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Algebraic coherent confluence and
higher-dimensional globular Kleene algebras

Cameron Calk Eric Goubault Philippe Malbos Georg Struth

Abstract – We extend the formalisation of confluence results in Kleene algebras to a formalisation of
coherent proofs by confluence. To this end, we introduce the structure of modal higher-dimensional
globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene
algebra. We give a calculation of a coherent Church-Rosser theorem and Newman’s lemma in
higher-dimensional Kleene algebras. We interpret these results in the context of higher-dimensional
rewriting systems described by polygraphs.
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1. Introduction

1. Introduction
Rewriting is a model of computation widely used in algebra, computer science, and logic. Computation
rules or algebraic laws are described by rewrite relations on symbolic or algebraic expressions. Rewriting
theory is strongly based on diagrammatic intuitions. Indeed, a central theme of rewriting is that
of completing certain branching shapes with confluence shapes, thus obtaining confluence diagrams.
Traditionally, the rewriting machinery was formalised in terms of algebras of binary relations: confluence
properties are described by union, composition and iteration operations. A natural generalisation of
this is given by the structure of Kleene algebra, in which proofs of classical confluence results such as
the Church-Rosser theorem or Newman’s lemma have been calculated [5, 28, 29]. Beyond that, Kleene
algebras and similar structures are well known for their ability to capture complex computational properties
by simple equational reasoning [7, 20, 30, 32] and unify various semantics of computational interest,
including formal languages, binary relations, path algebras and execution traces of automata [17].

Rewriting provides constructive procedures for proving some coherence properties in categorical
algebra as well. Coherence properties in this setting are formulated via a notion of contractibility for
higher-dimensional categories. The rewriting approach consists in proving a coherence property from a
given set of higher-dimensional witnesses for (local) confluence diagrams. It was initiated by Squier [25]
in the context of homotopical finiteness conditions in string rewriting, which have more recently been
expressed in the setting of higher dimensional rewriting [14]. By contrast to the standard diagrammatic or
relational approach, witnesses for confluence proofs are provided, in the sense that traditional confluence
diagrams are filled with higher dimensional cells. Such a method has been applied, for instance, in [8, 15]
to give constructive proofs for coherence in monoids, and in [12] for coherence theorems in monoidal
categories.

In this work we combine these two branches of research on Kleene-algebraic and higher-dimensional
rewriting into a coherent framework. We show how some classical calculational confluence proofs
using Kleene algebra can be extended to coherent confluence proofs. To achieve this, we introduce
higher-dimensional Kleene algebras, with many compositions and domain and codomain operations, which
generalise both modal Kleene algebras [6] and concurrent Kleene algebras [16]. This structure algebraically
captures the semantics of higher dimensional abstract rewriting. As applications of this formalism we
provide calculational proofs for both the coherent Church-Rosser theorem and the coherent Newman’s
lemma. We also relate these generalised results to the point-wise approach given by higher-dimensional
rewriting systems described by polygraphs. The main contribution of this work is therefore the provision
of a point-free, algebraic approach to coherence in higher dimensional rewriting which seems of general
interest in categorical algebra.

Abstract coherent reduction

Coherence proofs by rewriting are based on coherent formulations of confluence results such as Church-
Rosser’s theorem and Newman’s lemma. We present the coherent extension of the Church-Rosser theorem
as an example. Recall that an abstract rewriting system→ on a set X is a binary relation on X, and that the
confluence of such a relation is characterised by the inclusion

∗← · ∗→ ⊆ ∗→ · ∗← ,
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1. Introduction

where ∗→ denotes the reflexive, transitive closure of the relation→, the relation← its converse and · stands
for relational composition. The relation→ has the Church-Rosser property if the inclusion

∗↔ ⊆ ∗→ · ∗←
holds, where ∗↔ = (← ∪→)∗ is the reflexive, symmetric and transitive closure of→. The Church-Rosser
theorem for→, which states that these two properties are equivalent, can be formulated along similar
lines in Kleene algebra using the Kleene star operation, an abstraction of the notion of reflexive, transitive
closure as in Theorem 4 of [28], recalled in (4.1.3), which states that for any x, y in a Kleene algebra K,
the following equivalence holds:

x∗ · y∗ ≤ y∗ · x∗ ⇔ (x+ y)∗ ≤ y∗ · x∗.

The Church-Rosser theorem for the relation→ is the special case where K is the algebra of binary relations
on X, x =← and y =→. This is justified by the fact that the binary relations over any set X form a Kleene
algebra with respect to relational composition, relational union, the reflexive transitive closure operation,
the empty relation and the unit (or diagonal) relation.

The diagrammatic interpretation of the relation→ states that there is an arrow u→ v, whenever (u, v)
belongs to→. When (u, v) is an element of ∗→ (resp. ∗↔), we say that u is related to v by a rewriting
sequence (resp. zig-zag sequence). Diagrammaticaly, the Church-Rosser theorem states that, for any
branching (f, g) of rewriting sequences, there exists an associated confluence (f ′, g ′), if and only if, for
any zig-zag sequence h, there exists an associated confluence (h ′, k ′):

u
f
||

g
""

u1

f ′
!!

v1

g ′
~~

u ′

⇔ u

h ′
  

oo
h

// v

k ′
~~

u ′

A coherent extension of this result can be formulated in the context of higher-dimensional rewriting theory.
Roughly, it states that if there exists a set Γ of 2-dimensional cells (of globular shape) such that every
branching can be completed to a confluence diagram filled by elements of Γ pasted together along their
1-dimensional borders, then every zig-zag sequence may be completed to a Church-Rosser diagram filled
by elements of Γ pasted along their 1-dimensional borders. Pictorially, these statements are represented,
respectively, by:

u
f
||

g
!!

u1

f ′
!!

v1

g ′
~~

u ′

α�� ⇔ u

f ′   

oo
h

// v

g ′~~

u ′
β��

where α and β are built from 2-cells in Γ . This result constitutes one step in the proof of Squier’s theorem
for higher-dimensional rewriting systems, which provides a constructive approach to coherence results
akin to the coherence condition satisfied by associativity and units in monoidal categories: if certain
diagrams of natural isomorphisms commute, then all the diagrams built from the corresponding natural
isomorphisms are commutative. A key issue is therefore to reduce the infinite requirement “every diagram
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1. Introduction

commutes”, to a finite requirement “if a specified finite set of diagrams each commute then every diagram
commute”, [21, 26]. The notion of coherent confluence provides a constructive way of proving such
coherence results.

Organisation and main results of the article

Higher-dimensional rewriting. In Section 2 we recall notions from higher-dimensional rewriting. We
first recall the structure of polygraph, which represents a system of generators and relations for higher-
dimensional categories. Polygraphs were introduced by Street and Burroni, [3, 27], and are widely used as
rewriting systems presenting higher-dimensional algebraic structures [11, 23]. Furthermore, polygraphs are
used to formulate homotopical properties of rewriting systems through polygraphic resolutions, [13, 22],
as well as coherence properties for monoids, [8], higher categories, [11], and monoidal categories, [12].
The latter are inspired by Squier’s approach to proving coherence results for monoids using convergent
string rewriting systems [25]. Explicitly, an n-polygraph P is a higher dimensional rewriting system made
of globular cells of dimension 0, 1, . . . n, such that, for any 0 ≤ k ≤ n, its set of k-cells Pk consists in
k-dimensional rewriting rules of globular shape:

sk−2(α)

sk−1(α)

""

tk−1(α)

<<
tk−2(α)α

��

A cellular extension of the free n-category P∗n (resp. the free (n,n− 1)-category P>n ) generated by Pn is
a set of globular (n+ 1)-cells that relate n-cells of P∗n (resp. P>n ).

Coherent confluence. A branching in ann-polygraph P is a pair (f, g) ofn-cells of the freen-category P∗n
which have the same (n− 1)-source. A branching is local when f and g are rewriting steps, i.e. generating
elements for the rewriting system given by P, see Section 2.2.1. A cellular extension Γ of the free
(n,n− 1)-category P>n is a confluence filler of the branching (f, g) if there exist n-cells f ′, g ′ in the free
n-category P∗n and two (n+ 1)-cells

u<<f− g
!!

u1

f ′
!!

v1>>

(g ′)−u ′

α��

u
f
||

u1 v1

g ′
~~

g−aa

u ′(f ′)−

aa α ′��

in the free (n+ 1)-category P>n [Γ ] generated by Γ over P>n . We say that the cellular extension Γ is a (local)
confluence filler for P if it is a confluence filler for each of its (local) branchings. In the case of zig-zag
sequences, we say that Γ is a confluence filler of an n-cell f in P>n if there exist n-cells f ′ and g ′ in P∗n and
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1. Introduction

an (n+ 1)-cell α in the free (n+ 1)-category P>n [Γ ] of the form

u

f ′ ##

f
// v

u ′
(g ′)−

;;

α��

The cellular extension Γ is a Church-Rosser filler for an n-polygraph P when it is a confluence filler for
every n-cell in P>n . Theorem 2.3.4 states that for an n-polygraph P, a cellular extension Γ of P>n is a
confluence filler for P if, and only if, Γ is a Church-Rosser filler for P. Theorem 2.3.7 states that, when
P is terminating, then Γ is a local confluence filler, if, and only if, Γ is a confluence filler for P. These
are the coherent, higher-dimensional extensions of the Church-Rosser theorem and Newman’s lemma,
respectively. In Subsection 2.4, we relate this confluence filler property to the coherent confluence property
already defined in higher-dimensional rewriting [10].

Higher-dimensional globular Kleeene algebras. Section 3 contains the definitions of the various
algebraic structures we employ. We first recall the notion of modal Kleene algebra [6]. These are Kleene
algebras with forward and backward modal operators defined via domain and codomain operations. Modal
Kleene algebras provide an algebraic framework for computational relational models such as abstract
rewriting systems, and beyond that for dynamics logics and predicate transformers.

In Section 3.2, we introduce a notion of globular higher-dimensional modal Kleene algebra. First, we
define a 0-dioid as a bounded distributive lattice, and forn ≥ 1, ann-dioid as a family (S,+, 0,�i, 1i)0≤i<n
of dioids, or additively idempotent semirings, satisfying lax interchange laws between the multiplication
operations, akin to those of concurrent Kleene algebra [16]. We then extend this structure with domain and
codomain operators di, ri : S→ S for 0 ≤ i < n, satisfying di+1 ◦ di = di, and ri+1 ◦ ri = ri for any i.

The domain and codomain operations induce forward and backward diamond operators |−〉i, 〈−|i in
the sense that for any x ∈ S, |x〉i, 〈x|i are modal operators on the i-dimensional domain algebra Si := di(S).
In 3.2.11 we define conditions for globularity, conducing to the notion of globular modal n-dioid.

Finally, we equip these structures with Kleene star operations (−)∗i : K → K for each 0 ≤ i < n.
These are lax morphisms with respect to the i-multiplication of j-dimensional elements on the right
(resp. left), that is for all 0 ≤ i < j < n, all elements A ∈ K and all φ ∈ Kj in the j-dimensional domain
algebra, we have

φ�i A∗j ≤ (φ�i A)∗j (resp. A∗j �i φ ≤ (A�i φ)∗j).

These structures are called globular modal n-Kleene algebras.
In Section 3.3 we relate this structure to polygraphs by providing a model for higher dimensional

Kleene algebras in the form of a higher dimensional path algebra K(P, Γ) induced by an n-polygraph P
and a cellular extension Γ .

Algebraic coherent confluence. Section 4 contains the main results of this article. After recalling the
formulation of Church-Rosser’s theorem and Newman’s lemma in modal Kleene algebras in Section 4.1,
the notion of fillers in a globular modaln-Kleene algebraK is defined in Section 4.2.1. Given j-dimensional
elements φ,ψ ∈ Kj := dj(K), we say that A ∈ K is an i-confluence filler (resp. i-Church-Rosser filler for
(φ,ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ∗i �i ψ∗i (resp. |A〉j(ψ∗i �i φ∗i) ≥ (ψ+ φ)∗i).
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1. Introduction

We similarly define a notion of local i-confluence filler. A notion of whiskering in n-Kleene algebras is
introduced in Section 4.2.3 and some of its properties are made explicit. We also define, for φ,ψ ∈ Kj
and an i-confluence filler A ∈ K of (φ,ψ), the j-dimensional i-whiskering of A:

Â := (φ+ψ)∗i �i A�i (φ+ψ)∗i .

We then prove two results interpreting the coherent Church-Rosser theorem in the setting of n-Kleene
algebras. The first, Proposition 4.2.7, uses an inductive argument external to the n-Kleene structure.
Given 0 ≤ i < j < n, it states that for φ,ψ ∈ Kj, any i-confluence filler A of (φ,ψ), and any natural
number k ≥ 0, there exists an Ak ≤ Â∗j such that

rj(Ak) ≤ ψ∗iφ∗i and dj(Ak) ≥ (φ+ψ)ki ,

where (φ+ψ)0i = 1i and (φ+ψ)ki = (φ+ψ)�i (φ+ψ)ki−1.
The second interpretation of the Church-Rosser theorem, with a proof relying only on the internal

fixpoint induction of the Kleene star, constitutes our first main result:

Theorem 4.2.8. Let K be a globular n-modal Kleene algebra and 0 ≤ i < j < n. Given
φ,ψ ∈ Kj and any i-confluence filler A ∈ K of (φ,ψ), we have

|Â∗j〉j(ψ∗iφ∗i) ≥ (φ+ψ)∗i .

Thus Â∗j is an i-Church-Rosser filler for (φ,ψ).

In Section 4.3, we introduce notions of termination and well-foundedness in n-Kleene algebras in
which the domain algebras Ki have a Boolean structure for all i ≤ p < n. This leads to our second main
result, a coherent formulation of Newman’s lemma in such algebras:

Theorem 4.3.2. Let 0 ≤ i ≤ p < j < n, and let K be a globular p-Boolean modal Kleene
algebra such that

i) (Ki,+, 0,�i, 1i,¬i) is a complete Boolean algebra,
ii) Kj is continuous with respect to i-restriction, i.e. for all ψ,ψ ′ ∈ Kj and every family

(pα)α∈I of elements of Ki such that supI(pα) exists, we have

ψ�i supI(pα)�i ψ ′ = supI(ψ�i pα �i ψ ′).

For any ψ ∈ Kj i-Noetherian, and φ ∈ Kj i-well-founded, if A is a local i-confluence filler
for (φ,ψ), we have

|Â∗i〉j(ψ∗iφ∗i) ≥ φ∗iψ∗i .

Thus Â∗j is an i-confluence filler for (φ,ψ).

Finally, in Section 4.4, we interpret these results in the context of higher dimensional abstract rewriting,
using the higher dimensional path model defined in Section 3.3.
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2. Preliminaries on higher-dimensional rewriting

Toward an algebraic Squier’s theorem. In this work we provide a formal proofs of the coherent Church-
Rosser’s theorem and the coherent Newman’s lemma in higher-dimensional Kleene algebras. These results
are the main ingredients in the proof of Squier’s coherence theorem, [25] used in constructive proofs of
coherence in categorical algebra. A main objective remains to formalise this result within our algebraic
framework. The first main obstacle towards it is the formalisation of the coherent critical branching lemma.
This requires taking the algebraic and syntactic nature of terms of the rewriting system into account, which
is currently an open problem in the formalism of Kleene algebras. The second difficulty is to capture
normalisation strategies algebraically in higher-dimensional Kleene algebras. Squier’s coherence theorem
is the first step in the construction of cofibrant replacements of algebraic structures using convergent
presentations. We expect that the material introduced in this article will enable us to obtain an algebraic
formalisation of acyclicity, which could in turn provide an algebraic criterion for cofibrance.

2. Preliminaries on higher-dimensional rewriting

In this preliminary section, we recall the notions of higher-dimensional rewriting relevant to this article.
In its two subsections we recall the definition of polygraphs and their properties as rewriting systems
presenting higher-dimensional categories. In Subsection 2.3 we introduce the notion of confluence filler
for a polygraph with respect to a cellular extension. We then formulate and prove the coherent versions
of the Church-Rosser theorem and Neman’s lemma in the point-wise, polygraphic setting. Finally, in its
last subsection, we relate the confluence filler property to the coherent confluence property previously
introduced in [10].

2.1. Polygraphs

2.1.1. Notations. Let n be a natural number or ∞. For a (strict and globular) n-category C, and
0 ≤ k < n we denote by Ck the k-category of k-cells of C. As an abuse of notation, we also write Ck for
the set of k-cells of C. For a k-cell f of C, and 0 ≤ i < k, we denote by si(f) (resp. ti(f)) the i-source
(resp. i-target), and by 1f its identity (k+ 1)-cell of f. The source and target maps si, ti : Ck → Ci satisfy
the globular relations

si ◦ si+1 = si ◦ ti+1, ti ◦ si+1 = ti ◦ ti+1. (2.1.2)

When f and g are i-composable k-cells, that is when ti(f) = si(g), we denote by f ?i g their i-composite.
We recall that the composition operations satisfy the exchange relation

(f ?i f
′) ?j (g ?i g

′) = (f ?j g) ?i (f
′ ?j g

′), (2.1.3)

for any 0 ≤ i < j < n and whenever the compositions are defined. The (k− 1)-composition of k-cells f
and g is denoted by juxtaposition fg, and the (k− 1)-source sk−1(f) and the (k− 1)-target tk−1(f) of a
k-cell f are denoted by s(f) and t(f), respectively. If we denote by f : u ⇒ v a k-cell in C, we denote
by u : p → q the (k − 1)-cells of C and by A : f V g the (k + 1)-cells of C in order to notationally
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2. Preliminaries on higher-dimensional rewriting

distinguish their respective dimensions. These globular cells are depicted as follows:

p

u

!!

v

==
qf

��
g
��

A
%9

2.1.4. Identities and whiskers. Given a k-cell f, the l-dimensional identity on f for k ≤ l ≤ n is
denoted by ιlk(f) and defined by induction, setting ιkk(f) := f and ιlk(f) := 1ιl−1

k
for k < l ≤ n. In this

way, for 0 ≤ k < l ≤ n, we associate to a k-cell f a unique identity cell ιlk(f) of dimension l, called the
l-dimensional identity on f.

In higher category theory, the use of such iterated identities is of great importance for defining
compositions. Given 0 ≤ i < k < l ≤ n, a k-cell f, and a l-cell g, such that ti(f) = si(g), the
i-composite of f and g, is defined by

f ?i g = ιlk(f) ?i g,

and if ti(g) = si(f), we define g ?i f = g ?i ιlk(f).
For 0 ≤ i < j ≤ k, an (i, j)-whiskering of a k-cell f is a k-cell ιkj (u) ?i f ?i ιkj (v), where u and

v are j-cells,. To simplify notation, we denote this k-cell by u ?i f ?i v. A (k − 1, k − 1)-whiskering
1u ?k−1 f ?k−1 1v of a k-cell f will be called a whiskering of f and is denoted by ufv.

2.1.5. (n, p)-categories. If C is an n-category, for 0 ≤ i < k ≤ n, a k-cell f of C is i-invertible if there
exists a k-cell g in C, with i-source ti(f) and i-target si(f) in C, called the i-inverse of f, which satisfies

f ?i g = 1si(f) and g ?i f = 1ti(f).

The i-inverse of a k-cell is necessarily unique. When i = k− 1, we say that f : u→ v is invertible and we
denote by f− : v→ u its (k− 1)−inverse, simply called inverse for short. If moreover the (k− 1)-cells u
and v are invertible, then there exist k-cells

u− ?k−2 f
− ?k−2 v

− : u− → v−, v− ?k−2 f
− ?k−2 v

− : u− → v−

in C. For a natural number p ≤ n, or for p = n =∞, an (n, p)-category is an n-category whose k-cells
are invertible for every k > p. When n < ∞, this is a p-category enriched in (n − p)-groupoids and,
when n =∞, a p-category enriched in∞-groupoids.

2.1.6. Spheres, asphericity and cellular extensions. Let C be an n-category. A 0-sphere of C is a pair
of 0-cells of C. For 1 ≤ k ≤ n, a k-sphere of C is a pair (f, g) of k-cells such that sk−1(f) = sk−1(g) and
tk−1(f) = tk−1(g). We denote by Sphk(C) the set of k-spheres of C.

When n <∞, the n-category C is aspherical if any n-sphere of C is of the form (f, f), with f in Cn.
A cellular extension of C is a set Γ equipped with a map ∂ : Γ → Sphn(C). For α ∈ Γ , the boundary of
the sphere ∂(α) is denoted (sn(α), tn(α)), defining in this way two maps sn, tn : Γ → Cn satisfying the
following globular relations

sn−1 ◦ sn = sn−1 ◦ tn and tn−1 ◦ sn = tn−1 ◦ tn.

8



2.2. Rewriting properties of polygraphs

The free (n + 1)-category generated by Γ over C is the (n + 1)-category, denoted by C[Γ ], whose
underlying n-category is C and whose (n+ 1)-cells are built as formal i-compositions, for 0 ≤ i ≤ n, of
elements of Γ and k-cells of C, seen as (n+ 1)-cells with source and target in Cn. The free (n+ 1, n)-
category generated by Γ over C is denoted by C(Γ). We refer the reader to [22] for explicit free constructions
on cellular extensions over an n-category.

2.1.7. n-polygraph. An n-polygraph P consists of a set P0 and for every 0 ≤ k < n a cellular extension
Pk+1 of the free k-category

P∗k = P0[P1] . . . [Pk].

For 0 ≤ k ≤ n, the elements of Pk are called the generating k-cells of P. The free n-category
P0[P1] . . . [Pn−1][Pn] (resp. the free (n,n− 1)-category P0[P1] . . . [Pn−1](Pn)) generated by P is denoted
by P∗n (resp. P>n ). We refer to [22] for the details of the free constructions on an n-polygraph. Note that a
0-polygraph is a set and an 1-polygraph corresponds to a directed graph, whose set of vertices is P0 and P1
is the set of arrows f with source s0(f) and target t0(f).

2.1.8. Examples of low-dimensional polygraphs. Low-dimensional polygraphs describe abstract rewrit-
ing systems. Recall that an abstract rewriting system consists of a set X and a family→= {→i}i∈I of
binary relations on X, i.e.→i ⊆ X× X for all i ∈ I. We refer the reader to [31] for a complete treatment
on abstract rewriting. An abstract rewriting system A = (X, {→i}i∈I), can be described by a 1-polygraph,
denoted P(A), whose set of 0-cells is X, and whose set of 1-cells consists of

u(x,y,i) : x→ y

for any x, y ∈ X and i ∈ I such that (x, y) ∈→i. When I is a singleton, the 1-cells of the free 1-category
P(A)∗ correspond to the elements of the reflexive and transitive closure ∗→ of the relation→. Moreover
the 1-cells of the free (1, 0)-category P(A)> correspond to the elements of the symmetric closure of the
relation→∗.

A string rewriting system is an abstract rewriting system on a free monoid [2], and can be described
by a 2-polygraph with a single 0-cell. Finally, 3-polygraphs describe term rewriting systems [9] or
three-dimensional rewriting [23].

2.2. Rewriting properties of polygraphs

2.2.1. Polygraphic rewriting. A rewriting step for an n-polygraph P is an n-cell of the n-category P∗n
of the form

un−1 ?n−2 (un−2 ?n−3 . . . ?2 (u2 ?1 (u1 ?0 f ?0 v1) ?1 v2) ?2 . . . ?n−3 vn−2) ?n−2 vn−1,

for a generating n-cell f ∈ Pn and i-cells ui, vi with 1 ≤ i < n. We denote by Pcn the set of rewriting
steps of P. A rewriting path in P of length k is an (n− 1)-composition

f1 ?n−1 f2 ?n−1 . . . ?n−1 fk

of rewriting steps of P. A zig-zag in P of length k is an (n− 1)-composition

fε11 ?n−1 f
ε2
2 ?n−1 . . . ?n−1 f

εk
k

9



2. Preliminaries on higher-dimensional rewriting

of rewriting steps for P, where ε1, . . . , εk ∈ {−1, 1}, and which is reduced with respect the reduction
f ?n−1 f

− → 1.
The set of rewriting steps induces an abstract rewriting system on the set of (n − 1)-cells of P∗n

denoted by→Pn , and defined by u→Pn u
′ if there exists a rewriting step for P that reduces u to u ′. In

this case, we say that u rewrites to u ′. An (n− 1)-cell u in Pn is irreducible with respect to P if there is
no rewriting step for P that reduces u.

2.2.2. Remark. Given a cellular extension Γ of an n-category C, we also denote by Γ c the set of cells of
Γ in context, that is the set of (n+ 1)-cells of the form

fn ?n−1 . . . ?2 (f2 ?1 (f1 ?0 α ?0 g1) ?1 g2) ?2 . . . ?n−1 gn,

where fi, gi are i-cells of C for 0 ≤ i ≤ n, and α ∈ Γ . Any (n+ 1)-cell in the free (n+ 1)-category C[Γ ]
can be written as an n-composition of elements of Γ c using the algebraic laws of higher categories, most
notably the exchange relation. In particular, this means that the n-cells of P∗n correspond to the reflexive,
transitive closure of→Pn in the sense that given an n-cell f of P∗n, we have

f = f1 ?n−1 f2 ?n−1 . . . ?n−1 fk,

where fi ∈ Pcn.

2.2.3. Rewriting properties of an n-polygraph. Let P be a rewriting property defined on abstract
rewriting systems. A polygraph P has the property P if the abstract rewriting system→Pn has the property
P. In particular, P is terminating if there is no infinite rewriting path for P.

A branching in P is an unordered pair (f, g) of rewriting paths of P such that sn−1(f) = sn−1(g).
Such a branching is local when f and g are rewriting steps. We say that P is confluent (resp. locally
confluent) if for any branching (resp. local branching) (f, g), there exist rewriting paths f ′, g ′ of P with
tn−1(f

′) = tn−1(g
′) such that the compositions f ?n−1 f ′ and g ?n−1 g ′ are defined, as illustrated in the

following diagram:
u

f
||

g
""

u1

f ′
!!

v1

g ′
~~

u ′

The source of a branching (f, g) is the common (n− 1)-source of f and g. We say that P is Church-Rosser
if for any zig-zag h of P, there exist rewriting paths k, k ′ of P as in the following diagram:

u oo
h

//

k ##

v

k ′{{

u ′

2.3. Coherent confluence

2.3.1. Coherent confluence. Let P be an n-polygraph and Γ a cellular extension of P>n .
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2.3. Coherent confluence

The cellular extension Γ is a confluence filler of a branching (f, g) of P if there exist rewriting paths
f ′, g ′ of P as in (2.3.2), and two (n + 1)-cells α,α ′ in the free (n + 1)-category P>n [Γ ] of the form
α : f− ?n−1 g→ f ′ ?n−1 (g

′)− and α ′ : g− ?n−1 f→ g ′ ?n−1 (f
′)−:

u
f
||

g
""

u1

f ′
!!

v1

g ′
~~

u ′

u<<f− g
""

u1

f ′
!!

v1>>

(g ′)−u ′

α��

u
f
||

u1 v1

g ′
~~

g−bb

u ′(f ′)−
aa α ′�� (2.3.2)

In this case, α and α ′ are n-compositions of (n+ 1)-cells of Γ c as recalled in Remark 2.2.2. We say that
the cellular extension Γ is a confluence filler for the polygraph P if Γ is a confluence filler for each of its
branchings.

More generally, the cellular extension Γ is a confluence filler of an n-cell f in P>n if there exist n-cells
f ′ and g ′ in P∗n and an (n+ 1)-cell α in the free (n+ 1)-category P>n [Γ ] of the form α : f→ f ′ ?n−1 g

′−:

u

f ′ ##

f
// v

g ′{{

u ′

u

f ′ ##

f
// v

u ′
(g ′)−

;;

α��
(2.3.3)

The cellular extension Γ is a Church-Rosser filler for an n-polygraph P when it is a confluence filler of
every n-cell in P>n .

2.3.4. Theorem (Church-Rosser coherent filler lemma). Let P be ann-polygraph. A cellular extension
Γ of P>n is a confluence filler for P if, and only if, Γ is a Church-Rosser filler for P.

Proof. First suppose that Γ is a Church-Rosser filler for P. Given a branching (f, g), we have that f− ?n−1g
and g− ?n−1 f are elements of P>n and thus Γ is a confluence filler for these n-cells. This gives us the cells
α and α ′ as in (2.3.2), and so Γ is a confluence filler for P.

Conversely, suppose that Γ is a confluence filler for P, and let f ∈ P>n be an n-cell. We prove by
induction on the length of f that Γ is a Church-Rosser filler for P. For f of length 0 or 1, we clearly have
that f is Γ -confluent, since it suffices to take an identity (n+ 1)-cell. Suppose that every n-cell of length
k ≥ 2 is Γ -confluent and that f is of length k+ 1. Then f = f1 ?n−1 f2 with f1 : u→ u1 in P>n of length
k and f2 is of length 1 in P∗n either of the form v→ u1 or u1 → v. By the induction hypothesis there exist
rewriting paths h and k and an (n+ 1)-cell α such that α : f⇒ hk−. If f2 : u1 → v, there exist rewriting
paths k ′ and f ′′ and an (n+ 1)-cell β as depicted in diagram (2.3.5) since Γ is a confluence filler for P.
Thus (αf2) ?n (hβ) is a confluence filler for f.

u oo
f1

//

h
$$

u1
f2

// v

u ′

k−

99

k ′
// u ′′

f ′′
−

::

α
��

β
�� (2.3.5)

11



2. Preliminaries on higher-dimensional rewriting

If f2 : v→ u1, the (n+ 1)-cell αf−2 ?n h1k−(f2)− = αf−2 is a confluence filler for f.

u oo
f1

//

h
$$

u1
(f2)

−

// v

u ′

k−

99

(f2)
−
// u ′′

k−

::

α
��

1k−(f2)−�� (2.3.6)

2.3.7. Theorem (Coherent Newman filler lemma). Let P be a terminatingn-polygraph, and Γ a cellular
extension of P>n . Then Γ is a local confluence filler, if, and only if, Γ is a confluence filler for P.

Proof. Firstly, observe that if Γ is a confluence filler for P, then it is also a local confluence filler for P
since local branchings are also branchings.

Now suppose that Γ is a local confluence filler for P. We prove by Noetherian induction that, for every
(n− 1)-cell u of P∗n, Γ is a confluence filler for every branching of P with source u. For the base case,
if u is irreducible for P, then (1u, 1u) is the only branching with source u, and it is Γ -confluent, taking the
(n+ 1)-cell 11u .

Suppose now the induction hypothesis, namely that u is a reducible (n− 1)-cell of P∗n and that Γ is a
confluence filler for every branching with source an (n− 1)-cell u ′ such that u rewrites to u ′. Let (f, g)
be a branching of P with source u. If one of f or g is an identity, say f, then Γ is a confluence filler
for (f, g) by considering the (n + 1)-cells 1g and 1g− . We may now suppose that the n-cells f and g
are not identities, thus we write f = f1 ?n−1 f2 and g = g1 ?n−1 g2, where g1, f1 are rewriting steps and
g2, f2 are n-cells of P∗n. Since Γ is a local confluence filler for P, there exist n-cells f ′1, g ′1 in P∗n, and an
(n + 1)-cell α in P∗n[Γ ] as in the diagram (2.3.8). We apply the induction hypothesis to the branching
(f2, f

′
1), which yields n-cells f ′2, h in P∗n and an (n+ 1)-cell β in P∗n[Γ ] as in the diagram (2.3.8). Finally,

we apply the induction hypothesis again to the branching (g ′1 ?n−1 h, g2) yielding n-cells k and g ′2 and an
(n+ 1)-cell γ in P∗n[Γ ] as in (2.3.8).

u<<f−1 g1
!!

u1

f ′1
!!

>>f−2
v1>>

(g ′1)
− g2

  

u2

f ′2 ��

u ′
??

h−

v2
??

(g ′2)
−u ′2

k   

u ′′

α
��

β
��

γ

��

(2.3.8)

The n-composition

δ = (((f−2 ?n−1 α) ?n (β ?n−1 (g
′
1)

−)) ?n−1 g2) ?n (f
′
2 ?n−1 γ) (2.3.9)

12



2.4. Γ -confluence and filling

is an (n+ 1)-cell in P∗n[Γ ] with source f− ?n−1 g and target f ′2 ?n−1 k ?n−1 (g ′2)−. We can similarly find
an (n+ 1)-cell δ ′ with source g− ?n−1 f and with target a confluence. Γ is thus a confluence filler for P,
which proves the result.

2.3.10. Remark. Readers more familiar with abstract rewriting than higher dimensional rewriting may
notice that the proofs of Theorems 2.3.4 and 2.3.7 are similar to the classical proofs of these results for
abstract rewriting systems. Indeed, if we forget the (n+ 1)-dimensional coherence cells and look only
at their n-dimensional borders in (2.3.5), (2.3.6) and (2.3.8), we obtain precisely the diagrams used to
prove the analogous 1-dimensional results for abstract rewriting systems. This shows that the higher
dimensional approach is consistent with the abstract case while providing several advantages. Firstly,
using explicit witnesses for confluence allows for a constructive formulation of classical results in the
form of normalisation strategies. Furthermore, since the higher-dimensional cells may be considered as
rewriting systems in their own right, and since the procedures describe the above work in any dimension,
higher-dimensional rewriting provides a constructive method for calculating resolutions and cofibrant
replacements of algebraic structures.

2.4. Γ -confluence and filling

Recall from [10] that, given an n-polygraph P and a cellular extension of P∗n, we say that P is Γ -confluent
(resp. Γ -locally confluent) if for any branching (resp. local branching) (f, g) of P there exist n-cells
f ′, g ′ in the free n-category P∗n as in (2.3.2), and an (n+ 1)-cell α in the free (n+ 1, n)-category P∗n(Γ)
of the form α : f ?n−1 f

′ → g ?n−1 g
′. Similarly, we say that P is Γ -Church-Rosser if for any n-cell f

of P>n there exist n-cells f ′, g ′ in the free n-category P∗n as in 2.3.3, and an (n + 1)-cell α in the free
(n+ 1, n)-category P∗n(Γ) of the form α : f ?n−1 f

′ → g ′. Note that when Γ = Sph(P∗n), the property of
(local) Γ -confluence coincides with the property of (local) confluence of P as defined in (2.2.1), and the
property of Γ -Church-Rosser coincides with the Church-Rosser property of P.

Theorems 2.3.4 and 2.3.7, formulated above in terms of fillers, are expressed in terms of Γ -confluence
as follows:

2.4.1. Theorem (Church-Rosser coherent lemma). Let P be an n-polygraph, and Γ be a cellular
extension of P∗n. If P is Γ -confluent, then P is Γ -Church-Rosser.

Proof. The proof is similar to that of Theorem 2.3.4, but with the (n+ 1)-cells oriented horizontally in
the induction step, as pictured in the following diagram:

u oo
f

//

h
  

v
f ′
//

k
~~

f ′′
��

u ′

k ′
// v ′

α %9 β %9
(2.4.2)

The composite (α ?n−1 k
′) ?n (f ?n−1 β) makes the n-cell f Γ -confluent.

2.4.3. Theorem (Coherent Newman lemma). Let P be a terminating n-polygraph, and Γ a cellular
extension of P∗n. If P is locally Γ -confluent, then P is Γ -confluent.

13



2. Preliminaries on higher-dimensional rewriting

Proof. The proof is similar to that of Theorem 2.3.7, but with the following induction diagram:

u
f1
||

g1
!!

u1

f ′1
!!

f2

~~

v1

g ′1
~~

g2

  

u2

f ′2 ��

u ′

h
��

v2

g ′2
��

u ′2

k   

u ′′

α %9

β %9
γ %9 (2.4.4)

Then the following n-composition

δ = (((f1 ?n−1 β) ?n (α ?n−1 h)) ?n−1 k) ?n (g1 ?n−1 γ) (2.4.5)

is an (n+ 1)-cell in P∗n(Γ) with source f ?n−1 (f ′2 ?n−1 k) and target g ?n−1 g ′2, proving the result.

Note that for Γ = Sph(P∗n), Theorems 2.4.3 and 2.4.1 correspond to Newman’s lemma and the
Church-Rosser theorem [24], see also [18].

2.4.6. Remarks. In this section, we have defined two approaches to coherence properties of an n-
polygraph P with respect to a cellular extension Γ :

i) A "vertical" approach in which the coherence cells, i.e. the (n+ 1)-cells generated by Γ , have a
branching as n-source and a confluence as n-target. This necessitates having inverses of n-cells,
that is Γ is a cellular extension of P>n . However, in the proofs of Theorems 2.3.4 and 2.3.7, we do
not need inverses of (n+ 1)-cells.

ii) A "horizontal" approach in which coherence cells have rewriting paths for both source and target,
and we do not need inverses of n-cells, i.e. we consider cellular extensions of P∗n, only inverses of
(n+ 1)-cells in order to prove Theorems 2.4.1 and 2.4.3.

These differences can be summed up by saying that, in the first approach, the proofs take place in P>n [Γ ],
whereas, in the second one, the proofs take place in P∗n(Γ).

Furthermore, it is worth noting that, in the first approach, we specify two filler cells α and α ′ as
depicted in diagram 2.3.2 for each branching (f, g). This is due to the fact that branchings are unordered
pairs, so we must account for both cases. This equally constitutes the reason we require inverses of
(n+ 1)-cells in the second approach.

In the rest of this article, we will exclusively consider the "vertical" approach to paving diagrams with
higher dimensional cells. The motivation of this choice lies in the fact that with Kleene algebras, we pave
diagrams from a relational rather than a polygraphic point of view. We thus follow the direction of the
n-cells in branchings and confluences—i.e. "vertically". This is a consequence of the quantification on
branchings and confluences: we quantify universally over branchings and existentially over confluences.
In the polygraphic approach, this quantification is hidden by specifying the (n+ 1)-cells filling confluence
diagrams.
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3. Higher dimensional modal Kleene algebras

3. Higher dimensional modal Kleene algebras
In this section we introduce the notion of higher-dimensional globular modal Kleene algebra. In its first
subsection, we recall the axioms of modal Kleene algebra [6]. We then define n-dimensional dioids and
equip these with domain and star operations, thus obtaining modal n-Kleene algebras. Finally, we provide
a model of this structure in the form of a higher-dimensional path algebra associated to an n-polygraph
with a cellular extension Γ .

3.1. Modal Kleene algebras

3.1.1. Semirings. Recall that a semiring is a tuple (S,+, 0, ·, 1) made of a set S and two binary
operations + and · such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid whose multiplication
operation · distributes on the left and the right over the addition operation +, and 0 is a left and right zero
for multiplication.

A dioid is a semiring S in which addition is idempotent, i.e. for all x ∈ S, we have x+ x = x. In this
case, the relation defined by

x ≤ y ⇐⇒ x+ y = y, (3.1.2)
for all x, y ∈ S, is a partial order on S, with respect to which addition and multiplication are monotone,
and 0 is minimal. Where there is no possible confusion, we will often denote multiplication simply by
juxtaposition. A bounded distributive lattice is a dioid (S,+, 0, ·, 1), whose multiplication · is commutative
and idempotent, and x ≤ 1, for every x ∈ S.
3.1.3. Domain semirings. Recall from [6] that a domain semiring is a dioid (S,+, ·, 0, 1) equipped with
a domain operation d : S→ S that satisfies the following five axioms for all x, y ∈ S:
i) x ≤ d(x)x,

ii) d(xy) = d(xd(y)),

iii) d(x) ≤ 1,

iv) d(0) = 0,

v) d(x+ y) = d(x) + d(y),
These structures are called domain semirings and not domain dioids because a semiring equipped

with a domain operation is automatically idempotent. Consequences of the axioms of domain semirings
include the fact that the image of S under d is precisely the set of fixpoints of d, i.e.

Sd := {x ∈ S | d(x) = x} = d(S),

and that Sd forms a distributive lattice with + as join and · as meet, bounded by 0 and 1. It contains the
largest Boolean subalgebra of S bounded by 0 and 1. We henceforth write p, q, r, . . . for elements of Sd
and refer to Sd as the domain algebra of S. Moreover, Sd is a subsemiring of S in the sense that its element
satisfy the semiring axioms, 0 and 1 are in the set, and the set is closed with respect to · and +. Further
properties include

d(0) = 0, d(px) = pd(x), x ≤ y⇒ d(x) ≤ d(y),

for all x, y ∈ Sd, and d commutes with all existing sups [6].
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3.1.4. Boolean domain semirings. A limitation of domain semirings is that complementation in Sd
cannot be expressed. This requires a notion of antidomain that abstractly describes those elements that
are not in the domain of a particular element. Recall from [6] that a Boolean domain semiring is a dioid
(S,+, ·, 0, 1) equipped with an antidomain operation ad : S→ S that satisfies the following three axioms,
for all x, y ∈ S:

i) ad(x)x = 0,

ii) ad(xy) ≤ ad(x ad2(y)),

iii) ad2(x) + ad(x) = 1.

Setting d = ad2, we recover a domain semiring, that is, d satisfies the domain semiring axioms. In the
presence of the operation ad, the subalgebra Sd of all fixpoints of d in S is now the greatest Boolean
algebra in S bounded by 0 and 1; we have that Sd = ad(S) and ad acts as Boolean complementation on Sd.
We therefore denote the restriction of ad to Sd by ¬.

3.1.5. Modal semirings. We denote the opposite of a semiring S, in which the order of multiplication
has been reversed, by Sop. It is once again a semiring. A codomain (resp. Boolean codomain) semiring
is a semiring equipped with a map r : S→ S (resp. ar : S→ S) such that (Sop, r) (resp. (Sop, ar)) is a
domain (resp. Boolean domain) semiring.

Consider a semiring equipped with a domain operator and a codomain operation. The domain and
range axioms alone do not imply that Sd = Sr, let alone the compatibility properties

d(r(x)) = r(x), r(d(x)) = d(x), (3.1.6)

for every x in S. Indeed, consider the domain and range semiring S = ({a},+, ·, 0, 1, d, r) with addition
defined by 0 < a < 1, multiplication by a2 = a, domain by d a = 1 and codomain by r a = a. We
have Sd = {0, 1} 6= {0, a, 1} = Sr and d (r a) = 1 6= a = r a. The identity r ◦ d = d fails in the opposite
semiring.

Recall from [6] that a modal semiring S is a domain semiring that is also a codomain semiring, and
satisfying the compatibility properties (3.1.6). Boolean domain semirings that are also Boolean codomain
semirings are called Boolean modal semirings. In this case, maximality of Sd and Sr = {x ∈ S | r(x) = x}
forces the domain and range algebra of S to coincide, so that the extra axioms (3.1.6) are not necessary.
We provide a formal proof, as this fact has so far been overlooked.

3.1.7. Lemma. In every Boolean modal semiring the compatible properties (3.1.6) hold.

Proof. Let S be a Boolean modal semiring, and x in S. Then

d(r(x)) = (ar(x) + r(x))d(r(x))
= ar(x)d(r(x)) + r(x)d(r(x))(ar(x) + r(x))
= 0+ r(x)d(r(x))ar(x) + r(x)d(r(x))r(x)
= 0+ r(x)r(x) = r(x),

proving the first equality in (3.1.6). In the third step, ar(x)d(r(x)) = 0 because ar(x)r(x) = 0 and
yz = 0 ⇔ yd(z) = 0 hold in any Boolean modal semiring. In the fourth step, r(x)d(r(x))ar(x) = 0
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because d(r(x)) ≤ 1 and again ar(x)r(x) = 0. Moreover r(x)d(r(x))r(x) = r(x)r(x) because d(y)y = y
holds in any modal semiring. The proof of the second equality in (3.1.6) follows by opposition.

It then follows that Sd = Sr: if d(x) = x, then r(x) = r(d(x)) = d(x) = x; and r(x) = x implies
d(x) = x by opposition. This forces that Sd = Sr = {x ∈ S | r(x) = x}.

3.1.8. Modal Kleene algebras. A Kleene algebra is a dioid K equipped with an operation (−)∗ : K→ K

called Kleene star, satisfying the following axioms. For all x, y, z ∈ K,

i) (unfold axioms) 1+ xx∗ ≤ x∗ and 1+ x∗x ≤ x∗,

ii) (induction axioms) z+ xy ≤ y⇒ x∗z ≤ y and z+ yx ≤ y⇒ zx∗ ≤ y.

Note that the axioms on the left are the opposites of those on the right. Useful consequences of Axioms
i) and ii) include the following identities for all x, y ∈ K, and i ∈ N,

xi ≤ x∗ x∗x∗ = x∗ x∗∗ = x∗ x(yx)∗ = (xy)x∗ (x+ y)∗ = x∗(yx∗)∗ = (x∗y∗)∗,

where xi denotes the i-fold multiplication of x with itself, as well as the quasi-identities

x ≤ 1⇒ x∗ = 1 x ≤ y⇒ x∗ ≤ y∗ xz ≤ zy⇒ x∗z ≤ zy∗ zx ≤ yz⇒ zx∗ ≤ y∗z.

The Kleene plus is the operation (−)+ : K→ K defined by x+ = xx∗.
The above notions of domain and codomain extend to Kleene algebras without having to add any

further axioms. We thus define a (Boolean) modal Kleene algebra as a Kleene algebra that is also a
(Boolean) modal-semiring.

3.1.9. Modal Operators. Let (S,+, ·, 0, 1, d, r) be a modal semiring. For x ∈ S and p ∈ Sd, we define
the modal diamond operators:

|x〉p = d(xp), 〈x|p = r(px). (3.1.10)

When S is a Boolean modal semiring, we additionally define modal box operators:

|x]p = ¬|x〉(¬p), [x|p = ¬〈x|(¬p). (3.1.11)

These are modal operators in the sense of Boolean algebras with operators [19] because the following
identities hold:

|x〉(p+ q) = |x〉p+ |x〉q, |x〉0 = 0, 〈x|(p+ q) = 〈x|p+ 〈x|q, 〈x|0 = 0,

and
|x](pq) = |x]p+ |x]q, |x]1 = 1, [x|(pq) = [x|p+ [x|q, [x|1 = 1.

It is easy to see that |−〉 and 〈−|, as well as |−] and [−| are related by opposition. In a (Boolean) modal
Kleene algebra, this can be expressed by the conjugation laws

|x〉p · q = 0⇔ p · 〈x|q = 0 and |x]p+ q = 1⇔ p+ [x|q = 1.
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In a Boolean modal semiring, boxes and diamonds are related by De Morgan duality by their definition
(3.1.11) and additionally by

|x〉p = ¬|x](¬p), 〈x|p = ¬[x|(¬p). (3.1.12)

Finally, boxes and diamonds are adjoints in Galois connections, expressed by the following relations

|x〉p ≤ q⇔ p ≤ [x|q and 〈x|p ≤ q⇔ p ≤ |x]q.

As a consequence, diamonds preserve all existing sups in S, whereas boxes reverse all existing infs to
sups, and all modal operators are order preserving. Finally, we mention the properties |xy〉 = |x〉 ◦ |y〉,
〈xy| = 〈y| ◦ 〈x|, |xy] = |x] ◦ |y] and [xy| = [y| ◦ [x|.

3.1.13. Example: relation Kleene algebra. For any set X, the structure

(P(X× X),∪, ; , ∅X, IdX, (−)∗)

forms a Kleene algebra, called the full relation Kleene algebra over X. The operation ; is the relational
composition defined by (a, b) ∈ R ;S if and only if (a, c) ∈ R and (c, b) ∈ S, for some c ∈ X. The
relation IdX = {(a, a) | a ∈ X} is the identity relation on X and (−)∗ the reflexive transitive closure
operation defined, for R0 = IdX and Ri+1 = R ;Ri, by

R∗ =
⋃
i∈N
Ri,

The subidentity relations below IdX form its greatest Boolean subalgebra between ∅X and IdX, which is
isomorphic to the power set algebra P(X). Every subalgebra of a full relation Kleene algebra is a relation
Kleene algebra.

The full relation Kleene algebra over X extends to a full relation Boolean modal Kleene algebra over
X by defining

d(R) = {(a, a) | ∃b ∈ X. (a, b) ∈ R} and r(R) = {(a, a) | ∃b. (b, a) ∈ R}.

The antidomain and anticodomain maps are then given by complementation ad(R) = IdX \ d(R) and
ar(R) = IdX \ r(R), and it is straightforward to check that

|R〉P = {(a, a) | ∃b ∈ X. (a, b) ∈ R∧ (b, b) ∈ P},
|R]P = {(a, a) | ∀b ∈ X. (a, b) ∈ R⇒ (b, b) ∈ P},

which corresponds to the standard relational Kripke semantics of boxes and diamonds. Similar expressions
for the backward modalities are obtained by swapping (a, b) to (b, a) in the above expressions.

3.1.14. Example: path Kleene algebras. Let P∗ be the free 1-category generated by the 1-polygraph
P = (P0, P1). Then (P(P∗1),∪,�, ∅,1, (−)∗) forms a Kleene algebra, the full path (Kleene) algebra K(P)
over P. Here, composition is defined as

φ�ψ = { u ?0 v | u ∈ φ ∧ v ∈ ψ ∧ t0(u) = s0(v) }
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3.2. n-Dimensional globular Kleene algebras

for any φ,ψ ∈ P(P∗1), and 1 is the set of all identity arrows of P. The Kleene star can be defined as

φ∗ =
⋃
i∈N
φi

where φ0 = 1 and φi+1 = φ � φi. Every subalgebra of the full path Kleene algebra over P is a path
Kleene algebra.

The full path algebra over P can be extended to a full path Boolean modal Kleene algebra over P by
defining

d(φ) = {1s(u) | u ∈ φ} and r(φ) = {1t(u) | u ∈ φ}

where 1x denotes the identity arrow on the object x ∈ P0. The antidomain and anticodomain maps are
then given by complementation ad(φ) = 1 \ d(φ) and ar(φ) = 1 \ r(φ). It is then easy to check that

|φ〉p = {1s(u) | u ∈ φ∧ t(u) ∈ p} and |φ]p = {1s(u) | u ∈ φ⇒ t(u) ∈ p}

where p ⊆ 1 is some set of identity arrows. Once again, similar expressions for backward modalities can
be obtained by swapping source and target functions in the right places.

The relational and the path model are very similar. In fact the relational model can be obtained from
the path model by applying a suitable homomorphism of modal Kleene algebras.

3.2. n-Dimensional globular Kleene algebras

We now extend the definitions in the previous sections to a notion of globular n-dimensional modal
Kleene algebra. First, we define a notion of n-dimensional dioid satisfying lax interchange laws between
multiplication operations of different dimensions, similar to those of concurrent Kleene algebra [16]. We
then extend it with domain operations and add further axioms that capture globularity. Finally we equip
these algebras with star operations for each dimension and impose novel lax interchange laws between
compositions and stars of different dimensions.

3.2.1. n-Dioid. We define a 0-dioid as a bounded distributive lattice and a 1-dioid as a dioid. More
generally, for n ≥ 1, an n-dioid is a structure (S,+, 0,�i, 1i)0≤i<n satisfying the following conditions:

i) (S,+, 0,�i, 1i) is a dioid for 0 ≤ i < n,

ii) the following lax interchange laws hold for all 0 ≤ i < j < n:

(x�j x ′)�i (y�j y ′) ≤ (x�i y)�j (x ′ �i y ′) (3.2.2)

iii) Higher dimensional units are idempotents of lower dimensional multiplications, i.e.

1j �i 1j = 1j (3.2.3)

for 0 ≤ i < j < n.

With lax interchange laws, by contrast to the equational case, we need not worry about an Eckmann-Hilton
collapse.
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3. Higher dimensional modal Kleene algebras

3.2.4. Domain n-semirings. For n = 0, we stipulate that a domain 0-semiring is a 0-diod. For n ≥ 1, a
domain n-semiring is an n-dioid (S,+, 0,�i, 1i)0≤i<n equipped with n domain maps di : S→ S, for all
0 ≤ i < n, satisfying the following conditions:

i) (S,+, 0,�i, 1i, di) is a domain semiring,

ii) di+1 ◦ di = di.

For 0 ≤ i < n, the set Sdi = di(S) will be called the i-dimensional domain algebra, and will
be denoted by Si. Furthermore, to distinguish elements of distinct dimensions 0 ≤ i < j < n, we
henceforth denote elements of Si by p, q, r, . . . , elements of Sj by φ,ψ, ξ, . . . , and other elements of S
by A,B,C, . . . This notation simplifies the reading of proofs when elements of different dimensions are
interacting. For a natural number k ≥ 0, the k-fold i-multiplication of an element A of S, for 0 ≤ i < n,
is defined by

A0i = 1i, Aki = A�i A(k−1)i .

The axioms ii) and iii) from Section 3.2.1 forn-dioids provide the basic algebraic structure for reasoning
about higher-dimensional rewriting systems. Indeed, the dependencies between multiplications of different
dimensions expressed by the lax interchange laws capture the lifting of the equational interchange law for
n-categories, while the idempotence of i-multiplication for the j-unit expresses completeness of the set of
j-dimensional cells in an n-category with respect to i-composition. In this way, these axioms begin to
capture the higher dimensional character of polygraphs, as is made clear in Section 3.3.1, in which we
provide a model of this structure based on polygraphs. The domain axiom ii) from Section 3.2.4 further
captures characteristics of dimension, which are expressed abstractly in the following proposition.

3.2.5. Proposition. For n ≥ 1, in any domain n-semiring S, for all 0 ≤ i < j < n, the following
conditions hold:

i) dj ◦ di = di,

ii) dj(1i) = 1i,

iii) 1i ≤ 1j,

iv) Si ⊆ Sj,

v) (Sj,+, 0,�i, 1i, di) is a domain sub semiring of (S,+, 0,�i, 1i, di) and di(Sj) = Si,

vi) (Sj,+, 0,�k, 1k, dk)0≤k≤i is a domain sub (i+ 1)-semiring of (S,+, 0,�k, 1i, dk)0≤k≤i.

vii) (Si,+, 0,�i, 1i) is a 0-dioid.
Proof. The first identity is proved by a simple induction on axiom ii) in (3.2.4). The second one quickly
follows, since di(1i) = 1i follows from the domain semiring axioms, and thus dj(1i) = 1i using i). The
third identity is again a direct consequence, since by ii) we know that 1i ∈ Sj, and that 1j is the greatest
element of Sj. The fourth one follows since x ∈ Si if, and only if, di(x) = x, which is equivalent to
dj(x) = x by ii). The fifth identity is verified by noticing that the inclusion Sj ↪→ S is a morphism of
domain semirings with the operation�i. Furthermore, since di(Sj) ⊆ Si and Si ⊆ Sj, we have di(Sj) = Si.
Noticing that, in fact, Sj ↪→ S is a morphism of domain semirings with the operation�k for any 0 ≤ k ≤ i
gives us vi). The final result follows from basic properties of domain semirings.
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3.2. n-Dimensional globular Kleene algebras

Given an n-semiring S, we denote by Sop the n-semiring in which the order of each multiplication
operation has been reversed. An n-semiring S is a codomain n-semiring if Sop is a domain n-semiring.
The codomain operators are denoted by ri. A modal n-semiring is an n-semiring with domains and
codomains, in which the coherence conditions di ◦ ri = ri and ri ◦ di = di hold for all 0 ≤ i < n.

3.2.6. Remarks. Section 3.1.14 recalls that the path algebra K(P) defined as the power set of 1-cells in
the free category generated by a 1-polygraph P = (P0, P1) is a model of modal 1-semiring. The domain
algebra K(P)d is isomorphic to the power set of P0. As recalled in Section 3.1.3, in the general case of
a domain semiring (S,+, 0, ·, 1, d), the domain algebra Sd forms a bounded distributive lattice with +
as join, · as meet, 0 as bottom and 1 as top. It is for this reason that we consider a 0-dioid as a bounded
distributive lattice. Indeed, the idempotence and commutativity of the multiplication operation simulate
the properties of a set of identity 1-cells.

Note also that, in Section 3.3, we will construct higher-dimensional path algebras over n-polygraphs
and show that these form models of modal n-semirings. In this case it makes sense that (Si,+, 0,�i, 1i)
is a 0-dioid, since an i-cell f : u→ v of an n-category C is a 0-cell in the hom-category C(u, v).

3.2.7. Diamond operators. Let S be amodaln-semiring. We introduce forward and backward i-diamond
operators defined via (co-)domain operators in each dimension by analogy to (3.1.5). For any 0 ≤ i < n,
A ∈ S and φ ∈ Si, we define

|A〉i(φ) = di(A�i φ), and 〈A|i(φ) = ri(φ�i A). (3.2.8)

In the absence of antidomains, box operators cannot be expressed in this setting. These diamond operators
have all of the properties recalled in Section 3.1.9 with respect to i-multiplication and elements of Si.

3.2.9. p-Boolean domain semirings. For 0 ≤ p < n, a domain n-semiring (S,+, 0,�i, 1i, di)0≤i<n is
called p-Boolean if it is augmented with (p+ 1) maps

(adi : S→ S)0≤i≤p

such that for all 0 ≤ i ≤ p, the following conditions are satisfied:

i) (S,+, 0,�i, 1i, adi) is a Boolean domain semiring,

ii) di = ad2i .

By definition, a 0-Boolean domain 1-semiring is a Boolean domain semiring, and by convention we define
a 0-Boolean domain 0-semiring as a Boolean algebra.

We define a p-Boolean codomain semiring as an n-semiring such that its opposite n-semiring is a
p-semiring with antidomains. In this case the anticodomain operators are denoted ari.

3.2.10. Remark. The key difference between modal n-semirings and their p-Boolean counterparts is
that the latter are equipped with negation operations in their lower dimensions. Indeed, in a p-Boolean
modal Kleene algebra K, for every 0 ≤ i ≤ p, the tuple

(Ki,+, 0,�i, 1i, adi)

is a Boolean algebra. For this reason, we denote the restriction of adi to Ki by ¬i. Furthermore, as recalled
in (3.1.9), for 0 ≤ j ≤ p, A ∈ K and φ ∈ Kj we can define forward (resp. backward) box operators

|A]j(φ) := ¬j(|A〉j(¬jφ)) (resp. [A|j(φ) := ¬j(〈A|j(¬jφ)))
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3. Higher dimensional modal Kleene algebras

3.2.11. Globular modal n-semiring. A modal semiring S is called globular if the following globular
relations hold for 0 ≤ i < j < n and A,B ∈ K:

di ◦ dj = di and di ◦ rj = di, (3.2.12)
ri ◦ dj = ri, and ri ◦ rj = ri, (3.2.13)

dj(A�i B) = dj(A)�i dj(B), (3.2.14)
rj(A�i B) = rj(A)�i rj(B). (3.2.15)

An element A of S will be represented graphically by the following diagram with respect to its i- and
j-borders, when i < j:

di(A)

dj(A)

!!

rj(A)

==
⇓ A ri(A)

The intuition here is thatA is a collection of cells and that for k ∈ {i, j}, dk(A) (resp. rk(A)) is a collection
of k-cells each of which is the k-source (resp. k-target) of some cell belonging to A. In Section 3.3 this
intuition is elucidated via the polygraphic model.

Below are graphical representations of i- and j-multiplication with respect to i- and j-borders:

di(A�idi(B))

dj(A�idi(B))

$$

rj(A�idi(B))

::
⇓ A�idi(B) ri(A)�idi(B)

dj(ri(A)�iB)

$$

rj(ri(A)�iB)

::
⇓ ri(A)�iB ri(ri(A)�iB)  di(A�iB)

dj(A�iB)

  

rj(A�iB)

==
⇓ A�iB ri(A�iB)

⇓ A�jdj(B)

di(A)�idi(B)

dj(A�jdj(B))

!!

rj(A)�jdj(B) //

rj(rj(A)�jB)

==
ri(A)�iri(B)⇓ rj(A)�jB

 di(A�jB)

dj(A�jB)

$$

rj(A�jB)

99
⇓ A�jB ri(A�jB)

The illustrations underline the fact that multiplication of elements in a Kleene algebra is equivalent to
multiplying their restrictions to the appropriate domain or range, as below:

A�i B = (A�i ri(A))�i (di(B)�i B) = (A�i di(B))�i (ri(A)�i B),

where we have used properties of domain semirings given in (3.1.3), and that these restrictions are
compatible with the globular relations.
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3.3. A model of higher-dimensional modal Kleene algebras

3.2.16. Modal n-Kleene algebra. An n-Kleene algebra is an n-dioid K equipped with operations
(−)∗i : K→ K satisfying the following conditions:

i) (K,+, 0,�i, 1i, (−)∗i) is a Kleene algebra for 0 ≤ i < n,

ii) For 0 ≤ i < j < n, the Kleene star operation (−)∗j is a lax morphism with respect to the i-whiskering
of j-dimensional elements on the right (resp. left), that is for all A ∈ K and φ ∈ Kj,

φ�i A∗j ≤ (φ�i A)∗j , and (resp. A∗j �i φ ≤ (A�i φ)∗j). (3.2.17)

As in the case of 1-Kleene algebras, recalled in (3.1.8), the notions of (p-Boolean) n-semiring
structures with (co)domains are compatible with the notion of n-Kleene algebra. Hence, a n-Kleene
algebra with domains (resp. codomains) is a n-Kleene algebra such that the underlying semiring has
domains (resp. codomains). When the underlying n-semiring is modal, we have a modal n-Kleene algebra.
If it is p-Boolean, we have a p-Boolean modal n-Kleene algebra. We say that these are globular when the
underlying modal n-semiring is globular.

Finally, note that for n = 2, we obtain the standard concurrent Kleene algebra axioms [16], except that
10 = 11 is normally assumed in this case.

3.3. A model of higher-dimensional modal Kleene algebras

3.3.1. Polygraphic model. Let P be an n-polygraph and Γ a cellular extension of the free (n,n − 1)-
category P>n . We define an (n + 1)-modal Kleene algebra K(P, Γ), the full (n + 1)-path algebra over
P>n [Γ ], as follows

i) The carrier set of K(P, Γ) is the power set P(P>n [Γ ]), whose elements, denoted by A,B,C, . . . , are
sets of (n+ 1)-cells. We denote these (n+ 1)-cells by α,β, γ, . . . in what follows.

ii) Recall that for α a k-cell, the elements si(α), ti(α), ιlk(α) were defined for 0 ≤ i ≤ k ≤ l ≤ n+ 1
in Sections 2.1.1 and 2.1.4. When k ≤ i, we define si(α) = ti(α) = ιik(α),

iii) Recall that the i-composition of a k-cell α and an l-cell β for 0 ≤ i < k ≤ l ≤ n+ 1 was defined in
Sections 2.1.1 and 2.1.4. For 0 ≤ k ≤ l < n+ 1, we define

α ?i β =

{
ιi+1k (α) ?i β for k ≤ i < l,
ιi+1k (α) ?i ι

i+1
l (β) for l ≤ i.

iv) For 0 ≤ i < n+ 1, the binary operation �i on K(P, Γ) corresponds to the lifting of the composition
operations of P>n [Γ ] to the power-set, i.e. for any A,B ∈ K(P, Γ),

A�i B := {α ?i β | α ∈ A∧ β ∈ B∧ ti(α) = si(β)}.

v) For 0 ≤ i < n+ 1, denote by 1i the set

1i = {ιn+1i (u) | u ∈ P>n [Γ ]i},
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3. Higher dimensional modal Kleene algebras

These sets are the units for the multiplication operations, that is we have

A�i 1i = 1i �i A = A.

Furthermore, when i < j, the inclusion 1i ⊆ 1j holds. Indeed, in that case ιn+1i (u) = ιn+1j (ιji(u)) by
uniqueness of identity cells, and ιji(u) ∈ P

>
n (Γ)j is a j-cell.

vi) The addition in K(P, Γ) is given by set union ∪. The ordering is therefore given by set inclusion.

vii) The i-domain and i-codomain maps di and ri are defined by

di(A) := {ιn+1i (si(α)) | α ∈ A}, and ri(A) := {ιn+1i (ti(α)) | α ∈ A}.

These are thus given by lifting the source and target maps of P>n [Γ ] to the power set. The i-antidomain
and i-anticodomain maps are then given by complementation with respect to the set of i-cells:

adi(A) := 1i \ {ι
n+1
i (si(α)) | α ∈ A}, and ari(A) := 1i \ {ι

n+1
i (ti(α)) | α ∈ A}.

viii) The i-star is given by
A∗i =

⋃
k∈N

Aki ,

where in the above, A0i := 1i and Aki := A�i A(k−1)i .

3.3.2. Proposition. For any n-polygraph P and cellular extension Γ of P>n , K(P, Γ) is an n-Boolean
(n+ 1)-modal Kleene algebra.

Additionally, the set Γ c of rewriting steps generated by Γ as defined in Remark 2.2.2, is represented in
n-Kleene algebra by

Γ c = 1n �n−1 (· · · �2 (12 �1 (11 �0 Γ �0 11)�1 12)�2 · · · )�n−1 1n.

Therefore, α is an (n+ 1)-cell of P>n [Γ ] if, and only if, α ∈ (Γ c)∗n .

Proof. It is easy to check that, for 0 ≤ i < n+ 1, the tuple (P((P>n [Γ ])n+1),∪, ∅,�i,1i, (−)∗i , di, ri) is
a modal semiring. The fact that it is n-Boolean is a result of it being a power-set algebra.

Let A,A ′, B, B ′ ∈ K(P, Γ) and 0 ≤ i < j < n + 1. We want to show that the lax interchange law
holds, i.e.

(A�j B)�i (A ′ �j B ′) ⊆ (A�i A ′)�j (B�i B ′). (3.3.3)

This is the case since, given (n + 1)-cells α ∈ A,α ′ ∈ A ′, β ∈ B,β ′ ∈ B ′, if (α ?j β) ?i (α
′ ?j β

′) is
defined, then as a consequence of the exchange law for (n+ 1) categories, we have

(α ?j β) ?i (α
′ ?j β

′) = (α ?i α
′) ?j (β ?i β

′) ∈ (A�i A ′)�j (B�i B ′)

which gives the desired inclusion (3.3.3). This situation is illustrated by the following diagram:

⇓ α ⇓ α ′
· //

��

CC
· //

��

CC
·⇓ β ⇓ β ′
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3.3. A model of higher-dimensional modal Kleene algebras

The lax interchange law is not reduced to an equality due to composition of diagrams of the following
shape:

⇓ α ⇓ α ′
· //

!!

FF
· //

==· //
��

·⇓ β ⇓ β ′
where α ∈ A,α ′ ∈ A ′, β ∈ B,β ′ ∈ B ′. Indeed, the composition (α ?i α

′) ?j (β ?i β
′) ∈ (A�i A ′)�j

(B�i B ′) is defined, whereas neither α and β nor α ′ and β ′ are j-composable, meaning that in general
the inclusion (3.3.3) is strict.

Further, given 0 ≤ i < j < n + 1, we have 1j ⊆ 1j �i 1j. Indeed, for any j-cell α, we have
α ?i ι

n+1
i (ti(α)) = α because ιn+1i (ti(α)) is the (n+ 1)-dimensional identity cell on the i-dimensional

target of α. Furthermore, ιn+1i (ti(α)) ∈ 1i ⊆ 1j, proving the inclusion. Thus 1j = 1j �i 1j since
(P>n (Γ))j is closed under i-composition.

Given 0 ≤ i < n, we have di+1 ◦ di = di since the (i+ 1)-dimensional border of an identity cell on
an i-cell u is u itself. Since di(1i) = 1i, we equally have di+1(1i) = 1i.

The first two globularity axioms are immediate consequences of the globularity conditions on the
source and target maps of P>n (Γ). Furthermore, for 0 ≤ i < j < n + 1 and A,B ∈ K(P, Γ), we have
u ∈ dj(A�i B) if, and only if, there exist α ∈ A and β ∈ B such that u = sj(α ?i β) = sj(α) ?i sj(β),
which is equivalent to u ∈ dj(A)�i dj(B). Similarly, we show that rj(A ?i B) = rj(A)�i rj(B).

Finally, we consider the Kleene star axioms. It is easy to check that, given a family (Bk)k∈I of elements
of K(P, Γ) and another element A, we have, for all 0 ≤ i < n+ 1,

A�i

(⋃
k∈I
Bk

)
=
⋃
k∈I

(A�i Bk) and

(⋃
k∈I
Bk

)
�i A =

⋃
k∈I

(Bk �i A) .

It then follows by routine calculations that the element A∗i defined above satisfies, for each i, the Kleene
star axioms, recalled in (3.1.8). It only remains to check that for 0 ≤ i < j < n + 1, the j-star is a lax
morphism for i-whiskering of j-dimensional elements on the left (the right case being symmetric), that
is φ �i A∗j ⊆ (φ �i A)∗j for φ ∈ K(P, Γ)j and A ∈ K(P, Γ). By construction, K(P, Γ)j is in bijective
correspondence with (P>n (Γ))j, the set of j-cells of P>n [Γ ]. Considering such elements φ and A, we have
β ∈ φ�i A∗j in the following two cases:

i) There exist u ∈ φ and α ∈ A+j , where we recall that A+j := A�j A∗j is the Kleene plus operation,
such that β = u ?i α. Since α ∈ A+j , there exist a k > 0 and cells α1, α2, . . . , αk ∈ A such that

α = α1 ?j α2 ?j · · · ?j αk.

Since i < j, the following is a consequence of the exchange law for n-categories:

u ?i (α1 ?j α2 ?j · · · ?j αk) = (u ?i α1) ?j (u ?i α2) ?j · · · ?j (u ?i αk),

and thus we have β ∈ (φ�i A)+j .
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4. Algebraic coherent confluence

ii) There exist u ∈ φ, and v ∈ (P>n (Γ))j with v 6∈ A such that β = u ?i v. This is due to the fact that
A∗j = 1j + A

+j . In that case, we have β ∈ (P>n (Γ))j, i.e. β ∈ 1j. By the unfold axiom, we have
1j ⊆ (φ�i A)∗j , and thus β ∈ (φ�i A)∗j .

The fact that α is an (n+ 1)-cell of P>n [Γ ] if, and only if, α ∈ (Γ c)∗n , follows by definition of Γ c and the
fact that any (n+ 1)-cell of P>n [Γ ] is an n-composition of rewriting steps.

4. Algebraic coherent confluence
In this section, we present proofs of the coherent Church-Rosser theorem and coherent Newman’s lemma
in the setting of higher-dimensional globular Kleene algebras. These constitute the main results of this
article. First, we recall from [5, 28, 29] abstract rewriting properties formulated in modal Kleene algebras.
We then formalise notions from higher-dimensional rewriting needed to prove our results, introducing
fillers in the setting of globular modal n-Kleene algebras, which correspond to the notion of fillers for
polygraphs defined in Section 2.3.1. We also define the notion of whiskering in modal n-Kleene algebras,
analogous to the polygraphic definition in Section 2.1.4 and describe the properties thereof needed for our
proofs. The coherent Church-Rosser theorem is dealt with in Section 4.2, first in Proposition 4.2.7 using
classical induction and then in Theorem 4.2.8 using only the induction axioms provided by the Kleene
star. In Section 4.3, we define notions of termination and well-foundedness in globular modal p-Boolean
Kleene algebras and prove Theorem 4.3.2, the coherent Newman’s lemma.

4.1. Rewriting properties formulated in modal Kleene algebra

Let K be a modal Kleene algebra.

4.1.1. Termination. An element x ∈ K terminates, or is Noetherian, [5] if

p ≤ |x〉p⇒ p = 0

holds for all p ∈ Kd. The set of Noetherian elements of K is denoted by N(K). Using the Galois
connections (3.1.9) yields the following equivalent characterisation: x ∈ K is Noetherian if and only if

|x]p ≤ p⇒ p = 1

holds for all p ∈ Kd.

4.1.2. Semi-commutation. The notions of local confluence, confluence and the Church-Rosser property
for rewriting systems can be captured in Kleene algebras as follows. Given elements x, y ∈ K, we say that
the ordered pair (x, y) semi-commutes (resp. semi-commutes locally) if

x∗ · y∗ ≤ y∗ · x∗ (resp. x · y ≤ y∗ · x∗).

We say that the ordered pair (x, y) semi-commutes modally (resp. semi-commutes locally modally) if

|x∗〉 ◦ |y∗〉 ≤ |y∗〉 ◦ |x∗〉 (resp. |x〉 ◦ |y〉 ≤ |y∗〉 ◦ |x∗〉).

It is obvious that (local) commutation implies (local) modal commutation, but not vice versa. Finally we
say that (x, y) has the Church-Rosser property if

(x+ y)∗ ≤ y∗x∗.
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4.2. A coherent Church-Rosser theorem

4.1.3. Confluence results in Kleene algebras. The Church-Rosser theorem and Newman’s lemma for
abstract rewriting systems are instances of the following formulations in modal Kleene algebras. In the
following subsections we prove higher-dimensional generalisations of these results.

The Church-Rosser theorem in K [28, Thm. 4] states that, for any x, y ∈ K, the following holds:

x∗y∗ ≤ y∗x∗ ⇔ (x+ y)∗ ≤ y∗x∗.

Newman’s Lemma in K, with Kd a complete Boolean algebra [5], states that for any x, y ∈ K such that
(x+ y) ∈ N(K), the following holds:

|x〉 ◦ |y〉 ≤ |y∗〉 ◦ |x∗〉 ⇔ |x∗〉 ◦ |y∗〉 ≤ |y∗〉 ◦ |x∗〉.

4.2. A coherent Church-Rosser theorem

Let K be a globular n-modal Kleene algebra and 0 ≤ i < j < n. Before defining fillers in globular modal
n-Kleene algebras, we first recall the intuition behind the forward diamond operators in n-modal Kleene
algebras, defined in Section 3.2.7. Given A ∈ K and φ,φ ′ ∈ Kj, recall that by definition

|A〉j(φ) ≥ φ ′ = dj(A�j φ) ≥ φ ′.

In terms of quantification over sets of cells, as for example in the polygraphic model, this signifies that for
every element u of φ ′, there exist elements v of φ and α of A such that the j-source (resp. j-target) of α is
u (resp. v). This observation motivates the definitions in the following paragraph.

4.2.1. Confluence fillers. Given elements φ and ψ of Kj, we say that an element A in K is a

i) local i-confluence filler for (φ,ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ�i ψ,

ii) left (resp. right) semi-i-confluence filler for (φ,ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ�i ψ∗i , (resp. |A〉j(ψ∗i �i φ∗i) ≥ φ∗i �i ψ ),

iii) i-confluence filler for (φ,ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ φ∗i �i ψ∗i ,

iv) i-Church-Rosser filler for (φ,ψ) if

|A〉j(ψ∗i �i φ∗i) ≥ (ψ+ φ)∗i .

In any n-Kleene algebra, the following inequalities hold:

(ψ+ φ)∗i ≥ φ∗i �i ψ∗i ≥ φ�i ψ.

We may therefore deduce that an i-Church-Rosser filler for (φ,ψ) is an i-confluence filler for (φ,ψ) and
that an i-confluence filler for (φ,ψ) is a local i-confluence filler for (φ,ψ).
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4. Algebraic coherent confluence

4.2.2. Remarks. Conditions on the domain and codomain in the above definitions imply an i-dimensional
globular character of the pair (φ,ψ) in the sense that we have the relation

|φ∗i �i ψ∗i〉i(p) ≤ |ψ∗i �i φ∗i〉i(p)

for all p ∈ Ki. Indeed, writing A ′ = A�j (ψ∗i �i φ∗i), we have

|φ∗i �i ψ∗i〉i(p) = di(φ∗i �i ψ∗i �i p) ≤ di(dj(A ′)�i p)
= di(dj(A ′ �i p))
= di(rj(A ′ �i p))
= di(rj(A ′)�i p)
≤ di((ψ∗i �i φ∗i)�i p) = |ψ∗i �i φ∗i〉i(p),

where the first step holds by definition of diamonds, the second by the fact that A is an i-confluence
filler and by monotonicity of di, the third, fourth and fifth by the globularity relations (3.2.14),(3.2.12)
and (3.2.15) respectively. The final inequality follows because d(p · x) = p · d(x) holds in modal Kleene
algebra (see the end of Section 3.1.3). In the case of codomains, its dual implies that

rj(A ′) = rj(A�j (ψ∗i �i φ∗i)) = rj(A)�j rj(ψ∗i �i φ∗i) ≤ rj(ψ∗i �i φ∗i).

The final step is again by definition of the diamond operators. Similar results hold in the case of local
and semi-confluence fillers. Thus, φ and ψ commute modally (resp. locally modally) with respect to
i-multiplication. For this reason, the confluence filler (local confluence filler) defined in (4.2.1) can be
represented graphically as follows

φ∗i

{{

ψ∗i

##
A��

ψ∗i

��

##

φ∗i

��

{{

φ

{{

ψ

##
A��

ψ∗i

��

##

φ∗i

��

{{

4.2.3. Whiskers. Let K be a globular modal n-Kleene algebra. Given 0 ≤ i < j < n and φ ∈ Kj, the
right (resp. left) i-whiskering of an element A ∈ K by φ is the element

A�i φ (resp. φ�i A)

In what follows, we list properties of whiskering and define completions.

i) Firstly, it holds that i-whiskering by j-dimensional cells commutes with j-modalities. Indeed, for all
A ∈ K and 0 ≤ i < j < n and all φ,ψ,φ ′, ψ ′, γ ∈ Kj such that φ ′ ≤ φ, ψ ′ ≤ ψ, and dj(A) ≤ γ,
we have:

φ ′ �i 〈A|j(γ)�i ψ ′ = 〈φ ′ �i A�i ψ ′|j(φ�i γ�i ψ) (4.2.4)

To see this, consider the deductions

dj(φ ′ �i A�i ψ ′) = φ ′ �i dj(A)�i ψ ′ ≤ φ�i γ�i ψ⇒ φ ′ �i A�i ψ ′ = (φ�i γ�i ψ)�j (φ ′ �i A�i ψ ′)⇒ rj(φ ′ �i A�i ψ ′) = 〈φ ′ �i A�i ψ ′|j(φ�i γ�i ψ),
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4.2. A coherent Church-Rosser theorem

where in the first line we have used the globularity axiom from (3.2.14), as well as the hypothesis
dj(A) ≤ γ, and in the second one the fact that d(x) ≤ p⇒ px = x, a consequence of axiom i) from
Section 3.1.3. Applying rj to the second line and using the definition of modalities (3.2.8) yields the
third. Again, since dj(A) ≤ γ, we have A = γ�j A, whereby we deduce

rj(φ ′ �i A�i ψ ′) = φ ′ �i rj(γ�j A)�i ψ ′ = φ ′ �i 〈A|j(γ)�i ψ ′,

using Axiom (3.2.15). This gives identity (4.2.4), and we have a dual identity for the forward diamond.

ii) Secondly, we define completions of elements by whiskering. Let A be an i-confluence filler of a pair
(φ,ψ) of elements in Kj. The j-dimensional i-whiskering of A is the following element of K:

(φ+ψ)∗i �i A�i (φ+ψ)∗i . (4.2.5)

The j-star of this element is called the i-whiskered j-completion of A.

iii) Finally, we have that the i-whiskered j-completion of a confluence filler A, which in the following
paragraph we denote by Â, absorbs whiskers, i.e. for any ξ ≤ (φ+ψ)∗i

ξ�i Â∗j ≤ Â∗j and Â∗j �i ξ ≤ Â∗j . (4.2.6)

Indeed, by definition of Â, we have

ξ�i Â ≤ Â ≥ Â�i ξ

for any ξ ≤ (φ+ψ)∗i . Using the fact that (−)∗j is a lax morphism with respect to i-whiskering by
j-dimensional elements, see Section 3.1.8, we deduce

ξ�i Â∗j ≤ (ξ�i Â)∗j ≤ Â∗j ,

where the last inequality holds by monotonicity of (−)∗j . A similar proof shows that Â∗j �i ξ ≤ Â∗j .

4.2.7. Proposition (Coherent Church-Rosser theorem in globular n-MKA (by induction)). Let K
be a globular modal n-Kleene algebra and 0 ≤ i < j < n. Given φ,ψ ∈ Kj, an i-confluence filler A of
(φ,ψ) and any natural number k ≥ 0, there exists an Ak ≤ Â∗j such that

i) rj(Ak) ≤ ψ∗iφ∗i ,

ii) dj(Ak) ≥ (φ+ψ)ki ,

where Â is the j-dimensional i-whiskering of A.

Proof. In this proof, juxtaposition of elements denotes i-multiplication. We reason by induction on k ≥ 0.
For k = 0, we may take A0 = 1i. Indeed,

1i ≤ 1j ≤ Â∗j .

Furthermore, we have dj(A0) = 1i = (φ + ψ)0i and rj(A0) = 1i ≤ ψ∗iφ∗i . Supposing that Ak−1 is
constructed, we set

Ak = ((φ+ψ)Ak−1)�j (A ′φ∗i),
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4. Algebraic coherent confluence

where A ′ = A�j (ψ∗iφ∗i). We first show that dj(Ak) ≥ (φ+ψ)ki as follows

dj(Ak) = dj(((φ+ψ)Ak−1)�j (A ′φ∗i)),
= dj(((φ+ψ)Ak−1)�j dj(A ′φ∗i)),
= dj(((φ+ψ)Ak−1)�j dj(A ′)φ∗i),
≥ dj(((φ+ψ)Ak−1)�j φ∗iψ∗iφ∗i),
= dj((φ+ψ)Ak−1),

= (φ+ψ)dj(Ak−1),

= (φ+ψ)(φ+ψ)(k−1)i ,

= (φ+ψ)ki ,

·
(φ+ψ)

//

ψ∗i

��

· oo
(φ+ψ)k−1

//

ψ∗i

��

A ′φ∗i

(φ+ψ)Ak−1

·
CC

φ∗i

·
CC

φ∗i

·
where the first step is given by definition of Ak, the second by axiom ii) from (3.1.3), the third by globular-
ity (3.2.14). The inequality in the fourth step is by hypothesis that A is an i-confluence filler, and the fifth
is a consequence of the fact that

((φ+ψ)Ak−1)�1 (φ∗iψ∗iφ∗i) = (φ+ψ)Ak−1,

which is in turn a consequence of the following:

rj((φ+ψ)Ak−1) = (φ+ψ)rj(Ak−1) ≤ φ∗iψ∗iφ∗i .

The sixth step is again a consequence of globularity (3.2.14), the seventh follows from the induction
hypothesis, and the last equality is by definition of the k-fold i-multiplication.

Now we show rj(Ak) ≤ ψ∗iφ∗i :

rj(Ak) = rj(((φ+ψ)Ak−1)�j (A ′φ∗i))
= rj(rj((φ+ψ)Ak−1)�j (A ′φ∗i))
≤ rj((φ+ψ)ψ∗iφ∗i �j (A ′φ∗i))
≤ rj((φ∗iψ∗iφ∗i)�j (A ′φ∗i))
= rj(dj(A ′φ∗i)�j (A ′φ∗i))
= rj(A ′)φ∗i

≤ ψ∗iφ∗iφ∗i

= ψ∗iφ∗i .

The first equality holds by definition ofAk, the second by axiom ii) from Section 3.1.3 (for codomains), the
third by the induction hypothesis, the fourth by φ ≤ φ∗i and ψψ∗i = ψ∗i . The fifth step holds since A is
an i-confluence filler, the sixth by the fact that d(x) · x = x, a consequence of axiom i) from Section 3.1.3.
Finally, as recalled in Section 4.2.2,

rj(A ′) = rj(A�j (ψ∗i �i φ∗i)) = rj(A)�j rj(ψ∗i �i φ∗i) ≤ rj(ψ∗i �i φ∗i),

which gives step seven since ψ∗i �i φ∗i ∈ Kj. The final step is due to φ∗i �i φ∗i = φ∗i , a consequence
of the Kleene star axioms.
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4.2. A coherent Church-Rosser theorem

To conclude, we must also show that Ak ≤ Â∗j . By whisker absorption, described in (4.2.3), and the
fact that A ′ ≤ A ≤ Â, we have

A ′φ∗i ≤ Âφ∗i = Â, and (φ+ φ)Ak−1 ≤ (φ+ψ)Â∗j ≤ Â∗j .

Thus, Ak = ((φ+ψ)Ak−1)�j (Aφ∗i) ≤ Â∗j �j Â∗j = Â∗j , which completes the proof.

We now reprove this theorem using the implicit induction of Kleene algebra.

4.2.8. Theorem (Coherent Church-Rosser in globular n-MKA). Let K be a globular n-modal Kleene
algebra and 0 ≤ i < j < n. Given φ,ψ ∈ Kj and an i-confluence filler A ∈ K of (φ,ψ), we have

|Â∗j〉j(ψ∗iφ∗i) ≥ (φ+ψ)∗i ,

where Â is the j-dimensional i-whiskering of A. Thus Â∗j is an i-Church-Rosser filler for (φ,ψ).

Proof. As in the previous proof, i-multiplication will be denoted by juxtaposition. Let φ,ψ be in Kj, for
0 < j < n, and A in K be an i-confluence filler of (φ,ψ), with 0 ≤ i < j. By the left i-star induction
axiom, see Section 3.1.8, we have

1i + (φ+ψ)|Â∗j〉j(ψ∗iφ∗i) ≤ |Â∗j〉j(ψ∗iφ∗i) ⇒ (φ+ψ)∗i ≤ |Â∗j〉j(ψ∗iφ∗i)

The inequality 1i ≤ ψ∗iφ∗i ≤ |Â∗j〉j(ψ∗iφ∗i) holds. Indeed, by the unfold axiom from Section 3.1.8,
we have 1i ≤ ψ∗i , 1i ≤ φ∗i , giving the first inequality, and 1j ≤ Â∗j . The latter implies that
idSdj = |1j〉j ≤ |Â∗j〉j, which gives ψ∗iφ∗i ≤ |Â∗j〉j(ψ∗iφ∗i). It then remains to show that

(φ+ψ)|Â∗j〉j(ψ∗iφ∗i) ≤ |Â∗j〉j(ψ∗iφ∗i).

By distributivity, we may prove this for each of the summands:

− In the case of whiskering by φ on the left:

φ|Â∗j〉j(ψ∗iφ∗i) ≤ |φÂ∗j〉j(φψ∗iφ∗i)
≤ |φÂ∗j〉j(|A〉j(ψ∗iφ∗i)φ∗i)
≤ |φÂ∗j〉j(|Aφ∗i〉j(ψ∗iφ∗iφ∗i))
≤ |φÂ∗j �j Aφ∗i〉j(ψ∗iφ∗i)
≤ |Â∗j �j Â〉j(ψ∗iφ∗i)
≤ |Â∗j〉j(ψ∗iφ∗i)

· φ
//

ψ∗i

��

· oo
(φ+ψ)∗i

//

ψ∗i

  
Aφ∗i

φÂ∗j

·>>

φ∗i

·??

φ∗i

·
The first step is given by whiskering properties from (4.2.3), the second by the hypothesis that A
is an i-confluence filler and that φψ∗i ≤ φ∗iψ∗i . The third step is again by whiskering, and the
fourth follows by definition of diamonds and axiom ii) from (3.1.3). The fifth follows by whisker
absorption, (4.2.3), and the last step follows from the unfold axiom from (3.1.8), since it implies
that x · x∗ ≤ x∗.
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4. Algebraic coherent confluence

− In the case of whiskering by ψ on the right:

ψ|Â∗j〉j(ψ∗iφ∗i) ≤ |ψÂ∗j〉j(ψψ∗iφ∗i)
≤ |ψÂ∗j〉j(ψ∗iφ∗i)
≤ |Â∗j〉j(ψ∗iφ∗i).

· ψ
//

ψ∗i

**

· oo
(φ+ψ)∗i

//

ψ∗i

  

1j ψÂ∗j

·>>

φ∗i

·

·

The first step is again by whiskering properties from Section 4.2.3, the second by the fact that ψψ∗i ≤ ψ∗i
which as explained above is a consequence of the unfold axiom recalled in Section 3.1.8. Finally, whisker
absorption justifies the last inequality.

4.2.9. Remarks. Note that in Theorem 4.2.7, the elements Ak verify |Ak〉j(ψ∗iφ∗i) ≥ (φ + ψ)ki ,
meaning that scanning backward along Ak from ψ∗iφ∗i , we see at least all of the "zig-zags" in φ and ψ
of length k, whereas in Theorem 4.2.8, the inequality |Â∗j〉j(ψ∗iφ∗i) ≥ (φ+ψ)∗i means that scanning
back from ψ∗iφ∗i , we see at least all of the zig-zags in φ and ψ of any length. However, the elements Ak
from Theorem 4.2.7 satisfy in addition

〈Ak|j((φ+ψ)ki) ≤ ψ∗iφ∗i .

This formulation is of interest, since it coincides with the intuition of paving from zigzags (φ + ψ)ki

to the confluences ψ∗iφ∗i . However, this sort of inequality cannot be expected of the j-dimensional
i-completion of A, since in general, using the path algebra intuition, Â∗j contains cells which go from
zigzags to zigzags. In conclusion, the fact that the diamonds scan all possible future or past states means
that we must formulate as in Theorem 4.2.8 when considering completions, or construct the elements
paving precisely what we would like as in Theorem 4.2.7.

4.2.10. Corollary. Let K be a globular modal n-Kleene algebra. Given φ,ψ ∈ Kj, for i < j < n, for
any semi-i-confluence filler A ∈ K we have

|Â∗j〉j(ψ∗iφ∗i) ≥ (φ+ψ)∗i ,

where Â is the j-dimensional i-whiskering of A.

Proof. In the case of a left semi-confluence filler, the proof is identical. If A is a right semi-confluence
filler, we use the right i-star axiom and the proof is given by symmetry.

4.3. Newman’s lemma in globular modal n-Kleene algebra

4.3.1. Termination in n-semirings. We define the notion of termination, or Noethericity, in a modal
n-semiring K as an extension of the notion of termination in modal Kleene algebras, recalled in (4.1.1).
Given 0 ≤ i < j < n, an element φ ∈ Kj is said to be i-Noetherian or i-terminating if

p ≤ |φ〉ip⇒ p ≤ 0
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holds for all p ∈ Ki. The set of i-Noetherian elements of K is denoted by Ni(K). When K is a modal
p-Boolean semiring, we recall that as a consequence of the adjunction between diamonds and boxes, see
Section 3.1.9, we obtain an equivalent formulation of Noethericity in terms of the forward box operator:

φ ∈ Ni(K) ⇐⇒ ∀p ∈ Ki, |φ]ip ≤ p⇒ 1i ≤ p.

We also define a notion of well-foundedness; φ is said to be i-well-founded if it is i-Noetherian in the
opposite n-semiring of K.

4.3.2. Theorem (Coherent Newman’s lemma for globular p-Boolean MKA). Let K be a globular
p-Boolean modal Kleene algebra, and 0 ≤ i ≤ p < j < n, such that

i) (Ki,+, 0,�i, 1i,¬i) is a complete Boolean algebra,

ii) Kj is continuous with respect to i-restriction, i.e. for all ψ,ψ ′ ∈ Kj and every family (pα)α∈I of
elements of Ki such that supI(pα) exists, we have

ψ�i supI(pα)�i ψ ′ = supI(ψ�i pα �i ψ ′).

Let ψ ∈ Kj be i-Noetherian and φ ∈ Kj i-well-founded. If A is a local i-confluence filler for (φ,ψ), then

|Â∗j〉j(ψ∗iφ∗i) ≥ φ∗iψ∗i ,

i.e. Â∗j is a confluence filler for (φ,ψ).

Proof. We denote i-multiplication by juxtaposition. First, we define a predicate expressing restricted
j-paving. Given p ∈ Ki, let

RP(p) ⇔ |Â∗1〉j(ψ∗iφ∗i) ≥ φ∗ipψ∗i .

By completeness of Ki, we may set r := sup{p | RP(p)}. By continuity of i-restriction, we may infer
RP(r). Furthermore, by downward closure of RP, we have the following equivalence:

RP(p) ⇐⇒ p ≤ r.

This in turn allows us to make the following deductions:

∀p. (RP(|φ〉ip)∧ RP(〈ψ|ip)⇒ RP(p))⇔ ∀p. (|φ〉ip ≤ r∧ 〈ψ|ip ≤ r⇒ p ≤ r)⇔ ∀p. (p ≤ [φ|ir∧ p ≤ |ψ]ir⇒ p ≤ r)⇔ [φ|ir ≤ r∧ |ψ]ir ≤ r

Thus, it suffices to show ∀p. (RP(|φ〉ip) ∧ RP(〈ψ|ip) ⇒ RP(p)) in order to conclude that r = 1i, by
Noethericity (resp. well-foundedness) of ψ (resp. φ).

Let p ∈ Ki, set |φ〉i(p) = pφ and 〈ψ|i(p) = pψ and suppose that RP(pφ) and RP(pψ) hold. Note
that we have

φp = di(φp)φp = |φ〉i(p)φp ≤ pφφ,
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4. Algebraic coherent confluence

since d(x)x = x by axiom i) from Section 3.1.3 and p ≤ 1i. We have a similar inequality for
ψ, that is pψ ≤ ψpψ. These inequalities, along with the unfold axioms from Section 3.1.8, give

φ∗ipψ∗i ≤ φ∗ip+ φ∗iφpψψ∗i + pψ∗i

≤ φ∗ip+ φ∗ipφφψpψψ∗i + pψ∗i .

p

·

φ∗i

HH
p

ψ
��

φ
HH

ψ∗i

��

·

φ∗i
II

·

p

ψ∗i

��

·
The outermost summands are below |Â∗j〉j(ψ∗iφ∗i). Indeed, idSj = |1j〉j ≤ |Â∗j〉j since 1j ≤ Â∗j ,
p ≤ 1i and φ∗i , ψ∗i ≤ ψ∗iφ∗i .

For the middle summand, we calculate

φ∗ipφφψpψψ
∗i ≤ φ∗ipφ|A〉j(ψ∗iφ∗i)pψψ∗i

≤ |φ∗ipφApψψ
∗i〉j(φ∗ipφψ∗iφ∗ipψψ∗i)

≤ |φ∗ipφÂpψψ
∗i〉(|Â∗j〉j(ψ∗iφ∗i)φ∗ipψψ∗i)

≤ |Â〉(|Â∗jφ∗ipψψ∗i〉j(ψ∗iφ∗ipψψ∗i))
≤ |Â�j Â∗jφ∗ipψψ∗i〉j(ψ∗iφ∗ipψψ∗i)
≤ |Â�j Â∗j〉j(ψ∗iφ∗ipψψ∗i),

p

ψ

��

·

φ
BB

ψ∗i

��

Â ·
ψ∗i

��

·

φ∗i
DD

ψ∗i
��

Â∗j ·

φ∗i

EE

·

·
φ∗i

BB

The first step is by the local i-confluence filler hypothesis, the second by whiskering properties from
Section 4.2.3 and the third by RP(pφ). The fourth step is again by whiskering properties, and the fifth
follows from axiom ii) in Section 3.1.3 and the definition of diamond operators. The final step is by
whisker absoprtion, see Section 4.2.3. By similar arguments, we have

|Â�j Â∗j〉j(ψ∗iφ∗ipψψ∗i) ≤ |Â�j Â∗j〉j(ψ∗i |Â∗j〉j(ψ∗iφ∗i))
≤ |Â�j Â∗j〉j(|ψ∗iÂ∗j〉j(ψ∗iφ∗i))
≤ |Â�j Â∗j �j ψ∗iÂ∗j〉j(ψ∗iφ∗i)
≤ |Â�j Â∗j �j Â∗j〉j(ψ∗iφ∗i)

p

ψ

��

·

φ
??

ψ∗i

��

Â ·
ψ∗i

��

·

φ∗i
AA

ψ∗i
��

Â∗j ·

φ∗i

CC

Â∗j

·

·
φ∗i

??

ψ∗i
  

·
φ∗i

CC

·
φ∗i

AA

Indeed, the first step follows from RP(pψ), and the second by whiskering properties. The third step follows
from axiom ii) in Section 3.1.3 and the definition of diamond operators as in the preceding calculation.
The final step follows from whisker absorption. Finally, we observe that

Â�j Â∗j �j Â∗j ≤ Â∗j ,

34



4.4. Application in rewriting

and thus by monotonicity of the diamond operator we may conclude that

φ∗ipφφψpψψ
∗i ≤ |Â∗j〉j(ψ∗iφ∗i).

We have thereby shown that ∀p(RP(pφ) ∧ RP(pψ) ⇒ RP(p)) and thus that r = 1i, concluding the
proof.

4.3.3. Remark. Similarly to the discussion from Remark 2.3.10 in the context of polygraphs, we remark
here that the proofs of Theorems 4.2.8 and 4.3.2 are similar to those of the analogous 1-dimensional
results for modal Kleene algebra found in [5, 28]. Indeed, if we look exclusively at the induction axioms
and deductions applied to j-dimensional cells, we obtain the same proof structures as in the case of modal
Kleene algebras. This indicates that the structure of globular modal n-Kleene algebra is a natural higher
dimensional generalisation of modal Kleene algebras in which proofs of coherent confluence may be
calculated. The consistency of the abstract, algebraic results from the previous sections with the point-wise,
polygraphic results from Section 2.3 are made explicit in the next section.

4.4. Application in rewriting

In this section we interpret the theorems from the preceding section in terms of polygraphs. We fix an
n-polygraph P and a cellular extension Γ of P>n .

4.4.1. Converses. Recall from [1] that a Kleene algebra with converse is a Kleene algebra K equipped
with an involution (−)∨ : K→ K that distributes through addition, acts contravariantly on multiplication,
commutes with the Kleene star, i.e.

(a+ b)∨ = a∨ + b∨, (a · b)∨ = b∨ · a∨,

(a∗)∨ = (a∨)∗, (a∨)
∨
= a,

and satisfies the inequality a ≤ aa∨a. When the underlying Kleene algebra is a modal Kleene algebra,
we say that it is a modal Kleene algebra with converse, see also [4].

4.4.2. (n, p)-Kleene algebra. A modal (n, p)-Kleene algebra K is a modal n-Kleene algebra equipped
with operations (−)∨j : Kj+1 → Kj+1 for p ≤ j < n− 1 and an operation (−)∨n−1 : K→ K, satisfying
the axioms listed above relative to the appropriate multiplication operation, i.e. for all φ,ψ ∈ Kj+1,

(φ+ψ)∨j = φ∨j +ψ∨j , (φ�j ψ)∨j = ψ∨j �j φ∨j ,

(φ∗j)∨j = (φ∨j)∗j , (φ∨j)
∨j

= φ, φ ≤ φ�j φ∨j �j φ,

and (−)∨n−1 satisfies the above axioms with j = n− 1 and for any elements of K. Note that for φ ∈ Ki
with i < j, we have φ∨j = φ. This is a consequence of the fact that �j is idempotent for elements of Ki.
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4. Algebraic coherent confluence

4.4.3. Conversion in K(P, Γ). The modal (n+ 1)-Kleene algebra K(P, Γ), as defined in Section 3.3.1, is
a modal (n+ 1, n− 1)-Kleene algebra. Indeed, for any φ ∈ K(P, Γ)n and A ∈ K, let

φ∨n−1 := { u− | u ∈ φ} and A∨n = { α− | α ∈ A}.

This operation is well defined in the following sense: If φ ∈ K(P, Γ)n, then φ is a set of cells of dimension
less than or equal to n. Given a cell v of dimension i < n, its n-inverse is itself, since we consider it as an
identity. Given a cell u of dimension n, we know that u− is well defined since if u ∈ P>n then u− ∈ P>n .
Similarly for the case of (−)∨n .

4.4.4. Γ -coherence properties as fillers. Recall that Γ and P∗n are themselves elements of K(P, Γ), and
that in Proposition 3.3.2 we observed that

Γ c = (1n �n−1 (· · · �2 (12 �1 (11 �0 Γ �0 11)�1 12)�2 · · · )�n−1 1n) ,

where Γ c is the set of cells of Γ in context. In the following, we will denote by Pcn the set of rewriting steps
generated by Pn, which can be expressed in K(P, Γ) as

Pcn = (1n−1 �n−2 (· · · �2 (12 �1 (11 �0 Pn �0 11)�1 12)�2 · · · )�n−2 1n−1) .

The construction of K(P, Γ) is compatible with Γ -coherence properties in the following sense:

4.4.5. Proposition. With Γ ′ := (Γ c)∗n , the following equivalences hold:

i) Γ is a (local) confluence filler for P ⇐⇒ Γ ′ is a (local) (n−1)-confluence filler for ((Pcn)
∨n−1 , Pcn),

ii) Γ is a Church-Rosser filler for P ⇐⇒ Γ ′ is an (n− 1)-Church-Rosser filler for ((Pcn)
∨n−1 , Pcn).

Proof. Let us prove the equivalence in the case of (global) confluence.
Suppose that Γ is a confluence filler for P. An element f− ?n−1 g ∈ (Pcn)

∨n−1 �n−1 Pcn corresponds
to a branching (f, g). By hypothesis, there exists an α ∈ P>n [Γ ] such that sn(α) = f− ?n−1 g and α
is an n-composition of rewriting steps so α ∈ Γ ′. Furthermore, the n-target of α is a confluence, so
α ∈ Γ ′ �n (Pcn �n−1 (Pcn)

∨n−1). In equations, this means that

(Pcn)
∨n−1 �n−1 Pcn ⊆ dn

(
Γ ′ �n (Pcn �n−1 (Pcn)

∨n−1)
)
= |Γ ′〉n

(
Pcn �n−1 (Pcn)

∨n−1

)
,

i.e. Γ ′ is an (n− 1)-confluence filler for
(
(Pcn)

∨n−1 , Pcn

)
.

Conversely, if Γ ′ is an (n− 1)-confluence filler for
(
(Pcn)

∨n−1 , Pcn

)
, then given some branching (f, g),

we know that f− ?n−1 g ∈ diΓ ′ �n (Pcn �n−1 (Pcn)
∨n−1). This means there exists some cell α ∈ Γ ′ with

n-source f− ?n−1 g and whose n-target is a confluence. Since α ∈ Γ ′, we know that it is a composition of
rewriting steps of Γ . With this we conclude that P is Γ -confluent.

The other cases are similarly deduced.

Due to this compatibility, we may deduce the following theorems, that is Theorems 2.3.4 and 2.3.7, as
corollaries of our main results:
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4.4.6. Theorem (Church Rosser forn-polygraphs). Let P be ann-polygraph and Γ a cellular extension
of P>n . Then Γ is a confluence filler for P if, and only if, Γ is a Church-Rosser filler for P.

Proof. Suppose first that Γ is a confluence filler for P. Using the result and notations from Proposition 4.4.5,
we know that Γ ′ is an (n− 1)-confluence filler for ((Pcn)

∨n−1 , Pcn). We apply Theorem 4.2.8 to K(P, Γ)
for i = n − 1 and j = n, obtaining that Γ̂ ′

∗n is an (n − 1)-Church-Rosser filler for ((Pcn)
∨n−1 , Pcn).

Observing that (Pcn + (Pcn)
∨n−1)∗n−1 = P>n , we have

Γ̂ ′
∗n

=
(
P>n �n−1 (Γ c)∗n �n−1 P>n

)∗n
⊆
(
(P>n �n−1 Γ c �n−1 P>n )∗n

)∗n
= Γ ′,

where the first step is by definition, the second uses the fact that the n-star is a lax morphism for
(n− 1)-multiplication, see Section 3.2.16, and the third uses the fact that Γ c absorbs whiskers and that
(A∗n)∗n = A∗n . Since additionally, Γ ′ ⊆ Γ̂ ′

∗n , Γ ′ is an (n− 1)-Church-Rosser filler for ((Pcn)
∨n−1 , Pcn).

By Proposition 4.4.5, this allows us to conclude that Γ is a Church-Rosser filler for P.
For the trivial direction, suppose that Γ is a Church-Rosser filler for P. We deduce by Proposition 4.4.5

that Γ ′ is an (n− 1)-Church-Rosser filler for ((Pcn)
∨n−1 , Pcn). As pointed out at the end of Section 4.2.1,

this means that Γ ′ is an i-confluence filler for ((Pcn)
∨n−1 , Pcn), by which we conclude that Γ is a confluence

filler for P.

4.4.7. Theorem (Newman for n-polygraphs). Let P be a terminating n-polygraph and Γ a cellular
extension of P>n . Then Γ is a local confluence filler for P if, and only if, Γ is a confluence filler for P.

Proof. Suppose that Γ is a local confluence filler forP. Using the result and notations fromProposition 4.4.5,
we know that Γ ′ is an (n − 1)-local confluence filler for ((Pcn)

∨n−1 , Pcn). We apply Theorem 4.3.2 to
K(P, Γ) for i = n− 1 and j = n, obtaining that Γ̂ ′

∗n is an (n− 1)-confluence filler for ((Pcn)
∨n−1 , Pcn).

As in the proof of the previous theorem, we have that Γ̂ ′
∗n

= Γ ′, allowing us to conclude that Γ is a
confluence filler for P, again by Proposition 4.4.5.

For the trivial direction, suppose that Γ is a confluence filler for P. As above, we deduce that Γ ′ is an
(n− 1)-Church-Rosser filler for ((Pcn)

∨n−1 , Pcn). Again, as pointed out at in Section 4.2.1, this means that
Γ ′ is a local i-confluence filler for ((Pcn)

∨n−1 , Pcn), by which we conclude that Γ is a local confluence filler
for P via Proposition 4.4.5.
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