
HAL Id: hal-03161922
https://hal.science/hal-03161922v1

Submitted on 8 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal approach for RDFizing semi-structured data
Noorani Bakerally, Nathalie Jane Hernandez, Sébastien Bolle, Christelle

Ecrepont, Pauline Folz, Thierry Monteil, Fano Ramparany

To cite this version:
Noorani Bakerally, Nathalie Jane Hernandez, Sébastien Bolle, Christelle Ecrepont, Pauline Folz, et al..
A formal approach for RDFizing semi-structured data. [Research Report] Rapport LAAS n° 21063,
IRIT - Institut de Recherche en Informatique de Toulouse; LAAS-CNRS; Orange labs Meylan. 2021.
�hal-03161922�

https://hal.science/hal-03161922v1
https://hal.archives-ouvertes.fr


A formal approach for
RDFizing semi-structured data

Noorani Bakerally1,2, Nathalie Hernandez1, Sébastien

Bolle3, Christelle Ecrepont2, Pauline Folz3, Thierry Monteil2, and Fano Ramparany3

1 IRIT, Toulouse, France {firstname.lastname}@irit.fr
2 LAAS-CNRS, National

Institut of applied Sciences of Toulouse, Toulouse 31400, {firstname.lastname}@laas.fr
3 Orange Labs, Meylan, France

{firstname.lastname}@orange.com

Abstract. Several approaches to facilitate the publication of data in compli-
ance with RDF exists. However, the majority of them depends on mapping
languages that have a steep learning curve and require knowledge of the lan-
guages’ syntax and semantics in addition to the Semantic Web stack. While the
remaining approaches are easier to use, they are not properly described, thus
making it difficult to reproduce them. To tackle the latter issue, in this technical
report, we thouroughly describe a semi-automatic approach to facilitate the gen-
eration of RDF data from semi-structured data. The strength of our approach
lies in the ability to automatically generate customizable mappings from several
ontologies without the need to have any prior knowledge of the ontologies.

Keywords: RDF· Data transformation · Semi-automatic approach

1 Introduction

To enhance data interoperability on the Web, the adoption of RDF is a necessary con-
dition. Yet, the lack of adoption of RDF is a known fact. Reusing existing vocabularies
or defining new ones is a major step in the transition to RDF.

Two main categories of approaches have been developed to facilitate semi-structured
data to RDF. Mapping Languages (R2RML [1], RML [2], XSPARQL [3], SPARQL-
Generate [4] etc.) are full-fledged languages for defining the transformation from a
heterogeneous dataset to the RDF model. The main disadvantage of the latter ap-
proaches is their steep learning curve. To further facilitate the usage of mapping
languages, tools like RML editor [5] and Juma [6] are available. RML editor and Juma
are graphical languages on top of the mapping languages R2RML and RML respectively.
However, they only relieve the user from having to master the syntax of the mapping
languages. In situations requiring complex modelings, one may even argue that these
tools steepen the learning curve. In short, the transformation of semi-structured data
to RDF is still a hard nut to crack.

In this paper, we provide an approach to further facilitate the RDFization of data in
semi-structured formats (e.g. CSV, JSON, etc.). The strength of our approach is that
users do not need to have knowledge of ontologies prior to RDFizing the data. Users
only need to describe their data with keywords that is then used by our approach to



2 N. Bakerally et al.

generate holistic customizable mappings that describes objects’ characteristics while
exploiting the semantics of available ontologies. We formally describe this approach
using an illustrating scenario.

The rest of this paper is organized as follows. We formally describe our approach
in Section 2. In Section 3, we conclude this report.

2 Our Approach: Semi-automatic Mapping Generation

In this section, we describe our approach that generates mappings for transforming
semi-structured data to RDF. We begin by first describing an illustrating scenario that
we use to examplify concepts throughout this report. Then, we provide an informal
overview of our approach in Section 2.2. We proceed with a formal description of our
approach. In Section 2.3, we describe the type of raw data schema that we consider. We
provide a model for describing such schemas in Section 2.4. In Section 2.5, we describe
a model for representing ontologies we are interested in. Finally, in Section 2.6, we
describe the generation of mappings for a schema with respect to a set of ontologies.

2.1 Illustrating Scenario

To explain the objective of our approach, we consider a parking dataset4 available on
Grenoble (a French city) open data portal5. Figure 1 is part of a preview of that dataset
taken directly from the data portal. Each row corresponds to a specific parking and
each column to a specific parking characteristic. Our aim is to RDFize such datasets by
providing an exhaustive description of the objects described. By exhaustive description,
we mean to look for suitable ontology entities to represent both the type of object (e.g.
parking) and the objects’ other characteristics (e.g. lat, ADDRESSE, etc.). Note that
some columns may be ignored such as id that contains data for internal use or CODE
that contains the same information as id.

Fig. 1. Parking data from Grenoble Open Data Portal

Figure 2 is an example of a mapping that may be used to describe the parking data.
It is composed of correspondences established between column headers of the raw data
and entities from vocabularies that represent the objects’ characteristics. The light blue
and orange arrows are data and object properties respectively. Also, the green labels
refer to column headers in the parking data and above them is the ontology entity IRI
to which they have been mapped. The prefixes are shown in Table 1.

4 http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/
a6919f90-4c38-4ee0-a4ec-403db77f5a4b, last accessed on 7 December 2019 under
the licence odc-odblhttps://opendatacommons.org/licenses/odbl/index.html

5 http://data.metropolegrenoble.fr/

http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/a6919f90-4c38-4ee0-a4ec-403db77f5a4b
http://data.metropolegrenoble.fr/ckan/dataset/parkings-de-grenoble/resource/a6919f90-4c38-4ee0-a4ec-403db77f5a4b
https://opendatacommons.org/licenses/odbl/index.html
http://data.metropolegrenoble.fr/


A formal approach for RDFizing semi-structured data 3

Prefix Vocabulary Name Namespace IRI
xsd XML Schema Definition http://www.w3.org/2001/XMLSchema#
rdfs RDFS http://www.w3.org/2000/01/rdf-schema#
sc Schema.org http://schema.org/
mv MobiVoc http://schema.mobivoc.org/
wgs84 WGS84 http://www.w3.org/2003/01/geo/wgs84 pos#
dc Dublin Core Metadata Terms http://purl.org/dc/terms/

Table 1. List of Vocabulary Prefixes

As we can see (cf. Figure 2), the mapping reuses entities from several ontologies.
The mapping is composed of three types of ontology entities. Firstly, there is an entity,
i.e. mv:ParkingFacility, to type the parking object. Secondly, there are entities
that represent a parking object characteristic. For example, ADDRESSE is mapped to
the data property sc:address. In addition to representing an object’s characteristic
using a data property, expressions involving several related ontology entities may be
used. For example, TOTAL is mapped to an expression composed of mv:Capacity and
mv:maximumValue. Thirdly, there may be additional entities to link the class represent-
ing the object type to entities representing objects’ characteristics. For example, the
object property mv:capacity is added to the mapping to link mv:ParkingFacility
and mv:Capacity. Once defined, the mapping can be used to RDFize the parking data.

mv:ParkingFacility
TYPE

mv:Capacity
TOTAL

rdfs:Literal

wgs84:lat
Lat

dc:identifier 
id

wgs84:long
Lon

rdfs:Literal

sc:address
ADDRESSE

mv:capacity

xsd:integer

mv:maximumValue

sc:description
LIBELLE

TOTAL

Fig. 2. An example of mapping to describe parking data

2.2 Overview

Our approach to generate mappings consists of four main steps as shown in Figure 3.
As we can see, it relies on the existence of an Ontology repository. Suppose that
this repository contains the vocabulary MobiVoc, Schema.org, WGS84 and Dublin
Core Metadata Terms.

Step 1 In order to capture background knowledge provided by the user about the
schema used in the raw data, firstly we generate a Schema description consisting of
Type description and Elements description. Type Description characterizes
the type of objects described by the schema and Elements description the schema
elements (e.g. lon in Figure 1). Both consist of keywords manually entered by users.
For example, with respect to the CSV file in Figure 1, the Type Description can be
the keyword ‘parking facility’, and the Elements description of the schema element
lon the keywords ‘longitude’.



4 N. Bakerally et al.

Raw data

SchemaInstances

Generate 
Schema 

Description

Schema 
Description

Type 
Description

Element 
Description

Generate 
combinations

Enrich with paths 
linking required 

entities

Candidate 
Mappings

Generate 
candidate 
classes

Generate 
candidate 

classes/data 
properties

Ontology Repository

Step 1 Step 2 Step 3 Step 4

Fig. 3. Mappings Generation Process

Step 2 Secondly, using an Ontology repository, the Type description and the
Elements description, a set of candidate classes for typing objects and a set of
candidate data properties or classes for modeling schema elements are generated. Table 2
shows a schema description for the schema, i.e. column headers, of Figure 1 and some
generated ontology entities for its elements.

Schema Description Generated Entities
Keyword Classes Data Properties

Type
Description

‘parking facility’
mv:ParkingFacility,
sc:Park

Elements
Description

id ‘identifier’ dc:identifier
LIBELLE ‘description’ sc:description
TOTAL ‘capacity’,‘total’ mv:Capacity sc:totalTime
lat ‘latitude’ wgs84:lat
lon ‘longitude’ wgs84:long
ADDRESSE ‘address’ sc:address

Table 2. Example of candidate entities for typing and schema elements

Step 3 Thirdly, possible combinations are generated. A combination consists of a
candidate class for typing, that we refer as the type class, and a candidate data property
or class for each schema element generated in the previous step. Table 3 shows all
combinations generated from the candidate entities in Table 2.

Type Class id LIBELLE TOTAL lat lon ADDRESSE
1. mv:ParkingFacility dc:identifier sc:description mv:Capacity wgs84:lat wgs84:lon sc:address

2. mv:ParkingFacility dc:identifier sc:description sc:totalTime wgs84:lat wgs84:lon sc:address

3. sc:Park dc:identifier sc:description mv:Capacity wgs84:lat wgs84:lon sc:address

4. sc:Park dc:identifier sc:description sc:totalTime wgs84:lat wgs84:lon sc:address

Table 3. Combinations of generated entities for type class and schema elements

Step 4 Finally, we enrich each combination with the required ontology entities that are
needed to describe objects with the type class and candidate entities for schema elements.

For example, Figure 4 shows the first combination from Table 3 and the needed
paths, illustrated as dotted lines, that will be generated at this step. Figure 2 is a



A formal approach for RDFizing semi-structured data 5

possible result when the needed paths are generated. A path between a type class and
a data property is generated if the domain of the data property includes the type class.
On the other hand, a path between a type class and another class is generated by
looking for ontology entities that can connect them while respecting entities’ semantics.

Note that it is possible that no path is established. For example, in the fourth combi-
nation from Table 3, there is no path between the type class sc:Park and the candidate
class of TOTAL that is sc:totalTime as the domain of the data property sc:totalTime
does not include sc:Park. In this case, the candidate entity is removed from the mapping
and the mapping generated will not have any correspondence for TOTAL.

The set of generated mapping are then presented to the user. The user can anal-
yse them and customize one (by editing or removing correspondences). The selected
mapping is used to describe objects from the raw data. From here, the possible result
may be expressed in existing mapping languages to generate final RDF.

mv:ParkingFacility
Type Class

mv:Capacity
TOTAL

rdfs:Literal

wgs84:lat
lat

dc:identifier 
id

wgs84:long
lon

rdfs:Literal

sc:address
ADDRESSE

xsd:integer

mv:maximumValue

sc:description
LIBELLE

TOTAL

Fig. 4. Paths needed to be generated for a particular combination

2.3 Raw Data

We refer to raw data as consisting of both the schema and the data given as input
to our approach. Such schemas are formally describe in Definition 1.

Definition 1 (Schema).
A schema σ is a set of schema elements that describes only one type of object.

We refer to this type as the schema type. Every element of σ that we refer to as a
schema element, is a label for an atomic characteristic of the object. By atomic
characteristic, we mean that its values can be typed using an instance of
rdfs:datatype [7, §2.4] such as xsd:integer, xsd:float and xsd:string, etc.

The schema for the parking data in Figure 1 is{ id, CODE, LIBELLE, ADDRESSE,
TYPE, TOTAL, type, id, lon, lat}. The type of object described by this schema, that
we refer to as schema type, is parking facilities. It is made up of several schema elements
such as TOTAL.While a schema is independent of data formats, raw data based on such
a schema can be naturally serialized in the CSV format. Nevertherless, JSON data
containing only primitive data types can also be represented using this model.

2.4 Schema Description

Schemas are made up of only atomic characteristic’ labels. Consequently, they may be
lightweight and lack background information. To describe them, we provide a schema



6 N. Bakerally et al.

description model. In short, this model can be used to provide a description about both
the schema type and schema elements. We formally describe the model in Definition 2.

Preliminaries We write IRI and L as the disjoint sets of IRIs and literals.

Definition 2 (schema description).
For a schema σ, a schema description is a pair 〈t,E〉 where t∈2L is set of keywords

to provide some description about σ’s schema type. E ⊆L×2L is a set of pairs that
describe σ’s schema elements. 〈e,K〉 ∈ E means that the schema element e ∈ σ is
described by the set of keywords K. There cannot be more than one pair in E describing
the same schema element. More formally, 〈e,K1〉∈E∧〈e,K2〉∈E =⇒K1=K2. Also,
we refer to t as the schema type description and an element of E as a schema element
description. We write D as the set of schema descriptions.

A schema description for the parking schema in Figure 1 may be ({‘parking facil-
ities’},{(LIBELLE,{‘label’}), (ADDRESSE,{‘address’}), (TOTAL,{‘capacity’, ‘total’}), (id,
{‘identifier’}), (lon,{‘longitude’}), (lat,{‘latitude’})}). Note that the ignored columns
(e.g. id) are ommited from the schema description.

2.5 Vocabularies

Our approach generates initial mappings between a schema description and RDFS/OWL
ontology entities. In this section, we define structures related to ontologies that we
use. To abstract ontologies from languages and formalisms, we define a Vocabulary
structure (cf. Definition 3). We use this structure to represent an ontology, an ontology
repository and a Description vocabulary used to describe the raw data.

Definition 3 (Vocabulary structure). A Vocabulary structure v is a tuple
〈i,C,P,D,δ,r,s,l〉 where:
– i is the IRI of the vocabulary;
– C, P, D are the disjoint set of IRIs for classes, object properties and data properties
respectively;

– δ :P∪D 7→2C maps an object or data property to classes in its domain;
– r :P∪D 7→ 2C∪{rdfs:Literal} maps object properties only to classes in their range
(i.e ∀p ∈ P, r(p) ∈ 2C) and maps data properties only to rdfs:Literal (i.e
∀d∈D,r(d)={rdfs:Literal}).

– s :C 7→2C maps a class to its direct and indirect (inferred) subclasses;
– l :C∪P∪D 7→2L maps a class, object property or data property to a set of literals
defined by annotation properties such as rdfs:label, dc:label, etc.

V denotes the set of Vocabulary structures. Abusively, given a Vocabulary structure v
C(v),D(v)and P(v) refer to its set of classes, object properties and data properties.

Modeling RDFS/OWL ontologies using a Vocabulary structure: To obtain a Vocabulary
structure for an RDFS/OWL ontology, first we use an OWL reasoner considering all
OWL constructs to obtain the inferred ontology. Then, from the inferred ontology, we
extract information using a subset of the RDFS and OWL constructors. Regarding
classes, we consider atomic classes, their subclasses and equivalent classes, and com-
plex classes that are disjunction of atomic classes. For domains and ranges of object
properties, and for domains of data properties, we consider only the latter type of
classes. Apart from this, we ignore all other constructors (e.g. subproperties, property
characteristics, restrictions, etc.).



A formal approach for RDFizing semi-structured data 7

Modeling an ontology repository using a Vocabulary structure: We also use a Vocabulary
structure to model an ontology repository as we consider an ontology repository as
a merge of Vocabulary structure s representing the ontologies.

Modeling paths in a Vocabulary structure: Like paths in RDF graphs, in our approach,
we need to model paths between a class and a data property in a Vocabulary structure.
We refer to these paths as Data property path and formally define them in Definition 4.

Definition 4 (Data property path). With respect to a Vocabulary structure v=
〈i,C,P,D,δ,r,s,l〉, a Data property path p is a sequence of connected triples where the
first triple contains the class ic∈C and the last triple contains the data property id∈D.
More formally, p=〈t0,t1,...,tn−1,tn〉∈

⋃
n≥1(C×P×C)n−1×(C×D×{rdfs:Literal})

is a Data property path if:
– the subject or the object of the first triple should be ic, i.e. t0(0)=ic∨t0(2)=ic;
– the predicate in the last triple is id, i.e. tn(1)=id;
– in all triples, the subject and object are in the domain and range of the predicate

respectively, i.e. ∀t∈{t0,t1,...,tn},(t(0)∈δ(t(1))∧t(2)∈r(t(1)))
– the triples in the path are connected, i.e. (ic,rdfs:Literal) ∈ R+ = t+(s+(R))
where t+ and s+ returns the transitive and symmetric closure of a relation and

R={(c1,c2) |p∈P∧c1∈δ(p)∧c2∈r(p)} (connectivity as in weakly directed graphs).
The interpretation of subject, predicate and object are the same as in an RDF triple [8,
§3.1]. Abusively, we write V(p) to denote the Vocabulary structure containing the
ontology entities used in the Data property path p. Also, for a given Data property path
p, we use the notation pc and pd to refer to ic and id respectively. We write Pas the
set of Data property path.

In Figure 2, a Data property path can be used to model the path between
mv:ParkingFacility and mv:maximumValue. Entities on this path are found in the
vocabulary structure modeling the Schema.org vocabulary. Suppose this Data property
path is p1. p1 is defined with respect to the class mv:ParkingFacility, the data
property mv:maximumValue and the Vocabulary structure vmv, and is:

((mv:ParkingFacility,mv:capacity,mv:Capacity),

(mv:Capacity,mv:maximumValue,rdfs:Literal))
(1)

The first and second condition from the definition are satisfied as p1=〈t0,t1〉 starts
with the required class (i.e. t0(0)=mv:ParkingFacility) and its last triple contains
the required data property (i.e. t1(1)=mv:maximumValue). Also, in both triples in p1,
the object and data property has their domain and ranges correctly set. For the last
condition, from p1, we can derive:

R={(mv:ParkingFacility,mv:Capacity),(mv:Capacity,rdfs:Literal)}. By per-

forming the symmetric closure followed by the transitive closure on R to obtain R+, we
can find (mv:ParkingFacility,rdfs:Literal) is R+ meaning the sequence of triples
is well connected.

2.6 Mapping Generation System

A mapping generation system contains the required components to generate mappings for
schema descriptions. Abusive notations are used: given a Vocabulary structure v, we write
C(v),D(v)and P(v) as its set of classes, object properties and data properties respectively.



8 N. Bakerally et al.

Definition 5 (Mapping generation system). A Mapping generation system mp
is a tuple 〈v,fs,fc,fp,fd〉 where:
– v=〈i,C,P,D,δ,r,s,l〉 is the Ontology Repository;
– fs :2L×IRI 7→R is the Similarity Calculator;
– fc :2L 7→2IRI×R is the Concept Mapper;
– fp :IRI×IRI 7→2P is the Path Generator;

– fd :D 7→2IRI×R×2L×IRI×R×2P

is the Schema Description Processor.

In a mapping generation system, the ontology repository v is in the global state and
all other components of a mapping generation system have access to it.

Ontology Repository v is a Vocabulary structure representing an ontology repository.
It contains the required information from one or more ontologies that we want to use
to describe our schemas;

Similarity Calculator fs :2L×IRI 7→R performs a similarity calculation between
a set of keywords and an ontology entity identified by its IRI, and maps them to a real
number, that we refer as the confidence, in the range [0,1]. We do not further define
fs and leave it as an implementation aspect. We only places a constraint that if the
ontology entity is not in the ontology repository, the confidence is 0. More formally,

(k∈2L)∧(i∈IRI)∧(i /∈C(v)∪D(v)∪P(v))=⇒ fs(k,i)=0

Concept Mapper fc :2L 7→2IRI×R takes a description of a schema element through
a set of keywords and identifies ontology entities that best describe the schema element
using their calculated confidences (using fs). The only ontology entities considered are
those that allow specifying a value for a property. They include data properties and
classes that are in the domain of a data property. fc maps a set of keywords to a set
of classes or data properties from the ontology repository and their respective confi-
dences are calculated using fs. More formally, with respect to the ontology repository
v=〈i,C,P,D,δ,r,s,l〉 and the set of keywords k∈2L,

fc(k)={〈i,c〉|i∈(D(v)∪
⋃

d∈D(v)

δ(d))∧c=fs(k,i)}
Supposemp1=〈vr,f ′s,f ′c,f ′p,f ′d〉 is Mapping generation system where vr is the ontology

Structure representing the schema.org vocabulary and k1={‘capacity’,‘total’,‘places’}.
f ′s(k1) may include (mv:Capacity,0.9) and (sc:totalTime,0.3). As mentioned before,
the result should consist of ontology entities that are either data properties or classes
in the domain of a data property. sc:totalTime is a data property and mv:Capacity
is in the domain of mv:capacity

Path Generator fp :IRI×IRI 7→2P takes as input a class ic and data property id
from the ontology repository and generate a set of Data property path from vr. We
do not further define fp and leave it as an implementation aspect. We only impose the
following constraints on fp with respect to the ontology repository v=〈i,C,P,D,δ,r,s,l〉:
– fp maps a pair of ontology entities to ∅ if at least one of them is not in the ontology

repository. More formally, ic /∈C∨id /∈D=⇒ fp(ic,id)=∅
– all Data property path (Definition 4) generated are defined with respect to ic and
id. More formally, ∀ε∈fp(ic,id),εc=ic∧εd=id;



A formal approach for RDFizing semi-structured data 9

– the ontology entities in the Data property path must be from the ontology repository.
More formally, ∀ε∈fp(ic,id),ε∈C∪D∪P
The above conditions ensures that the proper set of Data property path is generated.

The first condition specifies that fp only maps a pair consisting of a class and data
property to a set of Data property path if the pair’s elements are in the ontology
repository. The second and third conditions ensures that Data property paths generated
are defined with respect to the input pair’s elements and that the paths’ entities are
well from the vocabulary.

Suppose mp1=〈vr,f ′s,f ′c,f ′p,f ′d〉 is a Mapping generation system where the Vocabulary
structure vr is the the vocabulary structure modelling schema.org Section 2.5. Using
mp1, we want to generate the set of Data property path between the class and data
property mv:ParkingFacility and mv:maximumValue respectively. Suppose that using
f ′p generates a set containing only the following path:

((mv:ParkingFacility,mv:capacity,mv:Capacity),

(mv:Capacity,mv:maximumValue,rdfs:Literal))
(2)

The above path is a valid Data property path as explained in the example of Def-
inition 4. Yet, it cannot be used solely as a determinant to ensure that f ′p satisfies the
above first condition. Nevertheless, the path satisfy the second and third conditions. The
second condition is satisfied as its first and last triple contain mv:ParkingFacility
and mv:maximumValue respectively. Moreover, all the entities in the path are from vr.

Schema Description Processor fd :D 7→2IRI×R×2L×IRI×R×2P

maps a schema de-
scriptions to a set of Final mapping. A Final mapping consist of entities from the
ontology repository for modeling the schema elements in a particular way. We formally
define it in Definition 6.

Definition 6 (Final mapping). For a schema description d=〈t,E〉 and the ontology
repository v=〈i,C,P,D,δ,r,s,l〉, a final mapping is a pair 〈µ,Σ〉 where µ∈IRI×R and
Σ⊆L×IRI×R×2P. 〈it,ct〉∈µ means that the class with IRI it can model the schema
type whose description is given by t with a confidence of ct. 〈e,ie,ce,ρ〉∈Σ means that
the schema element e can be modeled with the entity ie from v with a confidence of ce.
Also, ρ is a set of Data property paths (cf. Definition 4) with respect to it and ie, i.e.
∀%∈ρ,%c=it∧%d=ie.

Now that we have define a Final mapping (cf. Definition 6), we can define the
evaluation of a schema description ∂ = 〈t,E〉 in the Mapping generation system
mp=〈v,fs,fc,fp,fd〉 in Equation 3.

fd(∂)={(it,ct) |(it,ct)∈fc(t)∧it∈C}×
•×

(e,κ)∈E
{(e,ie,ce,ρ) |((ie,ce)∈fc(κ))∧

((ρ=fp(it,ie)∧ie∈D)∨(∃ide∈D∧ie∈C∧ie∈δ(ide)∧ρ=fp(it,i
d
e)))}

wheregiventwosetsAandB,A
•
×B={{a,b}|(a,b)∈A×B}

(3)

The above definition of fd consists of two parts, Part (a) and Part (b).



10 N. Bakerally et al.

Part (a) , formalized as
{

(it,ct) |(it,ct)∈fc(t)∧it∈C
}

, represents the generation of
classes for typing using the schema type description (i.e. t).

Part (b) , formalized as {(e,ie,ce,ρ) | ...}, consists of the right-hand side of the generalized
cross-product symbol with the dot. This part represents the generation of an ontology
entity (ie) to model a schema element (e) with a certain confidence (ce). Additionally,
fp is used to generate the set of Data property paths (cf. Definition 4) with respect to it
and ie. In short, applying the unordered cartesian product on all sets generated from the
expression in the second part generates a set of Final mapping (Definition 6) (e,ie,ce,ρ)
for each schema element e described in E. Finally, performing a cartesian product on the
set of pairs generated in the first part with the latter set generates a set of Final mapping.

To illustrate this, let us consider a Mapping generation system mp1=〈vr,f ′s,f ′c,f ′p,f ′d〉
where the Vocabulary structure vr is as the same as defined in Section 2.5. Also, consider
a schema description sd=({‘parking facilities’},{(‘TOTAL’,{‘capacity’, ‘total’}), (‘id’,
{‘identifier’})}) for describing objects in the raw data in Figure 1 consider only the
properties ‘TOTAL’ and ‘id’.

Let us start by evaluating Part (a) of f ′d, that is f ′c ({‘parking facilities’}), while
respecting the condition it∈C, implying that only pairs containing classes are kept.
Suppose that the latter evaluation returns:{

(mv:ParkingFacilities,0.9),(sc:Park,0.3)
}

(4)

Now, we proceed to evaluate the Part (b) of f ′d. Suppose this evaluation for the
schema element TOTAL generates

{
(‘TOTAL’,mv:Capacity,0.9,ρtotal),

(‘TOTAL’,sc:totalTime,0.3,∅)
}

. Similarly suppose that the evaluation for the schema

element id generates
{

(‘id’,sc:identifier,0.9,ρid)
}

. Applying the generalized
unordered cartesian product on both latter sets generates:

{{(‘TOTAL’,mv:Capacity,0.9,ρtotal),(‘id’,sc:identifier,0.9,ρid)
}
,{

(‘TOTAL’,mv:totalTime,0.3,∅),(‘id’,sc:identifier,0.9,ρid)
}} (5)

Performing a cartesian product with the sets from Result 4 and Result 5 generates
the set of Final mapping:

{((mv:ParkingFacilities,0.9),
{
(‘TOTAL’,mv:Capacity,0.9,ρtotal),(‘id’,sc:identifier,0.9,ρid)

}),
((sc:Park,0.3),

{
(‘TOTAL’,mv:totalTime,0.3,∅),(‘id’,sc:identifier,0.9,ρid)

}),
((mv:ParkingFacilities,0.9),

{
(‘TOTAL’,mv:Capacity,0.9,ρtotal),(‘id’,sc:identifier,0.9,ρid)

}),
((sc:Park,0.3),

{
(‘TOTAL’,mv:totalTime,0.3,∅),(‘id’,sc:identifier,0.9,ρid)

})}
(6)

The first element in Result 6 means that mv:ParkingFacilities can be used as the
type with a confidence of 0.9. Moreover, for the schema element ‘TOTAL’, the entity
mv:Capacity can model it with a confidence of 0.9. ρtotal contains possible Data prop-
erty paths with respect to mv:ParkingFacilities and mv:Capacity. Similarly, for the
schema element ‘id’, the entity sc:identifier can model it with a confidence of 0.9.
ρid contains possible Data property paths with respect to mv:ParkingFacilities and
sc:identifier. It is the Data property paths that makes a Final mapping customizable.
More explicitly, the user can choose the appropriate Data property path.



A formal approach for RDFizing semi-structured data 11

3 Conclusion

In this technical report, we have presented an approach to facilitate the RDFization
of semi-structured data. We have formally described this approach and have used an
illustrating scenario to examplify the formal concepts.

References

1. Souripriya Das, Seema Sundara, and Richard Cyganiak. R2RML: RDB to RDF Mapping
Language, W3C Recommendation 27 September 2012. Technical report.

2. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de Walle.
RML: A generic language for integrated RDF mappings of heterogeneous data. In LDOW,
2014.

3. W. Akhtar, J. Kopeckỳ, T. Krennwallner, and A. Polleres. XSPARQL: Traveling between
the XML and RDF worlds–and avoiding the XSLT pilgrimage. In ESWC, 2008.

4. M. Lefrançois, A. Zimmermann, and N. Bakerally. Flexible rdf generation from rdf and
heterogeneous data sources with sparql-generate. In EKAW. Springer, 2016.

5. Pieter Heyvaert, Anastasia Dimou, Aron-Levi Herregodts, Ruben Verborgh, Dimitri Schu-
urman, Erik Mannens, and Rik Van de Walle. Rmleditor: a graph-based mapping editor for
linked data mappings. In European Semantic Web Conference, pages 709–723. Springer, 2016.

6. Ademar Crotti Junior, Christophe Debruyne, and Declan O’Sullivan. Juma: An editor
that uses a block metaphor to facilitate the creation and editing of r2rml mappings. In
European Semantic Web Conference, pages 87–92. Springer, 2017.

7. Dan Brickley and Ramanathan V. Guha. RDF Schema 1.1. W3C Recommendation,
World Wide Web Consortium (W3C), February 25 2014.

8. Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and Abstract
Syntax, W3C Recommendation 25 February 2014. W3C Recommendation, World Wide
Web Consortium (W3C), February 25 2014.


	A formal approach for RDFizing semi-structured data

