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Connectivity and automation as enablers for energy-efficient
driving and road traffic management

Bassel Othman®?*, Giovanni De Nunzio!, Antonio Sciarretta!,
Domenico Di Domenico!, Carlos Canudas-de-Wit?

Abstract

In the member countries of the Organization for Economic Co-operation and Development (OECD),
projections show that the improved energy efficiency in transportation may lead to a net decline of
about 2% in energy use until 2040, thus outpacing the predicted increase of vehicle-miles traveled
(VMT). However, in OECD-Europe, transportation still represents the biggest source of carbon
emissions, contributing by about 25% to the total CO2 emissions, with cars and vans representing
more than two thirds of this share. The situation is even more alarming in non-OECD countries,
where the transportation energy demand is expected to rise by 64% until 2040. The shift that we
are witnessing toward the adoption of connected and automated vehicles (CAVs) is going to be per-
haps, the most disruptive since the early days of automobiles and could revolutionize movement of
people and goods. This level of connectivity and autonomy will transform transportation in several
dimensions with important societal and economic impacts: improved safety, increased comfort, time
saving potential, and more efficient road utilization are among the most widely discussed positive
impacts of CAVs. However, the potential energy efficiency benefits of these technologies remain
uncertain. From a single-vehicle efficiency perspective, research suggests that lightweight, low-speed,
autonomous vehicles have the potential to achieve fuel economy an order of magnitude higher than
current cars. Yet, at system-wide level, current estimates suggest that the total energy consump-
tion impacts can range from a 90% decrease to a 200% increase in fuel consumption as compared
to a projected 2050 baseline energy consumption. The paradigm that traffic congestion mitigation
should reduce CO2 emissions is yet to be proved. Therefore, interest in transportation regulation
problems with explicit environmental considerations is growing. This work takes a more in-depth
look at increased opportunities for energy-efficient driving with energy-oriented traffic management
and CAVs deployment. In particular, the focus will be put on the road traffic control strategies in
urban networks using connectivity to enable variable speed limits and traffic light adaptive control,
as well as the energy-saving opportunities that arise for individual CAVs by anticipating future road
geometry, traffic conditions, and interactions with neighboring vehicles.

Keywords— Connected and automated vehicles, Energy efficiency, Traffic management, Cooperative control,
Infrastructure control, Optimization, Vehicle Platooning, Mixed traffic

Introduction

Today, transport is one of the most energy-intensive sectors. In fact, as indicated by IEA (2017b), and represented
in Fig. 1, the aggregated data of sixteen countries (Australia, Belgium, Canada, Czech Republic, Finland, France,
Germany, Hungary, Italy, Japan, Korea, Luxembourg, New Zealand, Spain, the United Kingdom and the United
States) reveal that it accounted for the highest share of worldwide energy consumption in 2017 (36%). For
example, passenger cars alone used more energy than the whole residential sector. According to U.S. Energy
Information Administration (2017), the transport sector accounted for 55% of the total liquid fuels consumption,
and its share is not expected to decrease for the next two decades because of the increasing travel demand.

The detailed breakdown of energy consumption in the transport sector can be found in IEA (2017a) for the
same sixteen countries in 2017, and is represented in Fig. 2. The international aviation, marine bunkers and
pipeline transport are excluded. It appears that the transport sector is largely dominated by road vehicles (88%),
especially passenger cars and freight road, that account for 86% of the global energy consumption. This highlights
the potential of cars and trucks control to reduce energy consumption and greenhouse gas emissions.

The current development of connected and automated vehicles (CAVs) constitutes beyond dispute a significant
breakthrough in the movement of people and goods (Sciarretta & Vahidi, 2020a). On the one hand, the number
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Figure 1: Largest end-uses of energy by sector in selected International Energy Agency (IEA) countries
(IEA, 2017b) [©2017 IEA. All rights reserved].
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Figure 2: Energy consumption in transport in selected International Energy Agency (IEA) countries
(IEA, 2017a) [©2017 IEA. All rights reserved).

of connected vehicles, i.e. that are able to communicate bidirectionally with other systems, is increasing. Two
kinds of connectivity are usually distinguished: Vehicle-to-Infrastructure (V2I)/Infrastructure-to-Vehicle (12V)
communication and Vehicle-to-Vehicle (V2V) connectivity. On the other hand, research and development of fully



automated vehicles, i.e. that are capable of moving safely without human input, are promising. According to
Litman (2017), they are expected to represent 20-40 % of the sales by 2030.

Thanks to their connectivity features, CAVs are capable of processing and sharing a large amount of data
from many sources. Also, their full autonomy ensures much shorter reaction times and more precise positioning
and control than conventional vehicles. This results in high reliability and ability to anticipate which offer huge
potentials for improving safety and comfort, and reducing travel time and fuel consumption. These opportu-
nities are increased through higher CAVs penetration rates as cooperative control possibilities (vehicles acting
cooperatively) are enhanced.

But at a broad level, it is not yet clear whether a high penetration rate of CAVs will have a positive or a
negative impact on fuel consumption and CO2 emissions. In fact, Wadud et al. (2016) explain that some effects
of the advent of CAVs will reduce energy consumption (development of platooning and eco-driving, congestion
mitigation, vehicle light-weighting and right-sizing, de-emphasized performance, car-sharing, on-demand mobility,
and reduced infrastructure footprint), whereas other effects will increase it (travel cost reduction, higher highway
speeds, increased vehicle features, and new user groups). According to Brown et al. (2014), the impact of CAVs
can range from a 90% decrease to a 200% increase in global fuel consumption as compared to a projected 2050
baseline scenario. The outcomes depend on the direction that will be favored by future policy making.

As explained previously, CAVs technology is largely based on the exchange of different types of data between
vehicles (V2V) and with the infrastructure (V2I/12V). Two data types may be differentiated:

e Geographic data (time-invariant) that can be embedded on-board or can be accessible via a Geographic
Information System (GIS) server: road network architecture, road elevation and slope, road speed limits,
speed bumps, road narrowings, safe speeds on curved roads, etc.

e Traffic data (time-variant) that are provided by other vehicles or by the infrastructure (through sensors,
cameras, etc.): traffic information, road closings, state of traffic light signals, weather-related road condi-
tions, etc. Note that in absence of real-time data, historical data can be used to predict traffic slow-downs
by systematic evaluation (Wan et al., 2017).

In order to predict traffic speed evolution from the available data, CAVs use traffic simulation models that can
be deterministic, probabilistic, or based on machine learning approaches (Asadi et al., 2010). With this knowledge,
CAVs behave in order to optimize a criterion, e.g., energy consumption. In practice, CAVs recalculate their most
energy-efficient routes, and optimize their future speed profiles in anticipation of surrounding vehicles motion,
road slopes and geometry, traffic light signals, etc. To minimize their energy consumption, CAVs can also use
fuel cut-off, cylinder deactivation, thermal load management, and power split in hybrid electric vehicles (HEVs)
powertrains. Connectivity and automation not only enable vehicles to minimize the energy consumption of each
vehicle individually (“individual gain” optimization), but also opens the way for vehicles cooperative control
(“common good” optimization). Note that such control frameworks could be implemented for conventionally
driven vehicles, but they are much more efficient for CAVs because of the certainty of predictions and the
precision of powertrain control.

A reliable energy consumption model (fuel and/or electricity) is necessary for CAVs to optimize their future
behavior (choice of route and speed profile) in an energy-efficient way. A first possibility is to use a physical
model. As described in detail by Sciarretta and Vahidi (2020b), the inputs of such a model should include the
road grade angle and the vehicle’s parameters and longitudinal dynamics. This latter is governed by Newton’s
second law of motion, described as

du(t
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where m and v(¢) are respectively the vehicle’s mass and speed. The forces Fy,(t), Fres(t), and Fy,(t) denote

respectively the powertrain forces, the road load, and the force applied by frictional brakes. Assuming a straight
road with no wind, the vehicle’s energy requirement at the wheels Ew can be expressed as

m

te
Ew = %m(vf — o) + mg(Az + CAs) + %paAfCD / v (t)dt (2)
0

where v; and v¢ denote the vehicle’s initial and final speeds (at time 0 and ¢f). The variables Az and As are
respectively the total elevation change and the horizontal distance covered during the trip. The parameters
g, Crr, Cp, Ag, and p, denote respectively the gravitational constant, the coefficient of rolling resistance, the
aerodynamic drag coefficient, the vehicle’s frontal area, and air density.

To go further, the energy required from the powertrain, denoted F, takes into account the energy dissipated
in friction brakes that are acting on the wheels. The energy E can calculated as follows

B = Bw+ /Otf(l — k) Fy (t)u(t)dt 3)

Usually, the frictional brake force Fi, can only be positive when the powertrain force F}, is equal to zero. The
parameter ki, denotes the ratio of regenerative braking, i.e. the energy recuperated by the powertrain and stored
in the onboard tank. An ideal vehicle with a perfect recuperation (k, = 1) would result in no energy dissipated



and E = Ew. The complete methodology to determine the expression of £ can be found in Sciarretta and Vahidi
(2020Db).

Kubicka et al. (2016) propose to use this kind of model to predict a vehicle’s energy consumption for control
purposes. Similarly, De Nunzio and Thibault (2017) use an energy consumption model to predict the driving
range of electric vehicles (EVs), under different hypotheses. Note that the modeling and the control approaches
are much more complex when considering EVs and HEVs because of their limited range, recharge times, and
ability to regenerate energy during deceleration phases.

Based on Eq. 2, it appears that there are two ways for a vehicle to reduce its wheel energy, namely

e minimize the distance traveled As, which is fairly trivial;

e minimize the last term, i.e. the energy lost to aerodynamic drag, as it is the only one that is influenced by
the vehicle’s speed profile during the trip.

Instead of using a physical model, another possibility is to use a data-driven model (S. Zegeye et al., 2013; Qi
et al., 2004; Z. Xu et al., 2017; Othman et al., 2020). Basically, it consists in measuring fuel consumption or CO2
emissions and deducing look-up tables, regression models, or machine learning approaches to estimate the energy
consumption from the vehicle dynamics. The measurements can be made indoors using a chassis dynamometer,
or outdoors during on-road experiments using a portable emissions measurement system (PEMS) (Y. Huang et
al., 2018).

It is generally acknowledged that the impact of vehicular mobility on climate change, i.e. the amount of CO2
emitted by vehicles, is proportional to the fuel consumption. The reason is that the relationship between fuel
consumption and CO2 emissions is almost linear (Pinto & Oliver-Hoyo, 2008).

In real driving conditions, it is essential to bear in mind that several factors contribute to an increase in energy
consumption compared to the certification value. Fontaras et al. (2017) indicate that these factors include, inter
alia, certification margins, vehicle’s mass and rolling resistance, wind and temperature conditions, additional
electric auxiliaries, air conditioning, road grade, and traffic conditions. The impact of these factors are quantified
in Table 1. According to Fontaras et al. (2017), the actual fuel consumption could be increased, on average, by
24% to 54% in comparison with the official value.

Table 1: Impact of factors contributing to an increase in energy consumption compared to the certification
value, according to Fontaras et al. (2017).

Factor Description Impacts Global impact
Vehicle adjustment + 6%
Certification margins Homologation margin + 5% + 15%
Protocol design & boundaries + 4%
Mass 100 kg extra mass + 3.2%
. Real world aerodynamics + 22 %
Aerodynamics

& side winds

Lower energy class + 1.7 %
Rolling resistance h\/il\izl‘cts;l‘?;fee 1 83;2 + 2.4%

Wet road + 0.3%
Temperature Annual temperature variation + 3.5%
Road grade 0.25% average grade + 2.5%
Additional electric auxiliaries Air conditioning excluded + 5%
Air conditioning + 5%
Traffic conditions Congestion level & traffic demand + 15%
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This chapter provides a general review of Cooperative, Connected and Automated Mobility (CCAM) control
approaches for improved energy efficiency of road traffic management. The body of the chapter is organized as
follows. Section 1 presents the control frameworks of individual CAVs, i.e. the “individual gain” optimization
approaches. In Section 2, the main cooperative vehicle control strategies, i.e. the “common good” optimization
approaches, are reviewed. Section 3 introduces road infrastructure control methods. Finally, a summary and
some future research directions are proposed at the end of the chapter.

1 Connected Vehicle Control

The anticipation and prediction potential of connected vehicles opens the door to much more energy-efficient
control approaches. CAVs are even more promising because of their more precise positioning and control. In this
section, we present the control of vehicles aiming at improving their own energy efficiency, without consideration
of the neighboring vehicles energy consumption (“individual gain” optimization).

Two main strategies can be distinguished to improve the energy efficiency of connected vehicles: eco-routing
that consists in route choice optimization, and eco-driving that corresponds to the optimization of vehicles speed
profiles. They are presented in the following, and should be used jointly to increase energy efficiency (Thibault et
al., 2018). For the sake of completeness, note that an energy-efficient driving would also include strategic decisions
such as vehicle purchase, maintenance, reduction of on-board elements weight, and reduction of the use of air
conditioning systems. For example, Lee et al. (2013) indicate that during idling condition, the fuel consumption
of a conventional gasoline engine vehicle could increase up to 90% because of air-conditioning operation. An
overview of the techniques and algorithms to improve energy efficiency of CAVs is proposed by Guanetti et al.
(2018).

1.1 Eco-routing

Route choice is a major factor in vehicles energy consumption. Intuitively, a driver would usually choose the
shortest travel distance or the fastest travel time route. However, these are not always the most energy-efficient
routes because the shortest route may be partially congested, and the fastest route may be longer and contain
high speed limit segments (Y. Huang et al., 2018). Kuo (2010) proposes a model that indicates that the most
energy-efficient route could have 25% reduction in fuel consumption over the fastest route and 23% over the
shortest route. As a result, a Swedish study presented by Ericsson et al. (2006) indicates that in 46% of cases
the drivers’ spontaneous route choices were not the most fuel-efficient routes.

Hence, an energy-efficient driving should integrate an eco-routing algorithm that optimizes the route choice
in terms of energy consumption. The eco-routing optimization problem can be formulated as follows

p*(o,d) = argminz gr(0k) (4a)
PEP  Yep

subject to no = o, (4b)

np| = d. (4c)

where P is the set of all paths p = {no, ..., nq} between origin o and destination d, and p* is the optimal route.
Function g returns the energy consumption associated with the travel on segment k. Usually, gr depends on
the parameters of segment k, that can be time-dependent and are denoted 0 (road congestion, road type and
grade, speed limit, traffic light signals, etc.). These parameters have a great impact on energy consumption.
For example, Jin et al. (2016) indicate that a vehicle traveling on a 250-meter freeway section with a 6% grade
increases its fuel consumption of 86% in comparison with the same section, with identical initial speed, final
speed, and trip time, but with a 0% grade.

In addition of energy consumption, energy-efficient control strategies also have to pay special attention to
travel time and distance. Hence, some eco-routing algorithms formulate the optimization problem with the travel
time explicitly appearing either in the constraints (Zeng et al., 2016) or in the objective function (De Nunzio et
al., 2017a). In the case of a bi-objective function, the solution found can be a Pareto-Optimal route.

Different methods can be used to solve the eco-routing optimization problem. For example, some authors
implement Dijkstra-type algorithms (Kluge et al., 2013), while others use heuristic searches (Nannicini et al.,
2012). To reduce the set of possible solutions, eco-routing algorithms can consider additional constraints on
the maximum travel distance. A comparison of different eco-routing formulations is proposed by Kubicka et al.
(2016): one of them averages the observed energy consumption, another one estimates fuel consumption with a
regression model, and the last one uses a physical energy model. De Nunzio et al. (2017b) present an innovative
eco-routing algorithm especially adapted to EVs in an urban environment, and that considers the impact of
onboard accessories and systems on the electricity consumption. The approach considers historical map data
and available average traffic speeds to optimize the route choice. De Nunzio et al. (2018) propose a formulation
adapted to HEVs, in which a constraint on the final SoC is defined. However, the eco-routing optimization is
relaxed and solved as a standard shortest-path problem (SPP), the SoC constraints being a-posteriori enforced.



The optimization is based on a semi-analytical strategy that ensures fast and accurate solutions. Ojeda, Chasse,
and Goussault (2017) present an approach related to energy-efficient route choice for heavy-duty vehicles, which
is quite different from eco-routing strategies as they can only travel on a limited amount of roads. In this work,
the approach consists in a precise reconstruction of the characteristics of the road before departure. This kind
of tool can be of great interest for fleet managers as it allows them to precisely quantify the fuel cost of different
itineraries.

Anticipating the evolution of traffic is a particularly critical point in the development of eco-routing algo-
rithms. This could be enhanced by implementing cooperative eco-routing approaches, in which the impact on
energy efficiency is analyzed at the network level, rather than at the vehicle level only (Guanetti et al., 2018).

1.2 Eco-driving

In addition of eco-routing algorithms that optimize route choice, it is essential to reduce the occurrences and
the intensity of the acceleration phases as they are the ones that consume the most energy. In other words,
the optimal speed profile in terms of energy efficiency is a constant speed. However, this instruction is usually
impossible to follow in real traffic conditions, especially in an urban environment with traffic light signals, road
congestion, pedestrians, cyclists, road grade, different speed limits etc. Hence, the core objective of eco-driving is
to predict the traffic evolution and deduce accordingly a speed profile as smooth and energy-efficient as possible
along a given route (Y. Huang et al., 2018). For example, Xia et al. (2013) present a study that shows that it
can be more energy-efficient to have high acceleration and deceleration to catch green lights, rather than idling
at red signals and starting from stops.

A key point of eco-driving is the choice of the targeted cruise speed. The objective is to travel at the
speed associated with the lowest energy consumption rate, expressed in L /100 km for internal combustion engine
vehicles (ICEVs) and in kWh/100 km for EVs. As indicated by Pulkrabek (2004), the energy consumption rate
is indeed not constant, as

e firstly, the rate decreases with the increase of vehicle speed. The reason is that heat losses are reduced at
higher engine speed;
e then, the rate starts increasing at high vehicle speed due to increased friction losses.
As a result, the curve representing fuel consumption rate as a function of vehicle speed shows a U-shape.
The optimal speed depends on the vehicle and engine sizing, and on the powertrain type (diesel, gasoline, EVs,

HEVs). Fig. 3 represents the fuel consumption rate-vehicle speed curve for different passenger cars (Yang et al.,
2018).
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Figure 3: Fuel consumption rate as a function of vehicle speed, based on survey reports of different
passenger cars (Yang et al., 2018) [©2018 Yang et al.].

Note that vehicles speed profile optimization impacts many other metrics than energy consumption and
CO2 emissions. Hence, eco-driving algorithms may have other complementary objectives: reducing pollutant
emissions such as NOx and particulate matter (PM) emissions, increasing safety, increasing passenger’s comfort
(by ensuring a low jerk), reducing the travel time, etc.



In the following, a formulation of the eco-driving problem and a discussion about its technical solutions are
proposed. Let us denote the state of the vehicle under consideration z(t) = {s(t),v(t),&(t)}, and its control
u(t) = {Tm(t), Te(t), Fu(t)}. The variables s(t), v(t), and £(t) are respectively the position, the speed, and the
state of charge (SoC) of the vehicle at time ¢. The variables Tm(t), Te(t), and Fy(t) denote respectively the
electric motor torque, the internal combustion engine torque, and the forces applied by frictional brakes. This
formulation is well adapted to HEVs. Note that for ICEVs, £ and Ty, should not be considered. Similarly, T,
should not be considered with EVs. Based on the vehicle dynamics (cf. Eq. 1), f is the state vector field that
returns the new vehicle state from its control and previous state. Function g returns the energy consumption
rate from the vehicle state and control. In an urban environment, the eco-driving problem can be separated into
subproblems such that for each single segment of the vehicle’s route, the following optimization problem is solved

minimize J = /0 f g(u, x(t))dt (5a)
subject to  z(t) = f(u,z(t)), (5b)
0 < s(t) < s, (5¢)
Umin (2, 5(t)) < 0(t) < Vmax(t, 5(1)), (5d

gmin S §(t) S gma)q
5(0) =0, v(0)=wv, £(0)=4¢,
s(te) = se,  w(te) =vr,  §(tr) =& (5g

Sciarretta et al. (2015) present a complete overview of the eco-driving problem constraints and parameteri-
zation. In short, Eq. 5c - 5e are the state constraints. In particular, Eq. 5d represents the fluctuation of traffic
speed that can be due to road congestion, speed limits, traffic light signals, etc. Eq. 5f and Eq. 5g correspond
respectively to the initial and the terminal constraints of the segment under consideration.

Two paradigms aiming at solving eco-driving problems can be differentiated: offline optimizations that assume
that all road and traffic characteristics and constraints are known in advance (or at least estimated with increased
awareness thanks to connectivity), and online optimizations that use prediction models to perform real-time-
capable control, e.g., model predictive control (MPC) approaches (Sciarretta et al., 2015). In practice, offline
solutions are based on a horizon t¢; that corresponds to the travel time of the whole trip. Conversely, online
solutions are based on a much shorter horizon t¢, over which the behavior of the preceding and the surrounding
vehicles needs to be predicted.

Sciarretta et al. (2015) present some advancements in online eco-driving approaches. For ICEVs, the authors
propose a parametric optimization technique inspired by the analytical solution of a simplified version of the
eco-driving optimal control problem. For HEVs, a bi-level algorithm that tries to decouple energy-optimal drive
control from hybrid energy-management control is presented.

As indicated previously, eco-driving strategies for EVs and HEVs are promising but they introduce additional
challenges because of their limited range, recharge times, and ability to regenerate energy during deceleration
phases, which add constraints to the optimization problem. Han et al. (2019) explain that even with full re-
generative braking, EVs would still benefit from optimized speed profiles that reduce electromechanical energy
conversion losses. Concerning ICEVs, the authors show that pulse and glide operation of the engine (chattering
optimal control) represent great energy saving potentials, but can be difficult to implement in practice. Finally,
the authors indicate that significant energy savings (5%—30% in each scenario) can be achieved by optimizing
speed profiles over conventional driving strategies. In particular, energy savings can result from a better utiliza-
tion of the energy delivered to the wheels, if vehicles are driven with lower and constant speeds, reducing the
aerodynamic drag.

A moot point in the development of eco-driving systems is the necessity to adequately take into account the
presence of preceding vehicles. To overcome this issue, Han et al. (2018) present an eco-driving control strategy
for electric CAVs. The objective is to optimize the speed profiles of CAVs in order to improve their energy
efficiency, while guaranteeing safety constraints, i.e. respecting the minimum inter-vehicle distance and maximum
speed limits. The controller is set to solve optimal control problems and return analytical state-constrained
solutions under different assumptions. According to the authors, the proposed framework is suitable for online
implementations, and significantly improves the energy efficiency without increasing trip time. Similarly, Ojeda,
Han, et al. (2017) propose an eco-driving strategy for electric CAVs based on the use of an analytical solution
in an MPC framework, which makes it suitable for a real-time use. In this approach, the controller predicts the
trajectory of the preceding vehicle under the assumption of constant acceleration. The authors indicate that the
algorithm is robust and provides near-optimal speed profiles in terms of energy consumption.

J. Zhu et al. (2019) propose an eco-driving strategy for HEVs that indicates an energy-optimal speed profile
to follow. To reduce the computation time and enable online implementation, the authors train two artificial
neural networks (ANNs): one of them is used to decide which control sequence to apply, the other one is used to
estimate the duration of each control mode in the control sequence. The control sequences include maximal hybrid
acceleration, maximal electric acceleration, maximal regenerative braking, maximal hybrid recharge, braking
and regenerative braking, optimum hybrid operation, optimum electric operation, and constant speed. These



multi-class ANNs are trained in order to return optimal speed profiles from the boundary conditions, and the
constraints of the upcoming trip, which can be estimated through connectivity and measurements. In practice,
the ANNs are trained using a database provided by the offline resolution of optimal control problems through
dynamic programming (DP). In fact, DP is an algorithm capable of providing accurate optimal solutions of the
problem, but has the disadvantage of a high computational complexity, making real-time implementations of the
optimization procedure difficult. The authors indicate that the online ANN-based speed profiles and the offline
DP-based speed profiles are reasonably close, both in terms of speed and in terms of energy efficiency. This
result highlights the interest of machine learning approaches as they give similar results but have much smaller
computation times.

In an urban environment, the broadcast of signal phase and timing (SPaT) through I2V communication
represents a real opportunity in terms of energy efficiency. This allows the CAVs to anticipate the future states
of traffic light signals (TLS) and optimize their own speed profile for a timely arrival at a green light. This
approach, known as Green Light Optimal Speed Advice (GLOSA), can be enhanced by V2V communication as
vehicles would also be aware of the traffic state ahead. De Nunzio et al. (2016) propose a strategy in which
the speed profile of a vehicle is optimized to improve the energy efficiency by catching the green lights along
an arterial road. In this work, the authors consider that the information about several successive signalized
intersections is available (I12V), but that vehicles do not communicate with each other (no V2V). As shown in
Fig. 4a, several speed trajectories are possible for the vehicle under consideration to cross all the intersections at
a green light. The proposed algorithm finds the most energy-efficient possibility among the available ones. The
impact on the energy consumption of the penetration rate of vehicles equipped with this technology is given in
Fig. 4b. It appears that the higher the penetration rate, the greater the gains in terms of energy efficiency.
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Figure 4: GLOSA-based eco-driving approach with SPaT broadcast (De Nunzio et al., 2016) [Published
with permission of John Wiley and Sons].

To conclude, it is essential to keep in mind that prior knowledge of in-trip and final trip constraints, such
as, inter alia, speed limits, road grade and geometry, state of the road, travel time and distance, and final
speed, opens the door to greater energy savings thanks to better anticipation (Han et al., 2019). Eco-driving
algorithms’ efficiency can also be improved with the consideration of other drivers’ aggressiveness, which can be
easily addressed when considering CAVs, and with the use of more complex models to predict the state of the
surrounding vehicles (Ojeda, Han, et al., 2017). Moreover, high CAVs penetration rates offer very good prospects
in terms of energy efficiency as they considerably improve the anticipation in CAV driving, car following, and
lane selection and merging. A democratization of eco-driving systems would need robust online calculations for
all types of powertrains, and the generalization of optimal in-trip advice in all situations, especially in urban
areas. This latter is enhanced by the use of 12V communication, which represents a great opportunity to develop
green waving, and to approach intersections in an energy-efficient way by anticipating SPaT (Sciarretta et al.,
2015). According to Guanetti et al. (2018), it is necessary to consider the uncertainty over the bounds on the
predicted vehicle speed. Driver safety, performance improvement, and real-time operation are identified as the
main technical challenges for the development of connected CAVs control.

2 Cooperative Vehicle Control

The first opportunity that is opened up by CAVs consists in the control of vehicles aiming at improving their own
energy efficiency, i.e. “individual gain” optimization such as eco-routing and eco-driving approaches presented
previously. In this case, CAVs communicate with each other and with the infrastructure, which ensures reliable
predictions as the need for guessing is reduced, but vehicles make their decisions individually. As a result, vehicles
can appear to be competing in some situations that involve motion conflicts.

Vehicles connectivity and automation offer the possibility to go further and develop vehicles cooperation,
i.e. vehicles that communicate (V2V and 12V) and also coordinate their movements. Coordination algorithms



enable to mitigate conflict situations and guarantee that decisions are jointly feasible (Andersen et al., 2017).
Such algorithms also open the door to optimal coordinated control, e.g., minimizing the global energy consump-
tion (“common good” optimization). Vehicles cooperation is almost impossible to implement with conventional
human-driven vehicles (HVs) due to unknown plans of neighboring vehicles and lack of precision to coordinate
speed, hence the interest in implementing this kind of approach with CAVs (Sciarretta & Vahidi, 2020a).

In practice, cooperation can consist in vehicle platooning, cooperative adaptive cruise control (CACC), lane
changing and merging control, and cooperative intersection control. These points are described and discussed
in the following. A key question in vehicles cooperation is the CAVs penetration rate necessary for significant
energy efficiency improvement.

2.1 Vehicle Platooning

Vehicle platooning consists in the formation of groups of vehicles that travel very closely together. Each platoon
is composed of a lead vehicle that controls the speed, and other vehicles that follow the speed setpoint. Vehicle
platooning represent a real opportunity in terms of energy efficiency as shorter gaps between the vehicles reduce
the aerodynamic drag coefficient. Reduced distances between the vehicles also increase road capacity.

CAVs improve opportunities for vehicle platooning as high speed V2V communication and vehicle automation
enable faster reactions resulting in reduced risk of rear-end collision and improved traffic safety. This also allows
to reduce the minimum gap between heavy-duty vehicles from about 10 m (Bonnet & Fritz, 2000) to 2 m (Al Alam
et al., 2010), ensuring higher energy efficiency and road capacity. For example, Browand et al. (2004) indicate
that an 8-10 meters gap results in an average fuel saving of 8%, while a 3-4 meters gap results in an average
fuel saving of 11%. Generally speaking, McAuliffe et al. (2017) indicate that the closer the longitudinal spacing,
the better the energy efficiency of platoons. For improved energy efficiency, note that the gaps between vehicles
could be variable, depending on the road slope (L. Zhang et al., 2020).

According to Bhoopalam et al. (2018), three levels of automated platooning can be defined, as follows

1. human-driven platooning with in-platoon resting in which the lead vehicle is handled by a driver and the
following vehicles can complete the driving tasks automatically;

2. hybrid platooning in which the following vehicles can be driverless during platooning phases;
3. driverless platooning which involve full autonomous vehicles.

It appears that vehicle platooning is particularly suitable for the movement of heavy duty vehicles, especially
on highways as they are traveling at high speed, causing high aerodynamic drag. The opportunity represented
by truck platooning in terms of aerodynamic drag reduction is illustrated in Fig. 5. Also, trucks usually have to
travel long distances on highways and could easily join neighboring trucks to form platoons, even if they have
different origins and destinations. The first studies about truck platooning for fuel saving purposes started in the
mid-1990s with the European project Chauffeur I (Bonnet & Fritz, 2000). A complete overview of fuel economy
in truck platooning can be found in L. Zhang et al. (2020).

Figure 5: Hlustration of the reduction of the aerodynamic drag in truck platooning (Peloton Technology,
n.d.) [©Peloton Technology. All rights reserved].

As mentioned above, fuel savings in truck platoons can be maximized through aerodynamic drag coefficient
reduction, which is impacted by

e the distance between vehicles, as indicated above;
e the aerodynamic-trailer configuration, e.g., trailer skirts, and trailer boat tails; (L. Zhang et al., 2020).

e the position in the platoon. For example, a study conducted with three Class 8 tractor-trailer trucks
indicates that the fuel savings of the lead, the second, and the third trucks were respectively 18%, 24%,
and 23% (Lu & Shladover, 2011). Hence, it seems to be judicious to establish a rotation of the lead vehicle,
especially in platoons that are not driverless as it would allow drivers to rest.



Several methods can be used to analyze the aerodynamic drag coefficient evolution and the potential fuel savings:
wind tunnel test, road test, track test, and simulation methods. L. Zhang et al. (2020) discuss the advantages and
disadvantages of each method. This kind of approach is useful for determining the impact of wind direction on
fuel savings. For example, Marcu and Browand (1999) indicate that there is still an interest in vehicle platooning
under crosswind conditions in terms of energy savings.

In practice, the implementation of vehicle platooning poses some issues. Sciarretta and Vahidi (2020a) indicate
that the development of truck platooning has resulted in significant challenges, e.g., platoon string stability (avoid
the amplification of disturbances from the platoon leader to the downstream vehicles.), communication needs,
control design, and formation scheduling. For example, platoons on highways may prevent other vehicles from
changing lanes or merging into the highway at on-ramps. This phenomenon is accentuated by longer platoon
sizes, especially for high traffic densities. This can be solved by dedicating lanes to CAVs and platooning vehicles
(Noorvand et al., 2017), or by developing adapted algorithms based on V2V communication that allow platoons
to change lanes, and to yield gaps for merging vehicles (M. Wang et al., 2019). Another key point for real-
world development of vehicle platooning is to ensure algorithms of suitable complexity, especially in case of large
number of vehicles platooning. Some researchers have worked in this direction. For example, Van De Hoef et al.
(2015) propose to formulate the problem of controlling a large number of trucks in a coordinated manner by using
clusters. Similarly, Van de Hoef (2016) presents a heuristic approach based on an iterative algorithm. A crucial
point in CAVS platooning consists in the communication needs. In fact, an interruption in the communication
with a small distance between vehicles can pose serious safety problems in the case of emergency braking of the
lead vehicle. Hence, it is safer to keep large gaps ahead of the platoon leader (Shladover et al., 2015).

Today, truck platooning technology has matured and major manufacturers could penetrate the market in
the near future (Sciarretta & Vahidi, 2020a). In 2016, a European project, namely the EU Truck Platooning
Challenge, gave rise to the first cross border truck platooning initiative in the world. Six truck platoons (one
of each brand: DAF, Daimler, IVECO, MAN, Scania and Volvo) departed from different European cities to
arrive in Rotterdam at the same time. Aarts and Feddes (2016) present the main results of the project and the
essential points for further development of real-world truck platooning: involvement of the end users (shippers
and haulers), clear segmentations showing where platooning can be operational, high definition maps, reliable
real-time traffic information, etc.

For improved energy efficiency, vehicle platooning should be combined with complementary strategies, such
as the ones presented in Section 1: eco-routing, eco-driving, vehicle choice, maintenance, reduction of weight,
reduction of the use of air condition systems, etc. Van De Hoef et al. (2015) propose a centralized approach
ailming at forming and controlling truck platoons. The strategy consists in

1. determining the shortest path for each truck according to their origins and destinations;
2. establishing possible platoon configurations;

3. optimizing the speed profiles of each platoon.

2.2 Cooperative Adaptive Cruise Control

Similarly, CACC research has been strongly progressing over the past few years. CACC is basically an enhanced
adaptive cruise control (ACC) system which, in addition to using range sensors to adjust the distance from the
vehicle ahead, anticipates the motion of neighboring vehicles with a much quicker response through V2V and/or
12V communication. For example, Milanés et al. (2013) indicate that the communication delay to relay a message
from the first to the fourth vehicle can be about only 0.1 seconds with CACC, against more than 5 seconds with
autonomous ACC, as they have to witness speed or direction changes of the vehicle in their direct line of sight
to react and adapt their own behavior. An illustration of vehicles performing CACC is given in Fig.6.
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Figure 6: Illustration of vehicles forming a CACC string.

The fundamental difference between vehicle platooning and CACC is that a platoon is necessarily composed of
a lead vehicle, that other vehicles are following as precisely as possible. In other words, vehicle platooning consists
in a hierarchical control structure, while CACC structures allow communication between all vehicles (Sciarretta
& Vahidi, 2020a). Usually, vehicle platooning is based on a constant-distance gap, i.e. a constant distance that
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does not depend on the speed, while CACC considers a constant-time-gap, i.e. a distance proportional to vehicles
speed (Shladover et al., 2015).

The motivations of CACC are very similar to those of vehicle platooning: improving traffic flow, safety,
comfort, convenience, customer satisfaction, and decreasing fuel consumption. According to Nowakowski et al.
(2010), the use of high-speed communication in CACC systems could reduce the average gap between vehicles
from 1.4 seconds to 0.6 seconds, which should result in an increase in energy efficiency and in highway lane
capacity. H. Liu et al. (2020) compare the 100% CACC and the 100% ACC, and reveal that in the CACC
scenario, the fuel consumption rate can be reduced by half, and the capacity can increase up to 49%, depending
on the traffic demand. Safety can be improved in CACC systems by developing collision warning or mitigation
systems, but CACC alone is not primarily a safety system (Shladover et al., 2015).

CAVs are designed to communicate both with the infrastructure (V2I/I2V), and with other vehicles (V2V).
According to Shladover et al. (2015), two major uses of V2I/I2V communication in CACC systems are the
implementation of

e variable speed limits (VSL), aiming at reducing congestion at bottleneck locations by lowering upstream
vehicle speeds;

e arterial coordinated start, that coordinates the start of vehicles waiting at a red traffic signal when the signal
turns green. In urban areas, arterial coordinated start is particularly promising because of its simplicity
and potential huge impact on intersections throughput (Lioris et al., 2016).

In CACC systems, V2V communication consists in sharing at least the vehicle location, speed, acceleration,
intentions, and performance limitations. This communication can be used simply to develop more performing
ACC, but it also opens the door to much more complex CACC systems, in which vehicles are able to anticipate
their decisions by communicating with vehicles that are beyond their direct line of sight. This would greatly
contribute to stabilizing the responses of the CACC-equipped vehicles. As with vehicle platooning, V2V CACC
is especially promising on highways.

In practice, several string formation and dissolution strategies for improved energy efficiency can be imple-
mented, with differing connectivity architectures and collaboration levels. These strategies can be based on, inter
alia, classical controllers, receding horizon controllers, constrained optimization based on Pontryagin’s Minimum
Principle (Dollar et al., 2020a). An overview of these approaches is proposed by Shladover et al. (2015). The
simplest approach for string formation consists in ad-hoc clustering, in which vehicles do not deliberately seek
out other CACC-equipped vehicles. In this case, the higher the CACC-equipped vehicles penetration rate, the
more efficient this approach is as there are statistically more CACC-equipped vehicles following each other. The
interest of ad-hoc vehicles clustering is negligible at low market penetration rates.

CACC string formation strategies can also rely on more developed local coordination methods. The idea is to
instruct equipped vehicles that are close to each other to speed up or slow down in order to form a cluster. The
moot point with this kind of approach is whether or not the benefits of clustering are greater than the losses due
to coordination, e.g., acceleration or deceleration and lane changes. This issue is addressed in the COMPANION
project led by Scania (Liang et al., 2013). It appears that the amount of fuel saved by a truck catching up a
platoon ahead depends on the initial distance to the platoon and the distance to the destination. Hence, as
for ad-hoc vehicle clustering, local coordination strategies are more energy-efficient at high penetration rates.
The main challenges to local coordination consist in determining the vehicles’ positions with a great precision,
while considering the traffic conditions, road slopes, etc. This kind of approach gives rise to privacy concerns
as they may need to broadcast identifying information about the vehicle to catch up. Finally, it is clear that
full autonomous vehicles, i.e. CAVs, represent a geat opportunity for local coordination implementation as they
prevent drivers from having to change lanes to join a cluster.

Another vehicle clustering strategy consists in global coordination, i.e. an approach that coordinates vehicles
with similar origins and destinations in order to form a cluster before they enter the highway (Larson et al.,
2014). Ideally, vehicles’ routes and speed profiles are adjusted to arrive at the same time at the highway entry
points. This poses a significant challenge because of the uncertainty of road traffic, and requires long-range
communication. In practice, it is likely that this kind of approach will make CACC-equipped vehicles wait before
enough vehicles have gathered to cluster together and enter the highway. Through this approach, the moot point
is the waiting time before departure, which is difficult to get accepted, especially for short trips. Nevertheless,
global coordination strategies can be a good alternative at low penetration rates, when ad-hoc clustering and
local coordination approaches are inefficient.

CACC string dissolution strategies also require special attention in order to avoid creating new traffic prob-
lems. According to Shladover et al. (2015), a vehicle can leave a CACC string by making a lane change without
decelerating, or by braking first to deactivate the CACC function. In the future, research on CACC string disso-
lution approaches needs to be further investigated, especially in unusual cases, such as when multiple consecutive
vehicles leave at the same exit. This would require a very high precision, which could be provided by CAVs.

The potential benefits of CACC have already been investigated and quantified through simulations (Van Arem
et al., 2006) and real-world experiments (Milanés et al., 2013). In real traffic conditions, Milanés et al. (2013)
indicate that CACC is able to reduce gap variability, and to handle unequipped vehicles cutting in and out. The
authors also demonstrate that CACC has a shorter response time and a better string stability than ACC. This
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confirms the potential for a CACC system to attenuate disturbances, and improve highway capacity and traffic
flow stability.

Despite the fact that CACC offers interesting prospects in terms of energy efficiency, very little research
has been done to explicitly improve the ecological aspect of the problem. Z. Wang et al. (2017) propose an
approach aiming at minimizing the platoon-wide energy consumption and pollutant emissions at different stages
(sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining
and splitting) of the CACC system operation. In comparison with an existing CACC system, the results show
that an eco-CACC alternative may reduce the global energy consumption by 1.45% during the formation of a
platoon, and by 2.17% during platoon joining phases. As indicated previously in Section 2.1, the benefits of
vehicle clustering are much higher (Lu & Shladover, 2011) in comparison with a scenario in which no cooperative
control is implemented.

Note that several incentive strategies can be imagined to develop CACC in the future, e.g., transfer payments
from the following vehicles to the lead vehicle as they do not all equally benefit from clustering (Shladover et al.,
2015), use of managed lanes with pricing strategies (Qom et al., 2016), etc.

As with vehicle platooning, a limit must be placed on the length of CACC clusters for many reasons, e.g.,
safety, performance limitations, and integration with conventional vehicles. The main reason for this limit lies in
the need to provide sufficient lane-changing gaps for unequipped vehicles. According to Shladover et al. (2015),
the range of the wireless V2V communication system is not the limiting factor anymore as it reaches more than
300 m.

CACC systems raises the question of vehicles clustering within a string. In fact, the simplest approach is to
add vehicles in the rear as they arrive. For safety reasons, the heaviest vehicles should be at the front, especially
if there are trucks in the string. However, this complicates the string formation and dissolution problems, and
may reduce passengers comfort in light-duty vehicles. Another option is to group vehicles by destination. This
would reduce the number of maneuvers during the string formation and dissolution, thereby ensuring smoother
speed profiles, improved energy efficiency, and traffic flow (Shladover et al., 2015).

Finally, CACC offers huge opportunities in terms of energy efficiency, throughput, safety, and customer
comfort. This can even be enhanced by the development of CAVs, which are fully autonomous. CACC is also
compatible with semi-autonomous vehicles, in which the driver needs to control the steering but not the speed of
the vehicle, for example. However, this scenario would be less efficient because of human factors such as drivers’
reaction time and lack of precision. Drivers would also need a thorough understanding of how CACC works.
V2V CACC seems to produce the greatest benefits on highways, while V2I/12V CACC opens the door to new
alternatives in urban environments, especially at intersections. In the future, several challenges regarding CACC
string formation and dissolution will have to be met for a large-scale development of CACC. According to Dey et
al. (2015), the first step in the deployment of CACC systems is to establish efficient and robust communications
under highly dynamic environments. Additional issues would also need to be addressed. These include, inter alia,
the legal aspects of crashes caused by failure of the system, users’ privacy and security, technology certification,
and users’ training in the case of vehicles that are not fully autonomous. Guanetti et al. (2018) indicate that
future developments of CACC systems should pay special attention to vehicle and string stability with sufficient
robustness margins.

2.3 Lane Change and Merge

Lane change and merge (into a highway from an on-ramp or exiting to an-off ramp) represent a complex problem,
which can be explained by its combinatorial nature and the lack of information about the average speed on the
different lanes (Sciarretta & Vahidi, 2020a). Some examples of lane change and merge maneuvers are shown
in Fig. 7. CAVs offer promising prospects for overcoming the difficulties related to this problem by using V2V
communication to anticipate the intention of neighboring vehicles and estimate the traffic speed in each lane.
The knowledge of the lanes state in advance could greatly improve eco-routing and eco-driving algorithms for
CAVs by making much more judicious and smooth lane changes. For example, Kamal et al. (2016) propose a
control framework aiming at improving the energy efficiency and the travel time. In this approach, the authors
anticipate the behavior of surrounding vehicles to change lane and adjust their speed. Note that in case of lane
reductions and moving bottlenecks in congested situations, the speed of the bottleneck and the speed limit play
an important role in terms of energy efficiency, traffic flow rate, average speed, and traffic safety (Li & Sun, 2017).

In addition to the benefits brought to individual vehicles, anticipative lane selection and merging could also
have a positive impact at a larger scale, by improving the overall energy efficiency through reduced risks of
phantom jam, and smoother velocity trajectories, as indicated by Raboy et al. (2017). These global benefits
could be even greater if the vehicles cooperated, i.e. considered the impact of their decisions on their neighboring
vehicles, and behaved in a way that optimizes the “common good”. In this sense, the vehicles would not
act as independent entities, but as elements of a whole whose objective is the overall minimization of energy
consumption (Sciarretta & Vahidi, 2020a). This cooperative lane change and merge problem, with “common
good” considerations, can be addressed in two different ways:

e by implementing a collaborative distributed control, in which vehicles optimize their own behavior and
share their intentions (Nie et al., 2016; P. Liu et al., 2017);
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Figure 7: Examples of lane change and merge maneuvers.

e by implementing a centralized control, in which the problem is solved at once for a group of cooperative
vehicles.

Dollar et al. (2020b) propose to compare these two approaches in a multi-lane environment. The results indicate
that both approaches outperform the classic non-collaborative decentralized controller, i.e. when every vehicle
optimizes its behavior to improve its “individual gain”. It appears that the centralized algorithm returns the
best solutions but its computation time is less suitable for real-time implementation.

In practice, several cooperative lane change and merge strategies can be established. Lombard et al. (2017)
propose an approach based on cooperative V2V negotiation. In the same vein, the method presented by Lin et
al. (2019) consists in the use of transferable utility games, in which gaps in traffic are created in exchange for
monetary compensation. In other words, vehicles can pay to change lane faster and reduce their travel time. The
problem is solved using Nash bargaining theory, and the results reveal that this kind of approach can help reach
win-win situations.

Only a few studies have evaluated the energy savings of cooperative lane change and merge. One of them is
presented by Awal et al. (2015). The authors propose a cooperative strategy that considers vehicles in current and
target lanes during lane changing phases. This approach is compared with the traffic model MOBIL, and traffic
simulations reveal that the cooperative approach improves merge time and rate, wait time, fuel consumption,
average velocity, and flow at the cost of a slightly increased travel time. Similarly, Talavera et al. (2018) propose
an extended CACC approach adapted to CAVs, which also ensures lane changes. The authors indicate that the
system improves traffic flow, and is also supposed to reduce fuel consumption and CO2 emissions.

Just like for other cooperative vehicle control strategies, the V2V communication delay represents a major
issue in cooperative lane change and merge approaches. Most of the works on this topic neglect this aspect of
the problem. An and Jung (2018) propose a cooperative lane change protocol that integrates the impact of V2V
communication delay. The algorithm considers bounding boxes around the vehicles in order to determine the
risk of collision. Hef et al. (2018) indicate that experiments through physical test drive and simulation reveal
that V2V communication systems with 10 Hz update rate are appropriate.

According to Raboy et al. (2020), efficient cooperative lane change and merge systems should perfectly
integrate both vehicle-based radar data and Global Positioning System (GPS) data transmitted through V2V
communication. To enhance such systems, vehicles could also use the support of 12V communication. The authors
also advocate the implementation of dynamic role assignment during lane change maneuvers, rather than fixed
roles established prior to the maneuvers.

2.4 Cooperative Intersection Control

In urban areas, signalized intersections have a major impact on the energy consumption of vehicles due to braking,
idling, and starting from stops. Currently, many traffic light signal timings are scheduled offline, and are then
deployed as fix timetables, that can vary over time, e.g., peak hours/rest of the day, week days/weekend days, etc.
To reduce idling and improve throughput at intersections, loop-detectors can be installed, in order to trigger rules
to override the pre-optimized timetables, or even to optimize the SPaT of the intersection under consideration
online (cf. Section 3.2). For this reason, the states of traffic light signals generally cannot be known in advance
with certainty. In such a scenario, it is possible to use historical data in order to estimate the probability of a
green or a red over a future horizon (Bodenheimer et al., 2014).
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CAVs offer promising opportunities to improve the energy efficiency at intersections (Sciarretta & Vahidi,
2020a). In fact, their connectivity and automation features can be used to control them at intersections in a
cooperative way, i.e. in a “common good” approach. As explained in Section 2.2, this can be achieved by CACC
systems that improve the throughput by allowing coordinated vehicles starts, thanks to 12V communication.

In the near future, it is conceivable that some urban areas may only be accessed by CAVs. In these zones
where the penetration rate of CAVs would be 100%, traffic light signals as we know them today would not be
needed anymore. For example, Charalampidis and Gillet (2014) propose a framework that optimizes the speed
profiles of two vehicles approaching an unsignalized intersection. The study aims at optimizing the travel time
and smoothing the CAVs speed profiles for improved passengers’ comfort, while ensuring safety constraints. The
authors also investigate the effect of the range of the V2V communication devices, and indicate that increasing it
up to a specific value is beneficial, but the optimal speed profiles do not change after this point. Lin and Jabari
(2020) present a cooperative framework that allocates priority at autonomous intersections, based on transferable
utility games. In this approach, vehicles can pay for intersection priority. In other words, winners (time buyers)
pay losers (time sellers) in each game. Such strategies are promising as they takee into account the value of
vehicles’ time, and losers are compensated. The authors also indicate that the approach is robust to adversarial
behavior. Similarly, Miculescu and Karaman (2019) present an approach based on a polling policy, and Tachet et
al. (2016) propose to generalize the classical queuing theory to develop slot-based intersections, similar to those
commonly used in aerial traffic. The simulation results reveal that such autonomous intersections could double
capacity and significantly reduce delays, compared to conventional intersections ruled by traffic light signals.
According to S. Huang et al. (2012), reservation-based intersection control systems could improve the energy
efficiency by 50%. In fact, the energy consumption and the number of stops are greatly reduced in such systems
(Fayazi et al., 2017; Fayazi & Vahidi, 2018). Fayazi and Vahidi (2018) indicate that the number of stops can be
reduced 100 times, and the improvement in energy efficiency could reach 20%. Ahmane et al. (2013) propose an
illustration, given in Fig. 8, of such an autonomous intersection, in which vehicles negotiate the “right of way”
using V2V communication.

Figure 8: Cooperative intersection (Ahmane et al., 2013) [Published with permission of Elsevier].

More generally, a systematic literature review of intelligent intersection management systems for CAVs is
proposed by Namazi et al. (2019). The authors indicate that some works on this topic consider rule-based
methodologies (40%), while others consider optimization methodologies (45%), and hybrid methodologies (11%).
Currently, few works are based on machine learning approaches (4%). Namazi et al. (2019) also explain that the
vast majority (93%) of the articles reviewed consider a CAVs penetration rate of 100%. To be more realistic,
autonomous intersections should be compliant with mixed traffic (CAVs and conventional HVs), pedestrians,
and cyclists. According to the authors, a promising research direction to achieve this objective is to use the
feature of CAVs to collect environmental data and share them through V2V communication. Pedestrians and
cyclists could also be spotted by fixed cameras or sensors installed at intersections, and their presence could be
indicated to approaching vehicles through 12V communication. To go further, additional analysis and artificial
intelligence open the door to pedestrians and cyclists intention prediction (Continental, 2019). Continental is
currently working on the development of smarter and safer mobility in cities. An illustration of the company’s
strategy to anticipate the presence of pedestrians and cyclists is given in Fig. 9.

To go further, intelligent intersection management systems for CAVs can be used in conjunction with CACC
systems for increased energy efficiency. Jin et al. (2013) indicate that in high traffic demand scenarios, this
kind of approach could shorten the average travel time by 30% and reduce the fuel consumption by around 23%
with respect to signalized intersections. Note that such approaches slightly sacrifice the energy efficiency to form
platoons, which can be challenging in urban areas.
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Figure 9: Strategy to increase safety by communicating hidden dangers to approaching vehicles and
pedestrians at an intersection (Continental, 2019) [©2019 Continental. All rights reserved).

2.5 Traffic Harmonization

CAV technology is a great opportunity to improve traffic fluidity, safety, and energy efficiency. CAVs can optimize
their behavior in order to improve their own benefits (“individual gain” optimization), or the global benefits of
a group of cooperating CAVs (“common good” optimization).

A key point in CAV research is the management of mixed traffic (CAVs with conventional HVs), as the
penetration rate of CAVs will certainly take time before it reaches 100% (Litman, 2017). In mixed-traffic
situations, coordinated and smoother motion of CAVs could also improve the energy efficiency of the surrounding
non-automated vehicles, even at low penetration levels (Sciarretta & Vahidi, 2020a).

In mixed-traffic conditions, HVs have a strong influence on traffic flow as they increase the spread of shock
waves in the downstream direction, causing stop-and-go waves (Di Vaio et al., 2019). As indicated by Giammarino
et al. (2020), CAVs can be designed to explicitly stabilize the traffic flow and actively dampen stop-and-go waves,
which are particularly energy consuming. Vinitsky et al. (2018) present such approaches based on reinforcement
learning (RL) strategies. On highways, stop-and-go waves may appear due to the presence of bottlenecks. In
this kind of situation, Ghiasi et al. (2019) propose to optimize the speed profiles of the CAVs upstream of the
bottleneck in order to hedge against the backward shockwaves and smooth the traffic. According to the authors,
the resulting speed harmonization greatly improves the energy efficiency (between 12% and 16%, depending on
the traffic demand) and reduces environmental impacts. Similarly, Liard et al. (2020) present an approach that
optimizes the speed profiles of CAVs in order to use them as moving bottlenecks. The authors indicate that this
approach is especially beneficial when the density is low and medium, but its impact is limited in highly congested
situations. Di Vaio et al. (2019) confirm the robustness and the efficiency of such approaches to dampen down
traffic waves, while also considering delays due to V2V communication. Stern et al. (2019) propose to quantify
the potential benefits of traffic stabilization by realizing field experiments with 20 to 21 HVs and 1 CAV (~ 5% of
the vehicle fleet) traveling along a circular ring road, as represented in Fig. 10. Vehicle velocity and acceleration
data are collected, and emissions are estimated using the MOVES model. The results reveal that the presence of
a stabilizing CAV may improve the energy efficiency by 15%. The potential benefits on pollutant emissions are
even greater (up to 73% reduction for nitrogen oxides). These results are promising, but it is essential to keep in
mind that this approach represents a very much tamed scenario, and that less significant impacts are expected
when the density of vehicle is lower, or when there are several lanes, as the stop-and-go waves would be rarer
and of lower intensity.

The effectiveness of the harmonizing effect of CAVs varies according to traffic conditions and CAVs penetration
rate. Y. Zhang and Cassandras (2018) analyze this phenomenon in an urban environment, under mixed-traffic
conditions. The authors propose a control strategy for vehicles crossing signal-free intersections, described as
follows:

e speed profiles are optimized for the CAVs in order to cross the merging zone in a limited time while
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Figure 10: Vehicles traveling along a circular ring road.

minimizing the acceleration and comply with safety requirements;
e HVs are subject to priority rules.

The average fuel consumption is measured for different CAVs penetration rates, and different traffic conditions,
and is compared with the energy consumption under TLS control, i.e. conventional signalized intersections. In
the scenario proposed by the authors, the interest of CAVs in terms of energy efficiency appears to be obvious
because the energy consumption decreases as the penetration rate increases. However, the strategy seems to lose
its usefulness under heavy congestion. The authors indicate that the limit below which the approach is beneficial
is the critical flow rate, which depends on the road capacity, the speed limit, the number of lanes, etc.

To go further, CAVs cooperation too can have a positive effect on traffic-low performance and energy effi-
ciency. For example, Van Arem et al. (2006) study the impact of CACC for a highway-merging scenario from four
to three lanes. The simulation results indicate that CACC can have a positive impact on traffic throughput, and
can increase highway capacity near lane drops. This is particularly true in conditions with high-traffic volume
and high penetration rate of CAVs performing CACC. The authors indicate that a low penetration rate could
even lead to a degradation of traffic-flow performance. H. Liu et al. (2020) analyze the impact of CACC on energy
efficiency in a complex multi-lane mixed-traffic stream. As indicated previously, the fuel consumption rate of the
100% CACC is reduced by 50% and the capacity could be increased by 49%, compared to the 100% ACC scenario.
At 40% penetration rate, the capacity can still be increased by 15% to 19% when adapted control strategies are
implemented. The study presented by H. Liu et al. (2020) was performed at a simple freeway merging area, but
it can easily be extended to more complex scenarios such as complete freeway or arterial corridors.

Note that other CAV-based strategies than CACC can also improve the overall energy efficiency under mixed-
traffic conditions. For example, Wan et al. (2016) analyze the energetic impact in an urban environment of a
speed advisory system that optimizes CAVs’ speed limits in order to reduce idling at red lights. It appears that
this approach not only improves the energy efficiency of CAVs equipped with this speed advisory system, but also
benefits HVs and decreases their fuel consumption, with a compromise in average traffic flow and travel time.
The authors indicate that the global fuel consumption decreases with the increment of CAVs penetration rate.
The reason is that HVs are more likely to follow a smoother-moving CAV.

In conclusion, CAVs and their many cooperative strategies have a positive impact on the overall energy
efficiency under mixed-traffic conditions. Their impact varies according to traffic congestion and CAVs penetra-
tion rate. In order to improve their impact on energy efficiency, CAVs could cooperate, and coordinate several
strategies such as, inter alia, CACC, cooperative lane change and merge, autonomous intersection, and speed
harmonization.

3 Road Infrastructure Control

In Sections 1 and 2, the CAVs control strategies, either for the optimization of their “individual gain” or the
“common good”, are based on V2V and/or 12V communications. In this section, we review the main infrastructure
control strategies. Such approaches are based on V2I communication. In practice, they consist in collecting data
from vehicles traveling in the road network (vehicle density, traffic flow, average speed, etc.), which is greatly
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simplified with the current development of connected vehicles. Then, the infrastructure actuators are controlled
in order to optimize some metrics (global energy consumption, pollutant emissions, traffic throughput, average
travel time, etc.). Usually, these actuators are speed limits and traffic light signals, but they can also include for
example dynamic routing, which consists in redistributing the traffic demand over the network in a more efficient
way by controlling the split ratios at intersections (Othman et al., 2019).

For optimal CAVs control and maximum energy efficiency, the control of infrastructures, which is based on V2I
communication, should be coordinated with the control of CAVs, which is based on V2V and 12V communications.

3.1 Variable Speed Limits

One main possibility in the control of road infrastructures is variable speed limits (VSL), which consists in
imposing variable location-dependent speed limits across the road network. A general overview of the theoretical
background and the main strategies of variable speed limits frameworks is proposed by (Khondaker & Kattan,
2015b).

Many VSL approaches can be found in the literature. Some of them aim at improving safety (Levin et
al., 2019; Wu et al., 2019; Robinson et al., 2000), increasing road capacity and traffic flow (Frejo et al., 2019;
Hadiuzzaman & Qiu, 2013; Hegyi et al., 2008), reducing pollution (S. K. Zegeye et al., 2012), and improving the
energy efficiency (Othman et al., 2020). Usually, all these approaches consist in harmonizing the traffic speed.
Their control frameworks can therefore have a positive impact on several of these metrics (Du & Razavi, 2019),
and multi-criteria optimization may not always be necessary (Khondaker & Kattan, 2015a). VSL strategies can
be of particular interest in cases of poor visibility, especially under foggy conditions (Zhao et al., 2019).

Most VSL approaches for improved energy efficiency are designed to control a highway environment. For
example, Zu et al. (2018) formulate a VSL problem as a convex quadratic optimization problem in order to
minimize the global energy consumption. B. Liu et al. (2011) propose a VSL control strategy based on the
vehicular trajectory that minimizes the fuel consumption of a single vehicle under certain traffic conditions.
Another framework is proposed by S. K. Zegeye et al. (2012) to control VSL on highways. The authors implement
an MPC strategy. Such approaches are valuable as MPC is compatible with the uncertainties of the traffic
models, and it can handle non-linear and non-convex optimization. However, special attention must be paid to
the computation time to make it tractable for real-time operation, especially when the control inputs are very
numerous. To address this issue, MPC approaches can be parameterized to reduce the number of control inputs
(Othman et al., 2020; S. K. Zegeye et al., 2012).

Some VSL approaches have been designed to be compliant in urban environments. For example, a framework
to find the optimal speed limit of a single road section is proposed by De Nunzio et al. (2014). Usually, these
strategies are based on multi-criteria objective functions in order to improve both the energy efficiency and the
traffic performance, and avoid trivial solutions, e.g., minimum or maximum speed limits everywhere. Othman
et al. (2020) propose to optimize the weighted sum of energy consumption and total distance traveled by road
users, De Nunzio and Gutman (2017) minimize the energy consumption and the total time spent by vehicles
by implementing a method based on shock waves theory, and Tajali and Hajbabaie (2018) harmonize the speed
and maximize the outflow. Similarly, Van den Berg et al. (2007) propose a hybrid MPC framework aiming at
minimizing the travel time in mixed urban and highway networks.

Machine learning strategies represent a promising opportunity for VSL implementation as they could greatly
reduce computation times. For example, an RL approach aiming at optimizing the total network throughput,
the delay time, and the emissions is proposed by F. Zhu and Ukkusuri (2014).

As mentioned previously, the efficiency of V2I communication-based VSL approaches can be enhanced when
coordinated with cooperative strategies based on V2V and 12V communications. For instance, CACC systems
can be subject to VSL control strategies for improved traffic fluidity and energy efficiency (Shladover et al., 2015).

3.2 Traffic Light Adaptive Control

In Section 2.4, we reviewed the use of V2V and/or 12V communication to control intersections, that can even
be unsignalized when the penetration rate of CAVs reaches 100%. In this section, we address the use of V2I
communication in order to control the TLS, i.e. control their cycle time, split time and offset, and improve the
overall energy efficiency of the vehicles (HVs and CAVs) traveling in the network. Note that instead of using V2I
communication (for HVs that are not connected for example), one may imagine a system with fixed sensors in
order to count and locate vehicles. These sensors include loop detectors, proximity sensors, or cameras associated
with image classification systems (Kataria & Rani, 2019). In this sense, many studies consider the control of
TLS in order to maximize the bandwidth (Gomes, 2015) and minimize the travel time (Kamal et al., 2015; He
et al., 2012). Several strategies aim at performing this function: SCOOT (Split, Cycle and Offset Optimisation
Technique) (Hunt et al., 1981), SCATS (Sydney Coordinated Adaptive Traffic System) (Lowrie et al., 1982),
RHODES (Real-time Hierarchical Optimized Distributed Effective System) (Mirchandani & Head, 2001), TUC
(Traffic-responsive Urban Control) (Dinopoulou et al., 2006), max-pressure (Varaiya, 2013), TRANSYT-7F,
Synchro, PASSER, TSOP, etc. (Gomes, 2015). Also, few TLS control strategies explicitly consider the reduction
of energy consumption (Osorio & Nanduri, 2015; Khamis & Gomaa, 2012; Stevanovic et al., 2009).
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On highways, it is possible to regulate the entering traffic flow through ramp metering, that can be applied
on on-ramps. Some authors propose ramp metering approaches that aim at reducing traffic emissions (Csikds
et al., 2011; Pasquale et al., 2015). An overview of ramp metering algorithms is proposed by Papageorgiou and
Kotsialos (2002).

For optimal energy efficiency and improved throughput, both V2V /I2V and V2I communication-based ap-
proaches should be coordinated, i.e. a bi-directional CAV-infrastructure communication should be proposed
(B. Xu et al., 2018; De Nunzio et al., 2017; Goodall et al., 2013). For example, B. Xu et al. (2018) present
an approach that combines TLS control and eco-driving, i.e. the control of vehicles’ speed profiles, in a 100%
CAVs environment. The objective of this study is to optimize the TLS timing and the vehicles’ arrival time at
the intersection in order to reduce the total travel time and the overall energy consumption. The results reveal
a significant improvement of energy efficiency and traffic performance, both under constant and varying traffic
demand conditions. As mentioned in Section 2.4, the communication range has a significant impact on the per-
formance of such approaches: a wider communication range gives better results. In this study, it seems that the
better results are obtained with a communication range of about 800 m. The TLS cycle length is also of major
importance, and the ideal length is 60 s, according to the authors. In the same vein, De Nunzio et al. (2017)
present a strategy based on the same control actuators (traffic light offsets and recommended speeds) in order to
maximize bandwidth along an arterial, which corresponds mainly to improved energy efficiency, lower idling time
and number of stops. According to the authors, the impact on travel time mainly depends on the speed advisory.
The results of this study show that this kind of approach outperforms other existing strategies, especially in
comparison with TLS control and eco-driving when they are not simultaneously controlled. Also, the approach
is particularly efficient under free-flow traffic conditions, and energy consumption is reduced without increasing
travel time. TLS control can also be coordinated with CACC-enabled strategies. As indicated in Section 2.2,
this could consist in arterial coordinated start, that coordinates the start of vehicles waiting at a red traffic signal
when the signal turns green (Lioris et al., 2016; Shladover et al., 2015). To go further, one may also imagine a
framework in which the TLS offsets are optimized in order to minimize the idling of CACC strings (H. Liu et al.,
2019).

It is also possible to coordinate two control strategies that are both based on V2I communication. For
example, De Nunzio et al. (2015) introduce a strategy that maximizes bandwidth along an arterial through TLS
control and VSL. Here again, the objective is to improve the energy efficiency and reduce the travel time, and
the authors indicate a potential dramatic reduction of energy consumption without increasing the travel time.
Similarly, S. Liu et al. (2017) and S. K. Zegeye (2011) propose approaches that control both TLS and VSL to
reduce energy consumption.

To improve the efficiency of TLS control strategies, the behavior of vehicles, especially HVs, should be
considered and predicted. The coordination of multiple intersections, as in bandwidth maximization approaches,
also opens the door to further improvement of both the energy efficiency and the traffic performance (B. Xu et
al., 2018). Also, such systems need to be robust and adaptable to any type of intersection and network in order
to be deployable on a large scale (De Nunzio et al., 2017). Finally, it would be interesting to analyze the system
response to a traffic demand much higher than the network capacity (De Nunzio et al., 2015).

Summary

CAVs offer huge opportunities in terms of energy efficiency, pollutant emissions, throughput, safety, and comfort
improvement because of the possibilities regarding the certainty of predictions of their behavior and the precision
of their powertrain control. A first approach to reduce their energy consumption consists in the development of
simple rule-based control strategies. However, these are usually not sufficient and optimization-based strategies
appear to be necessary. Such strategies involve the need of precise and reliable energy consumption models,
accurate traffic models for prediction purposes, performing optimization algorithms, as well as fast and long-
range communication devices.

One first layer in the optimal control of CAVs corresponds to eco-routing and eco-driving strategies based on
V2V and 12V communications. In this case, the vehicles are performing “individual gain” optimization. These
approaches are more efficient when the CAVs penetration rate is high, because the predictions are more reliable
and the need for guessing is reduced. Overall, the more knowledge a CAV has about its in-trip and final trip
constraints before its departure, the more effective this kind of approach is. Some moot points remain regarding
the consideration and the prediction of HVs’ aggressiveness.

Another layer in the optimal control of CAVs is the development of cooperative strategies between CAVs in
order to improve the overall energy efficiency. These approaches are also based on V2V and 12V communications,
but vehicles are here considering the impact of their decisions on the behavior and the energy consumption of
other vehicles, i.e. vehicles are performing a “common good” optimization. These control strategies include
vehicle platooning, CACC, lane change and merge, and cooperative intersection control. For an optimal control,
these cooperative strategies should perfectly integrate both vehicle-based radar data and GPS data transmitted
through V2V communication. Also, CAVs can have a harmonizing effect on the speed of the surrounding traffic,
especially in case of cooperating CAVs. This harmonization appears to have a beneficial impact on the global
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energy consumption, but it is difficult to estimate because it depends on the CAVs penetration rate, on traffic
congestion, and on the network architecture.

Finally, one last layer consists in the control of infrastructures, especially TLS and VSL, which are based on
V2I communication. These approaches are compatible with HVs, but the potential gains are greater with CAVs
because they are more precise and have much shorter reaction times.

Based on the works reviewed in this chapter, the orders of magnitude of the gains in energy efficiency offered
by the different control strategies are summarized in Table 2. When VSL and TLS approaches are combined, it
appears that the energy consumption could be reduced by up to 40%. It is essential to note that all the control
strategies summarized in Table 2 are highly dependent on traffic conditions, CAVs penetration rate, network
architecture, etc.

Table 2: Potential energy efficiency improvement of the control strategies presented in this chapter.

Potential energy
Coatiol siuiiegy efficiency improvement

Connected control Eco-routing 10% - 15%

Eco-driving 15% — 40%
CAVs control Car following 20%

Cooperative control Cooperative intersection 20% - 50%
Harmonization effect 15%
Infrastructire control Variable speed limits control 15%
Traffic light signals control 15%

Future Directions

CAVs are considered the next major technological advance in the mobility sector. Not only do they have a
crucial role to play in road safety, but they can also greatly improve traffic fluidity, as well as energy efficiency by
reducing vehicle ownership and energy consumption rate (F. Liu et al., 2019). However, at system-wide level, the
effect of CAVs on traffic congestion and energy efficiency is still uncertain and these technologies might increase
the total fuel consumption (Brown et al., 2014; U.S. Department of Energy, 2018).

In order to optimize the overall energy efficiency, it seems that coordinating complementary control strategies
is promising. In the next years, Additional approaches involving CAVs are probably yet to be found, because of
the large field of possibilities offered by these technologies. Some directions already investigated in the literature
include:

e cooperative intersection control and CACC (Jin et al., 2013);

e VSL and CACC (Shladover et al., 2015);

e TLS control and eco-driving (B. Xu et al., 2018; De Nunzio et al., 2017);
e TLS control and VSL De Nunzio et al. (2015).

To ensure the efficiency of such approaches, as well as the safety of road users and pedestrians, it is essential to
establish efficient and robust communications under highly dynamic environments, and to consider the uncertainty
over the bounds on the predicted vehicle speed. These control approaches should be robust for all types of
powertrains, all types of road network and intersection, and under all congestion conditions. In fact, such
systems currently lack of ability to address diverse real-world driving conditions (Dey et al., 2015). Also, the
increasing number of connected vehicles on the roads leads to an increasing amount of available data, which
requires better computing capacities. In this context, machine learning methods seem to be a promising trend
both for prediction and control purposes, as they are adaptable to all types of control actuators and strategies.

In the future, additional issues need to be addressed to democratize the circulation of CAVs on a large scale.
These includes, inter alia, the legal aspects of crashes caused by failure of the system, users’ privacy and security,
technology certification, and user training in the case of vehicles that are not fully autonomous. One moot point
in the public debate is the resistance of such systems to cyber attacks.

Finally, the democratization of CAVs on a large scale requires convincing the public authorities and/or the
vehicles manufacturers to invest or change current policies to promote these technologies. To do this, a real
standardized simulation platform with representative scenarios that clearly show the benefits of deploying CAVs
on the roads seems to be missing. This is almost essential as real-world experiments in traffic control are very
long and expensive to put in place.
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