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Abstract

In view of a direct and simple improvement of vanilla
SGD, this paper presents a fine-tuning of its step-sizes
in the mini-batch case. For doing so, one estimates
curvature, based on a local quadratic model and using
only noisy gradient approximations. One obtains a
new stochastic first-order method (Step-Tuned SGD)
which can be seen as a stochastic version of the classical
Barzilai-Borwein method. Our theoretical results en-
sure almost sure convergence to the critical set and we
provide convergence rates. Experiments on deep resid-
ual network training illustrate the favorable properties
of our approach. For such networks we observe, during
training, both a sudden drop of the loss and an im-
provement of test accuracy at medium stages, yielding
better results than SGD, RMSprop, or ADAM.

1 Introduction

In the recent years, machine learning has generated
a growing need for methods to solve non-convex opti-
mization problems. In particular, the training of deep
neural networks (DNNs) has received tremendous atten-
tion. Designing methods for this purpose is particularly
difficult as one deals with both expensive function eval-
uations and limited storage capacities. This explains
why stochastic gradient descent (SGD) remains the
central algorithm in deep learning (DL). It consists in
the iterative scheme,

θk+1 = θk − γk∇JBk(θk), (1)

where J is the function to minimize (usually the empir-
ical loss) parameterized by θ ∈ RP (the weights of the
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DNN), ∇JBk(θk) is a stochastic estimation of the gradi-
ent of J (randomness being related to the sub-sampled
mini-batch Bk), and γk > 0 is a step-size whose choice
is critical in terms of empirical performance.

In order to improve the basic SGD method, a com-
mon practice is to use adaptive methods (Duchi et al.,
2011; Tieleman and Hinton, 2012; Kingma and Ba,
2015). They act as preconditioners, reducing the im-
portance of the choice of the sequence of step-sizes
(γk)k∈N. This paper focuses instead exclusively on the
step-size issue: how can we tune steps in a stochastic
context by taking advantage of curvature information
for non-convex landscapes?

Our starting point for step-size tuning is an infinites-
imal second-order variational model along the gradi-
ent direction. The infinitesimal feature is particularly
relevant in DL since small steps constitute standard
practice in training due to sub-sampling noise. Second-
order information is approximated with a first-order
quantities using finite differences. In deterministic (full-
batch) setting, our method corresponds to a non-convex
version of the Barzilai-Borwein (BB) method (Barzilai
and Borwein, 1988; Dai et al., 2002; Xiao et al., 2010;
Biglari and Solimanpur, 2013) and is somehow a dis-
crete non-convex adaption of the continuous gradient
system in Alvarez and Cabot (2004). It is also close to
earlier work Raydan (1997), with the major difference
that our algorithm is supported by a variational model.
This is essential to generalize the method to accommo-
date noisy gradients, providing a convexity test similar
to those in Babaie-Kafaki and Fatemi (2013); Curtis
and Guo (2016).

Our main contribution is a step-size tuning method
for stochastic gradient algorithms, which is built on
a strong geometrical principle: step-sizes are deduced
from a carefully derived discrete approximation of a
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curvature term of the expected loss. We provide gen-
eral convergence guarantees to critical points and rates
of convergence. Extensive computations on DL prob-
lems show that our method is particularly successful
for residual networks (He et al., 2016). In that case, we
observe a surprising phenomenon: in the early training
stage the method shows similar performances to stan-
dard DL algorithms (SGD, ADAM, RMSprop), then
at medium stage, we observe simultaneously a sudden
drop of the training loss and a notable increase in test
accuracy.

To summarize, our contributions are as follows:
• Exploit the vanishing step-size nature of DL training
to use infinitesimal second-order optimization for fine
step-size tuning.
• Use our geometrical perspective to discretize and
adapt the method to noisy gradients despite strong
non-linearities.
• Obtain general rigorous asymptotic theoretical guar-
antees (see Theorem 4.1 and Corollary 4.2).
• Show that our method has remarkable practical prop-
erties, in particular when training residual networks
in DL, for which one observes an advantageous ”drop
down” of the loss during the training phase.

Structure of the paper. A preliminary determin-
istic (i.e., full-batch) algorithm is derived in Section 3.1.
We then build a stochastic mini-batch variant in Sec-
tion 3.2, which is our core contribution. Theoretical
results are stated in Section 4 and DL experiments are
conducted in Section 5.

2 Related work

Methods using second-order information for non-convex
optimization have been actively studied in the last
years, both for deterministic and stochastic applica-
tions, see, e.g., Royer and Wright (2018); Carmon
et al. (2017); Allen-Zhu (2018); Krishnan et al. (2018);
Martens and Grosse (2015); Liu and Yang (2017); Cur-
tis and Robinson (2019).

BB-like methods are very sensitive to noisy gradient
estimates. Most existing stochastic BB algorithms
(Tan et al., 2016; Liang et al., 2019; Robles-Kelly and
Nazari, 2019) overcome this issue with stabilization
methods in the style of SVRG (Johnson and Zhang,
2013), which allows to prescribe a new step-size at every
epoch only (i.e., after a full pass over the data). Doing
so, one cannot capture variations of curvature within a
full epoch, and one is limited to using absolute values
to prevent negative step-sizes caused by non-convexity.
One the contrary, our stochastic approximation method
can adapt to local curvature every two iterations.

There are few techniques to analyze stochastic meth-

Large step

θ0 θ1 θ2 = argmin(q+)

J
q−

q+

Figure 1: Illustration of negative and positive curvature
steps. The function q− represents the variational model
at θ0, with negative curvature. Concavity suggests
to take a large step to reach θ1. Then, at θ1, the
variational model q+ has positive curvature and can
be minimized to obtain θ2.

ods in non-convex settings. An important category
is the ODE machinery used for SGD (Davis et al.,
2020; Bolte and Pauwels, 2020), ADAM (Barakat and
Bianchi, 2018) and INDIAN (Castera et al., 2019). In
this paper, we use instead direct and more traditional
arguments, such as in Li and Orabona (2019) in the
context of DL.

3 Design of the algorithm

We first build a preliminary algorithm based upon
a simple second-order variational model. We then
adapt this algorithm to address mini-batch stochastic
approximations.

3.1 Deterministic full-batch algorithm

Second-order infinitesimal step-size tuning.
Assume that J :RP 7→ R is a twice-differentiable func-
tion. Let θ ∈ RP . Given an update direction d ∈ RP ,
a natural strategy is to choose γ ∈ R that minimizes
J (θ+ γd). Let us approximate γ 7→ J (θ+ γd) around
0 with a Taylor expansion,

qd(γ)
def
= J (θ) + γ〈∇J (θ), d〉+

γ2

2
〈∇2J (θ)d, d〉. (2)

If the curvature term 〈∇2J (θ)d, d〉 is positive, then qd
has a unique minimizer at,

γ? = − 〈∇J (θ), d〉
〈∇2J (θ)d, d〉 . (3)
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On the contrary when 〈∇2J (θ)d, d〉 ≤ 0, the infinites-
imal model qd is concave which suggests to take a
large step-size. These considerations are illustrated on
Figure 1.

Tuning gradient descent. In order to tune gradi-
ent descent we choose the direction d = −∇J (θ) which
gives,

γ(θ)
def
=

‖∇J (θ)‖2
〈∇2J (θ)∇J (θ),∇J (θ)〉 . (4)

According to our previous considerations, an ideal
iterative process θk+1 = θk − γk∇J (θk) would use
γk = γ(θk) when γ(θk) > 0. But for computational
reasons and discretization purposes, we shall rather
seek a step-size γk such that, γk ' γ(θk−1) (again
when γ(θk−1) > 0). Let us assume that, for k ≥ 1,
θk−1, γk−1 are known and let us approximate the quan-
tity,

γ(θk−1) =
‖∇J (θk−1)‖2

〈∇2J (θk−1)∇J (θk−1),∇J (θk−1)〉 , (5)

using only first-order objects. We rely on two identities,

∆θk
def
= θk − θk−1 = −γk−1∇J (θk−1), (6)

∆gk
def
= ∇J (θk)−∇J (θk−1) ' −γk−1CJ (θk−1), (7)

where CJ (θ)
def
= ∇2J (θ)∇J (θ) and (7) is obtained

by Taylor’s formula. Combining the above, we are led
to consider the following step-size,

γk =

{
‖∆θk‖2
〈∆θk,∆gk〉 if 〈∆θk,∆gk〉 > 0

ν otherwise
, (8)

where ν > 0 is an hyperparameter of the algorithm rep-
resenting the large step-sizes to use in locally concave
regions.

The resulting full-batch non-convex optimization
method is Algorithm 1, in which α is a so-called learn-
ing rate or scaling factor. This algorithm is present
in the literature under subtle variants (Raydan, 1997;
Dai et al., 2002; Xiao et al., 2010; Biglari and Soliman-
pur, 2013). It may be seen as a non-convex version
of the BB method (designed for strongly convex func-
tions). In the classical optimization literature it is
often combined with line-search procedures which is
impossible in our large-scale DL context. The interest
of our variational viewpoint is the characterization of
the underlying geometrical mechanism, which is key in
designing an efficient stochastic version of Algorithm 1
in Section 3.2.

Algorithm 1 Full-batch preliminary algorithm

1: Input: α > 0, ν > 0
2: Initialize θ0 ∈ RP
3: θ1 = θ0 − α∇J (θ0)
4: for k = 1, . . . do
5: ∆gk = ∇J (θk)−∇J (θk−1)
6: ∆θk = θk − θk−1

7: if 〈∆gk,∆θk〉 > 0 then

8: γk = ‖∆θk‖2
〈∆gk,∆θk〉

9: else
10: γk = ν
11: end if
12: θk+1 = θk − αγk∇J (θk)
13: end for

Illustrative experiment. Before presenting the
stochastic version, we illustrate the interest of exploit-
ing negative curvature through the ”large-step” parame-
ter ν with a synthetic experiment inspired from Carmon
et al. (2017). We apply Algorithm 1 to a non-convex re-
gression problem of the form minθ∈RP φ(Aθ− b) where
φ is a non-convex real-valued function (see Section C
of the Supplementary). We compare Algorithm 1 with
the current methods à la BB where absolute values
are used when the step-size is negative (see, e.g., Tan
et al. (2016); Liang et al. (2019) in stochastic settings)
and with Armijo’s line-search gradient method. As
shown on Figure 2, Algorithm 1 efficiently exploits
local curvature and converges much faster than other
methods.

3.2 Stochastic mini-batch algorithm

We wish to adapt Algorithm 1 in cases where gradi-
ents can only be approximated through mini-batch
sub-sampling. This is necessary in particular for DL
applications.

Mini-batch sub-sampling. We assume the follow-
ing sum-structure of the loss function, for N ∈ N?,

J (θ) =
1

N

N∑
n=1

Jn(θ), (9)

where each Jn is a twice continuously-differentiable
function. Given any fixed subset B ⊂ {1, . . . , N}, we
define the following quantities for any θ ∈ RP ,

JB(θ)
def
=

1

|B|
∑
n∈B

Jn(θ), (10)

∇JB(θ)
def
=

1

|B|
∑
n∈B

∇Jn(θ), (11)

3
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Algorithm 1
BB with absolute value
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Figure 2: Values of the loss function J (θ) against
iterations (each corresponding to a gradient step) for
the synthetic non-convex regression problem detailed in
Section C of the Supplementary. The optimal value J ?
is unknown and is estimated by taking the best value
obtained among all algorithms after 105 iterations.

where |B| denotes the number of elements of the set B.
Throughout this paper we will consider independent
copies of a random subset S ⊂ {1, . . . , N} referred
to as mini-batch. The distribution of this subset is
fixed throughout the paper and taken such that the
expectation over the realization of S in (10) corresponds
to the empirical expectation in (9). This is valid for
example if S is taken uniformly at random over all
possible subsets of fixed size. As a consequence, we have
the identity J = ES[JS], where the expectation is taken
over the random draw of S. This allows to interpret
mini-batch sub-sampling as a stochastic approximation
process since we also have ∇J = ES[∇JS].

Our algorithm is of stochastic gradient type where
stochasticity is related to the randomness of mini-
batches. We start with an initialization θ0 ∈ RP , and a
sequence of i.i.d. random mini-batches (Bk)k∈N, whose
common distribution is the same as S. The algorithm
produces a random sequence of iterates (θk)k∈N. For
k ∈ N, Bk is used to estimate an update direction
−∇JBk(θk) which is used in place of −∇J (θk) in the
same way as gradient descent algorithm.

Second-order tuning of mini-batch SGD: Step-
Tuned SGD. Our goal is to devise a step-size strat-
egy, based on the variational ideas developed earlier
and on the quantity CJ , in the context of mini-batch
sub-sampling. First observe that for θ ∈ RP ,

CJ (θ) = ∇2J (θ)∇J (θ) = ∇
(

1

2
‖∇J (θ)‖2

)
. (12)

Algorithm 2 Step-Tuned SGD

1: Input: α > 0, ν > 0
2: Input: β ∈ [0, 1], m̃ > 0, M̃ > 0, δ ∈ (0.5, 1)
3: Initialize θ0 ∈ RP , G−1 = 0P , γ0 = 1
4: Draw independent random mini-batches (Bk)k∈N.
5: for k = 0, 1, . . . do
6: θk+ 1

2
= θk − α

(k+1)δ
γk∇JBk(θk)

7: θk+1 = θk+ 1
2
− α

(k+1)δ
γk∇JBk(θk+ 1

2
)

8: ∆θBk = θk+ 1
2
− θk

9: ∆gBk = ∇JBk(θk+ 1
2
)−∇JBk(θk)

10: Gk = βGk−1 + (1− β)∆gBk
11: Ĝk = Gk/(1− βk+1)
12: if 〈Ĝk,∆θBk〉 > 0 then

13: γk+1 =
‖∆θBk‖

2

〈Ĝk,∆θBk 〉
14: else
15: γk+1 = ν
16: end if
17: γk+1 = min(max(γk+1, m̃), M̃)
18: end for

So rewriting J as an expectation,

CJ (θ) = ∇
(

1

2
‖ES [∇JS(θ)] ‖2

)
, (13)

where S denotes like in the previous paragraph a ran-
dom subset of {1, . . . , N}, or mini-batch. This suggests
the following estimator, for any subset B and θ ∈ RP ,

CJB
(θ)

def
= ∇

(
1

2
‖∇JB(θ)‖2

)
= ∇2JB(θ)∇JB(θ), (14)

to build an infinitesimal model as in (4).
Like in the deterministic case we approximate the

new target (14) with a Taylor expansion of JB between
two iterations. We obtain for any B ⊂ {1, . . . , N},
θ ∈ RP , and small γ > 0

− γCJB
(θ) ' ∇JB(θ − γ∇JB(θ)︸ ︷︷ ︸

next iterate

)−∇JB(θ). (15)

This suggests to use each mini-batch twice and compute
a difference of gradients every two iterations.1 We
adopt the following convention, at iteration k ∈ N, the
random mini-batch Bk is used to compute a stochastic
gradient,∇JBk(θk) and at iteration k+ 1

2 the same mini-
batch is used to compute another stochastic gradient
∇JBk(θk+ 1

2
), for a given θk+ 1

2
. Let us define,

∆gBk
def
= ∇JBk(θk+ 1

2
)−∇JBk(θk), (16)

1There is also the possibility of computing additional esti-
mates as Schraudolph et al. (2007) previously did for a stochastic
BFGS algorithm, but this would double the computational cost.
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Expected-GV
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Figure 3: Values of the loss function against epochs for
non-convex regression: heuristic methods (dashed lines)
of Section 3.3 are compared with Step-Tuned SGD
(plain blue). SGD serves as a reference to evidence the
drop down effect.

thereby ∆gBk forms an approximation of −γkCJBk
(θk)

that we can use to compute the next step-size γk+1. We
define the difference between two iterates accordingly,

∆θBk
def
= θk+ 1

2
− θk. (17)

Finally, we stabilize the approximation of the tar-
get quantity in (14) by using an exponential moving
average of the previously computed (∆gBj )j≤k. More
precisely, we recursively compute Gk defined by,

Gk = βGk−1 + (1− β)∆gBk . (18)

We finally introduce Ĝk = Gk/(1 − βk+1) to debias
the estimator Gk such that the sum of the weights in
the average equals 1. This mostly impacts the first
iterations as βk+1 vanishes quickly; a similar process
is used in ADAM (Kingma and Ba, 2015).

Altogether we obtain our main method: Algorithm 2,
which we name Step-Tuned SGD, as it aims to tune the
step-size every two iterations and not at every epoch
like most stochastic BB methods. Note that the main
idea behind Step-Tuned SGD remains the same than
in the deterministic setting: we exploit the curvature
properties of JBk through the quantities 〈Ĝk,∆θBk〉
to devise our method. Compared to Algorithm 1, the
iteration index is shifted by 1 so that the estimated step-
size γk+1 only depends on mini-batches B0 up to Bk and
is therefore conditionally independent of Bk+1. This
conditional dependency structure is crucial to obtain
the convergence guarantees given in in Section 4.

3.3 Heuristic construction of Step-
Tuned SGD

In this section we present the main elements which led
us to the step-tuned method of Algorithm 2 and dis-
cuss its hyper-parameters. Throughout this paragraph,
the term gradient variation (GV) denotes the local
variations of the gradient; it is simply the difference of
consecutive gradients along a sequence. Our heuristic
discussion blends discretization arguments and experi-
mental considerations. We use the non-convex regres-
sion experiment of Section 3.1 as a test for our intuition
and algorithms. A complete description of the methods
below is given in Section D, we only sketch the main
ideas.

First heuristic experiment with exact GVs. As-
sume that along any ordered collection θ1, . . . , θk ∈ RP ,
one is able to evaluate the GVs of J , that is, terms of
the form ∇J (θi)−∇J (θi−1). Recall that we denote
∆θi = θi − θi−1, the difference between two consecu-
tive iterates, for all i ≥ 1. In the deterministic (i.e.,
noiseless) setting, Algorithm 1 is based on these GVs,
indeed,

θk+1 = θk −
α‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇J (θk),

(19)

whenever the denominator is positive. Given our se-
quence of independent random mini-batches (Bk)k∈N,
a heuristic stochastic approximation version of this
recursion could be as follows,

θk+1 = θk −
αk‖∆θk‖2

〈∇J (θk)−∇J (θk−1),∆θk〉
∇JBk(θk),

(Exact-GV)

where the difference between (19) and Exact-GV lies in
the randomness of the search direction and the depen-
dency of the scaling factor αk which aims to moderate
the effect of noise (generally αk → 0). As shown in
Figure 3 the recursion Exact-GV is much faster than
SGD especially for the first ∼ 150 epochs which is often
the main concern for DL applications.

For large sums, the gradient-variation in Exact-GV
is too computationally expensive. One should therefore
adapt (Exact-GV) to the mini-batch context. A direct
adaption would simply consists in the algorithm,

θk+1

= θk −
αk‖∆θk‖2〈

∇JBk(θk)−∇JBk−1
(θk−1),∆θk

〉∇JBk(θk),

(Stochastic-GV)
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where mini-batches are used both to obtain a search
direction and to approximate the GV. For this naive
approach, we observe a dramatic loss of performance,
as illustrated in Figure 3. This reveals the necessity to
use accurate stochastic approximation of GVs.

Second heuristic experiment using expected
gradient variations. Towards a more stable approx-
imation of the GVs, we consider the following recursion,

θk+1 = θk −
αk‖∆θk‖‖∇JBk−1

(θk−1)‖
〈−ES[CJS

(θk−1)],∆θk〉
∇JBk(θk),

(Expected-GV)

where CJB
is defined in (14) for any B ⊂ {1, . . . , N}

and the expectation taken is over the independent draw
of S ⊂ {1, . . . , N}, conditioned on the other random
variables. The main difference with Exact-GV is the
use of expected GVs instead of exact GVs, the minus
sign ensures a coherent interpretation in term of GVs.
The numerator in Expected-GV is also modified to
ensure homogeneity of the steps with the other varia-
tions of the algorithm. Indeed CJB

(θk) approximates
a difference of gradients modulo a step-size, see (15).
As illustrated in Figure 3, the recursion Expected-GV
provides performances comparable to Exact-GV, and in
particular for both algorithms, we also recover the loss
drop which was observed in the deterministic setting.

Algorithm 2 is nothing less than an approximate
version of Expected-GV which combines a double use
of mini-batches with a moving average. Indeed, from
(15), considering the expectation over the random draw
of S, for any θ ∈ RP and small γ > 0, we have,

−γES[CJS
(θ)] ' ES [∇JS (θ − γ∇JS(θ))−∇JS(θ)] .

(20)

The purpose of the term Ĝk in Algorithm 2 is precisely
to mimick this last quantity. The experimental results
of Algorithm 2 are very similar to those of Expected-
GV, see Figure 3.

Let us conclude by saying that the above considera-
tions on gradient variations (GVs) led us to propose
Algorithm 2 as a possible stochastic version of Algo-
rithm 1. The similarity between the performances of
the two methods and the underlying geometric aspects
(see Section 3.2) were also major motivations.

Parameters of the algorithm. Algorithm 2 con-
tains more hyper-parameters than in the deterministic
case, but we recommend to keep the default values for
most of them.2 Like in most optimizers (SGD, Adam,
RMSprop, etc.), only the parameter α > 0 has to be

2Default values: (ν, β, m̃, M̃, δ) = (2, 0.9, 0.5, 2, 0.501)

carefully tuned to get the most of Algorithm 2. Note
that we enforce γk ∈ [m̃, M̃ ]. The bounds stabilize
the algorithm and also play an important role for the
convergence as we will show in Section 4. Note that
we also enforce the step-size to decrease using a decay
of the form 1/kδ where δ is usually close to 0.5. This
standard procedure goes back to Robbins and Monro
(1951) and is again necessary to obtain the convergence
results presented next.

4 Theoretical results

We study the convergence of Step-Tuned SGD for
smooth non-convex stochastic optimization which en-
compasses in particular smooth DL problems.

Main result. We recall that J is a finite
sum of twice continuously-differentiable functions
(Jn)n=1,...,N . Hence, the gradient of J and the gra-
dients of each Jn are locally Lipschitz-continuous. A
function g is locally Lipschitz-continuous on RP if for
any θ ∈ RP , there exists a neighborhood V of θ and a
constant L ∈ R+ such that for all ψ1, ψ2 ∈ V,

‖g(ψ1)− g(ψ2)‖≤ L‖ψ1 − ψ2‖. (21)

We assume that J is lower-bounded on RP . The main
theoretical result of this paper follows.

Theorem 4.1. Let θ0 ∈ RP , and let (θk)k∈N be a
sequence generated by Step-Tuned SGD initialized at
θ0. Assume that there exists C1 > 0 such that almost
surely supk∈N‖θk‖< C1. Then the sequence of values
(J (θk))k∈N converges almost surely and ‖∇J (θk)‖2
converges to 0 almost surely. In addition, for k ∈ N?,

min
j∈{0,...,k−1}

E
[
‖∇J (θj)‖2

]
= O

(
1

k1−δ

)
.

The results above state in particular that a realiza-
tion of the algorithm reaches a point where the gradient
is arbitrarily small with probability one. Note that the
rate depends on the parameter δ ∈ (0.5, 1) which can
be chosen by the user and corresponds to the decay
schedule 1/(k + 1)δ. In most cases, one will want to
slowly decay the step-size so δ ' 0.5 and the rate is
close to 1/

√
k + 1.

An alternative to the boundedness assumption.
In Theorem 4.1 we make the assumption that almost
surely the iterates (θk)k∈N are uniformly bounded.
While this is usual for non-convex problems tackled
with stochastic algorithms (Davis et al., 2020; Duchi
and Ruan, 2018; Castera et al., 2019)) this may be hard
to check or enforce in practice. One can alternatively
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leverage additional regularity assumptions on the loss
function as Li and Orabona (2019) did for example
for the scalar variant of ADAGRAD. This is more re-
strictive than the locally Lipschitz-continuous property
of the gradient that we used but for completeness we
provide below an alternative version of Theorem 4.1
for such a framework.

Corollary 4.2. Let θ0 ∈ RP , and let (θk)k∈N be a
sequence generated by Step-Tuned SGD initialized at θ0.
Assume that each Jn and ∇Jn are Lipschitz-continuous
on RP , n = 1, . . . , N . Then the same conclusions as
in Theorem 4.1 apply.

Proof sketch of Theorem 4.1. The proof of our
main theorem is fully detailed in Section B of the
Supplementary. Here we present the key elements of
this proof.

• The proof relies on the descent lemma: for any
compact subset C ⊂ RP there exists L > 0 such
that for any θ ∈ C and d ∈ RP such that θ+d ∈ C,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+
L

2
‖d‖2. (22)

• Let (θk)k∈N be a realization of the algorithm. Us-
ing the boundedness assumption, almost surely the
iterates belong to a compact subset C on which
∇J and the gradients estimates ∇JBk are uni-
formly bounded. So at any iteration k ∈ N, we
may use the descent lemma (22) on the update
direction d = −γk∇J (θk) to bound the difference
J (θk+1)− J (θk).

• As stated in Section 3.2, conditioning on
B0, . . . ,Bk−1 the step-size γk is constructed to be
independent of the current mini-batch Bk. Using
this and the descent lemma, we show that there
exist M1,M2 > 0 such that, for all k ∈ N?,

E [J (θk+1) | B0, . . .Bk−1]

≤ E [J (θk)]− M1

(k + 1)δ
‖∇J (θk)‖2+

M2

(k + 1)2δ
.

(23)

• The convergence of (J (θk))k∈N follows from (23)
using a martingale argument and the fact that∑+∞
k=0

1
(k+1)2δ

<∞.

• The convergence of ‖∇J (θk)‖2 is obtained by us-
ing the tower property of conditional expectations
on (23) and summing to deduce that,

+∞∑
k=0

1

(k + 1)δ
‖∇J (θk)‖2< +∞. (24)

Since
∑+∞
k=0

1
(k+1)δ

= +∞ The conclusion then

follows using analysis arguments similar to those
in Li and Orabona (2019).

5 Application to Deep Learning

We finally evaluate the performance of Step-Tuned SGD
by training DNNs. We consider four different problems
presented next and fully-specified in Section A.1 of the
Supplementary. The results with Problems (a) and (b)
are presented here while the results with Problems (c)
and (d) are relegated to the Supplementary. We com-
pare Step-Tuned SGD with two of the most popular
non-momentum methods, SGD and RMSprop Tiele-
man and Hinton (2012), and we also consider the mo-
mentum method ADAM (Kingma and Ba, 2015) which
is a very popular DL optimizer. Our method is detailed
below.

5.1 Setting of the experiments

• We consider image classification problems (CIFAR-
10 and CIFAR-100 (Krizhevsky, 2009)) and the
training of an auto-encoder on MNIST (LeCun
et al., 2010).

• The networks are slightly modified versions of
Lenet (LeCun et al., 1998), ResNet-20 (He
et al., 2016) and the auto-encoder of Hinton and
Salakhutdinov (2006).

• As specified in Table 1 of the Supplementary,
we used either smooth (ELU, SiLU) or nons-
mooth (ReLU) activations (ResNets were used
with ReLU). Though our theoretical analysis only
applies to smooth activations, we did not in prac-
tice observe a significant qualitative difference be-
tween ReLU or its smooth versions.

• For image classification tasks, the dissimilarity
measure is the cross-entropy, and for the auto-
encoder, it is the mean-squared error. In each
problem we also add a `2-regularization parameter
(a.k.a. weight decay) of the form λ

2 ‖θ‖22.

• For each algorithm, we selected the learning rate
parameter α from the set {10−4, . . . , 100}. The
value is selected as the one yielding minimum train-
ing loss after 10% of the total number of epochs.
For example, if we intend to train the network
during 100 epochs, the grid-search is carried on
the first 10 epochs. For Step-Tuned SGD, the
parameter ν was selected with the same criterion
from the set {1, 2, 5}. All other parameters of the
algorithms are left to their default values.
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• The step-size decay schedule of SGD and Step-
Tuned SGD has the form 1/qδ where q is the cur-
rent epoch index and δ = 0.501. It slightly differs
from what is given in Algorithm 2 as we apply the
decay at each epoch instead of each iteration. This
slower schedule still satisfies the conditions of Sec-
tion 4, so convergence is still granted. RMSprop
and ADAM rely on their own adaptive procedure
and are used without step-size decay schedule.

• The experiments were run on a Nvidia GTX 1080
TI GPU, with an Intel Xeon 2640 V4 CPU. The
code was written in Python 3.6.9 and PyTorch 1.4
(Paszke et al., 2019).

5.2 Results

We perform two types of experiments, a comparative
one to assess the quality of Step-Tuned SGD against
concurrent optimization algorithms, and another one
to study the effect of changing the way mini-batches
are used.

Comparison with standard methods. The re-
sults with ResNets trained on CIFAR-10 and CIFAR-
100 are displayed on Figure 4. The results for the other
two experiments are postponed to Section A.2 of the
Supplementary. In Figure 4, we display the evolution of
the values of the loss function and of the test accuracy
during the training phase. We observe a recurrent be-
havior: during early training Step-Tuned SGD behaves
similarly than other methods, then there is a sudden
drop of the loss (combined with an improvement in
terms of test accuracy which we discuss below). As
a result, it achieves best training performance among
all algorithms. This behavior is in accordance with
our preliminary observations in Figure 3. A similar
behavior has been be reported in the literature when
using SGD with a manually enforced reduction of the
learning rate after a prescribed number of epochs, see,
e.g., He et al. (2016). Our algorithm provides a similar
qualitative behavior but in an automatic way.

In addition to efficient training performance (in terms
of loss values), Step-Tuned SGD generalizes well (as
measured by test accuracy). Figure 4 even shows a
correlation between test accuracy and training loss.
Conditions or explanations for when this happens are
not fully understood to this day. Yet, SGD is often
said to behave well with respect to this matter (Wilson
et al., 2017) and hence it is satisfactory to observe that
Step-Tuned SGD seems to inherit this property.

To conclude, in most cases the adaptive step-sizes of
Step-Tuned SGD represent a significant improvement
compared to SGD. It also seems to be a good alternative

to adaptive methods like RMSprop or ADAM especially
on residual networks.

Effect of the new mini-batch sub-sampling.
Step-Tuned SGD departs from the usual process of
drawing a new mini-batch after each gradient update.
Indeed, we use each mini-batch twice in order to prop-
erly approach the curvature of the sliding loss, but
also to maintain a computing time similar to standard
algorithms.

We need to make sure that using the same mini-batch
twice is not the source of the observed advantage of
Step-Tuned SGD. We therefore performed additional
experiments where all competing methods are used
with the mini-batch drawing procedure of Step-Tuned
SGD (each mini-batch being used to compute two con-
secutive gradient steps). The results are presented
in Figure 5 and in Section A.3 of the Supplementary.
We observe that this variant actually reduces the per-
formance of concurrent methods especially in term of
training error. Thus, on these problems, changing the
mini-batch strategy is not the reason for the success of
our method.

6 Conclusion

We presented a new method to tune SGD step-sizes
for stochastic non-convex optimization within a first-
order computational framework. Using empirical and
geometric considerations, we addressed the difficulty
of preserving favorable behaviors of deterministic algo-
rithms while dealing with mini-batches. In particular,
we tackled the problem of adapting the step-sizes to
the local landscape of non-convex loss functions. For a
computational cost similar to SGD, our method uses a
step-size schedule changing every two iterations unlike
other stochastic methods à la Barzilai-Borwein. Our
algorithm comes with asymptotic convergence results
and convergence rates. The method shows efficiency
in DL with a typical sudden drop of the error rate at
medium stages, especially on ResNets.
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Figure 4: Classification of CIFAR-10 (left) and CIFAR-100 (right) with ResNet-20, corresponding to Problems
(a) and (b) described in Section A.1 of the Supplementary. Continuous lines: average values from 3 random
initializations. Limits of shadow area: best and worst runs (in training loss). For fair comparison values are
plotted against the number of gradient estimates computed (using back-propagation).
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Figure 5: Experiment on the effect of using the same mini-batch twice. For each algorithm, a mini-batch is drawn
and used twice consecutively to perform two updates as in Algorithm 2.
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A Deep learning: Details and additional experiments

A.1 Summary of the DL experiments

In addition to the method described in Section 5.1, we provide in Table 1 a summary of each problem considered.

Table 1: Setting of the four different deep learning experiments.

Problem (a) Problem (b)

Type Image classification Image classification

Dataset CIFAR-10 CIFAR-100

Network
ResNet-20

(Residual, Convolutional)
ResNet-20

(Residual, Convolutional)

Batch-size 128 128

Activation functions ReLU ReLU

Dissimilarity measure Cross-entropy Cross-entropy

Regularization λ = 10−4 λ = 10−4

Grid-search 50 epochs 50 epochs

Stop-criterion 500 epochs 500 epochs

Problem (c) Problem (d)

Type Image classification Auto-encoder

Dataset CIFAR-10 MNIST

Network
Lenet

(Classical, Convolutional)
Dense

Batch-size 128 128

Activation functions ELU SiLU

Dissimilarity measure Cross-entropy Mean-squared error

Regularization λ = 10−4 λ = 10−4

Grid-search 30 epochs 50 epochs

Stop-criterion 300 epochs 500 epochs
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A.2 Additional comparative experiments

We compared different algorithms for solving Problems (a) and (b) in Section 5, below we provide the same type
of experiments for Problems (c) and (d). The results are presented in Figure 6.
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Problem (d): training error
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Figure 6: Classification of CIFAR-10 with an adaptation of LeNet (left) and training of an auto-encoder on
MNIST (right). This corresponds to Problems (c) and (d) of Table 1. Continuous lines: average values from 3
random initializations. Limits of shadow area: best and worst runs (in training loss). For fair comparison values
are plotted against the number of gradient estimates computed (using back-propagation).

On these problems we do not observe the same drop in training loss as we observed when training the ResNets.
Yet, in every cases Step-Tuned SGD represents an improvement to vanilla SGD for a negligible additional
computational cost. RMSprop and ADAM are more efficient for training the auto-encoder. This may come from
the fact that these methods use a coordinate-wise step-size, acting as a preconditioners, which may be particularly
useful to train networks with a complex structure such as auto-encoders.

A.3 Additional experiments on the effect of using twice each mini-batch.

We present two additional experiments on the effect of using each mini-batch twice, similarly to what we presented
in Figure 5. The results for Problems (c) and (d) are reported on Figure 7.
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Problem (d): training error
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Figure 7: Experiment on the effect of using the same mini-batch twice. For each algorithm, a mini-batch is drawn
and used twice consecutively to perform two updates as in Algorithm 2. Classification of CIFAR-10 with an
adaptation of LeNet (left) and training of an auto-encoder on MNIST (right).

Like for Problems (a) and (b) we observe that changing the way of using the mini-batches is not the source of the
satisfactory results of our method. Actually, under this usage of the mini-batches, ADAM and RMSprop achieve
similar results as Step-Tuned SGD on LeNet (unlike the comparative experiments of Figure 6). Finally, these
experiments consolidate the hypothesis that coordinate-wise step-sizes are the reason for the gap of performance
between ADAM, RMSprop and Step-Tuned SGD on the training of the auto-encoder.
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B Proof of the theoretical results

We state a lemma that we will use to prove Theorem 4.1.

B.1 Preliminary lemma

The result is the following.

Lemma B.1 (Alber et al. (1998, Proposition 2)). Let (uk)k∈N and (vk)k∈N two non-negative real sequences.
Assume that

∑+∞
k=0 ukvk < +∞, and

∑+∞
k=0 vk = +∞. If there exist a constant C > 0 such that ∀k ∈ N, |uk+1 −

uk|≤ Cvk, then uk −−−−−→
k→+∞

0.

B.2 Proof of the main theorem

We can now prove Theorem 4.1.

Proof of Theorem 4.1. We first clarify the random process induced by the draw of the mini-batches. Algorithm 2
takes a sequence of mini-batches as input. This sequence is represented by the random variables (Bk)k∈N as
described in Section 3.2. Each of these random variables is independent of the others. In particular, for k ∈ N?,
Bk is independent of the previous mini-batches B0, . . . ,Bk−1. For convenience, we will denote Bk = {B0, . . . ,Bk},
the mini-batches up to iteration k. Due to the randomness of the mini-batches, the algorithm is a random process
as well. As such, θk is a random variable with a deterministic dependence on Bk−1 and is independent of Bk.
However, θk+ 1

2
and Bk are not independent. Similarly, we constructed γk such that it is a random variable with

a deterministic dependence on Bk−1, which is independent of Bk. This dependency structure will be crucial to
derive and bound conditional expectations. Finally, we highlight the following important identity, for any k ≥ 1,

E
[
∇JBk(θk)

∣∣Bk−1

]
= ∇J (θk). (25)

Indeed, the iterate θk is a deterministic function of Bk−1, so taking the expectation over Bk, which is independent
of Bk−1, we recover the full gradient of J as the distribution of Bk is the same as that of S in Section 3.2. Notice
in addition that the same does not hold for θk+ 1

2
(as it depends on Bk).

We now provide estimates that will be used extensively in the rest of the proof. The gradient of the loss
function ∇J is locally Lipschitz-continuous as J is twice continuously differentiable. By assumption, there
exists a compact convex set C ⊂ RP , such that with probability 1, the sequence of iterates (θk)k∈N belongs to C.
Therefore, by local Lipschicity, the restriction of ∇J to C is Lipschitz-continuous on C. Similarly, each ∇Jn is
also Lipschitz-continuous on C. We denote by L > 0 a Lipschitz constant common to each ∇Jn, n = 1, . . . , N .
Notice that the Lipschicity is preserved by averaging, in other words,

∀B ⊆ {1, . . . , N} ,∀ψ1, ψ2 ∈ C, ‖JB(ψ1)− JB(ψ2)‖≤ L‖ψ1 − ψ2‖. (26)

In addition, using the continuity of the ∇Jn’s, there exists a constant C2 > 0, such that,

∀B ⊆ {1, . . . , N} ,∀ψ ∈ C, ‖∇JB(ψ)‖≤ C2. (27)

Finally, for a function g : RP → R with L-Lipschitz continuous gradient, we recall the following inequality called
descent lemma (see for example Bertsekas et al. (1998, Proposition A.24)). For any θ ∈ RP and any d ∈ RP ,

g(θ + d) ≤ g(θ) + 〈∇g(θ), d〉+
L

2
‖d‖2. (28)

In our case since we only have the L-Lipschitz continuity of ∇J on C which is convex, we have a similar bound
for ∇J on C: for any θ ∈ C and any d ∈ RP such that θ + d ∈ C,

J (θ + d) ≤ J (θ) + 〈∇J (θ), d〉+
L

2
‖d‖2. (29)
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Let θ0 ∈ RP and let (θk)k∈N a sequence generated by Algorithm 2 initialized at θ0. By assumption this sequence
belongs to C almost surely. To simplify we denote ηk = αγk(k + 1)−δ. Fix an iteration iteration k ∈ N, we can
use (29) with θ = θk and d = −ηk∇JBk(θk), almost surely (with respect to the boundedness assumption),

J (θk+ 1
2
) ≤ J (θk)− ηk〈∇J (θk),∇JBk(θk)〉+

η2
k

2
L‖∇JBk(θk)‖2. (30)

Similarly with θ = θk+ 1
2

and d = −ηk∇JBk(θk+ 1
2
), almost surely,

J (θk+1) ≤ J (θk+ 1
2
)− ηk〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉+

η2
k

2
L‖∇JBk(θk+ 1

2
)‖2. (31)

We combine (30) and (31), almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+
η2
k

2
L
(
‖∇JBk(θk)‖2+‖∇JBk(θk+ 1

2
)‖2
)
.

(32)

Using the boundedness assumption and (27), almost surely,

‖∇JBk(θk)‖2≤ C2 and ‖∇JBk(θk+ 1
2
)‖2≤ C2. (33)

So almost surely,

J (θk+1) ≤ J (θk)− ηk
(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)

+ η2
kLC2.

(34)

Then, we take the conditional expectation of (34) over Bk conditionally on Bk−1 (the mini-batches used up to
iteration k − 1), we have,

E
[
J (θk+1)

∣∣Bk−1

]
≤ E

[
J (θk)

∣∣Bk−1

]
+ E

[
η2
kLC2

∣∣Bk−1

]
− E

[
ηk

(
〈∇J (θk),∇JBk(θk)〉+ 〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
)∣∣∣Bk−1

]
.

(35)

As explained at the beginning of the proof, θk is a deterministic function of Bk−1, thus, E
[
J (θk)

∣∣Bk−1

]
= J (θk).

Similarly, by construction ηk is independent of the current mini-batch Bk, it is a deterministic function of Bk−1.
Hence, (35) reads,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk) + η2

kLC2 − ηk〈∇J (θk),E
[
∇JBk(θk)

∣∣Bk−1

]
〉

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(36)

Then, we use the fact that E
[
∇JBk(θk)

∣∣Bk−1

]
= ∇J (θk). Overall, we obtain,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk) + η2

kLC2 − ηk‖∇J (θk)‖2

− ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
.

(37)

We will now bound the last term of (37). First we write,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉

= −〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉 − 〈∇J (θk+ 1

2
),∇JBk(θk)〉.

(38)

Using the Cauchy-Schwarz inequality, as well as (26) and (27), almost surely,

|〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)−∇JBk(θk)〉| ≤ ‖∇J (θk+ 1

2
)‖‖∇JBk(θk+ 1

2
)−∇JBk(θk)‖

≤ ‖∇J (θk+ 1
2
)‖L‖θk+ 1

2
− θk‖

≤ ‖∇J (θk+ 1
2
)‖L‖−ηk∇JBk(θk)‖

≤ LC2
2ηk.

(39)
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Hence,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ LC2

2ηk − 〈∇J (θk+ 1
2
),∇JBk(θk)〉. (40)

We performs similar computations on the last term of (40), almost surely

− 〈∇J (θk+ 1
2
),∇JBk(θk)〉

= −〈∇J (θk+ 1
2
)−∇J (θk),∇JBk(θk)〉 − 〈∇J (θk),∇JBk(θk)〉

≤ ‖∇J (θk+ 1
2
)−∇J (θk)‖‖∇JBk(θk)‖−〈∇J (θk),∇JBk(θk)〉

≤ LC2‖θk+ 1
2
− θk‖−〈∇J (θk),∇JBk(θk)〉

≤ LC2
2ηk − 〈∇J (θk),∇JBk(θk)〉

(41)

Finally we obtain by combining (38), (40) and (41), almost surely,

− 〈∇J (θk+ 1
2
),∇JBk(θk+ 1

2
)〉 ≤ 2LC2

2ηk − 〈∇J (θk),∇JBk(θk)〉. (42)

Going back to the last term of (37), we have, taking the conditional expectation of (42), almost surely

−ηkE
[
〈∇J (θk+ 1

2
),∇JBk(θk+ 1

2
)〉
∣∣∣Bk−1

]
≤ 2LC2

2η
2
k − ηkE

[
〈∇J (θk),∇JBk(θk)〉

∣∣Bk−1

]
≤ 2LC2

2η
2
k − ηk〈∇J (θk),E

[
∇JBk(θk)

∣∣Bk−1

]
〉

= 2LC2
2η

2
k − ηk‖∇J (θk)‖2.

(43)

In the end we obtain, for an arbitrary iteration k ∈ N, almost surely

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk)− 2ηk‖∇J (θk)‖2+η2

kL(C2 + 2C2
2 ). (44)

To simplify we assume that M̃ > ν (otherwise set M̃ = max(M̃, ν)). We use the fact that, ηk ∈ [ αm̃
(k+1)δ

, αM̃
(k+1)δ

],

to obtain almost surely,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk)− 2

αm̃

(k + 1)δ
‖∇J (θk)‖2+

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ). (45)

To prove that the sequence (J (θk))k∈N converges almost surely, remark that in particular for k ∈ N, we have,

E
[
J (θk+1)

∣∣Bk−1

]
≤J (θk) +

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ). (46)

For each k ∈ N, set

vk =
α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ), (47)

this sequence is summable. From (46) we have,

E
[
J (θk+1)

∣∣Bk−1

]
+

+∞∑
i=k+1

vi ≤ J (θk) +

+∞∑
i=k

vi. (48)

This shows that the sequence of random variable J (θk) +
∑+∞
i=k vi forms a supermartingale with respect to the

filtration induced by the increasing family of random variables (Bk−1)k∈N (see chapter 4 of Durrett (2019)). Since

it is bounded below, by Theorem 4.2.12 of Durrett (2019) we have that J (θk) +
∑+∞
i=k vi admits a limit almost

surely as k →∞. Then,
∑+∞
i=k vi tends to 0, so J (θk) converges almost surely.

We now prove that almost surely, ‖∇J (θk))‖2 converges to 0 in expectation. To do so, we go back to (45). We
have, almost surely,

2
αm̃

(k + 1)δ
‖∇J (θk)‖2≤ J (θk)− E

[
J (θk+1)

∣∣Bk−1

]
+

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ). (49)
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We now consider the expectation of (49) (with respect to the random variables (Bk)k∈N). The tower property
of the conditional expectation gives EBk−1

[E[J (θk+1)|Bk−1]] = E [J (θk+1)] so we obtain, for all k ∈ N,

2
αm̃

(k + 1)δ
E
[
‖∇J (θk)‖2

]
≤E [J (θk)]− E [J (θk+1)] +

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ). (50)

Then for K ≥ 1, we sum from 0 to K − 1,

K−1∑
k=0

2
αm̃

(k + 1)δ
E
[
‖∇J (θk)‖2

]
≤
K−1∑
k=0

E [J (θk)]−
K−1∑
k=0

E [J (θk+1)]

+

K−1∑
k=0

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ).

(51)

This can be simplified into,

K−1∑
k=0

2
αm̃

(k + 1)δ
E
[
‖∇J (θk)‖2

]
≤ J (θ0)− E [J (θK)] +

K−1∑
k=0

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ).

≤ J (θ0)− inf
ψ∈RP

J (ψ) +

K−1∑
k=0

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ),

(52)

from there we can deduce that the right-hand side is bounded. Indeed, by assumption, infψ∈RP J (ψ) > −∞,
since in addition, δ ∈]1/2, 1[,

∑
1

(k+1)2δ
< +∞ we have,

+∞∑
k=0

α2M̃2

(k + 1)2δ
L(C2 + 2C2

2 ) < +∞. (53)

Overall, from (52) we deduce that,

+∞∑
k=0

2
αm̃

(k + 1)δ
E
[
‖∇J (θk)‖2

]
< +∞. (54)

In (54) each ‖∇J (θk)‖2, for k ∈ N? can be considered as a function of (Bj)j∈N although it actually depends

only on (Bk)j<k. This way, we can use Beppo-Levi’s theorem on the sequence
(∑K

k=0 2 αm̃
(k+1)δ

‖∇J (θk)‖2
)
K∈N

to

interchange the expectation and the sum, so,

E

[
+∞∑
k=0

2
αm̃

(k + 1)δ
‖∇J (θk)‖2

]
< +∞. (55)

This implies in particular that the random variable,

+∞∑
k=0

1

(k + 1)δ
‖∇J (θk)‖2, (56)

is finite almost surely and has finite expectation. Indeed, the sum in (56) must be finite with probability one for
(55) to hold. Since

∑+∞
k=0

1
(k+1)δ

= +∞, this implies at least that almost surely,

lim inf
k→∞

‖∇J (θk)‖2= 0. (57)

To prove that in addition lim
k→∞

‖∇J (θk)‖2= 0, we will use Lemma B.1 with uk = ‖∇J (θk)‖2 and vk = 1
(k+1)δ

.

So we need to prove that there exists C3 > 0 such that |uk+1 − uk|≤ C3vk. To do so, we use the L-Lipschitz
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continuity of the gradients on C, triangle inequalities and (27). It holds, almost surely, for all k ∈ N∣∣‖∇J (θk+1)‖2−‖∇J (θk)‖2
∣∣

= ( ‖∇J (θk+1)‖+‖∇J (θk)‖ ) × | ‖ ∇J (θk+1)‖−‖∇J (θk) ‖ |
≤2C2 |‖∇J (θk+1)‖−‖∇J (θk)‖|
≤2C2‖∇J (θk+1)−∇J (θk)‖
≤2C2L‖θk+1 − θk‖
≤2C2L

∥∥∥−ηk∇JBk(θk)− ηk∇JBk(θk+ 1
2
)
∥∥∥

≤2C2L
αM̃

(k + 1)δ
‖∇JBk(θk) +∇JBk(θk+ 1

2
)‖

≤4C2
2L

αM̃

(k + 1)δ
.

(58)

So taking C3 = 4C2
2LαM̃ , by Lemma B.1, almost surely, limk→+∞‖∇J (θk)‖2= 0.

Finally, we prove the rate of Theorem 4.1. From (54), there exists C4 > 0 such that for any K ∈ N, it holds,

C4 ≥
K∑
k=0

1

(k + 1)δ
E
[
‖∇J (θk)‖2

]
≥ min
k∈{1,...,K}

E
[
‖∇J (θk)‖2

] K∑
k=0

1

(k + 1)δ

≥ (K + 1)
1−δ

min
k∈{1,...,K}

‖∇J (θk)‖2, (59)

and we obtain the rate.

B.3 Proof of the corollary

Before proving the corollary we recall the following result.

Lemma B.2. Let g : RP → R an L-Lipschitz and differentiable function. Then ∇g is uniformly bounded on RP .

We can now prove the corollary.

proof of Corollary 4.2. The proof is very similar to the one of Theorem 4.1. Denote L the Lipschitz constant of
∇J . Then, the descent lemma (30) holds surely and we obtain (52). Then, since for all n ∈ {1, . . . , N}, each Jn
is Lipschitz, so is J . Furthermore, globally Lipschitz functions have uniformly bounded gradients so ∇J has
bounded gradient. Similarly, at iteration k ∈ N, E [‖∇JBk(θk)‖] is also uniformly bounded. These arguments
allows to follow the lines of the proof of Theorem 4.1 and in particular to obtain (27) and (29), and the same
conclusions follow by repeating the same arguments.

C Details on the synthetic experiments

We detail the non-convex regression problem that we presented in Figure 2 and 3. Given a matrix A ∈ RN×P
and a vector b ∈ RN , denote An the n-th line of A. The problem is to minimize a loss function of the form,

θ ∈ RP 7→ J (θ) =
1

N

N∑
n

φ(ATnθ − bn), (60)

where the non-convexity comes from the dissimilarity measure φ(t) = t2/(1 + t2). For more details on the
initialization of A and b we refer to Carmon et al. (2017) where this problem is initially proposed. In the
experiments of Figure 3, the mini-batch approximation was made by selecting a subset of the lines of A, which
amounts to compute only a few terms of the full sum in (60). We used N = 500, P = 30 and mini-batches of size
50.

In the deterministic setting we ran each algorithm during 250 iterations and selected the hyper-parameters of
each algorithm such that they achieved |J (θ)− J ?|< 10−1 as fast as possible. In the mini-batch experiments we
ran each algorithm during 250 epochs and selected the hyper-parameters that yielded the smallest value of J (θ)
after 100 epochs.
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D Description of auxiliary algorithms

We precise the heuristic algorithms used in Figure 3 and discussed in Section 3.3.

Algorithm 3 Stochastic-GV SGD

1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0.5, 1)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0

(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: ∆gnaive
k = ∇JBk(θk)−∇JBk−1

(θk−1)
9: if 〈∆gnaive

k ,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈∆gnaive

k ,∆θk〉
11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)δ
γk∇JBk(θk)

16: end for

Algorithm 4 Exact-GV SGD

1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0.5, 1)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: Gk = ∇J (θk)−∇J (θk−1)
9: if 〈Gk,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈Gk,∆θk〉

11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)δ
γk∇JBk(θk)

16: end for
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Algorithm 5 Expected-GV SGD

1: Input: α > 0, ν > 0
2: Input: m̃ > 0, M̃ > 0, δ ∈ (0.5, 1)
3: Initialize θ0 ∈ RP , γ0 = 1
4: Draw mini-batches (Bk)k∈N independently and uniformly at random with replacement.
5: θ1 = θ0 − αγ0∇JB0(θ0)
6: for k = 1, . . . do
7: ∆θk = θk − θk−1

8: Gk = − α
(k−1)δ

γk−1E
[
CJBk−1

(θk−1)
]

9: if 〈Gk,∆θBk〉 > 0 then

10: γk = ‖∆θk‖2
〈Gk,∆θk〉

11: else
12: γk = ν
13: end if
14: γk = min(max(γk, m̃), M̃)
15: θk+1 = θk − α

(k+1)δ
γk∇JBk(θk)

16: end for
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