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Schützenberger's jeu de taquin is an algorithm on the structure of tableaux, which transforms a skew tableau into a Young one by local transformation rules on the columns of the tableaux. This algorithm de nes an equivalence relation on tableaux compatible with the plactic congruence, and gives a proof of the Littlewood-Richardson rule on Schur polynomials. In this article, we introduce the notion of string of columns rewriting system as mechanism of transformations of glued sequences of columns. We describe the execution of the jeu de taquin algorithm as rewriting paths of a string of columns rewriting. We deduce algebraic properties on the plactic congruence and we relate the jeu de taquin to insertion algorithms on tableaux.

I

Schützenberger introduced the jeu de taquin as an algorithm on the structure of Young tableaux to prove the Littlewood-Richardson rule on the multiplicity of a Schur polynomial in a product of Schur polynomials, namely the multiplicity of an irreducible representation of the general Lie algebra in a tensor product of two irreducible representations, [START_REF] Schützenberger | La correspondance de Robinson[END_REF]. The jeu de taquin has later found many applications in algebraic combinatorics and probabilistic combinatorics [START_REF] Fulton | Young tableaux[END_REF][START_REF] Romik | Jeu de taquin dynamics on in nite Young tableaux and second class particles[END_REF][START_REF] Marc | The Littlewood-Richardson rule, and related combinatorics[END_REF], and many similar algorithms were also introduced on other structures of tableaux, [START_REF] Hage | Super jeu de taquin and combinatorics of super tableaux of type A[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type 𝐶 𝑛[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types 𝐵 𝑛 and 𝐷 𝑛[END_REF][START_REF] Romik | Jeu de taquin dynamics on in nite Young tableaux and second class particles[END_REF][START_REF] Tewari | Backward jeu de taquin slides for composition tableaux and a noncommutative pieri rule[END_REF][START_REF] Thomas | A jeu de taquin theory for increasing tableaux, with applications to k-theoretic schubert calculus[END_REF].

A Young tableau is a collection of boxes in left-justi ed rows lled with elements of the totally ordered alphabet [𝑛] := {1 < • • • < 𝑛}, where the entries weakly increase along each row and strictly increase down each column. A skew tableau is obtained by eliminating boxes from the rows of a Young tableau starting from top to bottom and from left to right. The eliminated boxes located above and to the left of two non-empty boxes are called inner corners of the skew tableau. We read tableaux column-wise from left to right and from bottom to top: the following tableaux 1 2 1 3 1 2 3 and 1 1 1 2 2 3 3 are respectively skew tableau and Young tableau whose readings are 3121312 and 3213112, and where the empty red boxes denote the inner corners. The jeu taquin consists in applying successively forward sliding operations on a skew tableau that move an inner corner into an outer position by keeping the rows weakly increasing and the columns strictly increasing, until no more inner corners remain in the initial skew tableau, as follows 1. Introduction

1 1 2 1 2 3 3 ↦ → 1 1 1 2 2 3 3 ↦ → 1 1 1 2 2 3 3 ↦ → 1 1 1 2 2 3 3
Schützenberger proved remarkable properties of the jeu de taquin on skew tableaux, [START_REF] Schützenberger | La correspondance de Robinson[END_REF]. He proved that the recti cation of a skew tableau by the jeu de taquin is a Young tableau whose reading is equivalent to the reading of the initial skew tableau with respect the plactic congruence relation generated by the following Knuth relations, [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]: 𝑧𝑥𝑦 = 𝑥𝑧𝑦, for 1 𝑥 𝑦 < 𝑧 𝑛, and 𝑦𝑧𝑥 = 𝑦𝑥𝑧, for 1 𝑥 < 𝑦 𝑧 𝑛.

This congruence de nes the plactic monoid of type A, [START_REF] Lascoux | ), volume 109 of Quad[END_REF], which emerged from the works of Schensted [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF] and Knuth [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] on the combinatorial study of Young tableaux. Plactic monoids have found several applications in algebraic combinatorics, representation theory, probabilistic combinatorics and rewriting theory, [2-4, 8, 10, 17]. Schützenberger proved that the resulting Young tableau does not depend on the order in which we choose inner corners in the forward slidings. This is the con uence property of the jeu de taquin. His proof follows the cross-section property of Young tableaux with respect the plactic congruence, proved by Knuth in [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF], namely two words on [𝑛] are plactic congruent if and only if they lead to the same Young tableau after applying Schensted's insertion algorithm, [START_REF] Schensted | Longest increasing and decreasing subsequences[END_REF]. Explicitly, if there are two sequences of sliding operations that transform a tableau 𝑇 into two di erent tableaux 𝑇 1 and 𝑇 2 , then we continue applying sliding operations until we reach normal forms 𝑇 1 and 𝑇 2 , that is tableaux without inner corners:

𝑇 1 / / 𝑇 1 𝑇 1 1 --𝑇 2 / / 𝑇 2
Since 𝑇 1 and 𝑇 2 are two Young tableaux such that their readings are plactic congruent, following the cross-section property, we deduce that 𝑇 1 = 𝑇 2 .

In this article, we introduce a machinery to prove by using a rewriting approach the con uence of the jeu de taquin. We de ne the sliding operations as rewriting rules on strings of columns, that is strings composed by glued sequences of columns, with a gluing map that describes the relative positions of columns. This combinatorial structure generalizes many structures of tableaux such as skew tableaux, [START_REF] Schützenberger | La correspondance de Robinson[END_REF], Young tableaux of type 𝐴, [START_REF] Young | On Quantitative Substitutional Analysis[END_REF], Young tableaux of type 𝐵, 𝐶, 𝐷 and 𝐺 2 , [START_REF] Kashiwara | Crystal graphs for representations of the 𝑞-analogue of classical Lie algebras[END_REF], quasi-ribbon tableaux, [START_REF] Novelli | On the hypoplactic monoid[END_REF], and patience sorting structures [START_REF] Aldous | Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem[END_REF]. In Subsection 2.2 we de ne a string of columns rewriting system as a binary relation on the set of strings of columns, whose rules are applied with respect to right and left positions. That is, a set of rules of the following form

| 𝑝 𝑠 𝑢 | 𝑞 𝑠 ⇒ | 𝑝 𝑡 𝑣 | 𝑞 𝑡 ,
where 𝑢, 𝑣 are strings of columns and 𝑝 𝑠 , 𝑞 𝑠 , 𝑝 𝑡 , 𝑞 𝑡 are positions in Z. In Subsection 3.2 we present the jeu de taquin by the rewriting system F S 𝑛 , whose rules are of the following form: ... , see Subsection 3.2.1 for detailed positions of the columns. For instance, the recti cation of the above skew tableau is computed with the following reductions:

1 2 1 3 1 2 3 𝛾 =⇒ 1 1 2 2 3 1 3 𝛾 =⇒ 1 1 2 1 2 3 3 𝛽 =⇒ 1 1 1 2 2 3 3 𝛼 =⇒ 1 1 1 2 2 3 3
The main result of this article, Theorem 3.2.3, states that i) The rewriting system F S 𝑛 is con uent and terminating.

ii) The normal forms with respect to F S 𝑛 are Young tableaux.

iii) Left and right Schensted's insertion algorithms coincide with the leftmost and rightmost normalization strategies of F S 𝑛 .

iv) The rewriting system F S 𝑛 computes the cross-section property.

The second result of this article, Theorem 3.3.1, proves the compatibility of the rewriting system F S 𝑛 with respect the plactic congruence. Finally, from Theorems 3.2.3 and 3.3.1 we recover the cross-section property of Young tableaux with respect the plactic congruence and the commutation of right and left Schensted's insertion algorithms. In particular, we prove that the recti cation map de nes a surjective morphism of monoids between the sets of diagonal skew tableaux and the set of Young tableaux equipped with the corresponding insertion products.

Notations. We will consider the totally ordered set [𝑛] := {1 < • • • < 𝑛}, for 𝑛 ∈ Z >0 , as ground alphabet. We denote by [𝑛] * the free monoid of words over [𝑛], whose empty word is denoted by 𝜆. We will denote by |𝑤 | the length of a word 𝑤 over [𝑛]. We will denote by < lex the lexicographic order on [𝑛] * induced by the order on [𝑛], and by 𝑙𝑒𝑥 and 𝑟𝑒𝑣𝑙𝑒𝑥 the lexicographic and the reverse lexicographic order respectively on tuples of natural numbers.

S

This section deals with two-dimensional strings de ned by gluing columns by introducing the notion of string of columns as a generalization of the structure of Young tableaux. We de ne in Subsection 2.2 the notion of string of columns rewriting system as a binary relation on the set of string of columns, whose rules are applied with respect to right and left positions and we show rewriting properties on theses rewriting systems. 

Strings of columns

𝑤 = 𝑐 1 | 𝑝 1 𝑐 2 | 𝑝 2 . . . 𝑐 𝑚 | 𝑝 𝑚 𝑐 𝑚+1 . (2.1.3) 
The sequence (𝑝 . . . 𝑐 𝑗 𝑘 𝑖 𝑘 . We call a row (over [𝑛]) a string of columns whose gluing sequence is constant equal to 1 and columns are of length 1. A string of columns is row connected (resp. row increasing) if all its rows are connected (resp. increasing).

2.1.4. Monoids of string of columns. We will denote by Scol 𝑛 the set of strings of columns over [𝑛] and by Scol 𝑛 the set of row connected and row increasing string of columns over [𝑛].

Given a xed gluing map 𝑔, we de ne a concatenation operation with respect to 𝑔 by the map

•| 𝑔 • : Scol 𝑛 × Scol 𝑛 → Scol 𝑛 , by setting (𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚+1 ) | 𝑔 (𝑐 1 | 𝑞 1 . . . | 𝑞 𝑛 𝑐 𝑛+1 ) = 𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚+1 | 𝑔 (𝑐 𝑚+1 ,𝑐 1 ) 𝑐 1 | 𝑞 1 . . . | 𝑞 𝑛 𝑐 𝑛+1 .
The operation | 𝑔 is associative and unitary, where the identity is the empty string of columns denoted by 𝜆 𝑐 . We denote by Scol 𝑔 𝑛 the set of string of columns in Scol 𝑛 whose gluing sequence is given by the gluing map 𝑔. In other words, Scol Given a row 𝑟 (resp. a column 𝑐), we denote by R I (𝑟, 𝑥) (resp. C I (𝑐, 𝑥)) the procedure that inserts an element 𝑥 in a row 𝑟 (resp. column 𝑐) and returns a pair (𝑟 , 𝑦) (resp. (𝑐 , 𝑦)) made of the resulting row 𝑟 (resp. column 𝑐 ) and the bumping element 𝑦 that can be empty, as follows. If 𝑥 is bigger or equal (resp. strictly bigger) than all the elements of 𝑟 (resp. 𝑐), then 𝑟 (resp. 𝑐 ) is obtained by adding 𝑥 to the end (resp. the bottom) of 𝑟 (resp. 𝑐) and 𝑦 is empty. Otherwise, let 𝑦 be the smallest element of 𝑟 (resp. 𝑐) such that 𝑥 < 𝑦 (resp. 𝑥 𝑦), then 𝑟 (resp. 𝑐 ) is obtained from 𝑟 ) denotes the 𝑖-th row (resp. column) of the tableau 𝑡, and 𝑡/𝑡 [START_REF] Aldous | Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem[END_REF] (resp. 𝑡 /𝑡 [START_REF] Aldous | Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem[END_REF] ) the Young tableau obtained from 𝑡 by removing its rst row (resp. column), and where (𝑡; 𝑡 ) (resp. [𝑡; 𝑡 ]) denotes the Young tableau obtained by concatenating 𝑡 over (resp. to the right of) a Young tableau 𝑡 when the concatenation de nes a Young tableau.

For any word 𝑤 = 𝑥 1 . . . 𝑥 𝑘 , denote by 𝐶 Y 𝑟 𝑛 (𝑤) (resp. 𝐶 Y 𝑐 𝑛 (𝑤)) the Young tableau obtained from 𝑤 by inserting its letters iteratively from left to right (resp. right to left) using the right (resp. left) insertion starting from the empty tableau:

𝐶 Y 𝑟 𝑛 (𝑤) := (∅ 𝑆 𝑟 𝑤) = ((. . . (∅ 𝑆 𝑟 𝑥 1 ) 𝑆 𝑟 . . .) 𝑆 𝑟 𝑥 𝑘 ), resp. 𝐶 Y 𝑐 𝑛 (𝑤) := (𝑤 𝑆 𝑙 ∅) = (𝑥 1 𝑆 𝑙 (. . . 𝑆 𝑙 (𝑥 𝑘 𝑆 𝑙 ∅) . . .)) .
De ne now an internal product ★ 𝑆 𝑟 (resp. ★ 𝑆 𝑙 ) on Yt 𝑛 by setting

𝑡 ★ 𝑆 𝑟 𝑡 := (𝑡 𝑆 𝑟 𝑅 𝑆𝑊 (𝑡 )), resp. 𝑡 ★ 𝑆 𝑙 𝑡 := (𝑅 𝑆𝑊 (𝑡 ) 𝑆 𝑙 𝑡) (2.1.14)
for all 𝑡, 𝑡 in Yt 𝑛 . By de nition the relations 𝑡

★ 𝑆 𝑟 ∅ = 𝑡 (resp. 𝑡 ★ 𝑆 𝑙 ∅ = 𝑡) and ∅ ★ 𝑆 𝑟 𝑡 = 𝑡 (resp. ∅ ★ 𝑆 𝑙 𝑡 = 𝑡) hold, showing that the product ★ 𝑆 𝑟 (resp. ★ 𝑆 𝑙 ) is unitary with respect to ∅.
Let 𝑐 be a column of length 𝑝, the Schützenberger involution of 𝑐, denoted by 𝑐 * , is the column of length 𝑛 -𝑝 obtained by taking the complement of the elements of 𝑐. This involution is extended to string of columns by setting

(𝑐 1 | . . . |𝑐 𝑟 ) * = 𝑐 * 𝑟 | . . . |𝑐 * 1 , for all 𝑐 1 , . . . , 𝑐 𝑟 in Col 𝑛 . If 𝑐 1 | Y . . . | Y 𝑐 𝑟 is a Young tableau, then (𝑐 1 | Y . . . | Y 𝑐 𝑟 ) * = 𝑐 * 𝑟 | Y . . . | Y 𝑐 * 1 is also a Young tableau. Moreover, the following equality (𝑐 1 ★ 𝑆 𝑟 . . . ★ 𝑆 𝑟 𝑐 𝑟 ) * = (𝑐 * 𝑟 ★ 𝑆 𝑟 . . . ★ 𝑆 𝑟 𝑐 * 1 )
holds, for all 𝑐 1 , . . . , 𝑐 𝑟 in Col 𝑛 . In particular, for three columns 𝑐 𝑖 , 𝑐 𝑗 and 𝑐 𝑘 in Col 𝑛 , we have

(𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 ) * = (𝑐 * 𝑘 ★ 𝑆 𝑟 𝑐 * 𝑗 ★ 𝑆 𝑟 𝑐 * 𝑖 ), see [10, Remark 3.2.7].

String of columns rewriting

2.2.1. Rewriting steps. Let de ne Scol P 𝑛 = Z × Scol 𝑛 × Z, whose elements are triples (𝑝, 𝑢, 𝑞) where 𝑝, 𝑞 are positions in Z and 𝑢 is a string of columns, that we will denote by | 𝑝 𝑢 | 𝑞 . We de ne a string of columns rewriting system, called rewriting system for short in the sequel, as a binary relation on Scol P 𝑛 . That is, a set of rules of the form 

𝛼 : | 𝑝 𝑠 𝑢 | 𝑞 𝑠 ⇒ | 𝑝 𝑡 𝑣 | 𝑞 𝑡 , (2.2 
𝑤 = 𝑤 1 | 𝑝 𝑠 𝑠 (𝛼)| 𝑞 𝑠 𝑤 2 in Scol 𝑛 . In that case, 𝑤 reduces into 𝑤 = 𝑤 1 | 𝑝 𝑡 𝑡 (𝛼)| 𝑞 𝑡 𝑤 2 . Such a reduction is denoted by 𝑤 1 | 𝑝 𝑠 𝛼 | 𝑞 𝑠 𝑤 2 ,
or 𝛼 if there is no possible confusion. Given a rewriting system R, the set of all reductions de nes a binary relation on Scol 𝑛 , called the R-rewrite relation that we will denote by ⇒ R , or ⇒ if there is no possible confusion. The elements of ⇒ R are called R-rewriting steps, and have the form We denote by ⇒ * R the re exive and transitive closure of the relation ⇒ R , whose elements are called R-rewriting paths.

| 𝑝 1 𝑤 1 | 𝑝 𝑠 𝑠 (𝛼)| 𝑞 𝑠 𝑤 2 | 𝑝 2 ⇒ | 𝑝 1 𝑤 1 | 𝑝 𝑡 𝑡 (𝛼)| 𝑞 𝑡 𝑤 2 | 𝑝 2 , ( 2 

String of columns rewriting

2.2.4. Rewriting properties. A rewriting system R is terminating if there is no in nite R-rewriting path. A local branching (resp. branching) of R is a pair (𝜑,𝜓 ) of R-rewriting steps (resp. R-rewriting paths) having the same source as depicted in the following reduction diagram:

| 𝑝 1 𝑤 1 | 𝑞 1 | 𝑝 𝑤 | 𝑞 𝜑 8 : 𝜓 6 8 | 𝑝 2 𝑤 2 | 𝑞 2
Such a branching is con uent if there exist R-rewriting paths 𝜑 and 𝜓 with a common target as follows:

| 𝑝 1 𝑤 1 | 𝑞 1 𝜑 $ , | 𝑝 𝑤 | 𝑞 𝜑 8 : 𝜓 6 8 | 𝑝 𝑤 | 𝑞 | 𝑝 2 𝑤 2 | 𝑞 2 𝜓 I E (2.2.5)
We say that R is locally con uent (resp. con uent) if any local branching (resp. branching) of R is con uent, and that R is convergent if it is con uent and terminating. A string of columns 𝑤 is in normal form with respect to R, if there is no rule that reduces 𝑤. When R is convergent, any string of columns 𝑤 has a unique normal form, denoted by Nf (𝑤, R). 

i) (position overlapping) 𝑞 𝑠 = 𝑞 𝑠 , ii) (string overlapping) 𝑠 (𝛼) = | 𝑝 𝑠 𝑢 𝛼 | 𝑝 𝑠 𝑣 𝛼 | 𝑞 𝑠 and 𝑠 (𝛽) = | 𝑝 𝑠 𝑣 𝛼 | 𝑞 𝑠 𝑢 𝛽 | 𝑞 𝑠 , iii) (inclusion) 𝑠 (𝛽) = | 𝑝 𝑠 𝑢 𝛽 | 𝑝 𝑠 𝑠 (𝛼)| 𝑞 𝑠 𝑣 𝛽 | 𝑞 𝑠 .
An overlapping branching that is minimal for the relation on branchings generated by

| 𝑝 1 𝑤 1 | 𝑞 1 | 𝑝 𝑤 | 𝑞 𝜑 @ < 𝜓 4 6 | 𝑝 2 𝑤 2 | 𝑞 2 | 𝑝 𝑢 | 𝑝 1 𝑤 1 | 𝑞 1 𝑣 | 𝑞 | 𝑝 𝑢 | 𝑝 𝑤 | 𝑞 𝑣 | 𝑞 | 𝑝 𝑢 | 𝑝 𝜑 | 𝑞 𝑣 | 𝑞 @ < | 𝑝 𝑢 | 𝑝 𝜓 | 𝑞 𝑣 | 𝑞 4 6 | 𝑝 𝑢 | 𝑝 2 𝑤 2 | 𝑞 2 𝑣 | 𝑞 ,
for any branching (𝜑,𝜓 ) and context 𝑢 | 𝑝 -| 𝑞 𝑣 of reductions 𝜑,𝜓 , is called a critical branching.

2.2.7. Lemma. A rewriting system R is locally con uent if and only if all its critical branchings are con uent. Moreover, if R is terminating with all its critical branchings are con uent, then it is con uent.

Proof. The rst statement is the critical branching lemma. Suppose that all the critical branchings of R are con uent and prove that any local branching of R is con uent. By de nition, every aspherical branching is trivially con uent, and every orthogonal local branching is con uent. Consider an overlapping but not minimal local branching (𝜑,𝜓 ), there exist factorizations 𝜑 = 𝐶 [𝜑 ] and 𝜓 = 𝐶 [𝜓 ], where (𝜑 ,𝜓 ) is a critical branching of R. By hypothesis, this branching is con uent, and there are reductions paths 𝜑 : 𝑡 (𝜑 ) → 𝑤 and 𝜓 : 𝑡 (𝜓 ) → 𝑤 that reduce targets of 𝜑 and 𝜓 to the same string of columns 𝑤. It follows that the reductions paths 𝐶 [𝜑 ] and 𝐶 [𝜓 ] make the branching (𝜑,𝜓 ) con uent.

The second statement is an immediate consequence of Newman's lemma, [START_REF] Newman | On theories with a combinatorial de nition of "equivalence[END_REF], that proves that any locally con uent terminating rewriting system is con uent.

Normalization strategies.

A reduction strategy for a rewriting system R speci es a way to apply the rules in a deterministic way. When R is normalizing, a normalization strategy is a mapping 𝜎 of every string of columns | 𝑝 𝑤 | 𝑞 to a rewriting path 𝜎 | 𝑝 𝑤 | 𝑞 with source | 𝑝 𝑤 | 𝑞 and target a chosen normal form of | 𝑝 𝑤 | 𝑞 with respect to R. For a reduced rewriting system, we distinguish the leftmost reduction strategy and the rightmost one, according to the way we apply rst the rewriting rule that reduces the leftmost or the rightmost string of columns. They are de ned as follows. For every string of columns | 𝑝 𝑤 | 𝑞 , the set of rewriting steps with source | 𝑝 𝑤 | 𝑞 can be ordered from left to right by setting 𝜑 ≺ 𝜓 , for rewriting steps 

𝜑 = | 𝑝 𝑤 1 | 𝑝 𝑠 𝛼 | 𝑞 𝑠 𝑤 2 | 𝑞 and 𝜑 = | 𝑝 𝑤 1 | 𝑝 𝑠 𝛽 | 𝑞 𝑠 𝑤 2 | 𝑞 such that ||𝑤 1 || < ||𝑤 1 ||. If R is nite,
𝜌 R (| 𝑝 𝑤 | 𝑞 ) = 𝜎 | 𝑝 𝑤 | 𝑞 |𝜌 R (𝑡 (𝜎 | 𝑝 𝑤 | 𝑞 )) (resp. 𝜌 ⊥ R (| 𝑝 𝑤 | 𝑞 ) = 𝜂 | 𝑝 𝑤 | 𝑞 |𝜌 ⊥ R (𝑡 (𝜂 | 𝑝 𝑤 | 𝑞 ))
). The leftmost (resp. rightmost) rewriting path on a string of columns | 𝑝 𝑤 | 𝑞 is the rewriting path obtained by applying the leftmost (resp. rightmost) normalization strategy 𝜌 R (resp. 𝜌 ⊥ R ). We refer the reader to [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] and [START_REF] Guiraud | Polygraphs of nite derivation type[END_REF] for more details on rewriting normalization strategies.

2.2.9. Top-left sliding order. A way to prove termination of a string of columns rewriting system R is to consider a map 𝑓 : Scol 𝑛 → (𝑋, ≺), where (𝑋, ≺) is a well-ordered set satisfying, for all 𝑤, 𝑤 ∈ Scol 𝑛 , 𝑤 ⇒ R 𝑤 implies 𝑓 (𝑤 ) ≺ 𝑓 (𝑤).

We will use the following termination order. Let 𝑤 = 𝑢 

C

In this section, we study the con uence of the jeu de taquin through a rewriting system de ned by column slidings. We show that this rewriting system is convergent and we present the jeu de taquin as a surjective map from the set of diagonal skew tableaux to the set of Young tableaux using insertion. We recover properties relating the jeu de taquin to the plactic congruence and insertion algorithms on the structure of Young tableaux. 

Knuth in [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] described the congruence ≈ P 𝑛 generated by these relations in terms of Young tableaux and proved the cross-section property for the monoid P 𝑛 .

3.1.3. Forward sliding, [START_REF] Schützenberger | La correspondance de Robinson[END_REF]. A forward sliding is a sequence of the following slidings:

𝑦 𝑥 ↔ 𝑥 𝑦 for 𝑥 𝑦, 𝑥 𝑦 ↔ 𝑥 𝑦 for 𝑥 < 𝑦, 𝑥 ↔ 𝑥 , 𝑥 ↔ 𝑥
starting from a skew tableau and one of its inner corners, and moving the empty box until it becomes an outer corner. The jeu de taquin on a skew tableau 𝑤 consists in applying successively the forward slide algorithm starting from 𝑤 until we get a string of columns without inner corners denoted 𝜋 𝑡𝑞 (𝑤), which is shown to be a Young tableau. In this way, the jeu de taquin de nes a map

𝜋 𝑡𝑞 : Sk 𝑛 → Yt 𝑛 ,
also called the recti cation of skew tableaux. Schützenberger proved in [START_REF] Schützenberger | La correspondance de Robinson[END_REF] many properties of the jeu de taquin. These properties are also presented by Fulton in [START_REF] Fulton | Young tableaux[END_REF], as follows. For any 𝑤 ∈ Sk 𝑛 , the following conditions hold Note that condition ii) is a consequence of the cross-section property for P 𝑛 proved in [START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF] and condition i). Moreover, condition iii) is a consequence of conditions i) and ii). In the rest of this section, we show that conditions i) and ii) are direct consequence of a con uence property of a rewriting system that computes the map 𝜋 𝑡𝑞 , and without supposing the cross-section property for P 𝑛 which will be also consequence of this con uence property.

Example.

The jeu de taquin on the following skew tableau 𝑤 starting with the inner corner applies three occurrences of forward sliding, where denotes the empty box, and the outer corner:

𝑤 = 1 2 1 3 1 2 3 ↦ → 1 1 2 3 1 2 3 ↦ → 1 1 2 2 3 1 3 ; 1 1 2 2 3 1 3 ↦ → 1 1 2 1 2 3 3 ↦ → 1 1 2 1 2 3 3 1 1 2 1 2 3 3 ↦ → 1 1 1 2 2 3 3 ↦ → 1 1 1 2 2 3 3 ↦ → 1 1 1 2 2 3 3 = 𝜋 𝑡𝑞 (𝑤).
3.2. Jeu de taquin as rewriting 3.2.1. Rules of the jeu de taquin. The jeu de taquin map 𝜋 𝑡𝑞 is described by the union of rewriting systems F S 𝑛 = LS 𝑛 ∪ IS 𝑛 ∪ T S 𝑛 whose sets of rules are de ned as follows.

i) LS 𝑛 the set of left-sliding rules that move sub-columns to the left in the following two situations: In the sequel, if there is no possible confusion, we will omit the subscripts 𝑐 𝑖 , 𝑐 𝑗 in the notation of the rules. Moreover, for any rule 𝜇 in F S 𝑛 , we will denote by 𝜇 * any composition of rewriting sequences involving the rules 𝜇 and ending on a normal form with respect to 𝜇.

a) 𝛼 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑐 1 𝑗 ...

Example.

The recti cation of the skew tableau 𝑤 from Example 3.1.4 is computed with the following reduction of F S 𝑛 :

𝑤 = 1 2 1 3 1 2 3 𝛾 𝑐 2 ,𝑐 3 =⇒ 1 1 2 2 3 1 3 𝛾 𝑐 1 ,𝑐 2 =⇒ 1 1 2 1 2 3 3 𝛽 𝑐 1 ,𝑐 2 =⇒ 1 1 1 2 2 3 3 𝛼 𝑐 2 ,𝑐 3 =⇒ 1 1 1 2 2 3 3 = 𝜋 𝑡𝑞 (𝑤).
3.2.3. Theorem. The rewriting system F S 𝑛 satis es the following conditions:

i) F S 𝑛 is convergent.
ii) The normal form of any skew tableau with respect to F S 𝑛 is a Young tableau.

For every word 𝑤 in [𝑛] * , we have

iii) (∅ 𝑆 𝑟 𝑤) = 𝜌 F S 𝑛 ( [𝑤] 𝑠 ) and (𝑤 𝑆 𝑙 ∅) = 𝜌 ⊥ F S 𝑛 ( [𝑤] 𝑠 ), iv) 𝐶 Y 𝑟 𝑛 (𝑤) = Nf ( [𝑤] 𝑠 , F S 𝑛 ) and 𝐶 Y 𝑐 𝑛 (𝑤) = Nf ( [𝑤] 𝑠 , F S 𝑛
). The rest of this subsection is devoted to the proof of this result. Lemmata 3.2.8 and 3.2.9 show that the rewriting system F S 𝑛 is convergent. As a consequence, we obtain that the normal forms are Young tableaux. We prove in 3.2.6 that right and left Schensted's insertion algorithm coincide respectively with the leftmost and rightmost normalization strategy of F S 𝑛 . Condition iii) and convergence of F S 𝑛 yield Condition iv). 

Lemma. For any rule |𝑐

𝑖 1 |𝑐 𝑖 2 | ⇒ |𝑐 𝑗 1 |𝑐 𝑗 2 | in F S 𝑛 , the following equality |𝑐 𝑖 1 ★ 𝑆 𝑟 𝑐 𝑖 2 | = 𝜌 F S 𝑛 (|𝑐 𝑗 1 |𝑐 𝑗 2 |) holds. Moreover, for all 𝑐 𝑖 = (𝑐
𝑐 1 𝑗 𝑥 1 𝑦 1 ... ... 𝑥 𝑠 𝑦 𝑡 𝛾 =⇒ 𝑥 1 𝑐 1 𝑗 𝑥 2 𝑦 1 ... ... 𝑥 𝑠 𝑦 𝑡 -1 𝑦 𝑡 𝛼 =⇒ 𝑥 1 𝑐 1 𝑗 𝑥 2 𝑦 1 ... ... 𝑥 𝑠 𝑦 𝑡 -1 𝑦 𝑡 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 , for 𝑠 = 𝑡 or 𝑐 1 𝑗 𝑥 1 𝑦 1 ... ... 𝑦 𝑡 ... 𝑥 𝑠 𝛾 =⇒ 𝑥 1 𝑐 1 𝑗 𝑥 2 𝑦 1 ... ... 𝑦 𝑡 ... 𝑥 𝑠 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 , for 𝑠 > 𝑡 .
Case 2. 𝑥 1 𝑐 1 𝑗 (resp. 𝑐 1 𝑗 < 𝑥 1 ) and let 𝑥 𝑖 be minimal such that 𝑥 𝑖-1 < 𝑦 𝑖-1 < 𝑥 𝑖 :

𝑐 1 𝑗 𝑥 1 𝑦 1 ... ... 𝑥 𝑖-1 𝑦 𝑖-1 𝑥 𝑖 𝑦 𝑖 ... ... 𝑦 𝑡 ... 𝑥 𝑠 𝛽 =⇒ 𝑥 1 𝑐 1 𝑗 𝑥 2 𝑦 1 ... ... 𝑦 𝑖-1 𝑦 𝑖 𝑥 𝑖 𝑦 𝑖+1 ... ... 𝑦 𝑡 ... 𝑥 𝑠 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 . resp. 𝑐 1 𝑗 𝑥 1 𝑦 1 ... ... 𝑦 𝑡 ... 𝑥 𝑠 𝛽 =⇒ 𝑐 1 𝑗 𝑦 1 𝑥 1 𝑦 2 ... ... 𝑦 𝑡 ... 𝑥 𝑠 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 .
Suppose nally that 𝑐 1 𝑖 > 𝑐 𝑖 2 𝑗 . We obtain:

𝑐 1 𝑗 ... 𝑐 1 𝑖 𝑐 𝑖2 𝑗 ... 𝑐 𝑖1 𝑖 𝛿 𝛽 =⇒ 𝑐 1 𝑗 ... 𝑐 𝑖2-1 𝑗 𝑐 𝑖2 𝑗 𝑐 1 𝑖 ... 𝑐 𝑖1 𝑖 𝛽 * =⇒ 𝑐 1 𝑗 ... 𝑐 𝑖2 𝑗 𝑐 1 𝑖 ... 𝑐 𝑖1 𝑖 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 .
3.2.6. Proof of Theorem 3.2.3 iii). We prove the rst equality by induction on the number of columns in [𝑤] 𝑠 , the proof being similar for the insertion 𝑆 𝑙 . When [𝑤] 𝑠 is of length 2, then the equality is a consequence of Lemma 3.2.4. For 𝑘 3, suppose that the equality holds for words of length 𝑘 -1, and consider

[𝑤] 𝑠 = 𝑐 1 | 1 . . . | 1 𝑐 𝑘 .
By the induction hypothesis, we have (∅

𝑆 𝑟 𝑤) = 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 )★ 𝑆 𝑟 𝑐 𝑘 . Let us show that 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 ) ★ 𝑆 𝑟 𝑐 𝑘 = 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘 ). (3.2.7) 
Since inserting

𝑐 𝑘 into 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1
) consists into inserting its elements one by one from bottom to top, it su ces to prove (3.2.7) for 𝑐 𝑘 = (𝑥). If 𝑥 is bigger or equal than the last element

𝑥 𝑖 1 1 of the rst row of 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 ), then 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 )| 1 𝑥 is a Young tableau which is equal to 𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 ) ★ 𝑆 𝑟 𝑥 . Otherwise, if 𝑥 < 𝑥 𝑖 1
1 , we rst apply a rule 𝛿 𝛽 in order to slide the box containing 𝑥 to the top of the one containing 𝑥 𝑖 1 1 . We then apply the following reduction rules as shown in the following reduction diagrams. Note that, the elements in the colored boxes represent the ones that are bumped when inserting 𝑥 into the tableau after applying at most three steps of reductions with respect R (Col 𝑛 , Y 𝑟 𝑛 ) starting from the left or from the right. We prove this result using Schützenberger's involution on columns as in [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF]Remark 3.2.7]. In one hand, by de nition of Schensted's insertion 𝑆 𝑟 , starting from |𝑐 𝑖 |𝑐 𝑗 |𝑐 𝑘 |, we lead to |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 | after applying at most three steps of reductions with respect R (Col 𝑛 , Y 𝑟 𝑛 ) starting from the left. That is, we have

𝜌 F S 𝑛 (𝑐 1 | 1 . . . | 1 𝑐 𝑘-1 ). 𝑥 . . . 𝑥 𝑖𝑘 1 . . . 𝑥 𝑘1 1 . . . 𝑥 𝑘2 1 . . . 𝑥 𝑖𝑙 1 𝑥 𝑖𝑙 +1 1 . . . 𝑥 𝑘3 1 𝑥 𝑘3+1 1 . . . 𝑥 𝑘4 1 𝑥 𝑘4+1 1 . . .
|𝑐 𝑖 |𝑐 𝑗 |𝑐 𝑘 | 𝛾 𝑐 𝑖 ,𝑐 𝑗 |𝑐 𝑘 =⇒ |𝑐 𝑛 | Y 𝑐 𝑛 |𝑐 𝑘 | 𝑐 𝑛 |𝛾 𝑐 𝑛 ,𝑐 𝑘 =⇒ |𝑐 𝑛 |𝑐 𝑠 | Y 𝑐 𝑠 | 𝛾 𝑐 𝑛 ,𝑐 𝑠 |𝑐 𝑠 =⇒ |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 |.
In an other hand, we have 

|𝑐 𝑖 |𝑐 𝑗 |𝑐 𝑘 | 𝑐 𝑖 |𝛾 𝑐 𝑗 ,𝑐 𝑘 =⇒ |𝑐 𝑖 |(𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 )| = |𝑐 𝑖 |𝑐 𝑙 | Y 𝑐 𝑙 | 𝛾 𝑐 𝑖 ,

Jeu de taquin as morphism of monoids

In this subsection, we prove the compatibility of the rewriting system F S 𝑛 with the plactic congruence. 

𝑢𝑥 1 𝑧𝑥𝑦𝑦 1 𝑣 7 9 [𝑤 ] 𝑠 𝑢𝑥 1 𝑥𝑧𝑦𝑦 1 𝑣 [𝑤] 𝑠 [𝑢𝑥 1 ] 𝑠 𝑥 𝑦 𝑧 [𝑦 1 𝑣] 𝑠 [𝑢𝑥 1 ] 𝑠 𝑦 𝑥 𝑧 [𝑦 1 𝑣] 𝑠 𝛾 Õ [𝑢𝑥 1 ] 𝑠 𝑥 𝑦 𝑧 [𝑦 1 𝑣] 𝑠 𝛼 t Case 

C

In this article, we have introduced the notion of string of columns rewriting system as rewriting systems over glued sequences of columns. This gives a rewriting framework to prove the con uence of Schützenberger's jeu de taquin algorithm de ned on the structure of tableaux. Our construction leads us to formulate several perspectives:

• In [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF], we make explicit the relations among the relations of the Knuth relations for the plactic monoid of type A. We expect that the rewriting presentation of the jeu de taquin introduced in this article could make explicit the relations among the relations for the cross-section property on sequence of columns for the plactic monoid of type A. Such a study of the relations among the relations for the presentations of a monoid constitutes the rst step in an explicit construction of a co brant approximation of the monoid in the category of (𝜔, 1)-categories and of actions of the monoid on categories, see [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF][START_REF] Hage | Super Chinese syzygies by insertions[END_REF].

• Schützenberger's jeu de taquin gives a proof of the Littlewood-Richardson rule which is a combinatorial description of the coe cients that arise when decomposing a product of two Schur polynomials as a linear combination of other Schur polynomials. In particular, these coe cients count certain types of skew tableaux that are recti ed by the jeu de taquin to Young tableaux. We except that these coe cients could be also described by a rewriting approach using a zigzag sequences of reductions from certain types of skew tableaux to their normal forms with respect to the rewriting presentation of the jeu de taquin introduced in this article.

• The construction applied in this article on the jeu de taquin could be also applied on similar algorithms de ned on other structures of tableaux, [START_REF] Hage | Super jeu de taquin and combinatorics of super tableaux of type A[END_REF][START_REF] Lecouvey | Schensted-type correspondence, plactic monoid, and jeu de taquin for type 𝐶 𝑛[END_REF][START_REF] Lecouvey | Schensted-type correspondences and plactic monoids for types 𝐵 𝑛 and 𝐷 𝑛[END_REF][START_REF] Romik | Jeu de taquin dynamics on in nite Young tableaux and second class particles[END_REF][START_REF] Tewari | Backward jeu de taquin slides for composition tableaux and a noncommutative pieri rule[END_REF][START_REF] Thomas | A jeu de taquin theory for increasing tableaux, with applications to k-theoretic schubert calculus[END_REF]. In particular, we expect constructive proofs by rewriting of the properties relating these algorithms to the plactic monoids of classical types and the super plactic monoid which are respectively related to the representations of the nite dimensional semisimple Lie algebras of classical types and the general Lie superalgebra.

Algorithm 1 :Algorithm 2 :

 12 (resp. 𝑐) by replacing 𝑦 by 𝑥. The right (resp. left) insertion algorithm computes a tableau (𝑡 𝑆 𝑟 𝑥) (resp. (𝑥 𝑆 𝑙 𝑡)) as follows,[21]: R I YT(𝑡, 𝑥) Input: A Young tableau 𝑡 and 𝑥 in [𝑛]. Output: The Young tableau (𝑡 𝑆 𝑟 𝑥). 𝑦 := 𝑥 ; 𝑡 := ∅ ; while 𝑦 ≠ 𝜆 do 𝑟 := 𝑡 [1] ; 𝑡 := 𝑡/𝑟 ; (𝑟 , 𝑦) := R I (𝑟, 𝑦) 𝑡 := (𝑡 ; 𝑟 ) end return (𝑡 ; 𝑡) Schensted's right algorithm L I YT(𝑡, 𝑥) Input: A Young tableau 𝑡 and 𝑥 in [𝑛]. Output: The Young tableau (𝑥 𝑆 𝑙 𝑡). 𝑦 := 𝑥 ; 𝑡 := ∅ ; while 𝑦 ≠ 𝜆 do 𝑐 := 𝑡 [1] ; 𝑡 := 𝑡 /𝑐 ; (𝑐 , 𝑦) := C I (𝑐, 𝑦) 𝑡 := [𝑡 ; 𝑐 ] end return [𝑡 ; 𝑡] Schensted's left algorithm where 𝑡 [𝑖] (resp. 𝑡 [𝑖 ]

  then the order ≺ is total and the set of rewriting steps of source | 𝑝 𝑤 | 𝑞 is nite. Hence this set contains a smallest element 𝜎 | 𝑝 𝑤 | 𝑞 and a greatest element 𝜂 | 𝑝 𝑤 | 𝑞 , respectively called the leftmost and the rightmost rewriting steps on | 𝑝 𝑤 | 𝑞 . If, moreover, the rewriting system terminates, the iteration of 𝜎 (resp. 𝜂) yields a normalization strategy for R called the leftmost (resp. rightmost) normalization strategy of R:

3. 1 .

 1 Jeu de taquin 3.1.1. Plactic monoids. Recall that the plactic monoid (of type 𝐴) of rank 𝑛, introduced in[START_REF] Lascoux | ), volume 109 of Quad[END_REF], and denoted by P 𝑛 , is generated on [𝑛] and submitted to the following Knuth relations,[START_REF] Knuth | Permutations, matrices, and generalized Young tableaux[END_REF]: 𝑧𝑥𝑦 = 𝑥𝑧𝑦, for 1 𝑥 𝑦 < 𝑧 𝑛, and 𝑦𝑧𝑥 = 𝑦𝑥𝑧, for 1 𝑥 < 𝑦 𝑧 𝑛.

i) [ 4 ,

 4 Proposition 2].𝑅 𝑆𝑊 (𝑤) ≈ P 𝑛 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑤)), ii) [4, Corollary 1]. The recti cation 𝜋 𝑡𝑞 (𝑤) is the unique Young tableau satisfying i), iii) [4,Claim 2]. The map 𝜋 𝑡𝑞 does not depend on the order in which the inner corners are chosen.

  2.1.1. Columns. A column (over [𝑛]) is a decreasing string 𝑐 𝑘 . . . 𝑐 1 over [𝑛], i.e., with 𝑐 𝑖+1 > 𝑐 𝑖 , for 1 𝑖 < 𝑘. It is represented by a collection of boxes in left-justi ed rows, lled with elements of [𝑛], whose each row contains only one box, and the entries strictly increase down: 𝑐 1 < . . . < 𝑐 𝑘 𝑛, and is also denoted by (𝑐 1 ; . . . ; 𝑐 𝑘 ). Denote |𝑐 | := 𝑘 the length of 𝑐. We denote by Col 𝑛 the set of columns over[𝑛]. A column of length 0 is the empty column denoted by 𝜆 𝑐 .2.1.2. String of columns. Two columns 𝑐 1 , 𝑐 2 in Col 𝑛 can be glued at position 𝑝 in Z as follows:𝑐 1 | 𝑝 𝑐 2 =

	where 1 𝑐 1 2
				...
				𝑐 𝑖 2
		𝑐 1 1 𝑐 𝑖+1 2
		𝑐 2 1	...
		...	...
			𝑝	𝑖+𝑝
		𝑐	1 𝑐	2
		...
		𝑐 𝑘
		𝑐 1
		𝑐 2
	𝑐 =	...
		𝑐 𝑘

1 For 1 𝑗 𝑝, we say that (𝑐 𝑗 1 , 𝑐 𝑖+𝑗 2 ) is a full row of length 2 in 𝑐 1 | 𝑝 𝑐 2 . A pair ( , 𝑐 𝑗 2 ), for 1 𝑗 𝑖, and a pair (𝑐 𝑗 1 , ), for 𝑝 + 1 𝑗 𝑘, is called a row of length 2, where denotes the empty box. A string of columns is a sequence of glued columns:

  𝑗 𝑙 𝑖 𝑙 , 𝑐 𝑗 𝑙 +1 𝑖 𝑙 +1 ) is a full row of length 2 in 𝑐 𝑖 𝑙 | 𝑝 𝑖 𝑙 𝑐 𝑖 𝑙 +1 , for 1 𝑙 𝑘. A connected row (𝑐 𝑗 1 𝑖

1 , 𝑝 2 , . . . , 𝑝 𝑚 ) in Z 𝑚 is called the gluing sequence of 𝑤. Gluing sequences can be de ned in a consistent way by considering a gluing map 𝑔 : Col 𝑛 × Col 𝑛 → Z that associates to columns 𝑐 and 𝑐 , a gluing position 𝑔(𝑐, 𝑐 ). Given a gluing map 𝑔, we de ne the set of strings of columns constructed with respect to 𝑔 as the set of string of columns of the form (2.1.3), where for any 1 𝑖 𝑚, 𝑝 𝑖 = 𝑔(𝑐 𝑖 , 𝑐 𝑖+1 ). The total length of 𝑤 is the tuple 𝑡𝑙 (𝑤) = (|𝑐 1 |, . . . , |𝑐 𝑚+1 |) ∈ N 𝑚+1 . We will denote by ||𝑤 || the number of columns of 𝑤.

For 3 𝑘 𝑚 + 1, a connected row of length 𝑘 is a sequence (𝑐 𝑗 1 𝑖 1 , . . . , 𝑐 𝑗 𝑘 𝑖 𝑘 ) such that (𝑐 1 , . . . , 𝑐 𝑗 𝑘 𝑖 𝑘 ) is increasing if 𝑐 𝑗 1 𝑖 1

  𝑔𝑛 is the free monoid on Col 𝑛 with respect the product | 𝑔 . The four corner readings. The south-west reading is the map 𝑅 𝑆𝑊 : Scol 𝑛 → [𝑛] * that reads a string of columns, column-wise from left to right and from bottom to top. There are three other corner readings 𝑅 𝑁𝑊 , 𝑅 𝑁 𝐸 , 𝑅 𝑆𝑊 and 𝑅 𝑆𝐸 de ned in a similar way and that read a string of columns, column by column, with respect right or left and top or bottom directions.De ne the map Fac : [𝑛] * → [𝑛] * sending a word 𝑤 into the factorization 𝑤 = 𝑤 1 . . . 𝑤 𝑘 , where each 𝑤 𝑖 , for 𝑖 = 1, . . . , 𝑘, is a maximal strictly decreasing sequence, that is, the 𝑅 𝑆𝑊 -reading of a column in Col 𝑛 . For a xed gluing map 𝑔 ∈ Z 𝑛 , consider the map into a string of columns (𝑐 1 , . . . , 𝑐 𝑘 ) where each column 𝑐 𝑖 is lled by the elements of 𝑤 𝑖 in Fac(𝑤) from bottom to top, for 𝑖 = 1, . . . , 𝑘, with respect the gluing map 𝑔.2.1.7. Properties of strings of columns. A row connected string of columns𝑤 as in (2.1.3) is called i) left-justi ed (resp. right-justi ed) if |𝑐 𝑖 | |𝑐 𝑖+1 | and |𝑐 𝑖+1 | 𝑝 𝑖 |𝑐 𝑖 | (resp. |𝑐 𝑖+1 | |𝑐 𝑖 | and |𝑐 𝑖 | 𝑝 𝑖 |𝑐 𝑖+1 |), for all 1 𝑖 𝑚. ii) top-justi ed, (resp. bottom-justi ed) if 𝑝 𝑖 = |𝑐 𝑖+1 | (resp. 𝑝 𝑖 = |𝑐 𝑖 |), for all 1 𝑖 𝑚.iii) decreasing (resp. increasing) if its gluing sequence is decreasing (resp. increasing). 2.1.8. Example: skew tableaux. A skew tableau with 𝑚+1 columns is a string of columns 𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚+1 in Scol 𝑛 , whose gluing sequence satis es 𝑝 𝑘 |𝑐 𝑘+1 |, for all 1 𝑘 𝑚. A diagonal skew tableau is a skew tableau 𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚+1 whose gluing sequence satis es 𝑝 𝑘 = 1, for all 1 𝑘 𝑚. We denote by 𝑠 the gluing map for diagonal skew tableaux. We will denote by Sk 𝑛 (resp. dSk 𝑛 ) the set of skew (resp. diagonal skew) tableaux over [𝑛]. Any string 𝑢 over [𝑛] is the 𝑅 𝑆𝑊 -reading of a unique diagonal skew tableau, thus the map 𝑅 𝑆𝑊 de nes a bijection from dSk 𝑛 to [𝑛] * . An inner corner in a skew tableau 𝑤 is an empty box located above and to the left of two non-empty boxes. An outer corner in 𝑤 is an empty box located to the end of a row or at the bottom of a column. We de ne the top (resp. bottom) concatenation of an element 𝑥 in a column 𝑐 = (𝑐 1 ; . . . ; 𝑐 𝑘 ) as the skew tableau de ned by 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚 in Sk 𝑛 by setting 𝑤 𝐼 𝑎 𝑟 𝑥 = 𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 (𝑐 𝑚 𝑎 𝑥), (resp. 𝑥 𝐼 𝑎 𝑙 𝑤 = (𝑥 𝑎 𝑐 1 )| 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚 ). 𝑡 in dSk 𝑛 . By de nition the relations 𝑡 ★ 𝐼 𝑎 𝑟 ∅ = 𝑡 (resp. 𝑡 ★ 𝐼 𝑎 𝑙 ∅ = 𝑡) and ∅★ 𝐼 𝑎 𝑟 𝑡 = 𝑡 (resp. ∅★ 𝐼 𝑎 𝑙 𝑡 = 𝑡) hold, showing that the product ★ 𝐼 𝑎 𝑟 (resp. ★ 𝐼 𝑎 𝑙 ) is unitary with respect to ∅. The top (resp. bottom) concatenation on a diagonal skew tableau 𝑤 acts only on the last (resp. rst) column of 𝑤 and do not change the others columns. As a consequence, for all 𝑥, 𝑦 ∈ [𝑛], we have the following commutation property: 𝑦 𝐼 𝑎 𝑙 (𝑤 𝐼 𝑎 𝑟 𝑥) = (𝑦 𝐼 𝑎 𝑙 𝑤) 𝐼 𝑎 𝑟 𝑥 . (2.1.11) Hence, we deduce that the insertion products ★ 𝐼 𝑎 𝑟 and ★ 𝐼 𝑎 𝑙 are associative. 2.1.12. Example: Young tableaux. A Young tableau with 𝑚 + 1 columns is a string of columns 𝑐 1 | 𝑝 1 . . . | 𝑝 𝑚 𝑐 𝑚+1 in Scol 𝑛 whose gluing sequence is decreasing and satis es 𝑝 𝑘 = |𝑐 𝑘+1 | for all 1 𝑘 𝑚.

			2.1. Strings of columns
	De ne now an internal product ★ 𝐼 𝑎 𝑟 (resp. ★ 𝐼 𝑎 𝑙 ) on dSk 𝑛 by setting 𝑡 ★ 𝐼 𝑎 𝑟 𝑡 := (𝑡 𝐼 𝑎 𝑟 𝑅 𝑆𝑊 (𝑡 )), resp. 𝑡 ★ 𝐼 𝑎 𝑙 𝑡 := (𝑅 𝑆𝑊 (𝑡 ) 𝐼 𝑎 𝑙 𝑡) 2.1.5. [ ] 𝑔 : [𝑛] * → Scol 𝑛 for all 𝑡,	(2.1.6) (2.1.10)
	that transforms each word 𝑤 in [𝑛] 𝑐 𝑎 𝑥 = 𝑐 | 1 𝑥 if 𝑥 𝑐 1 , (𝑥; 𝑐 1 ; . . . ; 𝑐 𝑘 ) else.	resp. 𝑥 𝑎 𝑐 =	(𝑐 1 ; . . . ; 𝑐 𝑘 ; 𝑥) if 𝑥 > 𝑐 𝑘 , 𝑥 | 1 𝑐 else.	.
	We extend these concatenations into insertion maps on skew tableaux, de ned for 𝑥 ∈ [𝑛] and 𝑤 =
	𝑐 1 | (2.1.9)
	For any word 𝑤 = 𝑥 1 . . . 𝑥 𝑘 , denote by 𝐶 𝑑S 𝑟 𝑛 (𝑤) (resp. 𝐶 𝑑S 𝑐 𝑛 (𝑤)) the diagonal skew tableau obtained
	from 𝑤 by inserting its letters iteratively from left to right (resp. right to left) using the right (resp. left)
	insertion starting from the empty tableau:			
	𝐶 𝑑S 𝑟 𝑛 (𝑤) := (∅ 𝐼 𝑎 𝑟 𝑤) = ((. . . (∅ 𝐼 𝑎 𝑟 𝑥 1 ) 𝐼 𝑎 𝑟 . . .) 𝐼 𝑎 𝑟 𝑥 𝑘 ),	
	resp. 𝐶 𝑑S 𝑐 𝑛 (𝑤) := (𝑤 𝐼 𝑎 𝑙 ∅) = (𝑥 1 𝐼 𝑎 𝑙 (. . . 𝐼 𝑎 𝑙 (𝑥 𝑘 𝐼 𝑎 𝑙 ∅) . . .)) .	

* (2.1.13) We denote by Y the gluing map for Young tableaux, and by Yt 𝑛 the set of Young tableaux over [𝑛].

  .2.3) for all 𝛼 in R and 𝑤 1 , 𝑤 2 in Scol 𝑛 . In (2.2.3) the data | 𝑝 1 𝑤 1 | 𝑝 𝑠 -| 𝑞 𝑠 𝑤 2 | 𝑝 2 is called the context of the rule 𝛼. If we denote by 𝐶 this context, the reduction (2.2.3) can be also denoted by 𝐶 [𝛼].

  1 | 𝑝 1 . . . | 𝑝 𝑚-1 𝑢 𝑚 be in Scol 𝑛 . Denote by ℎ 𝑢 𝑘 the number of empty boxes between the top box of the column 𝑢 𝑘 and the top position of 𝑤, shown by the blue line in the following picture De ne the top deviation of 𝑤 as the sequence 𝑑 (𝑤) = (ℎ 𝑢 1 , . . . , ℎ 𝑢 𝑚 ) ∈ N 𝑚 . Denote by 𝑙𝑒𝑥 the total order on Scol 𝑛 de ned by 𝑤 𝑙𝑒𝑥 𝑤 if and only if In order to prove the termination of top-left sliding operations presented in 3.2.1, we de ne the total order 𝑡𝑙 on Scol 𝑛 by setting, for 𝑤, 𝑤 in Scol 𝑛 , 𝑤 𝑡𝑙 𝑤 if and only if ||𝑤 || < ||𝑤 || or ||𝑤 || = ||𝑤 || and 𝑤 𝑙𝑒𝑥 𝑤 .

				...		
	...	. . .	...	...	. . .	...
		. . .			. . .	
		. . .			. . .	
	...			...	...	

𝑡𝑙 (𝑤) ≺ 𝑟𝑒𝑣𝑙𝑒𝑥 𝑡𝑙 (𝑤 ) or 𝑡𝑙 (𝑤) = 𝑡𝑙 (𝑤 ) and 𝑑 (𝑤) ≺ 𝑙𝑒𝑥 𝑑 (𝑤 ) .

  𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑞) 𝑐 𝑗 ∉ Scol 𝑛 , and 𝑚 is maximal such that 𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑝) 𝑐 𝑗 ∈ Scol 𝑛 and 𝑖 1 𝑝. 𝛽 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑞 , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 , and positions 𝑝 , 𝑞 , such that 𝑐 𝑖 | 𝑘 𝑐 𝑗 ∈ Scol 𝑛 with 1 𝑘 𝑖 1 and 𝑘 < 𝑖 2 , and 𝑙 is minimal such that (𝑐 𝑙 𝑖 , 𝑐 𝑚+1 𝑛 is the set of left top sliding rules that move columns to the top as follows: a) 𝛾 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑠 𝑐 𝑗 ∈ Scol 𝑛 and 𝑠 𝑖 2 . b) 𝛿 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑞 +(𝑖 1 -𝑝) , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 , and positions 𝑝 , 𝑞 , such that 𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑝) 𝑐 𝑗 ∉ Scol 𝑛 and 𝑐 𝑖 | 𝑖 2 𝑐 𝑗 ∈ Scol 𝑛 , or 𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑝) 𝑐 𝑗 ∈ Scol 𝑛 and 𝑖 1 > 𝑝, or 𝑐 𝑖 | 𝑘 𝑐 𝑗 is not row connected with 𝑘 > 𝑖 1 and 𝑐 𝑖 1

				𝑐 1 𝑗			𝑐 1 𝑗
		𝑐 1 𝑖 ...	𝑐 1 𝑖	...		𝑐 1 𝑖 𝑐 1 𝑖 ...	... 𝑐 1 𝑗 ...
		... 𝑐 𝑙-1 𝑖 𝑐 𝑙 𝑖 𝑐 𝑚+1 ... 𝑐 𝑚 𝑗 𝑗 ... ... 𝑐 𝑘 𝑖 𝑐 𝑖2 𝑗 ... 𝑐 𝑖1 𝑖 𝑞 𝑖 𝑐 1 𝑗 𝑐 𝑖1 𝑐 𝑖 𝑐 𝑝 𝑗 ... 𝑐 𝑖1 𝑗 ... 𝑐 𝑖2 𝑗 ... ...	| 𝑞 ⇒ | 𝑝 | 𝑞 ⇒ | 𝑝	... 𝑐 𝑙-1 𝑖 𝑐 𝑚-1 ... 𝑗 𝑐 𝑚 𝑗 𝑐 𝑚+1 𝑗 𝑐 𝑙 𝑖 𝑐 𝑚+2 𝑗 ... ... 𝑐 𝑘-1 𝑖 𝑐 𝑖2 𝑗 ... 𝑐 𝑖1 𝑖 𝑐 𝑝 𝑗 𝑐 𝑞 𝑖 ... ... 𝑐 𝑖1 𝑖 𝑐 𝑖1 𝑗 ... 𝑐 𝑖2 𝑗 ... ...	|	| 𝑗	) is a row
	and 𝑐 𝑙-1 𝑖	< 𝑐 𝑚 𝑗 < 𝑐 𝑙 𝑖 .		
			𝑐 1 𝑖				𝑐 1 𝑗
			...				...
				𝑐 1 𝑗			𝑐 1 𝑖 𝑐 𝑟 -1 𝑗
	b) 𝛿		...	...	| 𝑞 ⇒ | 𝑝	𝑐 1 𝑗 𝑐 2 𝑖	𝑐 𝑟 𝑗
				𝑐 𝑟 𝑗			... ...	...
			𝑐 1 𝑖 ...	...			𝑖 𝑐 1	𝑐 𝑛-1 𝑖	𝑐 𝑡 -1 𝑗
		... 𝑐 𝑖1 𝑖 𝑐 𝑝 𝑖 ... 𝑐 𝑖1 𝑖	... ... 𝑐 𝑚 𝑗 𝑗 𝑐 𝑚+1 𝑞 𝑐 𝑗	| 𝑞 ⇒ | 𝑝		... 𝑐 𝑖1 𝑖 𝑗 𝑐 𝑚+1	... 𝑐 𝑡 𝑗 𝑐 𝑡 +1 𝑗 𝑐 𝑚 𝑗 ... ... 𝑞 𝑐 𝑗
				... ... 𝑐 𝑖2 𝑗 𝑐 𝑖2 𝑗			... 𝑐 𝑖2	... 𝑐 𝑝 𝑖 ...	... 𝑐 𝑖2 𝑗
							𝑐 𝑖1
		𝑐 1 𝑖				𝑐 1 𝑗
		...				...
				𝑐 1 𝑗			𝑐 1 𝑖
		... 𝑐 𝑚 𝑖	... 𝑐 1 𝑗	| 𝑞 ⇒ | 𝑝	... 𝑐 𝑚 𝑖	... 𝑗 𝑐 𝑛	𝑐 1 𝑗
		...	... ...		...	...	...
				𝑐 𝑛 𝑗 𝑐 𝑚 𝑗			𝑐	𝑖 𝑞	𝑐 1 𝑖 𝑐 𝑚 𝑗
		... 𝑐 𝑖1 𝑖 𝑐 1 𝑖	... 𝑐 𝑞 𝑗 ...	... 𝑐 𝑖1 𝑖 | 𝑞 ⇒ | 𝑝 -(𝑠-𝑟 )	... 𝑗 𝑐 𝑝	... 𝑐 𝑟 𝑖	...
		...	... ...		𝑐	𝑗 𝑝+1	...	...
		𝑐 𝑟 𝑖	𝑐 𝑐 𝑖2 𝑝 𝑗 𝑗		...	𝑐 𝑠 𝑖 𝑐 𝑖2 𝑗
		...	...		𝑐 𝑖2	...
		𝑐 𝑠 𝑖	𝑗 𝑐 𝑖2			𝑐 𝑖1
		...			
		𝑐 𝑖1 𝑖			

𝑗

| 𝑞 , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 , and positions 𝑝 , 𝑞 , such that (𝑐 𝑖 1 𝑖 , 𝑐 𝑚 𝑗 ) is a row, 𝑖 1 𝑚 < 𝑖 2 and 𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑚) 𝑐 𝑗 ∈ Scol 𝑛 . b) 𝛿 𝛼 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑗 | 𝑞 +(𝑝-𝑞) , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 , and positions 𝑝 , 𝑞 , such that ii) IS 𝑛 is the set of insert-sliding rules performing insertion in the following two situations: 3. Convergence of the jeu de taquin a) 𝛽 𝑐 𝑖 ,𝑐 𝑗 : | 𝑝 𝑖 | 𝑞 +(𝑖 1 +𝑖 2 -𝑝-𝑞) , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 , and positions 𝑝 , 𝑞 , such that 𝑐 𝑖 | (𝑖 1 +𝑖 2 -𝑞) 𝑐 𝑗 ∉ Scol 𝑛 , where 𝑝 is maximal such that 𝑐 𝑖 | 𝑝 𝑐 𝑗 ∈ Scol 𝑛 , and 𝑛 is minimal such that (𝑐 𝑛 𝑖 , 𝑐 𝑡 +1 𝑗 ) is a row with 𝑐 𝑛-1 𝑖 < 𝑐 𝑡 𝑗 < 𝑐 𝑛 𝑖 . iii) T S 𝑖 | 𝑞 , indexed by columns 𝑐 𝑖 , 𝑐 𝑗 and positions 𝑝 , 𝑞 , such that 𝑐 𝑖 | 𝑟 𝑐 𝑗 ∈ Scol 𝑛 with 1 𝑟 < 𝑖 2 , or 𝑐 𝑖 | 𝑟 𝑐 𝑗 is not row connected with 𝑐 1 𝑖 𝑐 𝑖 2 𝑗 , and 𝑠 is maximal such that 𝑐 𝑖 | 𝑖 𝑐 1 𝑗 .

  1 𝑖 , . . . , 𝑐 𝑖 1 𝑖 ) and 𝑐 𝑗 = (𝑐 1 𝑗 , . . . , 𝑐 𝑖 2 𝑗 ) in Col 𝑛 , we have 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 = 𝜌 F S 𝑛 (𝑐 𝑖 | 1 𝑐 𝑗 ), 𝑐 𝑗 ★ 𝑆 𝑙 𝑐 𝑖 = 𝜌 ⊥ F S 𝑛 (𝑐 𝑖 | 1 𝑐 𝑗 ). (3.2.5) 3. Convergence of the jeu de taquin Proof. Prove that for any rule |𝑐 𝑖 1 |𝑐 𝑖 2 | ⇒ |𝑐 𝑗 1 |𝑐 𝑗 2 | in F S 𝑛 , we have |𝑐 𝑖 1 ★ 𝑆 𝑟 𝑐 𝑖 2 | = 𝜌 F S 𝑛 (|𝑐 𝑗 1 |𝑐 𝑗 2 |). The rules 𝛼 𝑐 𝑖 ,𝑐 𝑗 , 𝛿 𝛼 𝑐 𝑖 ,𝑐 𝑗 , 𝛽 𝑐 𝑖 ,𝑐 𝑗 and 𝛿 𝛽 𝑐 𝑖 ,𝑐 𝑗 followed by 𝛽 * yield to the Young tableau |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. Consider now the rule 𝛾 𝑐 𝑖 ,𝑐 𝑗 . If |𝑐 𝑗 | |𝑐 𝑖 | and 𝑐 𝑖 | |𝑐 𝑗 | 𝑐 𝑗 ∈ Scol 𝑛 then the target of 𝛾 𝑐 𝑖 ,𝑐 𝑗 is equal to |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. If |𝑐 𝑖 | < |𝑐 𝑗 | and 𝑐 𝑖 | |𝑐 𝑗 | 𝑐 𝑗 ∈ Scol 𝑛 , then the rule 𝛾 𝑐 𝑖 ,𝑐 𝑗 is followed by the rule 𝛼 𝑐 𝑖 ,𝑐 𝑗 in order to obtain |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. If 𝑐 𝑖 | |𝑐 𝑗 | 𝑐 𝑗 ∉ Scol 𝑛 then the rule 𝛾 𝑐 𝑖 ,𝑐 𝑗 followed by 𝛼 𝑐 𝑖 ,𝑐 𝑗 and then by 𝛽 * , or only followed by 𝛽 * yield to |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. Consider nally the rule 𝛿 𝑐 𝑖 ,𝑐 𝑗 . If |𝑐 𝑗 | |𝑐 𝑖 | then the target 𝛿 𝑐 𝑖 ,𝑐 𝑗 is equal to |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. Otherwise, if |𝑐 𝑖 | < |𝑐 𝑗 | then 𝛿 𝑐 𝑖 ,𝑐 𝑗 is followed by 𝛼 𝑐 𝑖 ,𝑐 𝑗 in order to obtain |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 |. Prove the rst equality of (3.2.5) by induction on |𝑐 𝑗 |, the proof being similar for ★ 𝑆 𝑙 . Suppose that |𝑐 𝑗 | = 1, we consider the following two cases. If 𝑐 1 𝑖 𝑐 1 𝑗 , then 𝑐 𝑖 | 1 𝑐 𝑗 is equal to 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 . If 𝑐 1 𝑗 < 𝑐 1 𝑖 , then by applying 𝛿 𝛽 on 𝑐 𝑖 | 1 𝑐 𝑗 we obtain 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 . Suppose the equality holds when |𝑐 𝑗 | = 𝑖 2 -1, and prove it when |𝑐 𝑗 | = 𝑖 2 . First consider the case when 𝑐 1 𝑐 𝑖 ★ 𝑆 𝑟 (𝑐 2 𝑗 , . . . , 𝑐 𝑖 2 𝑗 ), where 𝑥 𝑖 and 𝑦 𝑗 are elements of 𝑐 𝑖 and 𝑐 𝑗 with 𝑡 𝑠. We prove that 𝜌 F S 𝑛
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= 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 , by considering the following two cases.

Case 1. 𝑥 1 𝑐 1

𝑗 and 𝑥 𝑘+1 𝑦 𝑘 , for all 𝑘 = 1, . . . , 𝑡 -1:

  𝑐 𝑙 |𝑐 𝑙 =⇒ |(𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑙 )|𝑐 𝑙 | = |𝑐 𝑚 | Y 𝑐 𝑚 |𝑐 𝑙 | 𝑐 𝑚 |𝛾 𝑐 𝑚 ,𝑐 𝑙 =⇒ |𝑐 𝑚 |(𝑐 𝑚 ★ 𝑠 𝑟 𝑐 𝑙 )|. Let us show that |𝑐 𝑚 |(𝑐 𝑚 ★ 𝑠 𝑟 𝑐 𝑙 )| = |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 |. By applying the involution on tableaux, we obtain By de nition of 𝑆 𝑟 , we have |𝑐 * 𝑘 ★ 𝑆 𝑟 𝑐 * 𝑗 ★ 𝑠 𝑟 𝑐 * 𝑖 | = |(𝑐 * 𝑙 ★ 𝑆 𝑟 𝑐 * 𝑚 )|𝑐 * 𝑚 |. Since (𝑐 * 𝑘 ★ 𝑠 𝑟 𝑐 * 𝑗★ 𝑆 𝑟 𝑐 * 𝑖 ) = (𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 ) * , we deduce that |(𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 ) * | = |(𝑐 * 𝑙 ★ 𝑆 𝑟 𝑐 * 𝑚 )|𝑐 * 𝑚 |.Finally, by applying the involution on tableaux, we obtain|(𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑘 )| = |𝑐 𝑚 |(𝑐 𝑚 ★ 𝑆 𝑟 𝑐 𝑙 )|.Following Lemma 3.2.4, for any rule|𝑐 𝑖 1 |𝑐 𝑖 2 | ⇒ |𝑐 𝑗 1 |𝑐 𝑗 2 | in F S 𝑛 , we have |𝑐 𝑖 1 ★ 𝑆 𝑟 𝑐 𝑖 2 | = 𝜌 F S 𝑛 (|𝑐 𝑗 1 |𝑐 𝑗 2 |). Hence,any critical branching of T S 𝑛 has the following con uence diagram |𝑐 𝑗 |𝑐 𝑗 |𝑐 𝑖 | 𝜌 F S 𝑛 (𝑐 𝑗 |𝑐 𝑗 ) 7 9 |𝑐 𝑘 | Y 𝑐 𝑘 |𝑐 𝑖 | 𝜌 F S 𝑛 (𝑐 𝑘 |𝑐 𝑖 ) 7 9 |𝑐 𝑘 |𝑐 𝑙 | Y 𝑐 𝑙 | 𝜌 F S 𝑛 (𝑐 𝑘 |𝑐 𝑙 ) 7 9 |𝑐 𝑘 | Y 𝑐 𝑙 |𝑐 𝑙 | 𝛿 𝑐 𝑙 ,𝑐 𝑙 |𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑖 | |𝑐 𝑖 |𝑐 𝑚 |𝑐 𝑚 | 𝜌 F S 𝑛 (𝑐 𝑚 |𝑐 𝑚 ) 7 9 |𝑐 𝑖 |𝑐 𝑛 | Y 𝑐 𝑛 | 𝜌 F S 𝑛 (𝑐 𝑖 |𝑐 𝑛 ) 7 9 |𝑐 𝑘 | Y 𝑐 𝑠 |𝑐 𝑛 | 𝜌 F S 𝑛 (𝑐 𝑠 |𝑐 𝑛 ) 7 9 |𝑐 𝑘 |𝑐 𝑙 | Y 𝑐 𝑙 | 𝛾 𝑐 𝑘 ,𝑐 𝑙 B > where 𝜀 1 and 𝜀 2 are T S 𝑛 -reductions and where some indicated rules can correspond to identities, such that 𝑐 𝑘 | Y 𝑐 𝑘 = 𝑐 𝑗 ★ 𝑆 𝑟 𝑐 𝑗 , 𝑐 𝑙 | Y 𝑐 𝑙 = 𝑐 𝑘 ★ 𝑆 𝑟 𝑐 𝑖 , 𝑐 𝑘 | Y 𝑐 𝑙 = 𝑐 𝑘 ★ 𝑆 𝑟 𝑐 𝑙 , 𝑐 𝑛 | Y 𝑐 𝑛 = 𝑐 𝑚 ★ 𝑆 𝑟 𝑐 𝑚 , 𝑐 𝑘 | Y 𝑐 𝑠 = 𝑐 𝑖 ★ 𝑆 𝑟 𝑐 𝑛 and 𝑐 𝑙 | Y 𝑐 𝑙 = 𝑐 𝑠 ★ 𝑆 𝑟 𝑐 𝑛 .

	|𝑐 * 𝑘 |𝑐 * 𝑗 |𝑐 * 𝑖 | =⇒ |(𝑐 * 𝑘 ★ 𝑆 𝑟 𝑐 * 𝑗 )|𝑐 * 𝑖 | = |𝑐 * 𝑙 | Y 𝑐 * 𝑙 |𝑐 * 𝑖 | =⇒ |𝑐 * 𝑙 |(𝑐 * 𝑙 ★ 𝑆 𝑟 𝑐 * 𝑖 )| = |𝑐 * 𝑙 |𝑐 * 𝑚 | Y 𝑐 * 𝑚 | =⇒ |(𝑐 * 𝑙 ★ 𝑆 𝑟 𝑐 * 𝑚 )|𝑐 * 𝑚 |.
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  3.3.1. Theorem. The recti cation map 𝜋 𝑡𝑞 : dSk 𝑛 → Yt 𝑛 is a surjective map that satis es the following two properties:i) for any rule 𝑑 ⇒ 𝑑 in F S 𝑛 , we have 𝑅 𝑆𝑊 (𝑑) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑑 ), ii) for all 𝑤, 𝑤 ∈ [𝑛] * , 𝑤 ≈ P 𝑛 𝑤 implies Nf ( [𝑤] 𝑠 , F S 𝑛 ) = Nf ( [𝑤 ] 𝑠 , F S 𝑛 ).Proof. The surjectivity of 𝜋 𝑡𝑞 is a consequence of the relation 𝜋 𝑡𝑞 ( [𝑅 𝑆𝑊 (𝑑)] 𝑠 ) = 𝑑, that holds for any 𝑑 in Yt 𝑛 . Prove rst that for any rule 𝑑 ⇒ 𝑑 in F S 𝑛 , we have 𝑅 𝑆𝑊 (𝑑) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑑 ). It su ces to show that 𝑅 𝑆𝑊 (𝑠 (𝜂)) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑡 (𝜂)), for every rule 𝜂 in F S 𝑛 . This is obvious for 𝛾 and 𝛿. For the rule 𝛼, consider 𝑅 𝑆𝑊 (𝑠 (𝛼)) = 𝑐 𝑖 1 𝑖 . . . 𝑐 1 𝑖 𝑐 𝑖 2 𝑗 . . . 𝑐 𝑚+1 𝑗 𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗 and 𝑅 𝑆𝑊 (𝑡 (𝛼)) = 𝑐 𝑖 2 𝑗 . . . 𝑐 𝑚+1 𝑅 𝑆𝑊 (𝑠 (𝛼)) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑡 (𝛼)). Similarly, we show the property for rules 𝛽, 𝛿 𝛼 and 𝛿 𝛽 . Prove now that for all 𝑤, 𝑤 ∈ [𝑛] * , 𝑤 ≈ P 𝑛 𝑤 implies Nf ( [𝑤] 𝑠 , F S 𝑛 ) = Nf ( [𝑤 ] 𝑠 , F S 𝑛 ). Since F S 𝑛 is convergent, we show that for all 𝑤, 𝑤 ∈ [𝑛] * , 𝑤 ≈ P 𝑛 𝑤 implies [𝑤] 𝑠 ≈ F S 𝑛 [𝑤 ] 𝑠 . Suppose rst that 𝑤 = 𝑢𝑥 1 xzy𝑦 1 𝑣 and 𝑤 = 𝑢𝑥 1 zxy𝑦 1 𝑣, for all 1 𝑥 𝑦 < 𝑧 𝑛, 𝑢, 𝑣 ∈ [𝑛] * and 𝑥 1 , 𝑦 1 ∈ [𝑛], and show that [𝑤] 𝑠 ≈ F S 𝑛 [𝑤 ] 𝑠 . We consider the following cases: Case 1. 𝑥 1 𝑥 and 𝑦 𝑦 1 .

									𝑗	𝑐 𝑖 1 𝑖 . . . 𝑐 1 𝑖 𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗 . On one
	hand, we have							
	𝑐 𝑖 1 𝑖 . . . c 2 i c 1 i c i 2 j . . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗	(3.1.2) = . . .	(3.1.2) = 𝑐 𝑖 1 𝑖 𝑐 𝑖 2 𝑗 𝑐 𝑖 1 -1 𝑖	. . . c 2 i c 1 i c i 2 -1 j	. . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗
		(3.1.2) = . . .	(3.1.2) = c i 1 i c i 2 j c i 2 -1 j	𝑐 𝑖 1 -1 𝑖	. . . 𝑐 2 𝑖 𝑐 1 𝑖 𝑐 𝑖 2 -2 𝑗	. . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗	(3.1.2) =
	𝑐 𝑖 2 𝑗 𝑐 𝑖 1 𝑖 𝑐 𝑖 2 -1 𝑗 𝑐 𝑖 1 -1 𝑖	. . . c 2 i c 1 i c i 2 -2 j	. . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 . . . 𝑐 1 𝑗	(3.1.2) = . . .	(3.1.2) = 𝑐 𝑖 2 𝑗 . . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 𝑐 𝑖 1 𝑖 . . . 𝑐 1 𝑖 𝑐 𝑚-1 𝑗	. . . 𝑐 1 𝑗 .
	In an other hand, we have 𝑐 𝑖 2 𝑗 . . . 𝑐 𝑚+1 𝑗	𝑐 𝑖 1 𝑖 . . . c 2 i c 1 i c m j . . . 𝑐 1 𝑗	(3.1.2) = . . .	(3.1.2) = 𝑐 𝑖 2 𝑗 . . . 𝑐 𝑚+1 𝑗	𝑐 𝑚 𝑗 𝑐 𝑖 1 𝑖 . . . 𝑐 1 𝑖 𝑐 𝑚-1 𝑗	. . . 𝑐 1 𝑗 .
	Hence,							

  2. 𝑥 1 𝑥 and 𝑦 > 𝑦 1 . Suppose that 𝑣 = 𝑦 2 . . . 𝑦 𝑞 𝑦 𝑣 such that 𝑦 1 > 𝑦 2 > . . . > 𝑦 𝑞 and 𝑦 𝑞 𝑦 . Case 3. 𝑥 < 𝑧 < 𝑥 1 and 𝑦 𝑦 1 . Suppose that 𝑢 = 𝑢 𝑥 𝑥 𝑝 . . . 𝑥 1 such that 𝑥 𝑥 𝑝 and 𝑥 𝑝 > . . . > 𝑥 1 . The case 𝑥 < 𝑧 < 𝑥 1 and 𝑦 > 𝑦 1 is studied in the same way. Case 4. 𝑥 < 𝑥 1 𝑧 and 𝑦 > 𝑦 1 . We study similarly the case 𝑥 < 𝑥 1 𝑧 and 𝑦 𝑦 1 . Suppose that 𝑢 = 𝑢 𝑥 𝑥 𝑝 . . . 𝑥 1 and 𝑣 = 𝑦 2 . . . 𝑦 𝑞 𝑦 𝑣 such that 𝑥 𝑥 𝑝 > . . . > 𝑥 1 and 𝑦 1 > . . . > 𝑦 𝑞 𝑦 . Suppose now that 𝑤 = 𝑢𝑦 1 yzx𝑥 1 𝑣 and 𝑤 = 𝑢𝑦 1 yxz𝑥 1 𝑣, for all 1 𝑥 < 𝑦 𝑧 𝑛, 𝑢, 𝑣 ∈ [𝑛] * and 𝑥 1 , 𝑦 1 ∈ [𝑛], and show that [𝑤] 𝑠 ≈ F S 𝑛 [𝑤 ] 𝑠 . If 𝑦 1 𝑦 and 𝑥 𝑥 1 , then 𝑢𝑦 1 𝑦𝑧𝑥𝑥 1 𝑣 As a consequence of Theorem 3.2.3 and Theorem 3.3.1, we recover that the set of Young tableaux satis es the cross-section property for the plactic monoid, we also deduce the commutation of Schensted's left and right insertion algorithm and that the recti cation map de nes a surjective morphism of monoids between the sets 𝑑S 𝑟 𝑛 and Y 𝑟 𝑛 equipped with the insertion products ★ 𝐼 𝑎 𝑟 and ★ 𝑆 𝑟 . 3.3.2. Corollary (cross-section property). The following conditions hold i) for all 𝑤, 𝑤 in [𝑛] * , we have 𝑤 ≈ P 𝑛 𝑤 if and only if 𝐶 Y 𝑟 𝑛 (𝑤) = 𝐶 Y 𝑟 𝑛 (𝑤 ), ii) the equality 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝑑)) = 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))) holds in Yt 𝑛 , for any 𝑑 in dSk 𝑛 . Proof. Prove Condition i). Consider two words 𝑤 and 𝑤 over [𝑛]. If 𝑤 ≈ P 𝑛 𝑤 , then by Theorem 3.3.1 we have Nf ( [𝑤] 𝑠 , F S 𝑛 ) = Nf ( [𝑤 ] 𝑠 , F S 𝑛 ) and thus 𝐶 Y 𝑟 𝑛 (𝑤) = 𝐶 Y 𝑟 𝑛 (𝑤 ) by Theorem 3.2.3. Suppose now that 𝐶 Y 𝑟 𝑛 (𝑤) = 𝐶 Y 𝑟 𝑛 (𝑤 ). Following Theorem 3.2.3, we have Nf ( [𝑤] 𝑠 , F S 𝑛 ) = Nf ( [𝑤 ] 𝑠 , F S 𝑛 ), and then 𝑤 ≈ P 𝑛 𝑤 by Theorem 3.3.1. Prove Condition ii). Following Theorem 3.2.3, for any 𝑑 in dSk 𝑛 , we have 𝜋 𝑡𝑞 (𝑑) = 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝑑)), showing the claim. 3.3.3. Corollary (commutation of insertion algorithms). i) For all 𝑑 in dSk 𝑛 and 𝑥 in [𝑛], we have 𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥) = 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥 and 𝜋 𝑡𝑞 (𝑥 𝐼 𝑎 𝑙 𝑑) = 𝑥 𝑆 𝑙 𝜋 𝑡𝑞 (𝑑). ii) The insertion algorithms 𝑆 𝑟 and 𝑆 𝑙 commute, that is the following equality 𝑦 𝑆 𝑙 (𝑡 𝑆 𝑟 𝑥) = (𝑦 𝑆 𝑙 𝑡) 𝑆 𝑟 holds in Yt 𝑛 , for all 𝑡 in Yt 𝑛 and 𝑥 in [𝑛]. Proof. Prove Condition i). By Theorem 3.3.1, we have 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥)) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑑 Moreover, we have 𝑅 𝑆𝑊 (𝑑 𝐼 𝑎 𝑟 𝑥) = 𝑅 𝑆𝑊 (𝑑)𝑥, hence 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥)) ≈ P 𝑛 𝑅 𝑆𝑊 (𝑑)𝑥 . On the other hand, the following equalities holds in Yt 𝑛 : 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥 = 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑥) = Nf ( [𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑥] 𝑠 , F S 𝑛 ). Then 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥 ≈ F S 𝑛 [𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑥] 𝑠 , and thus by Theorem 3.3.1, we deduce 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥) ≈ P 𝑛 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑥 ≈ P 𝑛 𝑅 𝑆𝑊 (𝑑)𝑥, showing that 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥)) ≈ P 𝑛 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥). Finally, following the cross-section property, we obtain 𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥) = 𝜋 𝑡𝑞 (𝑑) 𝐼 𝑎 𝑟 𝑥. Similarly, we show that 𝜋 𝑡𝑞 (𝑥 𝐼 𝑎 𝑙 𝑑) = 𝑥 𝑆 𝑙 𝜋 𝑡𝑞 (𝑑). Prove Condition ii). Following Condition i), we have 𝜋 𝑡𝑞 (𝑦 𝐼 𝑎 𝑙 (𝑑 𝐼 𝑎 𝑟 𝑥)) = 𝑦 𝑆 𝑙 (𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑥)) = 𝑦 𝑆 𝑙 (𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥), and 𝜋 𝑡𝑞 (𝑦 𝐼 𝑎 𝑙 (𝑑 𝐼 𝑎 𝑟 𝑥)) = 𝜋 𝑡𝑞 ((𝑦 𝐼 𝑎 𝑙 𝑑)) 𝑆 𝑟 𝑥 = (𝑦 𝑆 𝑙 𝜋 𝑡𝑞 (𝑑)) 𝑆 𝑟 𝑥, for all 𝑑 in 𝐷 and 𝑥, 𝑦 in [𝑛]. By commutation of 𝐼 𝑎 𝑟 and 𝐼 𝑎 𝑟 , we deduce the following equality 𝑦 𝑆 𝑙 (𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑥) = (𝑦 𝑆 𝑙 𝜋 𝑡𝑞 (𝑑)) 𝑆 𝑟 𝑥 . The map 𝜋 𝑡𝑞 being surjective, we deduce that 𝑆 𝑟 and 𝑆 𝑙 commute. 3.3.4. Corollary (morphism of monoids). The map 𝜋 𝑡𝑞 induces a morphism of monoids between (𝑑S 𝑟 𝑛 , ★ 𝐼 𝑎 𝑟 ) and (Y 𝑟 𝑛 , ★ 𝑆 𝑟 ). Proof. Following Condition i) of Corollary 3.3.3, we rst prove that 𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑢) = 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑢, for all 𝑑 in dSk 𝑛 and 𝑢 in [𝑛] * by induction on |𝑢 |. Suppose the equality holds when |𝑢 | = 𝑘 -1, then for 𝑦 in [𝑛] we have 𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑢𝑦) = 𝜋 𝑡𝑞 ((𝑑 𝐼 𝑎 𝑟 𝑢) 𝐼 𝑎 𝑟 𝑦) = 𝜋 𝑡𝑞 ((𝑑 𝐼 𝑎 𝑟 𝑢)) 𝑆 𝑟 𝑦 = (𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑢) 𝑆 𝑟 𝑦) = 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑢𝑦. In an other hand, following Condition ii) of Corollary 3.3.2, we have 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝑑 )) = 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 ))), for all 𝑑 in dSk 𝑛 , hence 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑅 𝑆𝑊 (𝑑 )) = 𝐶 Y 𝑟 𝑛 (𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑))𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 ))). As a consequence, we have 𝜋 𝑡𝑞 (𝑑 ★ 𝐼 𝑎 𝑟 𝑑 ) = 𝜋 𝑡𝑞 (𝑑 𝐼 𝑎 𝑟 𝑅 𝑆𝑊 (𝑑 ) = 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑅 𝑆𝑊 (𝑑 ) = 𝜋 𝑡𝑞 (𝑑) 𝑆 𝑟 𝑅 𝑆𝑊 (𝜋 𝑡𝑞 (𝑑 ) = 𝜋 𝑡𝑞 (𝑑) ★ 𝑆 𝑟 𝜋 𝑡𝑞 (𝑑 ), for all 𝑑, 𝑑 in dSk 𝑛 , showing the claim. 4. Conclusion and perspectives 3.3.5. Remark. Note that Schensted's insertion algorithms are related to the jeu de taquin by the following formulas 𝑡 𝑆 𝑟 𝑥 = 𝜋 𝑡𝑞 [𝑅 𝑆𝑊 (𝑡)] 𝑠 𝐼 𝑎 𝑟 𝑥 , 𝑥 𝑆 𝑙 𝑡 = 𝜋 𝑡𝑞 𝑥 𝐼 𝑎 𝑙 [𝑅 𝑆𝑊 (𝑡)] 𝑠 , for all 𝑡 in Yt 𝑛 and 𝑥 in [𝑛]. Note also that the associativity of ★ 𝑆 𝑟 is also deduced from the morphism 𝜋 𝑡𝑞 . Indeed, for all 𝑡 in Yt 𝑛 , and 𝑥 in [𝑛], we have 𝑡 𝑆 𝑟 𝑥 = 𝜋 𝑡𝑞 (𝑡 | 1 𝑥 ), and thus 𝑡 ★ 𝑆 𝑟 𝑡 = 𝜋 𝑡𝑞 (𝑡 | 𝑠 𝑡 ), for all 𝑡, 𝑡 ∈ Yt 𝑛 . By Theorem 3.2.3, we obtain (𝑡 ★ 𝑆 𝑟 𝑡 ) ★ 𝑆 𝑟 𝑡 = 𝜋 𝑡𝑞 (𝑡 | 𝑠 𝑡 | 𝑠 𝑡 ) = 𝑡 ★ 𝑆 𝑟 (𝑡 ★ 𝑆 𝑟 𝑡 ), for any 𝑡, 𝑡 , 𝑡 ∈ Yt 𝑛 .
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