[26] for details.

each simplex of size : can transmit the infection (at its order-dependent rate) to a
susceptible node incident on it only if the remaining : − 1 nodes are infectious [26].

To this aim,we construct empirical simplicial complexes from temporally resolved
interactions data. In fact, data already encoded into graphs are intrinsically ill-suited
for the task–since they have already been “projected” into pairwise relations (the links
of the graph). Although recovering the hidden higher-order interactions from pair-
wise networks surely represent a challenging task, recent efforts have addressed this
problem with a Bayesian approach [37]. Here, leveraging high-resolution proximity
contact data provided by the SocioPatterns collaboration 1, we consider simplicial
complexes representing interactions in four different social contexts: a workplace
(InVS15 [38]), a conference (SFHH [39]), a hospital (LH10 [40]) and a high school
(Thiers13 [41]). More precisely, as described in Ref. [26], we first aggregate tem-
porally the recorded (temporal) interactions into windows of 5 minutes. Maximal
cliques within each temporal window are then “promoted” to simplices (with associ-
ated frequency of appearance) and the final simplicial complex is formed by retaining
the 20% most frequent simplices (up to 2-simplices). More detailed information can
be found in Ref. [26]. The results of the stochastic simulations run on each structure

1 http://www.sociopatterns.org/datasets/
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are displayed in Fig. 5, where the density of infected nodes in the stationary state is
plotted as a function of V2 for different values of V3. Despite the very different nature
of these datasets and their different generalized degree distributions, we encounter a
similar phenomenology to the one described in the previous sections. Namely, when
contributions from the higher-order interactions are stronger (higher values of V3)
we observe a lower (almost vanishing in some cases) epidemic threshold. More-
over, the bi-stability is present for the highest value of V3, confirming the overall
phenomenology obtained by the analytical approaches.

6 Conclusions

In this chapter we have reviewed some recent conceptual advances in the modeling
of social contagion processes, based on the idea to consider group interactions as
such, and not simply as a superposition of dyadic ones. To this aim, the substrate
of the contagion models has to be changed, moving from a network picture to
representations by hypergraphs or simplicial complexes, which are able to represent
interactions involving an arbitrary number of individuals [42]. Notably, the models
of interactions themselves have to be redefined, as contagion models are traditionally
defined with dyadic interactions in mind. While we have not covered all the relevant
literature2, we have highlighted the main approaches and results, and in particular
the rich phenomenology emerging from hyperedge interactions, with co-existence
of continuous and discontinuous phase transitions, bi-stability regions and critical
mass phenomena.

Moreover, while the discovery of this rich phenomenology has already prompted
a wealth of studies and brought both analytical and numerical insights, a number of
interesting points remain open.

First, few analytical or mathematical results are available regarding the nature of
the phase transitions: these results have been obtained under specific approximations
or for specific structures. It would be of clear interest to have more general results
on the conditions (either on the structure or on the dynamical model’s rules) for the
emergence of discontinuous transitions.

Another important point regards the availability of empirical data to feed models
defined on hypergraphs. Indeed, given the popularity and convenience of the network
representation, relational datasets are traditionally represented as sets of dyadic
interactions and often fail to include higher-order interactions (with some exceptions,
e.g. for scientific collaboration data that is easily represented as group interactions
[46]). While temporally resolved data can help understand whether cliques in an
aggregated network actually correspond to group meetings or not, as discussed in

2 For instance, the authors of [31] study the case in which _3 < 0, i.e., an individual is less likely to
adopt a trend if this trend is popular in the group, and call this ingredient the "hipster effect"; this
effect also can lead to a region of bi-stability in the phase diagram [31]. Note that heterogeneous
recovery rates [43, 44] and “complex recovery” rates depending on the state of the surrounding
individuals have also been considered in the literature [45].
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Section 5, using dyadic data to reconstruct the actual higher-order interactions is in
general far from trivial [37] and it seems crucial to develop new methods to this aim.

Empirical validation of the rich phenomenology uncovered in the models remains
also very challenging. On the one hand, it has been shown that complex contagion
processes might become indistinguishable from simple contagion at the population
level when multiple contagion processes interact [47]. For simple contagions taking
place along networks, it is possible to infer the structure on which the process unfolds
and the process’ parameters [48], but the generalization to higher order processes
remains an open challenge.

Validation could also come from specifically designed experiments in which
the structure of the groups in which individuals interact is controlled. In the case
of networks, controlled experiments have indeed helped discuss the role of the
interaction network structure on the emergence of conventions or on the outcome
of game theoretical models [49, 50]. For higher order structures, such experiments
would also need to be carefully crafted and performed, a difficult yet promising
challenge ahead.
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