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and Yeong Ho Hong1* 

Abstract 

Exosomes are membrane vesicles containing proteins, lipids, DNA, mRNA, and micro RNA (miRNA). Exosomal miRNA 
from donor cells can regulate the gene expression of recipient cells. Here, Ri chickens were divided into resistant 
(Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) trait by genotyping of Mx and BF2 genes. Then, Ri chickens were 
infected with H5N1, a highly pathogenic avian influenza virus (HPAIV). Exosomes were purified from blood serum 
of resistant chickens for small RNA sequencing. Sequencing data were analysed using FastQCv0.11.7, Cutadapt 1.16, 
miRBase v21, non‑coding RNA database, RNAcentral 10.0, and miRDeep2. Differentially expressed miRNAs were deter‑
mined using statistical methods, including fold‑change, exactTest using edgeR, and hierarchical clustering. Target 
genes were predicted using miRDB. Gene ontology analysis was performed using gProfiler. Twenty miRNAs showed 
significantly different expression patterns between resistant control and infected chickens. Nine miRNAs were up‑
regulated and 11 miRNAs were down‑regulated in the infected chickens compared with that in the control chickens. 
In target gene analysis, various immune‑related genes, such as cytokines, chemokines, and signalling molecules, were 
detected. In particular, mitogen‑activated protein kinase (MAPK) pathway molecules were highly controlled by differ‑
entially expressed miRNAs. The result of qRT‑PCR for miRNAs was identical with sequencing data and miRNA expres‑
sion level was higher in resistant than susceptible chickens. This study will help to better understand the host immune 
response, particularly exosomal miRNA expression against HPAIV H5N1 and could help to determine biomarkers for 
disease resistance.
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Introduction
Exosomes are membrane vesicles, approximately 
40–100  nm in diameter, and present in most biological 
fluids [1–3]. Exosomes are derived from multivesicu-
lar bodies (MVBs) to form intraluminal vesicles (ILVs), 
which are then released into the extracellular environ-
ment as exosomes after fusion with the plasma mem-
brane [3]. Lipids and proteins are the main components 
of exosomes and various nucleic acids, such as mRNAs, 

microRNAs (miRNAs), and other non-coding RNAs 
(ncRNAs), and are also found in the exosomal lumen [1–
4]. These exosomal RNAs can be delivered from donor 
cells to recipient cells, wherein they modulate various 
biological systems [5–7]. Therefore, exosomes are impor-
tant in cell-to-cell communication.

miRNAs are small ncRNA molecules and are typically 
22 nucleotides in length, which repress translation of the 
target mRNA by binding to the 3′-untranslated region 
and/or induce the decay of up to 30% of all expressed 
transcripts [8]. miRNAs are involved in diverse biological 
processes, including fat metabolism; cell death, prolifera-
tion, differentiation; and the functioning of the immune 
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system [9]. Therefore, exosomal miRNAs from donor 
cells can regulate the gene expression of recipient cells. 
Furthermore, the composition of exosomal miRNAs is 
different between healthy and diseased individuals [10]. 
Thus, exosomal miRNAs indicate the state of disease and 
control the immune systems.

Avian influenza viruses (AIV) in Influenzavirus A 
genus, belonging to the family Orthomyxoviridae, cause 
severe outbreaks in the poultry industry. In particular, 
the H5N1 subtype is a highly pathogenic avian influenza 
virus (HPAIV) that originated from Asia [11]. H5N1 in 
poultry decreases egg production and causes rhinor-
rhoea, loss of appetite, soft-shelled or misshapen eggs, 
diarrhoea, and sudden death [12]. Thus, H5N1 outbreak 
causes significant economic damage to the poultry indus-
try. Furthermore, H5N1 can be transmitted to humans 
and causes severe acute respiratory infection with a fatal-
ity rate of more than 50% [13]. Therefore, it is essential to 
elucidate the mechanisms of AIV pathogenesis in chick-
ens to control the infection.

Exosomes have various roles in immune response by 
delivering exosomal contents to other cells such as mem-
brane-bound receptors and miRNAs [14]. Therefore, we 
suggest that exosomes might have important roles, espe-
cially delivering miRNAs, in immune response against 
infection of H5N1 HPAIV. To date, however, there are 
no studies describing exosomal small RNA transcrip-
tome analysis in AIV infection. In this study, Ri chickens, 
local yellow-feathered household chickens of Vietnam 
[15], were used as experimental animals. Further, by 
genotyping the Mx and BF2 gene, Ri chickens resist-
ant and susceptible to AIV were distinguished. The Mx 
protein, which is part a of the dynamin family of large 
GTPases, interferes with the replication of RNA viruses 
by inhibiting trafficking or the activity of viral polymer-
ases [16–18]. The chicken major histocompatibility com-
plex (MHC) consist of BLB (Class II) and two BF (Class 
I) [19, 20]. Especially, among haplotype of BF2, B21 allele 
is associated with high antibody titer against infectious 
bursal disease virus [21, 22]. Moreover, the chickens with 
B21 haplotype have high survival rate and with B13 have 
high mortality rate against H5N1 AIV [23]. To identify 
the profiling of exosomal miRNA against AIV infection, 
we infected Ri chickens with the AIV subtype H5N1 
and purified exosomes from the serum for small RNA 
sequencing and analysis.

Materials and methods
Experimental birds and genotyping
All specific-pathogen-free (SPF) Ri chickens [15], a native 
Vietnamese chicken breed, were infected with AIV and 
observed daily for signs of disease and mortality. All 
chicken experiments were performed in our collaborative 

laboratory at the Department of Biochemistry and Immu-
nology in the National Institute of Veterinary Research, 
Vietnam. A total of 40 Ri chickens belonging to resistant 
and susceptible lines were used in our study (see Addi-
tional file 1).

Genotyping of Mx and BF2 was performed by high 
resolution melt analysis for resistance and susceptibil-
ity selection [16–18, 22, 23]. In detail, the polymorphism 
of allele A/G of Mx at position 631 demonstrated allele 
A (resistant trait) and allele G (susceptible trait) in Ri 
chickens (see Additional file  2). Among BF2 haplotype, 
Ri chickens that have B21 haplotype were selected as 
a resistant trait and B13 haplotype were selected as a 
susceptible trait. Finally, Ri chickens Mx(A)/B21 were 
selected as a resistant trait and Mx(G)/B13 were selected 
as a susceptible trait. For HPAIV challenge, a total of 20 
4-week-old birds, 10 Ri chickens in each line, received 
intranasal inoculation of 200 µL of harvested allan-
tois fluid of the infected eggs, containing 1 ×  104 50% 
egg infectious dose  (EID50) [24] of A/duck/Vietnam/
QB1207/2012 (H5N1), according to the OIE guideline.

Exosome extraction and characterization
Blood samples were collected from the wing vein of 
chickens after 1 and 3  days of infection (three chickens 
from each group). Exosomes were extracted from the 
serum using Total Exosome Isolation Reagent (Invit-
rogen, Carlsbad, CA, USA), according to the manufac-
turer’s protocol. Briefly, 5  mL of the blood sample was 
collected from infected and control chickens. The blood 
was incubated at room temperature (RT) for 2 h to allow 
clotting. Serum was isolated from the clotted blood and 
centrifuged at 2000 × g for 30 min at 4 °C to remove cells 
and debris. The supernatant was mixed with 0.2 volumes 
of the Total Exosome Isolation reagent and incubated at 
4  °C for 30  min. After incubation, samples were centri-
fuged at 10  000 ×  g for 10  min at RT. The supernatant 
was discarded, and exosomes were contained in the pel-
let at the bottom of the tube. Exosomes were suspended 
with phosphate-buffered saline (PBS; pH 7.4) and stored 
at ≤  −20 °C.

For characterization of exosomes, the particle size 
was measured using a Nanoparticle Analyzer (HORIBA, 
SZ-100, Kyoto, Japan). Furthermore, a Western blot 
assay was performed using CD81 as a exosomal marker 
(#56039; Cell Signaling Technology, Danvers, MA, USA) 
according to previously described methods [25].

Exosomal RNA extraction and small RNA sequencing
Small RNA sequencing was conducted using exosomes 
from resistant Ri chickens at day 3 post-infection. Exo-
somal RNA was extracted using the miRNeasy Serum/
Plasma Kit (Qiagen, Hilden, Germany) according to the 
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manufacturer’s protocol. Library construction and small 
RNA sequencing were only conducted for resistant Ri 
chickens with 1 control (Resistant day-3) and 2 infection 
(Resistant day-3) samples. The library was constructed 
using SMARTer smRNA-Seq Kit for Illumina (TAKARA 
Bio Inc., Otsu, Shiga, Japan) according to the manufac-
turer’s protocol. Next, small RNA sequencing was con-
ducted by Macrogen (Seoul, Republic of Korea) using a 
HiSeq 2500 System (Illumina Inc., San Diego, CA, USA).

Bioinformatic analysis of sequencing data
The raw sequence reads were filtered based on qual-
ity using FastQC v0.11.7 [26]. Adapter sequences were 
trimmed off the raw sequence reads using Cutadapt 1.16 
[27]. Both the trimmed and non-adapter reads were used 
as processed reads to analyze long targets (≥ 50  bp). 
Unique clustered reads were sequentially aligned to the 
reference genome using miRBase v21 [28], and the non-
coding RNA database, RNAcentral 10.0 [29], to classify 
known miRNAs and other RNA types, such as tRNA, 
small nuclear RNA (snRNA), and small nucleolar RNA 
(snoRNA). Novel miRNA prediction was performed by 
miRDeep2 [30]. The read counts for each miRNA were 
extracted from mapped miRNAs to report the abundance 
of each miRNA. Differentially expressed miRNAs were 
determined by comparing each miRNA across conditions 
using statistical methods, such as fold-change, exactTest 
using edgeR (Empirical Analysis of Digital Gene Expres-
sion Data in R), and hierarchical clustering. Target genes 
of differentially expressed miRNAs were predicted using 
miRDB [31] and target genes with a target score over 80 
were selected. Next, GO functional enrichment analysis 
of target genes was performed using gProfiler [32]. The 
miRNA-mRNA network were constructed using miRNet 
[33].

miRNA primer design
Quantitative real-time PCR (qRT-PCR) for miRNAs 
only required a forward primer to be designed for the 
individual miRNA. The reverse primer was a universal 
primer provided with the miScript SYBR Green PCR Kit 
(Qiagen). All known chicken miRNA sequences were 
obtained from miRBase [34]. Oligonucleotide primers for 
these miRNAs were designed using full-length mature 
miRNA sequences. Primers were synthesized by Geno-
tech (Daejeon, South Korea) (see Additional file 3).

miRNA expression analysis by qRT‑PCR
For qRT-PCR, susceptible control (3 samples of day-
3), susceptible infection (2 samples of day-3), resist-
ant control (1 sample of day-3), and resistant infection 
(2 samples of day-3) RNA samples were used. cDNA 

synthesis was performed using miScript II RT Kit (Qia-
gen) according to the manufacturer’s protocol. Briefly, 
1  μg of total RNA was combined with 4  μL of 5 × miS-
cript HiSpec Buffer, 2 μL of 10 × miScript Nucleics Mix, 
2 μL of miScript Reverse Transcriptase Mix, and RNase-
free water up to 20 μL. The tube was incubated at 37 °C 
for 60 min and at 95 °C for 5 min to inactivate miScript 
Reverse Transcriptase Mix and kept on ice. Next, 20 μL 
of reverse-transcription reaction mixtures were diluted 
with 130 μL of RNase-free water. The synthesized cDNA 
was used as a template for qRT-PCR. miScript SYBR 
Green PCR Kit (Qiagen) was used to determine miRNA 
expression in LightCycler 96 system (Roche, Indianapo-
lis, IN, USA) according to the manufacturers’ protocol. 
In brief, for 25 μL of reaction mix, the following compo-
nents were added: 12.5 μL of 2 × QuantiTect SYBR Green 
PCR Master Mix, 2.5 μL of 10 μM forward primer, 2.5 μL 
of 10 × universal primer, 2.5 μL of template cDNA, and 
RNase-free water up to 25 μL. The cycling conditions 
were as follows: 95  °C for 15  min to activate as the ini-
tial step, followed by 45 cycles of 94 °C for 15 s, 55 °C for 
30 s, and 70 °C for 30 s. Gene expression was calculated 
using the  2−ΔΔCt method after normalization with U1A 
(5′-CTG CAT AAT TTG TGG TAG TGG-3′) [35]. All qRT-
PCRs were performed in triplicate.

Statistical analysis
Statistical analysis was performed using SPSS 25.0 soft-
ware (IBM, Chicago, IL, USA). Data are expressed as 
mean values ± SEM. Statistical comparisons were per-
formed using Student’s t-test for two-group comparisons, 
and the level of statistically significant difference was set 
at p < 0.05.

Results
Exosomal small RNA analysis
Exosomes were purified from the serum of resistant 
and susceptible Ri chickens at day 3 post-infection. 
The size and markers of exosomes were identified (see 
Additional file  4). Small RNA sequencing was con-
ducted on resistant Ri chickens. In the control sample 
(Non-infected Ri chickens), 61 116 319 reads were pro-
duced, and total read bases were 3.1 Gbp (Table 1). In 
HPAIV-infected samples, 54 035 519 reads and 2.8 Gbp 
of read bases were produced. The GC content of con-
trol was 38.63% and the ratio of bases with Phred qual-
ity score ≥ 30 (Q30) was 90.99%. The GC content of 
infected chickens was 40.10% and the Q30 was 92.53%. 
Additional file 5 shows the read length distribution of 
each sample. In the control, a read length of approxi-
mately 17–20 bp was more abundant, whereas the read 
length was evenly distributed in infected chickens. For 
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control and infected samples, final processed reads 
were sequentially aligned to the reference genome 
and the miRBase v21 and ncRNA databases to classify 
the known miRNAs and other types of RNA, such as 
tRNA, snoRNA, snRNA, and Piwi-interacting RNA 
(piRNA) (see Additional file 6). In the control, genome 
sequences are the largest part as a 92.56% and known 
miRNA, novel miRNA, snoRNA, snRNA, rRNA, tRNA 
account for 0.05%, 1.21%, 0.15%, 18.42%, 5.44%, and 
0.03%, respectively. Also, genome sequences of the 
infected samples comprised the largest part (94.1%) 
and known miRNA, novel miRNA, snoRNA, snRNA, 
rRNA, and tRNA accounted for 0.03%, 0.32%, 0.04%, 
6.46%, 2.25%, and 0.02%, respectively. To predict the 
known and novel miRNA, unique clustered reads were 
aligned against the reference genome and precursor 
miRNAs separately. Novel miRNAs are predicted from 
mature, star and loop sequence according to the RNA-
fold algorithm using miRDeep2. To detect known and 

novel miRNAs, miRDeep2 estimated their abundance 
(Table 1). In the control, among total 46 317 909 reads, 
84.78% (39  269  083 reads) were mapped and 15.22% 
(7  048  826 reads) were unmapped reads. In infected 
chickens, among 47 254 454 reads, 90.21% (42 628 445 
reads) were mapped and 9.79% (4 626 009 reads) were 
unmapped reads. We also investigated differentially 
expressed miRNA analysis by the read count value of 
mature miRNAs (see Additional file  7). A total of 20 
miRNAs showed significantly different fold-change 
(Figure  1). Among 20 miRNAs, nine miRNAs were 
up-regulated and 11 miRNAs were down-regulated in 
infected chickens compared to those in the control. 
In particular, gga-miR-222a was the highest, with a 
fold-change of 8.69, and gga-miR-1434 was the lowest, 
with fold-change of −8.36. gga-miR-222a, gga-miR-
30c-1-3p, gga-miR-126-5p, gga-miR-24-3p, gga-miR-
101-3p, gga-miR-142-5p, gga-miR-2954, gga-miR-214, 
and gga-let-7g-5p were up-regulated in infected 

Table 1 Raw data statistics 

Total reads bases = total read × read length. Total read bases indicate the total number of bases sequenced and total reads indicate the total number of reads. 
Processed reads indicate reads that were trimmed and unwanted sources were deleted. Q20 (%) is the ratio of bases with Phred quality score of ≥ 20. Q30 (%) is the 
ratio of bases with Phred quality score of ≥ 30.

Sample Total reads bases Total reads Processed reads Mapped reads GC (%) Q20 (%) Q30 (%) Known 
miRNA 
in sample

Known miRNA 
in chicken (miRBase 
v21)

Control 3 116 932 269 61 116 319 46 317 909 26 209 (0.06%) 39 95 91 152 994

Infection 2 755 811 469 54 035 519 47 254 454 16 389 (0.03%) 40 96 93 136 994

Figure 1 Differentially expressed miRNA analysis. Fold‑change of 20 miRNAs in the control and avian influenza virus‑infected samples. 
Statistical analysis was performed using fold‑change, and significant results were selected on conditions of |FC|≥ 2 and exactTest raw p‑value < 0.05.
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samples compared with that in the control, whereas 
gga-miR-193a-5p, gga-miR-92-3p, gga-miR-20a-5p, 
gga-miR-6651-5p, gga-miR-128-3p, gga-miR-125-5p, 
gga-miR-122-5p, gga-let-7b, gga-miR-221-3p, gga-
miR-2188-5p, and gga-miR-1434 were down-regulated 
in infected samples compared with those in the con-
trol. We also compared the expression levels of miR-
NAs between control and infected samples using a 
volcano plot (Figure 2).  Log2 fold-change and p-values 
obtained from the comparison between the two groups 
were plotted as a volcano plot. gga-miR-1434 displayed 
both high fold-change (x-axis) and statistical signifi-
cance (y-axis). We also conducted hierarchical clus-
tering analysis by the Euclidean method and complete 
linkage, which clusters similar mature miRNAs and 
samples by expression level (normalized value) from 
the differentially expressed miRNA list (Figure  3). 
Nine up-regulated exosomal miRNAs in the infected 
chickens were grouped in the generated dendrogram.   

Target gene prediction, GO functional enrichment, 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis
The target genes of 20 miRNAs were predicted using 
miRDB. Immune-related target genes with score 
of over 80 were selected (Table  2). In particular, 32 

immune-related genes were related to gga-miR-20a-5p, 
and no immune-related target genes were related to gga-
miR-1434. We also conducted GO analysis using gPro-
filer (see Additional file  8). In KEGG pathway analysis, 
eight pathways, including erythroblastic leukemia viral 
oncogene homolog (ErbB) signalling pathway, advanced 
glycation end-products (AGE)–receptor of AGE (RAGE) 
signalling pathway in diabetic complications, mitogen-
activated protein kinase (MAPK) signalling pathway, 
focal adhesion, regulation of actin cytoskeleton, insu-
lin signalling pathway, phosphatidylinositol signalling 
system, and endocytosis, were related to 20 miRNAs 
(Table 3). In particular, 69 target genes of miRNAs were 
related with the MAPK signalling pathway, followed by 
endocytosis (59 genes), focal adhesion (52 genes), and 
regulation of actin cytoskeleton (52 genes). Furthermore, 
the miRNA-mRNA target gene interaction of 20 differen-
tially expressed miRNAs was analysed. As shown in Fig-
ure 4, several targets genes were shared with more than 
two miRNAs.

Validation of miRNA expression by qRT‑PCR
qRT-PCR was conducted using four miRNAs, selected 
on the basis of significant difference of > 2.0 or < 2.0 fold-
change between control and infected chickens, to validate 
sequencing results (Figure  5A). The four miRNAs were 

Figure 2 Volcano plot of expression level of two groups. X‑axis,  log2 fold‑change; Y‑axis, −log10 p‑value. Yellow dots indicate FC ≥ 2 and raw 
p < 0.05; blue dot indicate FC ≤  −2 and raw p < 0.05.
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selected based on read count, the number of immune-
related genes, and functions in immune system. The 
expression levels of gga-miR-30c-1-3p, gga-miR-214, 
and gga-let-7g-5p were up-regulated in infected resist-
ant chickens compared with those in the control by 2.85, 
3.37, and 23.91 fold-change, respectively. However, the 
expression of gga-let-7b was down-regulated in infected 
chickens (0.34 fold-change). qRT-PCR results of the four 
miRNAs were positively correlated with sequencing 
results. The expression levels of gga-miR-214 and gga-
let-7b were also evaluated in resistant and susceptible Ri 
chickens (Figure 5B). The expression level of gga-miR-214 
was up-regulated in susceptible infected chickens 
compared with that in the control (3.48 fold-change). 
However, the expression level of gga-let-7b was down-
regulated in susceptible infected chickens compared with 
that in the control (0.57 fold-change). The expression pat-
terns of gga-miR-214 and gga-let-7b were similar in sus-
ceptible and resistant chickens. Moreover, the expression 
levels of gga-miR-214 and gga-let-7b were higher (2.79 
and 17.18 fold-change, respectively) in resistant chickens 
than in susceptible chickens. Furthermore, the expression 
of four miRNAs was compared between susceptible and 

resistant mock control (Figure 5C). The expression levels 
of gga-miR-214, gga-miR-30c-1-3p, gga-let-7g-5p, and 
gga-let-7b were higher in resistant than susceptible con-
trol chicken (2.88, 45.67, 180.39, and 28.34 fold-change, 
respectively).

Discussion
In this study, we report exosomal miRNA analysis of 
avian influenza virus infected chickens. The Vietnam-
ese AIV-resistant Ri chickens were selected by Mx and 
BF2 genotyping and infected with H5N1 HPAIV. Then, 
exosomes were isolated from the serum, and miRNA was 
analysed by small RNA sequencing and qRT-PCR.

Exosomes are formed by various molecules, such 
as proteins, lipids, DNA, mRNA, and miRNA, that 
are contained in endosomes through endocytosis. 
Then, endosomes called MVBs fuse with the cell mem-
brane and are released into the extracellular space [36]. 
Released exosomes containing miRNA are delivered to 
other cells through biological fluids and regulate the gene 
expression of recipient cells; however, they are not ran-
domly packaged in exosomes [37–40].

Figure 3 Hierarchical clustering analysis of 20 miRNAs using R program. This analysis was conducted using the Euclidean method and 
complete linkage. The red colour box indicates the control and the light blue colour box indicates infected chickens. Z‑score is the estimated 
coefficient of variation divided by its standard error.
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In this study, 20 exosomal miRNAs exhibited signifi-
cantly different expression between control and infected 
resistant Ri chickens (Figure  1). Previous studies have 
reported differentially expressed miRNA in chickens and 
humans. The expression of gga-miR-6651-5p increases in 
Marek’s disease virus infected-chickens [41]; gga-miR-
92-3p and gga-miR-214 are abundant in AIV H9N2-
infected chicken embryo fibroblasts [42]; gga-miR-2954 
is up-regulated in reticuloendotheliosis virus-infected 
chickens [43]; gga-miR-222a, gga-miR-125b-5p, and 
gga-miR-128-3p are down-regulated in H9N2-infected 
chicken embryo fibroblasts [42]. Likewise, in our study, 
gga-miR-125b and gga-miR-128-3p were down-regulated 
in H5N1-infected chickens. In another study, miR-126-5p 

Table 2 Immune-related target genes for miRNAs 

miRNAs Fold change 
(infection/
control)

Immnue 
related target 
genes

Gene symbol Control 
read 
count

Infection 
read count

gga‑let‑7b −3.425194 24 IGDCC3, COL4A1, COL4A2, AGO4, LRIG3, COL1A2, IL13RA1, LRIG1, 
MAPK6, TGFBR1, IGDCC4, COL3A1, TNFAIP2, WNT9B, SEC14L1, 
DCLRE1C, ERCC6, CCR6, MAP4K3, EDN1, TBKBP1, MAP3K1, 
MAP4K4, FGF6

8110 1943

gga‑let‑7 g‑5p 2.2773292 14 IL13RA1, MAPK6, TGFBR1, WNT9B, SEC14L1, DCLRE1C, CCR6, ERCC6, 
MAP4K3, MAP3K1, EDN1, TBKBP1, MAP4K4, FGF6

146 273

gga‑miR‑101‑3p 3.110288 21 MAP3K13, MAPK6, CD274, MAP3K9, CREB1, MAP3K4, BACH2, MAPK1, 
NLK, CCR2, PIK3CG, SYNCRIP, SH3GL3, MEF2A, MAPK8, HACD3, 
MAPKAPK5, NF1, STAT3, CAMK2D, TRAF3

5 13

gga‑miR‑122‑5p −2.889137 1 GREM2 127 36

gga‑miR‑125b‑5p −2.550591 8 IRF4, PTPN1, SMURF1, PRDM1, TSTA3, IL17RA, TRAF3IP2, IL13RA1 1001 322

gga‑miR‑126‑5p 5.7802815 17 LIF, TRAF3, FGFRL1, FGF12, C6, C1S, FGF7, IL17A, DENND1B, FGF14, 
CREB1, MAPK10, GATA3, SARM1, ERAP1, GDF9, JAG1

6 29

gga‑miR‑128‑3p −2.500261 26 JAG1, GAB1, MAPK8IP3, NF1, ZFP36L1, DAB2IP, SH3BGRL2, NCF1, 
MAPK14, MAPKBP1, C1S, IL9R, WNT2, MAP2K3, ITCH, DENND1B, 
TSC1, SH3RF1, SETX, FGF14, TRIL, IL17RA, PTPRC, RAB20, JAK2, 
PRDM11

52 17

gga‑miR‑142‑5p 2.9630095 7 IL8L1, ITCH, TAB3, SFPQ, MAP4K4, FGF10, BMP15 69 168

gga‑miR‑1434 −8.369591 0 103 10

gga‑miR‑193a‑5p −2.172781 1 PDCD1LG2 69 26

gga‑miR‑20a‑5p −2.441626 32 MAP3K2, IL1RAPL1, CD274, PDCD1LG2, TGFBR2, BPIFB3, SOS1, ITCH, 
GAB1, MAP3K14, IPO7, MAPK1, MAP3K9, PRDM11, TNFRSF21, 
FAM3C, CREB5, GPI, TGFBRAP1, SMAD6, AKT3, TOLLIP, SH3PXD2A, 
SH3GLB2, MAP3K5, PKD1, CAMK2D, MAP1LC3A, TNFSF11, CREB1, 
SAMHD1, IL17RD

24 8

gga‑miR‑214 2.464608 16 SOS2, IRF8, MAPK1, EPHB6, TAB3, FGF14, LIF, DMAP1, DNAJA3, CD8A, 
NF1, PIK3CG, SH3PXD2A, TRAF3, LACC1, CCR2

37 75

gga‑miR‑2188‑5p −4.285245 4 FOSB, FGF20, PAK3, JUN 84 16

gga‑miR‑221‑3p −3.818655 8 PRDM1, ANKHD1, FOS, TAB2, CSF1R, ERBB4, IPO7, SMURF2 19 4

gga‑miR‑222a 8.6921924 8 PRDM1, ANKHD1, FOS, CSF1R, TAB2, ERBB4, IPO7, SMURF2 1 8

gga‑miR‑24‑3p 5.5548592 2 MAPKAP1, OTUD7B 51 233

gga‑miR‑2954 2.6033041 4 TJP2, SYK, NFIL3, CD274 50 107

gga‑miR‑30c‑1‑3p 8.5887224 7 SCG2, LIFR, TAB3, TRAF2, MAP3K3, TOLLIP, SEC14L1 3 22

gga‑miR‑6651‑5p −2.452306 4 HIF1A, ELMOD2, LTA4H, AvBD8 51 17

gga‑miR‑92‑3p −2.335071 15 SMURF1, MAP2K4, DENND1B, RORA, MAP3K20, G3BP2, SH3PXD2A, 
TSC1, PIK3CD, GREM2, GSN, LRRK2, DNAJB9, TRAF3, UBASH3B

703 247

Table 3 KEGG pathway analysis 

KEGG Pathway Gene 
Count

p‑value

KEGG:04012 ErbB signalling pathway 29 5.87E−04

KEGG:04933 AGE–RAGE signalling pathway in 
diabetic complications

31 8.56E−04

KEGG:04010 MAPK signalling pathway 69 1.05E−03

KEGG:04510 Focal adhesion 52 1.15E−03

KEGG:04810 Regulation of actin cytoskeleton 52 6.02E−03

KEGG:04910 Insulin signalling pathway 36 7.88E−03

KEGG:04070 Phosphatidylinositol signalling 
system

30 1.02E−02

KEGG:04144 Endocytosis 59 1.36E−02
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inhibited human cervical cancer progression, thus, regu-
lating the apoptosis of cancer cells [44]. gga-miR-101-3p 
is up-regulated in Mycoplasma gallisepticm-infected 
chickens [45]. gga-let-7b and miR-128 reduce cell growth 
and division during skeletal muscle development in sex-
linked dwarf chickens [46]. gga-let-7b is involved in sig-
nalling pathways, such as MAPK, TGF-β, Notch, Wnt, 
mTOR, cell cycle, p53, and Janus-activated kinase (JAK)–
signal transducers and activators of transcription (STAT) 
pathways [47]. Human miR-20a-5p inhibits cell prolifera-
tion and induces apoptosis in SH-SY5Y cells [48], and its 
down-regulation induces cell apoptosis to remove myco-
bacterial cells through targeting JNK2 in human mac-
rophages [49]. Therefore, we suggest that 19 differentially 
expressed exosomal miRNAs from AI-infected chickens 
regulate immune response.

We analysed immune-related target genes (Table  2). 
Various immune-related genes, such as genes encod-
ing signalling pathway molecules, cytokines, and 
chemokines, were found to be miRNA target genes. In 
particular, in KEGG pathway analysis, the highest num-
ber of target genes (69 gene count) were related with the 
MAPK signalling pathway (Table  3). The MAPK signal-
ling pathway plays important roles in the immune system 

and also in cell proliferation, differentiation, migration, 
and apoptosis [50]. MAPK signalling pathway was acti-
vated by H5N1 AIV [51–53]. Several molecules of the 
MAPK pathway are differently regulated in two inbred 
necrotic enteritis-afflicted chicken lines, 6.3 and 7.2 [54]. 
Furthermore, the MAPK pathway plays an important 
role in virus replication in chicken macrophages infected 
with H9N2 AIV [55]. MAPK signalling pathway was fol-
lowed by Endocytosis (59 gene count). As a first step of 
AIV infection, AIV enters the cells by endocytosis [56]. 
The next KEGG pathway was Focal adhesion and regula-
tion of actin cytoskeleton (52 gene count). Focal adhesion 
kinase was activated during AIV infection by induc-
ing actin rearrangement [57]. Therefore, we suggest that 
the target genes of 20 exosomal miRNAs regulate pro-
inflammatory signalling pathway against AIV infection 
and life cycle of AIV.

We also compared the expression of gga-miR-214 and 
gga-let-7b between resistant and susceptible Ri chickens 
(Figure 4B). The expression patterns between control and 
infected chickens were the same, but the expression lev-
els were higher in resistant than in susceptible chickens. 
Therefore, we suggest that the copy number of miRNAs 
is higher in the exosomes of resistant Ri chickens than 

Figure 4 miRNA/mRNA network analysis. The interaction of 20 differentially expressed miRNAs and mRNAs target genes was analyzed using 
miRNet [33] based on miRNA target prediction results by miRanda. The blue squares represent the miRNA and red nodes represent its target genes.
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in the exosomes of susceptible Ri chickens. Accordingly, 
regulation of gene expression by exosomal miRNAs may 
be higher in resistant Ri chickens. Hence, resistant Ri 
chickens could respond more actively than susceptible Ri 
chickens against AIV infection.

So far, several studies have analysed miRNA expression 
patterns on AIV infection [45, 58–61]. However, there 
have limited studies on the exosomes in chickens until 
now.

Taken together, this study provides an insight into the 
exosomal miRNA expression pattern in AIV-resistant 

and -susceptible chickens and the mechanism by which 
they regulate target genes toward HPAIV infection.

In summary, we have, for the first time, analysed the 
exosomal miRNA expression in H5N1 HPAIV-infected 
chickens by small RNA sequencing and qRT-PCR. A 
total of 20 miRNAs were differentially expressed in 
exosomes of control and infected resistant Ri chickens. 
Interestingly, most of the target genes were related with 
the MAPK signalling pathway. This study improves our 
understanding of the host immune response, particularly 

Figure 5 qRT‑PCR of exosomal miRNA. A Validation of exosomal miRNAs expression in resistant Ri chickens by qRT‑PCR. B Expression of 
exosomal miRNAs between resistant and susceptible Ri chickens. RC, resistant control; RI, resistant infection; SC, susceptible control; SI, susceptible 
infection. Relative quantitation data are represented as mean ± SEM normalized to U1A using the  2−ΔΔCt method. Data are expressed as 
mean ± SEM of three independent experiments: *p < 0.05, **p < 0.01, and ***p < 0.001.
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with respect to exosomal miRNA expression, against 
H5N1 HPAIV infection.
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