
HAL Id: hal-03161577
https://hal.science/hal-03161577v1

Preprint submitted on 7 Mar 2021 (v1), last revised 7 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

String of columns rewriting and confluence of the jeu de
taquin

Nohra Hage, Philippe Malbos

To cite this version:
Nohra Hage, Philippe Malbos. String of columns rewriting and confluence of the jeu de taquin. 2020.
�hal-03161577v1�

https://hal.science/hal-03161577v1
https://hal.archives-ouvertes.fr

String of columns rewriting
and plactic-like data structures

Nohra Hage Philippe Malbos

Abstract – In this article, we prove combinatorial and algebraic properties on the plactic and
hypoplactic congruences via a new rewriting approach on tableaux, that we apply to the jeu
de taquin and the right-bottom recti�cation algorithms. The jeu de taquin is an algorithm that
transforms a skew tableau into a Young tableau by local transformation rules on the columns of the
tableaux. This algorithm has remarkable combinatorial and algorithmic properties, in particular it is
con�uent, that is the resulting Young tableau does not depend on the way the local transformations
rules are applied. We introduce the notion of string of columns rewriting system in order to
study rewriting properties of algorithms de�ned on glued sequences of columns. We prove the
convergence of the jeu de taquin and we show how to deduce algebraic properties on the plactic
congruence. We de�ne the right-bottom recti�cation algorithm that transforms a Young tableau
into a quasi-ribbon tableau by a string of columns rewriting system. We prove its convergence and
we deduce algebraic properties on the hypoplactic congruence.

Keywords – Jeu de taquin, plactic monoids, hypoplactic monoids, string data structures, string of
columns rewriting.

M.S.C. 2010 – Primary: 05E99. Secondary: 20M05, 68Q42, 20M35.

1 Introduction 2
2 String data structures 5

2.1 String data structures . 5
2.2 String data structures and crystal structures 7

3 String of columns rewriting 9
3.1 Strings of columns . 9
3.2 Examples of plactic-like structures . 11
3.3 Crystal structures on strings of columns 13
3.4 String of columns rewriting . 17
3.5 Terminations orders . 20

4 Convergence of the jeu de taquin 21
4.1 Jeu de taquin . 21
4.2 Jeu de taquin as rewriting . 22
4.3 Jeu de taquin as morphism . 27

5 Convergence of the right-bottom recti�cation 30
5.1 Convergence of the right-bottom recti�cation 30
5.2 Right-bottom recti�cation as morphism 34

1. Introduction

1. Introduction
The jeu de taquin was introduced by Schützenberger as an algorithm on the structure of tableaux in
order to give one of the �rst correct proofs of the Littelwood-Richardson rule on the multiplicity of
a Schur polynomial in a product of Schur polynomials, [21]. A Young tableau is a collection of boxes
in left-justi�ed rows �lled with elements of the totally ordered alphabet [n] := {1 < · · · < n}, where
the entries weakly increase along each row and strictly increase down each column. A skew tableau
is obtained by eliminating boxes from the rows of a Young tableau starting from top to bottom and
from right to left. The eliminated boxes are called inner corners of the skew tableau. We read tableaux
column-wise from left to right and from bottom to top: the following tableaux

1 2
1 3

1 2
3

1 1 1 2
2 3
3

are respectively skew tableau and Young tableau whose readings are 3121312 and 3213112, where the
red empty boxes denote the inner corners. The jeu taquin consists in applying successively forward
sliding operations on a skew tableau that move an inner corner into an outer position by keeping the
rows weakly increasing and the columns strictly increasing, until no more inner corners remain in the
initial skew tableau, as follows

1 2
1 3

1 2
3

7→

1 1 2
3

1 2
3

7→

1 1 2
2 3

1
3

;
1 1 2
2 3

1
3

7→

1 1 2
1 2 3

3
7→

1 1 2
1 2 3
3 ;

1 1 2
1 2 3
3

7→

1 1 1 2
2 3

3
7→

1 1 1 2
2 3
3

7→

1 1 1 2
2 3
3

Schützenberger proved remarkable properties of the jeu de taquin on skew tableaux, [21]. He proved
that the recti�cation πtq(w) of a skew tableau w by the jeu de taquin is a Young tableau whose reading
is equivalent to the reading of w with respect the plactic congruence relation generated by the following
Knuth relations, [12]:

zxy = xzy, for 1 6 x 6 y < z 6 n, and yzx = yxz, for 1 6 x < y 6 z 6 n.

As a consequence, he proved that the resulting Young tableau does not depend on the order in which we
choose inner corners in the forward slidings. This is the con�uence property of the jeu de taquin. Here,
this property follows the cross-section property of Young tableaux with respect the plactic congruence,
proved by Knuth in [12], namely two words on [n] are plactic congruent if and only if they lead to
the same Young tableau after applying Schensted’s insertion algorithm, [20]. Explicitly, if there are
two sequences of sliding operations that transform a tableau w into two di�erent tableaux w1 and w2,
then we continue applying sliding operations until we reach normal forms w̃1 and w̃2, that is tableaux
without inner corners:

w1 // w̃1
w

11

-- w2 // w̃2

Since w̃1 and w̃2 are two Young tableaux such that their readings are plactic congruent, following the
cross-section property, we deduce that w̃1 = w̃2.

In this article, we introduce a rewriting machinery to prove in a direct way the con�uence of the
jeu de taquin. We de�ne the sliding operations as rewriting rules on strings of columns, that is strings

2

1. Introduction

composed by glued sequences of columns, with a gluing map that describes the relative positions of
columns. In this way, the jeu de taquin is described by a rewriting system on strings of columns. Our
�rst main result, Theorem 4.2.3, proves that this rewriting system is con�uent and terminating and that
the normal form of any skew tableau is a Young tableau. We show how to deduce from the con�uence
and normalization property of this rewriting system the cross-section property of Young tableaux with
respect the plactic congruence, and the commutation of right and left Schensted’s algorithms. Moreover,
using this rewriting description of Schützenberger’s sliding operations, Theorem 4.3.1 shows that the
recti�cation de�nes a morphism of string data structures from the string data structure of skew tableaux
to the string data structure of Young tableaux. Finally, we show that this morphism induces a Kashiwara
crystal isomorphism between skew tableaux and Young tableaux.

In a second part of this article, using the same machinery we give a rewriting description of the right-
bottom recti�cation algorithm that transforms a Young tableau into a quasi-ribbon tableau. This structure
of tableaux was used by Krob and Thibon in [13] and plays a similar role to that of the structure of
Young tableaux in the theory of non-commutative symmetric functions and quasi-symmetric functions.
Recall that a quasi-ribbon tableau is a collection of boxes �lled with elements of [n], where the entries
weakly increase along each row and strictly increase down each column, and where the columns are
arranged from left to right so that the bottom box in each column aligns with the top box of the next
column. We read a quasi-ribbon tableau column-wise from left to right and from bottom to top: the
following tableau

1 1 5
6 6 6

7
8 8 9

is a quasi-ribbon tableau whose reading is 1165687689.
We de�ne an algorithm, the right-bottom recti�cation algorithm, that transforms a Young tableau w

into a quasi-ribbon tableau πrb (w) whose reading is equivalent to the reading of w with respect the
congruence relation generated by the hypoplactic relations de�ned as the Knuth relations together with
the following relations, [13]:

zxty = xzyt for 1 6 x 6 y < z 6 t 6 n, tyzx = ytxz for 1 6 x < y 6 z < t 6 n.

Our recti�cation algorithm is de�ned by a string of columns rewriting system whose rules describe the
elementary right and bottom slidings of columns. The second main result of this article, Theorem 5.1.3,
proves that this rewriting system is con�uent and terminating and that the normal form of any Young
tableau is a quasi-ribbon tableau. Theorem 5.2.3 shows that the right-bottom recti�cation πrb de�nes a
morphism of string data structures from the string data structure of Young tableaux to the string data
structure of quasi-ribbon tableaux. We deduce from this morphism that the set of quasi-ribbon tableaux
satis�es the cross-section property for the hypoplactic congruence. Finally, we show that this morphism
induces a quasi-Kashiwara crystal isomorphism between Young tableaux and quasi-ribbon tableaux.

To summarize the constructions introduced in this article, we construct two surjective morphisms
of string data structures

dSrn
πtq

// Yrn
πrb

// Qrn

from string data structure of skew tableaux dSrn , to string data structure of Young tableaux Yrn , and
to string data structure of quasi-ribbon tableaux Qrn , that induce surjective morphisms of monoids

3

1. Introduction

[n]∗ � Pn � Hpn , where Pn and Hpn are respectively the plactic monoid and the hypoplactic monoid,
and that also induce crystal isomorphisms

Γ(K,d) ' Γ(K,πtq(d)), and Γ(qK,d ′) ' Γ(qK,πrb (d
′)),

for every skew tableau d and Young tableau d ′, with respect the Kashiwara crystal structure K [11] and
the quasi-Kashiwara crystal structure qK [3].

We expect that the convergent string of columns rewriting systems introduced in this article can be
used to explicit the relations among the relations for the jeu de taquin and the right-bottom recti�cation
algorithms. Indeed, convergent presentations allow us to compute coherent presentations of monoids,
that is presentations by generators, relations, and relations between the relations, [5, 7, 8]. A coherent
presentation constitutes the �rst step in an explicit construction of a co�brant approximation of the
monoid in the category of (∞, 1)-categories, [6].

Organization of the article. In Section 2 we recall the notion of string data structures from [9], that
correspond to presentations of monoids de�ned by data structures and whose relations are formulated
by an insertion algorithm. We introduce the notion of morphisms of string data structures and we show
how the property of commutation of insertion algorithms can be preserved by such a morphism. We
recall in (2.2) the notion of crystal structure on words from [10, 11], and we de�ne a compatibility
condition between a crystal structure and a string data structure so that the corresponding crystal
monoid is isomorphic to the monoid presented by the string data structure.

In Section 3, we study two-dimensional strings de�ned by glued sequences of columns that we call
string of columns. We de�ne a plactic-like structure as a string data structure whose data are string of
columns with respect a �xed gluing sequence. We de�ne in (3.4) the notion of string of columns rewriting
system as a binary relation on the set of strings of columns, whose rules are applied with respect to right
and left positions. We show how to present a plactic-like structure by such a rewriting system.

In Section 4, we describe the jeu de taquin by a string of columns rewriting system, whose the rules
describe forward slidings. We prove its con�uence and termination. We deduce that the jeu de taquin
de�nes a morphism of string data structures from skew tableaux to Young tableaux, and thus a crystal
isomorphism between skew tableaux and Young tableaux.

In Section 5, we de�ne the right-bottom recti�cation algorithm that transforms a Young tableau into a
quasi-ribbon tableau. The algorithm is de�ned as a string of columns rewriting system, whose the rules
describe right and bottom slidings. We prove that this rewriting system is con�uent and terminating.
Finally, we deduce that the right-bottom recti�cation de�nes a morphism of string data structures from
Young tableaux to quasi-ribbon tableaux, and thus a crystal isomorphism between Young tableaux and
quasi-ribbon tableaux.

Conventions and notations. We will consider the totally ordered set [n] := {1 < · · · < n}, forn ∈ Z>0,
as ground alphabet. We denote by [n]∗ the free monoid of words over [n], whose empty word is denoted
by λ. The congruence generated by a set S of relations on [n]∗ is denoted by ≈S . The length of a word w
in [n]∗ is denoted by |w |, and the number of times the element i of [n] appears in w is denoted by |w |i .
The weight map is the map wt : [n]∗ →

(
N∪ {0}

)n , de�ned by wt(w) = (|w |1, . . . , |w |n), for allw in [n]∗.
Let w = x1x2 . . . xk be a word in [n]∗. We will denote by w = xk . . . x2x1 its mirror word. We denote
by `(w) the leftmost letter of w and by Rem(w) the subword of w such that w = `(w)Rem(w). We will
denote by <lex the lexicographic order on [n]∗ induced by the order on [n], and by 4lex (resp. 4r evlex)
the lexicographic (resp. reverse lexicographic) order on tuples of natural numbers.

4

2. String data structures

2. String data structures
This section recalls the notions of string data structure from [9] and of crystal structure from [10, 11].
We de�ne a compatibility condition between a crystal structure and a string data structure so that the
corresponding crystal monoid and structure monoid are isomorphic.

2.1. String data structures

2.1.1. String data structures. A right (resp. left) string data structure S (over [n]) is a triple (D, I ,R)
made of a set D with a distinguished element ∅, and two maps R : D → [n]∗ and I : D × [n] → D
satisfying the three following conditions:

i) R(I (∅,x)) = x for all x in [n],

ii) the relation (∅

I R(d)) = d) (resp. (R(d) I ∅)= d) holds for anyd inD, where

I : D × [n]∗ → D,
(resp. I : D × [n]∗ → D) is the map de�ned by

(d

I u) = (I (d, `(u))

I Rem(u))(
resp. (u I d) = (Rem(u) I I (d, `(u)))

)
for all d in D and u in [n]∗, and d

I λ = d (resp. λ I d = d) for all d ∈ D,

iii) the map R is injective and R(∅) = λ.

We say that R is the reading map of S, and that I inserts an element of [n] into an element of D.
The map

I (resp. I) is called the insertion map of words in [n]∗ into elements of D. The map CS :
[n]∗ → D sending a word w to (∅

I w) (resp. (w I ∅)), is called the constructor of S from words
in [n]∗, and it is surjective as a consequence of ii). We will denote by ιD : [n] → D the map that
sends a letter x in [n] on the single element data I (∅,x), that we write simply x when no confusion can
arise. For a given string data structure S, we will denote by DS its underlying set, and by IS and RS its
insertion and reading maps. A string data structure S is called weight-preserving if, for every u in [n]∗,
the condition wt(u) = wt(R(CS(u))) holds. In the sequel, if there is no possible confusion all string data
structures are right. The proofs of stated properties for left ones are similar.

In this article, all string data structures are also associative, that is the product ?I on D, de�ned
by d ?I d

′ := (d

I R(d ′)), for all d,d ′ in D, is associative. As a consequence, the set D with the
product ?I is a monoid called the structure monoid of S, and denoted by M(D, I) or M(S). A string data
structure S satis�es the cross-section property for a congruence relation ≈ on [n]∗, if u ≈ v holds if and
only if CS(u) = CS(v) holds for all u,v in [n]∗. In that case, the quotient monoid [n]∗/≈ is isomorphic to
the monoid M(S), [9]. We say that S satis�es the cross-section property for a monoid M if S satis�es the
cross-section property for the congruence ≈M on [n]∗ de�ned by M.

Let (D, I ,R) and (D, J ,R) be right and left string data structures. We say that the insertion maps I
and J commute if

y J (d

I x) = (y J d)

I x , (2.1.2)

holds for all d in D and x ,y in [n]. In this case, the compositions ?I and ?J are associative, and the
relation d ?I d

′ = d ′ ?J d , holds for all d,d ′ in D, [9].

5

2. String data structures

2.1.3. Morphisms of string data structures. Given two string data structures S = (D, I ,R) and
S′ = (D ′, I ′,R′), a morphism of string data structures from S to S′ is a map f : D → D ′ that maps ∅ to ∅′
and satis�es the following two conditions:

i) f (d

I x) = f (d)

I ′ x , for all d ∈ D and x ∈ [n],

ii) for every d in D, CS′(R(d)) = CS′(R′(f (d))) holds.

2.1.4. Lemma. Any morphism of string data structures f : S→ S′ induces a morphism of monoidsM(f) :
M(S) → M(S′).

Proof. Following condition i) in (2.1.3), we prove f (d

I u) = f (d)

I ′ u, for all d in D and u in [n]∗
by induction on |u |. Suppose the equality holds when |u | = k − 1, then for y in [n] we have

f (d

I uy) = f ((d

I u)

I y) = f ((d

I u))

I ′ y = (f (d)

I ′ u)

I ′ y) = f (d)

I ′ uy.

In an other hand, following condition ii), we have CS′(R(d
′)) = CS′(R

′(f (d ′))), for all d ′ in D, hence
CS′(R

′(f (d))R(d ′)) = CS′(R
′(f (d))R′(f (d ′))). As a consequence, we have

f (d ?I d
′) = f (d

I R(d
′) = f (d)

I ′ R(d
′) = f (d)

I ′ R
′(f (d ′) = f (d)?I ′ f (d

′),

for all d,d ′ in D, proving that M(f) is a morphism of monoids. �

The commutation of insertions of a string data structure can be proved using the following result.

2.1.5. Lemma. Let (D, I ,R) and (D, J ,R) be right and left string data structures such that I and J commute.
Let (D ′, I ′,R′) and (D ′, J ′,R′) be right and left string data structures. If there exists a surjective morphism
of string data structures from D to D ′ with respect to insertions I and I ′ and to insertions J and J ′, then I ′

and J ′ commute.

Proof. Suppose that f : D → D ′ is a surjective map that extends into morphisms of string data
structures (D, I ,R) → (D ′, I ′,R′) and (D, J ,R) → (D ′, J ′,R′). We have

f (y J (d

I x)) = y J ′ (f (d

I x)) = y J ′ (f (d)

I ′ x),

and
f ((y J d)

I x) = f ((y J d))

I ′ x = (y J ′ f (d))

I ′ x ,

for all d in D and x ,y in [n]. By commutation of I and J , we deduce the following equality

y J ′ (f (d)

I ′ x) = (y J ′ f (d))

I ′ x .

The map f being surjective, we deduce that I ′ and J ′ commute. �

6

2.2. String data structures and crystal structures

2.2. String data structures and crystal structures

2.2.1. Crystals. Recall from [11], that a crystal structure on a subset S of [n]∗ is a dataC =
(
(ei)i ∈[n−1], (fi)i ∈[n−1]

)
made of families of crystal operators, that is maps

ei , fi : S → S ∪ {0},

satisfying the following properties:

i) ei and fi are mutually inverse, i.e. for all u,v ∈ S , v = fi (u) holds if and only if u = ei (v) holds,

ii) if u ∈ S satis�es ei (u) , 0 (resp. fi (u) , 0), then

εi (ei (u)) = εi (u) − 1, φi (ei (u)) = φi (u) + 1 and wt(u) ≺weight wt(ei (u))(
resp. εi (fi (u)) = εi (u) + 1, φi (fi (u)) = φi (u) − 1 and wt(fi (u)) ≺weight wt(u)

)
,

where εi (u) = max{k ∈ N ∪ {0}
�� eki (u) , 0} and φi (u) = max{k ∈ N ∪ {0}

�� f ki (u) , 0}.

A word u in S is of highest-weight if ei (u) = 0, for all i in [n − 1].

2.2.2. Kashiwara and quasi-Kashiwara crystal structures. We recall from [11] the Kashiwara
crystal structure for type A on [n]∗, that we will denote by K = (̃ei , f̃i) . For i ∈ [n − 1], the Kashiwara
operators

ẽi , f̃i : [n]∗ → [n]∗ ∪ {0}

are de�ned as follows. A word w in [n]∗ is transformed into a word in {+,−}∗, by replacing each letter i
of w by +, each letter i + 1 by −, and every other letter by λ, and by keeping a record of the original
letter replaced by each symbol. Then we delete the subwords −+ until no such subwords remain. The
�nal word is of the form +r−l . Note that the method given in [11] consists of eliminating sub-words +−,
this is because the choice of convention for the reading map on Young tableaux. If r > 0, then f̃i (w) is
obtained by replacing inw the rightmost element i by i + 1 and the others elements ofw stay unchanged.
If r = 0, then f̃i (w) = 0. If l > 0, then ẽi (w) is obtained by replacing in w the leftmost element i + 1 by i
and the others elements of w stay unchanged. If l = 0, then ẽi (w) = 0.

Recall from [3] the quasi-Kashiwara crystal structure on [n]∗, that we denote by qK = (Üei , Üfi).
For i ∈ [n − 1], the quasi-Kashiwara operators

Üei , Üfi : [n]∗ → [n]∗ ∪ {0}

are de�ned as follows. Let w in [n]∗. If i appears to the right of i + 1 in w , then Üei (w) = Üfi (w) = 0. If i
does not appear to the right of i + 1 in w , and w contains at least one element i , then Üfi (w) is obtained
from w by replacing the rightmost i by i + 1. If w does not contain i , then Üfi (w) = 0. If i does not appear
to the right of i + 1 in w , and w contains at least one element i + 1, then Üei (w) is obtained from w by
replacing the leftmost i+1 by i . Ifw does not contain i+1, then Üei (w) = 0. Note that the quasi-Kashiwara
operators act as restriction of the Kashiwara operators, that is for u in [n]∗, if Üei (u) (resp. Üfi (u)) is de�ned,
so is ẽi (u) (resp. f̃i (u)), and ẽi (u) = Üei (u) (resp. f̃i (u) = Üfi (u)), [3, Prop. 5.2].

7

2. String data structures

2.2.3. Crystal graphs. The crystal graph of C is the oriented graph, denoted by Γ(C), whose vertex set

is S , and for allu,u ′ in S , there is a labelled arrowu
i
→ u ′ if and only if fi (u) = u ′, or equivalently ei (u ′) =

u. For u in S , we will denote by Γ(C,u), or Γ(u) for short, the connected component of the crystal
graph Γ(C) containing u. A crystal isomorphism from Γ(u) to Γ(u ′) is a bijective mapψ : Γ(u) → Γ(u ′)
satisfying the following two conditions:

i) it is weight-preserving, that is wt(ψ (v)) = wt(v), for every v in Γ(u),

ii) for every arrow v
i
→ v ′ in Γ(u), there is an arrowψ (v)

i
→ ψ (v ′) in Γ(u ′).

2.2.4. Crystal congruence. We de�ne a relation ≈C on S by setting, for all u,u ′ ∈ S , u ≈C u ′ if there
is a crystal isomorphismψ : Γ(u) → Γ(u ′) such thatψ (u) = u ′.

For i ∈ [n − 1], we say that the operator ei (resp. fi) is monomial if for all u,v,u ′,v ′ ∈ S such
thatu ≈C v andu ′ ≈C v ′, then ei (uu

′) , 0 (resp. fi (uu ′) , 0) if and only if ei (vv ′) , 0 (resp. fi (vv ′) , 0),
and if both are non-zero, one of the following properties holds:

i) ei (uu
′) = uei (u

′) and ei (vv
′) = vei (v

′) (resp. fi (uu ′) = u fi (u ′) and fi (vv
′) = v fi (v

′));

ii) ei (uu
′) = ei (u)u

′ and ei (vv
′) = ei (v)v

′ (resp. fi (uu ′) = fi (u)u
′ and fi (vv

′) = fi (v)v
′).

A crystal structure is called monomial if its operators are.

2.2.5. Compatibility with a string data structure. Let S = (D, I ,R) be a string data structure.
For i ∈ [n − 1], we say that the crystal operator ei (resp. fi) commutes with I if, for u ∈ S , such
that ei (u) , 0 (resp. fi (u) , 0), we have

ei (R(CS(u))) = R(CS(ei (u)))
(
resp. fi (R(CS(u))) = R(CS(fi (u)))

)
.

In that case, we say that the crystal structure C commutes with the string data structure S.

2.2.6. Theorem. Let S be a weight-preserving string data structure, and C be a monomial crystal structure
that commutes with S. Then the relation ≈C is a congruence on [n]∗. Moreover, if there is at most one
element of RS(DS) in each ≈C-class, then S satis�es the cross-section property for ≈C .

Proof. We �rst prove that ≈C is a congruence on [n]∗. Consider u,u ′,v,v ′ in [n]∗ such that u ≈C v
and u ′ ≈C v

′, that is, there exist crystal isomorphisms ψ : Γ(u) → Γ(v) and ψ ′ : Γ(u ′) → Γ(v ′). We
prove that uu ′ ≈C vv ′ by showing that the following map

ψ ′′ : Γ(uu ′) → Γ(vv ′)

sending any w = fi1 . . . fik (uu
′) in Γ(uv) to fi1 . . . fik (vv

′), where fi1 , . . . , fik ∈ {(fi)i ∈[n−1], (ei)i ∈[n−1]}
is a crystal isomorphism. This result is a consequence from the facts that C is monomial andψ andψ ′
are crystal isomorphisms, see [3] for the quasi-Kashiwara case. Let us now show that S satis�es the
cross-section property for ≈C . De�ne �rst the map

Θ : Γ(u) → Γ(R(CS(u))) (2.2.7)

for all u in [n]∗, sending any w in Γ(u) to R(CS(w)). For every arrow w
i
→ w ′ in Γ(u), there is an

arrow Θ(w)
i
→ Θ(w ′) in Γ(R(CS(w))). Indeed, the equality fi (R(CS(w))) = R(CS(fi (w))) = R(CS(w

′))

8

3. String of columns rewriting

(resp. ei (R(CS(w ′))) = R(CS(ei (w
′))) = R(CS(w))) holds. Since S is weight-preserving, we conclude

that Θ is a crystal isomorphism. Suppose now that u ≈C v , for all u,v ∈ [n]∗. By isomorphism (2.2.7),
we have u ≈C R(CS(u)) and v ≈C R(CS(v)). Hence R(CS(u)) ≈C R(CS(v)) holds. Since there is at most
one element of RS(DS) in each ≈C-class, the equality R(CS(u)) = R(CS(v)) holds in [n]∗. Since R is
injective, we deduce that CS(u) = CS(v). Conversely, suppose that CS(u) = CS(v). By (2.2.7), we have
u ≈C R(CS(u)) and v ≈C R(CS(v)), showing that u ≈C v . This proves the result. �

The quotient of the free monoid [n]∗ by the congruence ≈C is called the crystal monoid of C, denoted
by M(C). A monomial crystal structure C is called compatible with a string data structure S if the
monoids M(C) and M(S) are isomorphic.

3. String of columns rewriting
In this section, we study two-dimensional strings de�ned by gluing columns and called string of columns.
This combinatorial structure generalizes many structures of tableaux such as skew tableaux, [21], Young
tableaux of type A, [22], Young tableaux of type B, C , D and G2, [11], quasi-ribbon tableaux, [19], and
Patience Sorting structures [1]. We give explicitly in (3.2) the plactic-like structures on skew, Young
and quasi-ribbon tableaux. We formulate in (3.3) Kashiwara (resp. quasi-Kashiwara) crystal operators
in terms of columns by introducing a crystal structure on Scoln that restricts the Kashiwara (resp.
quasi-Kashiwara) crystal structure de�ned on [n]∗ with respect to the reading RSW . Finally, we de�ne
in (3.4) the notion of string of columns rewriting system as a binary relation on the set of string of
columns, whose rules are applied with respect to right and left positions, and we show how to present a
plactic-like structure by such a rewriting system.

3.1. Strings of columns

3.1.1. Columns. A column (over [n]) is a decreasing string ck . . . c1 over [n], i.e., with ci+1 > ci ,
for 1 6 i < k . It is represented by a collection of boxes in left-justi�ed rows, �lled with elements of [n],
whose each row contains only one box, and the entries strictly increase down. A column is pictured by

c =

c1

c2

...

ck

where 1 6 c1 < . . . < ck 6 n, and is also denoted by (c1; . . . ; ck). We say that the i-th box contains the
entry ci , and that k is the length of c , that we will denote by |c |. We denote by Coln the set of columns
over [n]. A column of length 0 is the empty column denoted by λc .

3.1.2. String of columns. Two columns c1, c2 in Coln can be glued at position p in Z as follows:

c1 |pc2 =

c12

...

ci2
c11 ci+12

c21 ...
... ...

c
p
1 c

i+p
2

...

ck1

9

3. String of columns rewriting

For 1 6 j 6 p, we say that (c j1, c
i+j
2) is a full row of length 2 in c1 |pc2. A pair (, c j2), for 1 6 j 6 i , and a

pair (c j1,), for p + 1 6 j 6 k , is called a row of length 2, where denotes the empty box. A string of
columns is a sequence of glued columns:

w = c1 |p1c2 |p2 . . . cm |pmcm+1. (3.1.3)

The sequence (p1,p2, . . . ,pm) in Zm is called the gluing sequence of w . Gluing sequences can be de�ned
in a consistent way by considering a gluing map д : Coln ×Coln → Z that associates to columns c and c ′,
a gluing position д(c, c ′). Given a gluing map д, we de�ne the set of strings of columns constructed with
respect to д as the set of string of columns of the form (3.1.3), where for any 1 6 i 6 m, pi = д(ci , ci+1).
The total length ofw is the tuple tl(w) = (|c1 |, . . . , |cm+1]) ∈ Nm+1. We will denote by | |w | | the number
of columns of w . We denote by w i the i-th row of w , by |w i | the number of non-empty boxes in w i , and
by w i

j the element in the j-th box of w i , where the rows are ordered from top to bottom and their boxes
are ordered from left to right.

For 3 6 k 6 m + 1, a connected row of length k is a sequence (c j1i1 , . . . , c
jk
ik
) such that (c jlil , c

jl+1
il+1
) is a full

row of length 2 in cil |pil cil+1 , for 1 6 l 6 k . A connected row (c j1i1 , . . . , c
jk
ik
) is increasing if c j1i1 6 . . . 6 c jkik .

We call a row (over [n]) a string of columns whose gluing sequence is constant equal to 1 and columns
are of length 1. A string of columns is row connected (resp. row increasing) if all its rows are connected
(resp. increasing).

Given a �xed gluing map д, we de�ne the shape of a row connected string of columns, constructed
with respect the gluing д, and containing k rows as the sequence (λ1, . . . , λk) ∈ Nk such that the i-th
row contains λi boxes for 1 6 i 6 k .

3.1.4. Monoids of string of columns. We will denote by Scoln the set of strings of columns over [n]
and by Scol6n the set of row connected and row increasing string of columns over [n]. We denote
by Stringn the subset of Scoln made of strings of columns of length 1 and the gluing sequence contains
only 1.

Given a �xed gluing map д, we de�ne a concatenation operation with respect to д by the map
·|д · : Scoln × Scoln → Scoln , by setting

(c1 |p1 . . . |pmcm+1) |д (c
′
1 |q1 . . . |qnc

′
n+1) = c1 |p1 . . . |pmcm+1 |д(cm+1,c ′1)c

′
1 |q1 . . . |qnc

′
n+1.

The operation |д is associative and unitary, where the identity is the empty string of columns denoted
by λc . We denote by Scolдn the set of string of columns in Scoln whose gluing sequence is given by the
gluing map д. In other words, Scolдn is the free monoid on Coln with respect the product |д .

3.1.5. The four corner readings. The south-west reading is the map RSW : Scoln → [n]∗ that reads a
string of columns, column-wise from left to right and from bottom to top. There are three other corner
readings RNW , RNE , RSW and RSE de�ned in a similar way and that read a string of columns, column
by column, with respect right or left and top or bottom directions.

De�ne the map Fac : [n]∗ → [n]∗ sending a word w into the factorization w = w1 . . .wk , where
each wi , for i = 1, . . . ,k , is a maximal strictly decreasing sequence, that is, the RSW -reading of a column
in Coln . For a �xed gluing map д ∈ Zn , consider the map

[]д : [n]∗ → Scoln (3.1.6)

that transforms each word w in [n]∗ into a string of columns (c1, . . . , ck) where each column ci is �lled
by the elements of wi in Fac(w) from bottom to top, for i = 1, . . . ,k , with respect the gluing map д.

10

3.2. Examples of plactic-like structures

3.1.7. Properties of strings of columns. A row connected string of columns w as in (3.1.3) is called

i) left-justi�ed (resp. right-justi�ed) if |ci | > |ci+1 | and |ci+1 | 6 pi 6 |ci | (resp. |ci+1 | > |ci | and |ci | 6
pi 6 |ci+1 |), for all 1 6 i 6 m.

ii) top-justi�ed, (resp. bottom-justi�ed) if pi = |ci+1 | (resp. pi = |ci |), for all 1 6 i 6 m.

iii) decreasing (resp. increasing) if its gluing sequence is decreasing (resp. increasing).

3.1.8. Plactic-like structures. A plactic-like structure (over [n]) is a string data structure S, whose
underlying set DS is a subset of Scol6n , with a �xed gluing map, and whose reading is a four corner
reading. A monoid is called plactic-like if it is isomorphic to the structure monoid of a plactic-like
structure. In the rest of this article we suppose that any plactic-like structure is de�ned with respect the
south-west reading RSW .

3.2. Examples of plactic-like structures

3.2.1. Skew tableaux. A skew tableau withm+ 1 columns is a string of columnsw = c1 |p1 . . . |pmcm+1
in Scol6n , whose gluing sequence satis�es pk 6 |ck+1 |, for all 1 6 k 6 m. A diagonal skew tableau is a
skew tableau c1 |p1 . . . |pmcm+1 whose gluing sequence satis�es pk = 1, for all 1 6 k 6 m. We denote
by s the gluing map for diagonal skew tableaux. We will denote by Skn (resp. dSkn) the set of skew
(resp. diagonal skew) tableaux over [n]. Any string u over [n] is the RSW -reading of a unique diagonal
skew tableau, thus the map RSW de�nes a bijection from dSkn to [n]∗. Consider a skew tableau w . An
inner corner in w is an empty box located above and to the left of two non-empty boxes. An outer corner
in w is an empty box located to the end of a row or at the bottom of a column or to the right and beyond
of two non-empty boxes.

3.2.2. Young and quasi-ribbon tableaux. A Young (resp. quasi-ribbon) tableau withm + 1 columns
is a string of columns w = c1 |p1 . . . |pmcm+1 in Scol6n whose gluing sequence is decreasing and satis�es

pk = |ck+1 | (resp. pk = |ck | + |ck+1 | − 1), for all 1 6 k 6 m. (3.2.3)

We denote by Y the gluing map for Young tableaux, and by Ytn (resp. Qrn) the set of Young (resp. quasi-
ribbon) tableaux over [n].

3.2.4. Top and bottom concatenation. We de�ne the top (resp. bottom) concatenation of an element
x in a column c = (c1; . . . ; ck) as the skew tableau de�ned by

c

a x =

{
c |1x if x > c1,

(x ; c1; . . . ; ck) else.
(
resp. x a c =

{
(c1; . . . ; ck ;x) if x > ck ,

x |1c else.
)
.

We extend these concatenations into insertions maps on skew tableaux, de�ned for x ∈ [n] and
w = c1 |p1 . . . |pmcm in Skn by setting

w

Iar x = c1 |p1 . . . |pm (cm

a x), (resp. x Ial
w = (x a c1)|p1 . . . |pmcm). (3.2.5)

The top and bottom concatenation on diagonal skew tableaux given in (3.2.5) de�ne two plactic-like
structures on diagonal skew tableaux: a right one dSrn := (dSkn , Iar) and a left one dScn := (dSkn , Ial).

11

3. String of columns rewriting

The top (resp. bottom) concatenation on a diagonal skew tableau w acts only on the last (resp. �rst)
column of w and do not change the others columns. As a consequence, for all x ,y ∈ [n], we have the
following commutation property:

y Ial
(w

Iar x) = (y Ial
w)

Iar x . (3.2.6)

Hence the insertions maps Iar and Ial commute, and the structure monoid M(dSrn) is isomorphic to [n]∗.

3.2.7. Schensted’s insertion algorithms, [20]. Given a row r (resp. a column c), we denote by
RowInsert(r ,x) (resp. ColumnInsert(c,x)) the procedure that inserts an element x in a row r (resp. col-
umn c) and returns a pair (r ′,y) (resp. (c ′,y)) made of the resulting row r ′ (resp. column c ′) and the
bumping element y that can be empty, as follows. If x is bigger or equal (resp. strictly bigger) than all the
elements of r (resp. c), then r ′ (resp. c ′) is obtained by adding x to the end (resp. the bottom) of r (resp. c)
and y is empty. Otherwise, let y be the smallest element of r (resp. c) such that x < y (resp. x 6 y),
then r ′ (resp. c ′) is obtained from r (resp. c) by replacing y by x . The right (resp. left) insertion algorithm
computes a tableau (t

Sr x) (resp. (x Sl t)) as follows:

RightInsertYT(t ,x)
Input: A Young tableau t and x in [n].
Output: The Young tableau (t

Sr x).

y := x ; t ′ := ∅ ;
while y , λ do

r := t[1] ;
t := t/r ;
(r ′,y) := RowInsert(r ,y)
t ′ := (t ′; r ′)

end
return (t ′; t)

Algorithm 1: Schensted’s right algorithm

LeftInsertYT(t ,x)
Input: A Young tableau t and x in [n].
Output: The Young tableau (x Sl t).

y := x ; t ′ := ∅ ;
while y , λ do

c := t[1] ;
t := t/c ;
(c ′,y) := ColumnInsert(c,y)
t ′ := [t ′; c ′]

end
return [t ′; t]

Algorithm 2: Schensted’s left algorithm

where t[i] (resp. t[i]) denotes the i-th row (resp. column) of the tableau t , and t/t[1] (resp. t/t[1]) the
Young tableau obtained from t by removing its �rst row (resp. column), and where (t ; t ′) (resp. [t ; t ′])
denotes the Young tableau obtained by concatenating t over (resp. to the right of) a Young tableau t ′

when the concatenation de�nes a Young tableau.
These two algorithms de�ne two plactic-like structures on Young tableaux: a right oneYrn := (Ytn , Sr)

and a left one Ycn := (Ytn , Sl).
3.2.8. Insertion algorithms in quasi-ribbon tableaux. Given two quasi-ribbon tableaux q and q′,
we denote by [q;q′] the quasi-ribbon tableau obtained by concatenating q over q′ by gluing the rightmost
and bottommost box b of q over the leftmost and topmost box b ′ of q′, when the element of b is strictly
smaller than the element of b ′, as illustrated in the following diagrams:

q =

. . .

...

. . . x q′ =

y . . .

...

. . . [q;q′] =

. . .

...

. . . x
y . . .

...

. . .

where 1 6 x < y 6 n. In this way, we will represent a quasi-ribbon tableau q with k rows by [q1; . . . ;qk].
Recall from [19, Algorithm 4.4] (resp. [2, Algorithm 4.4]) the right (resp. left) insertion algorithm,

denoted by (q

Hr x) (resp. (x Hl q)) that inserts an element x in [n] into a quasi-ribbon tableau q.

12

3.3. Crystal structures on strings of columns

RightInsertQR(q,x)
Input: A quasi-ribbon q with R rows and x in

[n].
Output: The quasi-ribbon tableau q

Hr x .

q′ := ∅ ; q′′ := ∅ ; r := ∅ ; r ′ := ∅ ;
if x < q11 then

q′ = (x) ;
return [q′;q]

end
for i = R, . . . , 1 do

for j = |qi |, . . . , 1 do
if x > qij then

r = (qi1, . . . ,q
i
j ,x) ;

r ′ = (qi
(j+1), . . . ,q

i
|qi |) ;

q′ = [q1; . . . ;qi−1; r] ;
q′′ = [r ′;qi+1; . . . ;qR] ;
return [q′;q′′]

end
end

end

Algorithm 3: Right quasi-ribbon insertion

LeftInsertQR(q,x)
Input: A quasi-ribbon q with R rows and x in

[n].
Output: The quasi-ribbon tableau x Hl q.

q′ := ∅ ; q′′ := ∅ ; r := ∅ ; r ′ := ∅ ;
if x > qR

|qR |
then

q′ = (x) ;
return [q;q′]

end
for i = 1, . . . ,R do

for j = 1, . . . , |qi | do
if x 6 qij then

r = (x ,qij , . . . ,q
i
|qi |) ;

r ′ = (qi1, . . . ,q
i
(j−1)) ;

q′ = [q1; . . . ;qi−1; r ′] ;
q′′ = [r ;qi+1; . . . ;qR] ;
return [q′;q′′]

end
end

end

Algorithm 4: Left quasi-ribbon insertion

Left and right insertion Hr and Hl induce two string data structures on Qrn : a right one Qrn :=
(Qrn ,Hr) and a left one Qln := (Qrn ,Hl).

3.3. Crystal structures on strings of columns

3.3.1. Kashiwara crystal operators on Scoln . For i in [n − 1], we de�ne operators

ẽi , f̃i : Scoln → Scoln ∪ {0}, (3.3.2)

as follows. A string of columns w in Scoln is transformed into a string over {+,−} by replacing each
column of w , from left to right, by the symbol + if the column contains the letter i and does not contain
the letter i + 1, the symbol − if the column contains the letter i + 1 and does not contain the letter i ,
the empty string λ, in the other cases, and by keeping a record of the original column replaced by each
symbol. Then we eliminate the substrings −+ until no such substrings remain. The �nal string will be
of the form +r−l .

i) If r > 0, then f̃i (w) is obtained fromw by considering the column that was replaced by the rightmost
symbol + and replace its element i by i + 1. If r = 0, then f̃i (w) = 0.

ii) If l > 0, then ẽi (w) is obtained from w by considering the column that was replaced by the leftmost
symbol − and replace its element i + 1 by i . If l = 0, then ẽi (w) = 0.

13

3. String of columns rewriting

For instance, consider w =
1 2

1 4 4 2 3
1 3
2
4

in Scol4. Compute f̃2(w) and ẽ2(w).

1 2
1 4 4 2 3

1 3
2
4

7−→ + − λ + +− 7−→ + + − = +2−1

Then f̃2(w) =
1 2

1 4 4 3 3
1 3
2
4

and ẽ2(w) =
1 2

1 4 4 2 2
1 3
2
4

. In the same way, we obtain f̃3(w) = 0, ẽ3(w) =

1 2
1 3 4 2 3

1 3
2
4

, ẽ1(w) =
1 2

1 3 4 2 3
1 3
2
4

and f̃1(w) =
1 2

2 3 4 2 3
1 3
2
4

.

3.3.3. Quasi-Kashiwara crystal operators on Scoln . For i in [n − 1], we de�ne operators

ei , fi : Scoln → Scoln ∪ {0}, (3.3.4)

as follows. Letw in Scoln . If a column ofw contains both i and i + 1, or it contains i and is situated to the
right of a column containing i + 1, then ei (w) = fi (w) = 0. In the other cases, suppose that at least one
column of w contains the letter i + 1 (resp. i), then ei (w) (resp. fi (w)) is obtained from w by considering
its leftmost (resp. rightmost) column containing i + 1 (resp. i) and by replacing the corresponding i + 1
(resp. i) by i (resp. i + 1).

For instance, consider w =
1 2

1 4 4 2 3
1 3
2
4

in Scol4. Since the �rst column of w contains 1 and 2,

then f1(w) = e1(w) = 0. Since the fourth column of w contains 2 and is situated to the right of the
second column containing 3, then f2(w) = e2(w) = 0. In the same way, we obtain f3(w) = e3(w) = 0.

3.3.5. Remarks. By de�nition, the Kashiwara and quasi-Kashiwara operators on Scoln preserve gluing
sequences. Note also that the Kashiwara (resp. quasi-Kashiwara) crystal structure on Scoln is a restriction
of the Kashiwara (resp. quasi-Kashiwara) crystal structure on [n]∗ with respect the reading RSW . Indeed,
by de�nition of the operators ẽi, f̃i, ei, fi, for a �xed gluing map д, we have

ẽi (w) = [̃ei (RSW (w))]д and f̃i (w) = [f̃i (RSW (w))]д, (3.3.6)

(
resp. ei(w) = [Üei (RSW (w))]д and fi(w) = [Üfi (RSW (w))]д

)
, (3.3.7)

for every w in Scolдn , and i ∈ [n − 1]. As a consequence, for every w in Scolдn , we have

RSW (̃ei (w)) = ẽi (RSW (w)) and RSW (̃fi (w)) = f̃i (RSW (w)),(
resp. RSW (ei (w)) = Üei (RSW (w)) and RSW (fi (w)) = Üfi (RSW (w))

)
,

that is, the following diagrams commute

Scoln
RSW

//

ẽi
��

[n]∗

ẽi
��

Scoln
RSW

// [n]∗

Scoln
RSW

//

f̃i
��

[n]∗

f̃i
��

Scoln
RSW

// [n]∗

(
resp.

Scoln
RSW

//

ei
��

[n]∗

Üei
��

Scoln
RSW

// [n]∗

Scoln
RSW

//

fi
��

[n]∗

Üfi
��

Scoln
RSW

// [n]∗

)
.

14

3.3. Crystal structures on strings of columns

Conversely, for every u in [n]∗, we have

ẽi (u) = RSW (̃ei ([u]д)) and f̃i (u) = RSW (̃fi ([u]д))

(resp. Üei (u) = RSW (ei ([u]д)) and Üfi (u) = RSW (fi ([u]д)).

Indeed, suppose that Fac(u) = u1 . . .uk . For a �xed i in [n − 1], compute f̃i (u) and ẽi (u). If uj , for j =
1, . . . ,k , contains both i + 1 and i , then i + 1 and i appear only once in uj , and i + 1 is located to the left
of i . Otherwise, i or i + 1 appears only once in uj . Then, following the de�nition of f̃i and ẽi recalled
in 2.2.2, we replace uj , for j = 1, . . . ,k , by − if it contains only i + 1 , by + if it contains only i , and by λ
in the other cases. After, ones eliminates the subwords −+ until no such subwords remain. We obtain a
word of the form +r−l . If r > 0, then f̃i (u) is obtained from w by considering the strictly decreasing
subword in Fac(w) that was replaced by the rightmost symbol + and replace its element i by i + 1. If
r = 0, then f̃i (u) = 0. If l > 0, then ẽi (u) is obtained from u by considering the strictly decreasing
subword in Fac(u) that was replaced by the leftmost symbol − and replace its element i + 1 by i . If
l = 0, then ẽi (u) = 0. Hence, ẽi (u) = RSW (̃ei ([u]д)) and f̃i (u) = RSW (̃fi ([u]д)), for a �xed gluing map д.
Similarly, we show that Üei (u) = RSW (ei ([u]д)) and Üfi (u) = RSW (fi ([u]д)).

As a consequence, the crystal operators (3.3.2) (resp. (3.3.4)) de�ne a crystal structure on Scoln ,
denoted by K (resp. qK), that coincides with the crystal structure K (resp. qK) on [n]∗, in the sense
that the following diagrams commute

Scoln

ẽi
��

[n]∗

ẽi
��

[]д
oo

Scoln
RSW

// [n]∗

Scoln

f̃i
��

[n]∗

f̃i
��

[]д
oo

Scoln
RSW

// [n]∗

(
resp.

Scoln
ei
��

[n]∗

Üei
��

[]д
oo

Scoln
RSW

// [n]∗

Scoln

fi
��

[n]∗

Üfi
��

[]д
oo

Scoln
RSW

// [n]∗

)
.

Denoting Γ(K,d) (resp. Γ(qK,d)) the connected component of d in Scoln with respect ẽi and f̃i
(resp. ei and fi), we have a set-theoretical isomorphism of connected component Γ(K,d) ' Γ(qK,RSW (d))
(resp. Γ(qK,d) ' Γ(qK,RSW (d))). As a consequence, the following two properties hold:

i) The vertex set of every connected component of Γ(K,d) is a union of vertex sets of connected
component of Γ(qK,d), for every d ∈ Scoln , [3, Proposition 8.4].

ii) Let ψ : Γ(K,d) → Γ(K,ψ (d)) be a crystal isomorphism. Then, ψ restricts to a quasi-crystal
isomorphismψ : Γ(qK,d ′) → Γ(qK,ψ (d ′)), for every d ′ in Γ(K,d), [3, Proposition 8.5].

3.3.8. Proposition. Let S and S′ be two plactic-like structures. Let C be a crystal structure on [n]∗

compatible with S′. Any morphism of string data structures f : S → S′ induces a crystal isomorphism
from Γ(C,R(d)) to Γ(C,R′(f (d))), for every d in DS.

Proof. By de�nition of f , we have CS′(R(d)) = CS′(R
′(f (d))), for every d in DS. In an other hand, the

crystal structure C being compatible with S′, the crystal monoid M(C) is isomorphic to the structure
monoid M(S′). As a consequence, R(d) and R′(f (d)) are equal in the crystal monoid M(C), and thus the
connected components Γ(C,R(d)) and Γ(C,R′(f (d))) are isomorphic, for every d in DS. �

15

3. String of columns rewriting

3.3.9. Crystal operators on Scol6n . We de�ne a restriction of crystal operators on Scol6n . For i in [n−1]
and w in Scol6n , we de�ne the operators ẽi , f̃i : Scol6n → Scol6n ∪ {0}, as in (3.3.1), except for conditions
i) and ii), de�ned as follows

i)’ If r > 0, consider the diagram d obtained from w by considering the column that was replaced by
the rightmost symbol + and replace its element i by i + 1. If d ∈ Scol6n , then f̃i (w) = d . Otherwise,
f̃i (w) = 0. If r = 0, then f̃i (w) = 0.

ii)’ If l > 0, consider the diagram d ′ obtained from w by considering the column that was replaced by
the leftmost symbol − and replace its element i + 1 by i . If d ′ ∈ Scol6n , then ẽi (w) = d ′. Otherwise,
ẽi (w) = 0. If l = 0, then ẽi (w) = 0.

Note that by restricting this crystal structure to the set of quasi-ribbon tableaux, we recover the
Krob–Thibon quasi-crystal introduced in [14].

3.3.10. Proposition. Let S be a plactic-like structure, and C be the crystal structure on Scol6n presented
in (3.3.9). Let w be in Scol6n with k rows, whose i-th row consists entirely of i , for 1 6 i 6 k , then w is of
highest-weight.

Proof. Let w be in Scol6n with k rows, where each i-th row consists entirely of i , for 1 6 i 6 k . The
symbols i and i + 1 appear together in each column of w , for 1 6 i 6 k − 1. Then ẽi (w) = 0, for
all 1 6 i 6 k − 1. Moreover, for i = k, . . . ,n − 1, the symbol i + 1 do not appear in w , and then ẽi (w) = 0,
showing the claim. �

Note that the converse of this property is not true in general. For example, for the following skew
tableau w =

1 1
1 2 in Sk3, we have ẽi (w) = 0 but its second row does not consist entirely of 2. However,

the converse of this property is true in the case of Young (resp. quasi-ribbon) tableaux.

3.3.11. Proposition. The set of Young (resp. quasi-ribbon) tableaux of a given shape λ forms single
connected components with a unique highest-weight string of columns with respect to the crystal structure
on Scol6n presented in (3.3.9).

Proof. Let w be a highest-weight Young (resp. quasi-ribbon) tableau of shape λ, that is, ẽi (w) = 0, for
all i in [n− 1]. By de�nition, ẽi (w) = 0 if and only ifw consists of columns which contain both i and i + 1,
columns which contain neither i or i +1, columns containing i without i +1 and columns containing i +1
without i , such that each column containing only the symbol i + 1 is followed by a column that contains
only the symbol i . Since w is a Young (resp. quasi-ribbon) tableau with a �xed shape λ, then w is unique.
Moreover, by de�nition of the crystal operators on Scol6n , applying these operators does not change
the gluing sequence of a given tableau and then preserves its shape. Hence, starting from a unique
highest-weight Young (resp. quasi-ribbon) tableau of shape λ and by applying the crystal operators on
it we recover all the tableaux of the same shape, showing the claim. �

3.3.12. Proposition. Let S be a weight-preserving string data structure, and C be a monomial crystal
structure that commutes with S, such that there is at most one element of RS(DS) in each ≈C-class. If each
connected component Γ(C,R(d)), for d ∈ DS, contains a unique highest-weight string of columns, then in
every connected component in Γ(C) there is a unique highest-weight word.

16

3.4. String of columns rewriting

Proof. Consideru in [n]∗. By Theorem 2.2.6, the monoids [n]∗/≈C andM(S) are isomorphic. SinceCS(u) =
CS(R(CS(u))), the connected component Γ(C,u) is isomorphic to Γ(C,R(CS(u)))which contains a unique
highest-weight string of columns. Hence, every connected component in Γ(C) contains a unique
highest-weight word. �

3.3.13. Example:Kashiwara and quasi-Kashiwara crystals. Consider the Kashiwara crystal struc-
ture K = (̃ei , f̃i) on [n]∗. This crystal structure is monomial and commutes with Yrn , [11, 15]. Moreover,
there is at most one element of RSW (Ytn) in each ≈K-class. Indeed, if two Young tableaux are at the
same place in two isomorphic connected components of the crystal graph ofK , then they have the same
weight and thus they are equal. Note also that the plactic-like structure Yrn is weight-preserving. Then,
by Theorem 2.2.6, the crystal structure K is compatible with Yrn , and its crystal monoid is isomorphic
to M(Yrn). Moreover, we recover from Proposition 3.3.12 that in every connected component in Γ(K)
there is a unique highest-weight word. Consider now the quasi-Kashiwara crystal structure qK = (Üei , Üfi)
on [n]∗. This crystal structure is monomial, [3, Lemma 5.4], and commutes with Qrn , [3, Lemma 6.9].
Moreover, there is at most one element of RSW (Qrn) in each ≈qK-class, [3, Proposition 6.7]. Note also
that Qrn is weight-preserving. Then, by Theorem 2.2.6, the crystal structure qK is compatible with Qrn ,
and its crystal monoid is isomorphic to M(Qrn). Moreover, we recover from Proposition 3.3.12 that in
every connected component in Γ(qK) there is a unique highest-weight word, [3, Proposition 6.13].

3.4. String of columns rewriting

3.4.1. Rewriting steps. Let de�ne ScolPn = Z×Scoln×Z, whose elements are triples (p,u,q)where p,q
are positions in Z and u is a string of columns, that we will denote by |pu |q . We de�ne a string of columns
rewriting system, called rewriting system for short in the sequel, as a binary relation on ScolPn . That is, a
set of rules of the form

α : |psu |qs ⇒ |ptv |qt , (3.4.2)

whereu,v are strings of columns in Scoln andps ,qs ,pt ,qt are positions inZ. The pair (ps ,qs) (resp. (pt ,qt))
is called the source (resp. target) positions, and u (resp. v) is called the string of columns source (resp.
target) of the rule α , denoted by s(α) (resp. t(α)).

A string of columns w is said to be reducible with respect to α , if there is a factorization w =
w1 |ps s(α)|qsw2 in Scoln . In that case, w reduces into w ′ = w1 |pt t(α)|qtw2. Such a reduction is denoted by
w1 |psα |qsw2, or α if there is no possible confusion. Given a rewriting system R, the set of all reductions
de�nes a binary relation on Scoln , called the R-rewrite relation that we will denote by⇒R , or⇒ if there
is no possible confusion. The elements of⇒R are called R-rewriting steps, and have the form

|p1w1 |ps s(α)|qsw2 |p2 ⇒ |p1w1 |pt t(α)|qtw2 |p2 , (3.4.3)

for all α in R and w1,w2 in Scoln . In (3.4.3) the data |p1w1 |ps − |qsw2 |p2 is called the context of the rule α .
If we denote by C this context, the reduction (3.4.3) can be also denoted by C[α].

We denote by⇒∗
R

the re�exive and transitive closure of the relation⇒R , whose elements are called
R-rewriting paths.

17

3. String of columns rewriting

3.4.4. Rewriting properties. We say that a rewriting system R is terminating if there is no in�nite
R-rewriting path. A local branching (resp. branching) of R is a pair (φ,ψ) of R-rewriting steps (resp.
R-rewriting paths) having the same source as depicted in the following reduction diagram:

|p1w1 |q1

|pw |q

φ ';

ψ
#7 |p2w2 |q2

Such a branching is con�uent if there exist R-rewriting paths φ ′ andψ ′ with a common target as follows:

|p1w1 |q1
φ ′

�.
|pw |q

φ ';

ψ
#7

|p′w
′ |q′

|p2w2 |q2 ψ ′

0D
(3.4.5)

We say that R is locally con�uent (resp. con�uent) if any local branching (resp. branching) of R is
con�uent, and that R is convergent if it is con�uent and terminating. A string of columnsw is in normal
form with respect to R, if there is no rule that reducesw . When R is convergent, any string of columnsw
has a unique normal form, denoted by Nf(w,R).

3.4.6. Critical branching. A local branching of the form (φ,φ) is called aspherical. A local branch-
ing (φ,ψ) is called orthogonal if the source of φ does not overlap with the source ofψ , that is the source of
the branching is of the form |p0w1 |p1s(φ)|q1w2 |p2s(ψ)|q2w3 |p3 , with w1,w2,w3 in Scoln . A local branching
that is neither aspherical nor orthogonal is called overlapping. There are three shapes of overlapping
branchings (φ,ψ), where s(φ) = |p0w1 |ps s(α)|qsw2 |p2 , and s(ψ) = |p′0w

′
1 |p′s s(β)|q′sw

′
2 |p′2 , with α , β ∈ R,

described by the following situations:

i) (position overlapping) qs = q′s ,

ii) (string overlapping) s(α) = |psuα |p′svα |qs and s(β) = |p′svα |qsuβ |q′s ,

iii) (inclusion) s(β) = |p′suβ |ps s(α)|qsvβ |q′s .

An overlapping branching that is minimal for the relation v on branchings generated by

|p1w1 |q1

|pw |q

φ (<

ψ
"6 |p2w2 |q2

v

|p′u |p1w1 |q1v |q′

|p′u |pw |qv |q′

|p′u |pφ |qv |q′ (<

|p′u |pψ |qv |q′
"6 |p′u |p2w2 |q2v |q′

,

for any branching (φ,ψ) and context u |p − |qv of reductions φ,ψ , is called a critical branching.

3.4.7. Lemma. A rewriting system R is locally con�uent if and only if all its critical branchings are
con�uent. Moreover, if R is terminating with all its critical branchings are con�uent, then it is con�uent.

18

3.4. String of columns rewriting

Proof. The �rst statement is the critical branching lemma. Suppose that all the critical branchings ofR are
con�uent and prove that any local branching of R is con�uent. By de�nition, every aspherical branching
is trivially con�uent, and every orthogonal local branching is con�uent. Consider an overlapping but
not minimal local branching (φ,ψ), there exist factorizations φ = C[φ ′] andψ = C[ψ ′], where (φ ′,ψ ′) is
a critical branching of R. By hypothesis, this branching is con�uent, and there are reductions paths
φ ′′ : t(φ ′) → w andψ ′′ : t(ψ ′) → w that reduce targets of φ ′ andψ ′ to the same string of columns w . It
follows that the reductions paths C[φ ′′] and C[ψ ′′] make the branching (φ,ψ) con�uent.

The second statement is an immediate consequence of Newman’s lemma, [18], that proves that any
locally con�uent terminating rewriting system is con�uent. �

3.4.8. Normalization strategies. A reduction strategy for a rewriting system R speci�es a way to
apply the rules in a deterministic way. When R is normalizing, a normalization strategy is a mapping
σ of every string of columns |pw |q to a rewriting path σ |pw |q with source |pw |q and target a chosen
normal form of |pw |q with respect to R. For a reduced rewriting system, we distinguish the leftmost
reduction strategy and the rightmost one, according to the way we apply �rst the rewriting rule that
reduces the leftmost or the rightmost string of columns. They are de�ned as follows. For every string
of columns |pw |q , the set of rewriting steps with source |pw |q can be ordered from left to right by
setting φ ≺ ψ , for rewriting steps φ = |pw1 |psα |qsw2 |q and φ = |pw ′1 |ps β |qsw

′
2 |q such that | |w1 | | < | |w

′
1 | |.

If R is �nite, then the order ≺ is total and the set of rewriting steps of source |pw |q is �nite. Hence this
set contains a smallest element σ |pw |q and a greatest element η |pw |q , respectively called the leftmost and
the rightmost rewriting steps on |pw |q . If, moreover, the rewriting system terminates, the iteration of σ
(resp. η) yields a normalization strategy for R called the leftmost (resp. rightmost) normalization strategy
of R:

ρ>R(|pw |q) = σ |pw |q |ρ
>
R(t(σ |pw |q)) (resp. ρ⊥R(|pw |q) = η |pw |q |ρ

⊥
R(t(η |pw |q))).

The leftmost (resp. rightmost) rewriting path on a string of columns |pw |q is the rewriting path obtained
by applying the leftmost (resp. rightmost) normalization strategy ρ>

R
(resp. ρ⊥

R
). We refer the reader

to [6] and [7] for more details on rewriting normalization strategies.

3.4.9. Projections by reductions. Let S = (D, I) and S′ = (D ′, I ′) be two plactic-like structures,
and let д be the gluing map of S. Let S ′ ⊂ S be two sets of relations on [n]∗ such that S satis�es
the cross-section property for ≈S . Let R be a convergent rewriting system satisfying the following
conditions:

i) (R computes S′) for any w ∈ [n]∗, CS′(w) = Nf([w]д,R),

ii) (R is compatible with ≈S ′) for any rule d ⇒ d ′ in R, we have RSW (d) ≈S ′ RSW (d ′),

iii) (R computes ≈S ′) for all w,w ′ ∈ [n]∗, w ≈S ′ w ′ implies Nf([w]д,R) = Nf([w ′]д,R).

We deduce from these three conditions that S′ satis�es the cross-section property for ≈S ′ . Moreover,
we prove that the mapping

f : d 7→ Nf(d,R) (3.4.10)

for all d ∈ D, de�nes a morphism of string data structures from S to S′. The fact that f is compatible
with the readings follows from Condition i). Indeed, for any d in D, we have f (d) = CS′(RSW (d)),
showing that CS′(RSW (d)) = CS′(RSW (f (d))). Let us prove that f commutes with insertions. By ii),

19

3. String of columns rewriting

we have RSW (f (d

I x)) ≈S ′ RSW (d

I x). Moreover, we have RSW (d

I x) ≈S RSW (d)x ,
hence RSW (f (d

I x)) ≈S ′ RSW (d)x . On the other hand, the following equalities holds in D ′

f (d)

I ′ x = CS′(RSW (f (d))x)
i)
= Nf([RSW (f (d))x]д,R).

Then f (d)

I ′ x ≈R [RSW (f (d))x]д , and thus by ii), we deduce

RSW (f (d)

I ′ x) ≈S ′ RSW (f (d))x ≈S ′ RSW (d)x ,

showing that RSW (f (d

I x)) ≈S ′ RSW (f (d)

I ′ x). Finally, following Condition iii), we obtain

f (d

I x) = f (d)

I ′ x .

3.5. Terminations orders

A way to prove termination of a string of columns rewriting systemR is to consider a map f : Scoln → (X ,≺),
where (X ,≺) is a well-ordered set satisfying, for all w,w ′ ∈ Scoln ,

w ⇒R w ′ implies f (w ′) ≺ f (w).

In this subsection, we de�ne two termination orders that will be useful in the following sections.

3.5.1. Top-left sliding order. Let w = u1 |p1 . . . |pm−1um be in Scoln . We denote by huk the number of
empty boxes between the top box of the column uk and the top position ofw , shown by the blue line in
the following picture

...

...

.

.

...

De�ne the top deviation ofw as the sequence d>(w) = (hu1 , . . . ,hum) ∈ Nm . We will denote by �lex the
total order on Scoln de�ned by w �lex w ′ if and only if

tl(w) ≺r evlex tl(w ′) or
(
tl(w) = tl(w ′) and d>(w) ≺lex d>(w ′)

)
.

In order to prove the termination of top-left sliding operations presented in 4.2.1, we de�ne the total
order�t l on Scoln by setting, for w,w ′ in Scoln , w �t l w

′ if and only if

| |w | | < | |w ′ | | or
(
| |w | | = | |w ′ | | and w �lex w ′

)
.

3.5.2. Right-bottom sliding order. Let w = u1 |p1 . . . |pm−1um be in Scoln . The deviation of a string of
two columns u1 |pu2 is de�ned by d(u1 |pu2) = |u1 | + |u2 | − p. The total deviation ofw is the tuple

d(w) = (d(u1 |p1u2),d(u2 |p2u3), . . . ,d(um−1 |pm−1um)) ∈ N
m−1.

We will denote by vlex the total order on Scoln de�ned by w vlex w ′ if and only if

| |w | | < | |w ′ | | or
(
| |w | | = | |w ′ | | and d(w) ≺lex d(w ′)

)
for all w,w ′ in Scoln . In order to prove the termination of right-bottom sliding operations presented
in 5.1.1, we de�ne the total order�rb on Scoln by setting, for w,w ′ ∈ Scoln , w �rb w

′ if and only if

RSW (w) <lex RSW (w
′) or

(
RSW (w) = RSW (w

′) and w vlex w ′
)
.

20

4. Convergence of the jeu de taquin

4. Convergence of the jeu de taqin
In this section, we study the con�uence of the jeu de taquin through a rewriting system de�ned by
column sliding. We show that this rewriting system is convergent and we describe the jeu de taquin
as a morphism of string data structures from skew to Young tableaux. We show how to deduce that
the Young tableaux satisfy the cross-section property for plactic monoid, that left and right Schensted’s
algorithms commute, and that the jeu de taquin induces a crystal isomorphism between the sets of skew
and Young tableaux.

4.1. Jeu de taquin

4.1.1. Plactic monoids. Recall that the plactic monoid (of type A) of rank n, introduced in [16], and
denoted by Pn , is generated on [n] and submitted to the following Knuth relations, [12]:

zxy = xzy, for 1 6 x 6 y < z 6 n, and yzx = yxz, for 1 6 x < y 6 z 6 n. (4.1.2)

Knuth in [12] described the congruence ≈Pn generated by these relations in terms of Young tableaux
and proved the cross-section property for the monoid Pn .

4.1.3. Forward sliding, [21]. A forward sliding is a sequence of the following slidings:

y
x
↔ x y for x 6 y, x

y
↔ x

y
for x < y,

x
↔ x , x ↔ x

starting from a skew tableau and one of its inner corners, and moving the empty box until it becomes
an outer corner. The jeu de taquin on a skew tableau w consists in applying successively the forward
slide algorithm starting from w until we get a string of columns without inner corners denoted πtq(w),
which is shown to be a Young tableau. In this way, the jeu de taquin de�nes a map

πtq : Skn → Ytn ,

also called the recti�cation of skew tableaux. Schützenberger proved in [21] many properties of the
jeu de taquin. These properties are also presented by Fulton in [4], as follows. For any w ∈ Skn , the
following conditions hold

i) [4, Proposition 2]. RSW (w) ≈Pn RSW (πtq(w)),

ii) [4, Corollary 1]. The recti�cation πtq(w) is the unique Young tableau satisfying i),

iii) [4, Claim 2]. The map πtq does not depend on the order in which the inner corners are chosen.

Note that condition ii) is a consequence of the cross-section property for Pn proved in [12] and
condition i). Moreover, condition iii) is a consequence of conditions i) and ii). In the rest of this section,
we show that conditions i) and ii) are direct consequence of a con�uence property of a rewriting system
that computes the map πtq , and without supposing the cross-section property for Pn which is also
consequence of this con�uence property.

21

4. Convergence of the jeu de taquin

4.1.4. Example. The jeu de taquin on the following skew tableau w starting with the inner corner
applies three occurrences of forward sliding, where denotes the empty box, and the outer corner:

w =
1 2

1 3
1 2
3

7→

1 1 2
3

1 2
3

7→

1 1 2
2 3

1
3

;
1 1 2
2 3

1
3

7→

1 1 2
1 2 3

3
7→

1 1 2
1 2 3
3

1 1 2
1 2 3
3

7→

1 1 1 2
2 3

3
7→

1 1 1 2
2 3
3

7→

1 1 1 2
2 3
3 = πtq(w).

4.2. Jeu de taquin as rewriting

4.2.1. Rules of the jeu de taquin. The jeu de taquin map πtq is described by the union of rewriting
systems FSn = LSn ∪ ISn ∪ TSn whose sets of rules are de�ned as follows.

i) LSn the set of left-sliding rules that move sub-columns to the left in the following two situations:

a) αci ,c j : |p′

c1j

...

c1i

... ...

ci1i cmj

cm+1j

...

ci2j

|q′ ⇒ |p′

c1j

...

c1i

... ...

ci1i cmj

cm+1j

...

ci2j

|q′ , indexed by columns ci , c j , and positions p ′,q′, such

that (ci1i , c
m
j) is a row, i1 6 m < i2 and ci |(i1+i2−m)c j ∈ Scol

6
n .

b) δαci ,c j : |p′

c1i

...

c1j

... ...

cmi

... ...

cnj

... ...

ci1i c
q
j

...

c
p
j

...

ci2j

|q′ ⇒ |p′

c1j

...

c1i

... ...

cmi cnj

... ...

c
q
i

... ...

ci1i c
p
j

c
p+1
j

...

ci2j

|q′+(p−q), indexed by columns ci , c j , and positions p ′,q′, such

that ci |(i1+i2−q)c j < Scol
6
n , andm is maximal such that ci |(i1+i2−p)c j ∈ Scol

6
n and i1 6 p.

ii) ISn is the set of insert-sliding rules performing insertions in the following two situations:

a) βci ,c j : |p′

c1j

...

c1i

... ...

cl−1i cmj

cli cm+1j

... ...

cki ci2j

...

ci1i

|q′ ⇒ |p′

c1j

...

c1i

... ...

cl−1i cm−1j

cmj cm+1j

cli cm+2j

... ...

ck−1i ci2j

...

ci1i

|q′ , indexed by columns ci , c j , and positions p ′,q′, such

22

4.2. Jeu de taquin as rewriting

that ci |kc j ∈ Scol6n with 1 6 k 6 i1 and k < i2, and l is minimal such that (cli , c
m+1
j) is a row and

cl−1i < cmj < cli .

b) δ βci ,c j : |p′

c1i

...

c1j

... ...

crj

... ...

c
p
i

... ...

ci1i c
q
j

...

ci2j

|q′ ⇒ |p′

c1j

...

c1i cr−1j

c2i crj

... ...

cn−1i ct−1j

ctj ct+1j

... ...
c
q
j

... ...

c
p
i ci2j

...

ci1i

|q′+(i1+i2−p−q), indexed by columns ci , c j , and positions p ′,q′,

such that ci |(i1+i2−q)c j < Scol
6
n , where p is maximal such that ci |pc j ∈ Scol6n , and n is minimal

such that (cni , c
t+1
j) is a row with cn−1i < ctj < cni .

iii) TSn is the set of left top sliding rules that move columns to the top as follows

a) γci ,c j : |p′

c1j

...

cmj

...

c1i

... ...

cri ci2j

...

csi

...

ci1i

|q′ ⇒ |p′−(s−r)

c1j

...

c1i cmj

... ...

cri

... ...

csi ci2j

...

ci1i

|q′ , indexed by columns ci , c j and positions p ′,q′,

such that ci |rc j ∈ Scol6n with 1 6 r < i2, or ci |rc j is not row connected with c1i 6 ci2j , and s is
maximal such that ci |sc j ∈ Scol6n and s 6 i2.

b) δci ,c j : |p′

c1i

...

c
q
i c1j

... ...

ci1i c
p
j

...

ci1j

...

ci2j

|q′ ⇒ |p′

c1i c1j

... ...

c
p
j

... ...

ci1i ci1j

...

ci2j

|q′+(i1−p), indexed by columns ci , c j , and positions p ′,q′, such

that ci |(i1+i2−p)c j < Scol
6
n and ci |i2c j ∈ Scol

6
n , or ci |(i1+i2−p)c j ∈ Scol

6
n and i1 > p, or ci |kc j is not

row connected with k > i1 and ci1i 6 c1j .

In the sequel, if there is no possible confusion, we will omit the subscripts ci , c j in the notation of the
rules. Moreover, for any rule µ in FSn , we will denote by µ∗ any composition of rewriting sequences
involving the rules µ and ending on a normal form with respect to µ.

4.2.2. Example. The recti�cation of the skew tableau w from Example 4.1.4 can be computed with the
following reduction of FSn :

w =

1 2
1 3

1 2
3

γc2,c3
=⇒

1 1 2
2 3

1
3

γc1,c2
=⇒

1 1 2
1 2 3
3

βc1,c2
=⇒

1 1 1 2
2 3
3

αc2,c3
=⇒

1 1 1 2
2 3
3 = πtq(w)

23

4. Convergence of the jeu de taquin

4.2.3. Theorem. The rewriting system FSn is convergent. In particular, the normal form of any skew
tableau with respect to FSn is a Young tableau. Moreover, FSn computesYrn (resp.Y

c
n), that is, the equality

CYrn (w) = Nf([w]s ,FSn)
(
resp. CYcn (w) = Nf([w]s ,FSn)

)
(4.2.4)

holds, for anyw ∈ [n]∗.

The rest of this section is devoted to the proof of this result. Lemmata 4.2.10 and 4.2.11 show that
the rewriting system FSn is convergent. As a consequence, we obtain that the normal form of any
skew tableau with respect to FSn is a Young tableau. Lemma 4.2.7 together with the convergence of
the rewriting system FSn yield that FSn computes Yrn (resp. Ycn).

4.2.5. Lemma. For any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | in FSn , we have |ci1 ?Sr ci2 | = ρ
>
FSn
(|c j1 |c j2 |). Moreover,

for any ci = (c1i , . . . , c
i1
i) and c j = (c

1
j , . . . , c

i2
j) in Coln , we have

ci ?Sr c j = ρ
>
FSn
(ci |1c j), c j ?Sl ci = ρ

⊥
FSn
(ci |1c j). (4.2.6)

Proof. Prove that for any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | in FSn , we have |ci1 ?Sr ci2 | = ρ>
FSn
(|c j1 |c j2 |). The

rules αci ,c j , δαci ,c j , βci ,c j and δ βci ,c j followed by β∗ yield to the Young tableau |ci ?Sr c j |. Consider now
the rule γci ,c j . If |c j | 6 |ci | and ci | |c j |c j ∈ Scoln then the target of γci ,c j is equal to |ci ?Sr c j |. If |ci | < |c j |
and ci | |c j |c j ∈ Scoln , then the rule γci ,c j is followed by the rule αci ,c j in order to obtain |ci ?Sr c j |.
If ci | |c j |c j < Scoln then the rule γci ,c j followed by αci ,c j and then by β∗, or only followed by β∗ yield
to |ci ?Sr c j |. Consider �nally the rule δci ,c j . If |c j | 6 |ci | then the target δci ,c j is equal to |ci ?Sr c j |.
Otherwise, if |ci | < |c j | then δci ,c j is followed by αci ,c j in order to obtain |ci ?Sr c j |.

Prove the �rst equality of (4.2.6) by induction on |c j |, the proof being similar for ?Sl . Suppose
that |c j | = 1, we consider the following two cases. If c1i 6 c1j , then ci |1c j is equal to ci ?Sr c j . If c1j < c1i ,
then by applying δ β on ci |1c j we obtain ci ?Sr c j . Suppose the equality holds when |c j | = i2 − 1, and
prove it when |c j | = i2. First consider the case when c1i 6 ci2j . Suppose that by induction we have

ρ>
FSn

(c2j

...

c1i ci2j

...

ci1i

)
=

x1 y1

... ...

yt

...

xs

= ci ?Sr (c
2
j , . . . , c

i2
j),

where xi and yj are elements of ci and c j with t 6 s . We prove that ρ>
FSn

(c1j

x1 y1

... ...

yt

...

xs

)
= ci ?Sr c j , by

considering the following two cases.
Case 1. x1 6 c1j and xk+1 6 yk , for all k = 1, . . . , t − 1:

c1j

x1 y1

... ...

xs yt

γ
=⇒

x1 c1j

x2 y1

... ...

xs yt−1

yt

α
=⇒

x1 c1j

x2 y1

... ...

xs yt−1

yt

= ci ?Sr c j , for s = t or
c1j

x1 y1

... ...

yt

...

xs

γ
=⇒

x1 c1j

x2 y1

... ...

yt

...

xs

= ci ?Sr c j , for s > t .

24

4.2. Jeu de taquin as rewriting

Case 2. x1 6 c1j (resp. c1j < x1) and let xi be minimal such that xi−1 < yi−1 < xi :

c1j

x1 y1

... ...

xi−1 yi−1

xi yi

... ...

yt

...

xs

β
=⇒

x1 c1j

x2 y1
... ...

yi−1 yi

xi yi+1

... ...

yt

...

xs

= ci ?Sr c j .
(

resp.

c1j

x1 y1

... ...

yt

...

xs

β
=⇒

c1j y1

x1 y2

... ...

yt

...

xs

= ci ?Sr c j .
)

Suppose �nally that c1i > ci2j . We obtain:
c1j

...

c1i ci2j

...

ci1i

δ β
=⇒

c1j

...

ci2−1j

ci2j

c1i
...

ci1i

β∗
=⇒

c1j

...

ci2j

c1i

...

ci1i

= ci ?Sr c j . �

The following result shows that the right and left Schensted insertions correspond respectively to
the leftmost and rightmost reduction paths with respect the rewriting system FSn .

4.2.7. Lemma. For any wordw in [n]∗, we have

(∅

Sr w) = ρ>
FSn
([w]s), (w Sl ∅) = ρ⊥

FSn
([w]s). (4.2.8)

Proof. We prove the �rst equality in (4.2.8) by induction on the number of columns in [w]s , the proof being
similar for the insertion Sl . When [w]s is of length 2, then the equality is a consequence of Lemma 4.2.5.
For k > 3, suppose that the equality holds for words of length k − 1, and consider [w]s = c1 |1 . . . |1ck . By
induction hypothesis, we have (∅

Sr w) = ρ
>
FSn
(c1 |1 . . . |1ck−1)?Sr ck . Let us show that

ρ>
FSn
(c1 |1 . . . |1ck−1)?Sr ck = ρ

>
FSn
(c1 |1 . . . |1ck). (4.2.9)

Since inserting ck into ρ>
FSn
(c1 |1 . . . |1ck−1) consists into inserting its elements one by one from bot-

tom to top, it su�ces to prove (4.2.9) for ck = (x). If x is bigger or equal to the last element x i11 of
the �rst row of ρ>

FSn
(c1 |1 . . . |1ck−1), then ρ>

FSn
(c1 |1 . . . |1ck−1)|1ι(x) is a Young tableau that is equal

to ρ>
FSn
(c1 |1 . . . |1ck−1)?Sr ι(x). Otherwise, if x < x i11 , we �rst apply a rule δ β in order to slide the box

containing x to the top of the one containing x i11 . We then apply the following reduction rules as shown
in the following reduction diagrams. Note that, the elements in the colored boxes represent the ones
that are bumped when inserting x into the tableau ρ>

FSn
(c1 |1 . . . |1ck−1).

x

. . . x ik1 . . . xk11 . . . xk21 . . . x il1 x il+11 . . . xk31 xk3+11 . . . xk41 xk4+11 . . . x i11

. . . x ik2 . . . xk12 . . . xk22 . . . x il2 x il+12 . . . xk32 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 . . . xk13 . . . xk23 . . . x il3
...

...
...

...
...

...
...

...

. . . x ikl−1 . . . xk1l−1 . . . xk2l−1 . . . x ill−1

. . . x ikl . . . xk1l . . . xk2l . . . x ill

. . . x ikl+1

β∗
=⇒

xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik1 . . . xk11 . . . xk21 . . . x il1 x il+11 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik2 . . . xk12 . . . xk22 . . . x il2 x il+12 . . . xk32

. . . x ik3 . . . xk13 . . . xk23 . . . x il3
...

...
...

...
...

...
...

...

. . . x ikl−1 . . . xk1l−1 . . . xk2l−1 . . . x ill−1

. . . x ikl . . . xk1l . . . xk2l . . . x ill

. . . x ikl+1

γ ∗
=⇒

. . . x ik1 . . . xk11 . . . xk21 . . . x il1 x il+11 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik2 . . . xk12 . . . xk22 . . . x il2 x il+12 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 . . . xk13 . . . xk23 . . . x il3 xk32
...

...
...

...
...

...
...

...

. . . x ikl−1 . . . xk1l−1 . . . xk2l−1 . . . x ill−1

. . . x ikl . . . xk1l . . . xk2l . . . x ill

. . . x ikl+1

25

4. Convergence of the jeu de taquin

α∗
=⇒

. . . x ik1 . . . xk11 . . . xk21 . . . x il1 x il+11 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik2 . . . xk12 . . . xk22 . . . x il2 x il+12 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 . . . xk13 . . . xk23 . . . x il3 xk32
...

...
...

...
...

...
...

...

. . . x ikl−1 . . . xk1l−1 . . . xk2l−1 . . . x ill−1

. . . x ikl . . . xk1l . . . xk2l . . . x ill

. . . x ikl+1

δ β
=⇒

x il1 x il+11

. . . x ik1 . . . xk11 . . . xk21 . . . x il2 x il+12 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik2 . . . xk12 . . . xk22 . . . xk32 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 . . . xk13 . . . xk23 . . . x il3
...

...
...

...
...

...
...

...

. . . x ikl−1 . . . xk1l−1 . . . xk2l−1 . . . x ill−1

. . . x ikl . . . xk1l . . . xk2l . . . x ill

. . . x ikl+1

β∗
=⇒

xk11 . . . x il1 x il+11

. . . x ik1 . . . xk12 . . . x il2 x il+12 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik2 . . . xk13 . . . xk32 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 . . . xk14 . . . x il4
...

...
...

...
...

...

. . . x ikl−1 . . . xk2l−1 . . . x ill

. . . x ikl . . . xk1l

. . . x ikl+1

γ ∗
=⇒

. . . x ik1 . . . xk11 . . . x il1 x il+11

. . . x ik2 . . . xk12 . . . x il2 x il+12 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik3 . . . xk13 . . . xk32 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik4 . . . xk14 . . . x il4
...

...
...

...
...

...

. . . x ikl . . . xk2l−1 . . . x ill

. . . x ikl+1 xk1l

α∗
=⇒

. . . x ik1 x ik+11 . . . xk11 . . . x il1 x il+11

. . . x ik2 x ik+12 . . . xk12 . . . x il2 x il+12 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik3 x ik+13 . . . xk13 . . . xk32 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik4 x ik+14 . . . xk14 . . . x il4
...

...
...

...
...

...

. . . x ikl x ik+1l . . . xk2l−1 . . . x ill

. . . x ikl+1 xk1l

δ ∗
=⇒

. . . x ik1 x ik+11 . . . xk11 . . . x il1 x il+11 . . . xk31 xk3+11 . . . x xk4+11 . . . x i11

. . . x ik2 x ik+12 . . . xk12 . . . x il2 x il+12 . . . xk41 xk3+12 . . . xk42 xk4+12 . . .

. . . x ik3 x ik+13 . . . xk13 . . . xk32

. . . x ik4 x ik+14 . . . xk14 . . . x il4
...

...
...

...
...

...

. . . x ikl x ik+1l . . . xk2l−1 . . . x ill

. . . x ikl+1 xk1l

The resulted Young tableau is equal to ρ>
FSn
(c1 |1 . . . |1ck−1)?Sr ι(x), showing the claim. �

4.2.10. Lemma. The rewriting system FSn is terminating.

Proof. We prove that for any reductionw ⇒ w ′with respect toFSn , we havew �t l w
′ for the order�t l

de�ned 3.5.1. If w ⇒ w ′ is a reduction with respect to LSn , then | |w | | = | |w ′ | | and tl(w) ≺r evlex tl(w ′),
showing that w �t l w

′. Suppose now that the reduction is with respect to ISn . There are two cases
depending on the number of columns in the targets of the rules β and δ β . If the targets consist only
of one column then | |w | | < | |w ′ | |. If they consist of two columns then | |w | | = | |w ′ | | and tl(w) ≺r evlex
tl(w ′). Then, if w ⇒ w ′ is a reduction with respect to ISn , we obtain w �t l w

′. Finally, for any
reduction w ⇒ w ′ with respect to TSn , we have | |w | | = | |w ′ | |, tl(w) = tl(w ′) and d>(w) ≺lex d>(w ′),
showing that w �t l w

′. �

4.2.11. Lemma. The rewriting system FSn is con�uent.

Proof. Following Lemma 3.4.7, we prove that the rewriting system FSn is con�uent by showing the
con�uence of all its critical branchings. Consider �rst the rewriting system R(Coln ,Yrn) whose rules are
of the formγc,c ′ : |c |c ′ | ⇒ |c?Sr c ′ |, for all c, c ′ in Coln such that c |Yc ′ , c?Sr c ′. Prove that starting from a
string of columns consisting of three columns |ci |c j |ck |, we lead to the Young tableau |ci?Sr c j?Sr ck | after
applying at most three steps of reductions with respectR(Coln ,Yrn) starting from the left or from the right.
We prove this result using Schützenberger’s involution on columns as shown in [8, Remark 3.2.7]. Let c
be a column of length p, the Schützenberger involution of c , denoted by c∗, is the column of length n − p
obtained by taking the complement of the elements of c . This involution is extended to string of
columns by setting (c1 | . . . |cr)∗ = c∗r | . . . |c∗1 , for all c1, . . . , cr in Coln . If c1 |Y . . . |Ycr is a Young tableau,
then (c1 |Y . . . |Ycr)∗ = c∗r |Y . . . |Yc

∗
1 is also a Young tableau. Moreover, we have (c1 ?Sr . . . ?Sr cr)∗ =

(c∗r ?Sr . . . ?Sr c
∗
1), for all c1, . . . , cr in Coln . In particular, for three columns ci , c j and ck in Coln , we

have (ci?Sr c j?Sr ck)∗ = (c∗k?Sr c
∗
j ?Sr c

∗
i), see [17]. In one hand, by de�nition of Schensted’s insertion Sr ,

starting from |ci |c j |ck |, we lead to |ci ?Sr c j ?Sr ck | after applying at most three steps of reductions with
respect R(Coln ,Yrn) starting from the left. That is, we have

|ci |c j |ck |
γci ,c j |ck
=⇒ |cn |Ycn′ |ck |

cn |γcn′,ck
=⇒ |cn |cs |Ycs ′ |

γcn,cs |cs ′
=⇒ |ci ?Sr c j ?Sr ck |.

26

4.3. Jeu de taquin as morphism

In an other hand, we have

|ci |c j |ck |
ci |γc j ,ck
=⇒ |ci |(c j?Sr ck)| = |ci |cl |Ycl ′ |

γci ,cl |cl ′
=⇒ |(ci?Sr cl)|cl ′ | = |cm |Ycm′ |cl ′ |

cm |γcm′,cl ′
=⇒ |cm |(cm′?sr cl ′)|.

Let us show that |cm |(cm′ ?sr cl ′)| = |ci ?Sr c j ?Sr ck |. By applying the involution on tableaux, we obtain

|c∗k |c
∗
j |c
∗
i | =⇒ |(c

∗
k ?Sr c

∗
j)|c
∗
i | = |c

∗
l ′ |Yc

∗
l |c
∗
i | =⇒ |c

∗
l ′ |(c

∗
l ?Sr c

∗
i)| = |c

∗
l ′ |c
∗
m′ |Yc

∗
m | =⇒ |(c

∗
l ′ ?Sr c

∗
m′)|c

∗
m |.

By de�nition of Sr , we have |c∗k?Sr c
∗
j ?sr c

∗
i | = |(c

∗
l ′?Sr c

∗
m′)|c

∗
m |. Since (c∗k?sr c

∗
j ?Sr c

∗
i) = (ci?Sr c j?Sr ck)

∗,
we deduce that |(ci ?Sr c j ?Sr ck)∗ | = |(c∗l ′ ?Sr c

∗
m′)|c

∗
m |. Finally, by applying the involution on tableaux,

we obtain |(ci ?Sr c j ?Sr ck)| = |cm |(cm′ ?Sr cl ′)|.
Following Lemma 4.2.5, for any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | in FSn , we have |ci1?Sr ci2 | = ρ>FSn (|c j1 |c j2 |).

Hence, any critical branching of TSn has the following con�uence diagram

|c j |c j′ |ci′′ |
ρ>
FSn
(c j |c j′)
%9 |ck |Yck ′ |ci′′ |

ρ>
FSn
(ck ′ |ci′′)

%9 |ck |cl |Ycl ′ |
ρ>
FSn
(ck |cl)
%9 |ck ′ |Ycl ′′ |cl ′ | δcl ′′,cl ′

 4
|ci |ci′ |ci′′ |

ε1 (<

ε2 "6

|ci ?Sr ci′ ?Sr ci′′ |

|ci |cm |cm′ |
ρ>
FSn
(cm |cm′)

%9 |ci |cn |Ycn′ |
ρFSn>(ci |cn)

%9 |ck ′ |Ycs ′ |cn′ |
ρFSn>(cs ′ |cn′)

%9 |ck ′ |cl ′′ |Ycl ′ | γck′,cl ′′

*>

where ε1 and ε2 are TSn-reductions and where some indicated rules can correspond to identities, such
that ck |Yck ′ = c j?Sr c j′ , cl |Ycl ′ = ck ′?Sr ci′′ , ck ′ |Ycl ′′ = ck?Sr cl , cn |Ycn′ = cm ?Sr cm′ , ck ′ |Ycs ′ = ci ?Sr cn
and cl ′′ |Ycl ′ = cs ′ ?Sr cn′ . �

4.3. Jeu de taquin as morphism

4.3.1. Theorem. The recti�cation map πtq : dSkn → Ytn extends into a surjective morphism of string
data structures:

π rtq : dSrn → Y
r
n (resp. π ctq : dScn → Y

c
n). (4.3.2)

Proof. The surjectivity of πtq is a consequence of the relation πtq([RSW (d)]s) = d , that holds for any d
in Ytn . Prove that π rtq (resp. π ctq) is a morphism of string data structures by showing Conditions i), ii)
and iii) of 3.4.9. Condition i) is a consequence of Theorem 4.2.3. Prove Condition ii), that is, for
any rule d ⇒ d ′ in FSn , we have RSW (d) ≈Pn RSW (d

′). It su�ces to show that RSW (s(η)) ≈Pn
RSW (t(η)), for every rule η in FSn . This is obvious for γ and δ . For the rule α , consider RSW (s(α)) =
ci1i . . . c

1
i c

i2
j . . . c

m+1
j cmj . . . c

1
j and RSW (t(α)) = c

i2
j . . . c

m+1
j ci1i . . . c

1
i c

m
j . . . c

1
j . On one hand, we have

ci1i . . . c
2
i c

1
i c

i2
j . . . c

m+1
j cmj . . . c

1
j
(4.1.2)
= . . .

(4.1.2)
= ci1i c

i2
j c

i1−1
i . . . c2i c

1
i c

i2−1
j . . . cm+1j cmj . . . c

1
j

(4.1.2)
= . . .

(4.1.2)
= ci1i c

i2
j c

i2−1
j ci1−1i . . . c2i c

1
i c

i2−2
j . . . cm+1j cmj . . . c

1
j
(4.1.2)
=

ci2j c
i1
i c

i2−1
j ci1−1i . . . c2i c

1
i c

i2−2
j . . . cm+1j cmj . . . c

1
j
(4.1.2)
= . . .

(4.1.2)
= ci2j . . . c

m+1
j cmj c

i1
i . . . c

1
i c

m−1
j . . . c1j .

In an other hand, we have ci2j . . . c
m+1
j ci1i . . . c

2
i c

1
i c

m
j . . . c

1
j
(4.1.2)
= . . .

(4.1.2)
= ci2j . . . c

m+1
j cmj c

i1
i . . . c

1
i c

m−1
j . . . c1j .

Hence, RSW (s(α)) ≈Pn RSW (t(α)). Similarly, we show the property for rules β , δα and δ β .

27

4. Convergence of the jeu de taquin

Prove Condition iii), that is, for all w,w ′ ∈ [n]∗, w ≈Pn w ′ implies Nf([w]s ,FSn) = Nf([w ′]s ,FSn).
Since FSn is convergent, we show that for allw,w ′ ∈ [n]∗,w ≈Pn w ′ implies [w]s ≈FSn [w ′]s . Suppose
�rst that w = ux1xzyy1v and w ′ = ux1zxyy1v , for all 1 6 x 6 y < z 6 n, u,v ∈ [n]∗ and x1,y1 ∈ [n],
and show that [w]s ≈FSn [w ′]s . We consider the following cases:
Case 1. x1 6 x and y 6 y1.

ux1zxyy1v %9

[w ′]s ��
ux1xzyy1v

[w]s��

[ux1]s
�� x y

z

�� [y1v]s [ux1]s
�� y

x z

�� [y1v]s
γ��

[ux1]s
�� x y

z

�� [y1v]sα
au

Case 2. x1 6 x and y > y1. Suppose that v = y2 . . .yqy ′v ′ such that y1 > y2 > . . . > yq and yq 6 y ′.

ux1zxyy1v %9

[w ′]s ��
ux1xzyy1v

[w]s��

[ux1]s
�� yq

...

y1
x y
z

�� [y ′v ′]s
β∗��

[ux1]s
�� yq

...

y1
y

x z

�� [y ′v ′]s
γ��

[ux1]s
��

yq

...

x yi
yi+1

...

y1
y
z

�� [y ′v ′]s [ux1]s
��

yq

...

x yi

...

y1
y
z

�� [y ′v ′]s
α
ey

Case 3. x < z < x1 and y 6 y1. Suppose that u = u ′x ′xp . . . x1 such that x ′ 6 xp and xp > . . . > x1.

ux1zxyy1v %9

[w ′]s ��

ux1xzyy1v

[w]s��

[u ′x ′]s
�� x y

z
x1

...

xp

�� [y1v]s [u ′x ′]s
�� y

x z
x1

...

xp

�� [y1v]sβ
ey

The case x < z < x1 and y > y1 is studied in the same way.
Case 4. x < x1 6 z and y > y1. We study similarly the case x < x1 6 z and y 6 y1. Suppose
that u = u ′x ′xp . . . x1 and v = y2 . . .yqy ′v ′ such that x ′ 6 xp > . . . > x1 and y1 > . . . > yq 6 y ′.

ux1zxyy1v %9

[w ′]s
��

ux1xzyy1v

[w]s
��

[u ′x ′]s
�� yq

...

y1
x y

x1 z

...

xp

�� [y ′v ′]s
β��

[u ′x ′]s
�� yq

...

y1
y

x z
x1

...

xp

�� [y ′v ′]s

[u ′x ′]s
�� yq

...

y1
x z y
x1

...

xp

�� [y ′v ′]s δ β%9 [u ′x ′]s �� yq

...

y1
y

x z
x1

...

xp

�� [y ′v ′]sβ∗EY

28

4.3. Jeu de taquin as morphism

Suppose now that w = uy1yzxx1v and w ′ = uy1yxzx1v , for all 1 6 x < y 6 z 6 n, u,v ∈ [n]∗
and x1,y1 ∈ [n], and show that [w]s ≈FSn [w ′]s . If y1 6 y and x 6 x1, then

uy1yzxx1v %9

[w]s ��

uy1yxzx1v
[w ′]s��

[uy1]s
�� x

y z

�� [x1v]s β %9 [uy1]s �� x z
y

�� [x1v]s
The cases (y1 > y and x > x1), (y1 6 y and x > x1) and (y1 > y and x 6 x1) are studied similarly. �

As a direct consequence of this result, we deduce

4.3.3. Corollary. The string data structure Yrn (resp. Ycn) satis�es the cross-section property for the
monoid Pn .

The commutation of Sr and Sl , proved by Schensted by a direct method, [20, Lemma 6], is a
consequence of Lemma 2.1.5 and Theorem 4.3.1:

4.3.4. Corollary. The insertions Sr and Sl commute, and the structure monoid M(Yrn) is isomorphic to
the monoid Pn .

As a consequence of Proposition 3.3.8 and Theorem 4.3.1, we deduce

4.3.5. Corollary. The morphism of string data structures π rtq : dSrn → Yrn (resp. π ctq : dScn → Ycn)
induces a crystal isomorphism from Γ(K,d) to Γ(K,πrb (d)), for every d in dSkn .

4.3.6. Example. The following two connected components are isomorphic with respect to Kashiwara’s
crystal structure de�ned in 3.3.9:

1
1 2
1 ��
1

2 2
2 ��
1

2 3
2 ��
1

3 3
1 ��
2

3 3

1 1
2
1 ��
1 2
2
2 ��
1 3
2
2 ��
1 3
3
1 ��
2 3
3

where the skew tableaux and Young tableaux situated at the same place in this crystal isomorphism can
be related by the jeu de taquin slidings.

4.3.7. Remark. Note that Schensted’s insertions are related to the jeu de taquin by the following
formulas

t

Sr x = πtq
(
[RSW (t)]s

Iar x
)
, x Sl t = πtq

(
x Ial

[RSW (t)]s
)
,

for all t in Ytn and x in [n]. Note also that the associativity of?Sr can be deduced from the morphism πtq .
Indeed, for all t in Ytn , and x in [n], we have t

Sr x = πtq(t |1ι(x)), and thus t ?Sr t ′ = πtq(t |1t
′), for

all t , t ′ ∈ Ytn . By Theorem 4.2.3, we obtain

(t ?Sr t
′)?Sr t

′′ = πtq(t |1t
′ |1t
′′) = t ?Sr (t

′ ?Sr t
′′),

for any t , t ′, t ′′ ∈ Ytn .

29

5. Convergence of the right-bottom recti�cation

5. Convergence of the right-bottom rectification

In this section, we introduce the right-bottom recti�cation as a morphism of string data structures from
Young tableaux to quasi-ribbon tableaux using a rewriting system made of right-bottom sliding rules.
We show that this rewriting system is convergent and we deduce that the set of quasi-ribbon tableaux
satis�es the cross-section property for the hypoplactic monoid and that the right-bottom recti�cation
induces a crystal isomorphism between the sets of Young and quasi-ribbon tableaux.

5.1. Convergence of the right-bottom recti�cation

5.1.1. Right-bottom recti�cation algorithm. The right-bottom sliding πrb : Ytn → Scol6n is the
union of rewriting systems RBTn = RSn ∪ BSn ∪ TSn whose sets of rules are de�ned as follows.

i) RSn the set of right-sliding rules that move sub-columns to the right in the following two situations:

a) αci ,c j : |p′

c1j

...

c1i

... ...

c
p
i cmj

c
p+1
i cm+1j

... ...

cki c
q
j

...

clj

|q′ ⇒ |(p′−k+p)

c1j

...

c1i

... ...

c
p
i cmj

c
p+1
i cm+1j

... ...

cki c
q
j

...

clj

|(q′−m), indexed by columns ci , c j , and positions p ′,q′,

such that ci |(k+l−q)c j ∈ Scol6n , and where p is minimal such that cpi 6 cmj < c
p+1
i . Note that the

elements cnj , for m + 1 6 n 6 l , can be empty. Note also that when c
p
i = cmj , the elements cnj ,

for 1 6 n 6 m − 1, are empty.

b) δαci ,c j : |p′

c1i

...

cmi

...

c1j

... ...

cki c
q
j

...

c
p
j

...

clj

|q′ ⇒ |p′

c1j

...

c1i

... ...

cmi

... ...

cni csj

cn+1i cs+1j

... ...

cki c
p
j

...

clj

|q′−(p−q), indexed by columns ci , c j , and positions p ′,q′,

such that ci |(k+l−q)c j < Scol6n , wherem is maximal such that ci |(k+l−p)c j ∈ Scol6n , and where n is
minimal such that cni 6 csj < cn+1i .

ii) BSn the set of bottom-sliding rules that move columns to the bottom in the following situation:

30

5.1. Convergence of the right-bottom recti�cation

γci ,c j : |p′

c1j

...
c1i

... ...

c
p
i

... ...

csj

... ...

c
q
i clj

...

cki

|q′ ⇒ |p′

c1i

...
...

c
p
i c1j

... ...

c
q
i

... ...

cki csj

...

clj

|(q′−p), indexed by columns ci , c j , and positions p ′,q′, where ci

and c j are glued at position q, such that q > 1 and ci |qc j ∈ Scol6n , or q < 1 and c1i 6 clj , and where s
is maximal such that ci |(k+l−s)c j ∈ Scol6n .

iii) TSn the set of top-sliding rules that move columns to the top in the following situation:

δci ,c j : |p′

c1i

...

cki

c1j

...

clj

|q′ ⇒ |p′

c1i

...

cki c1j

...

clj

|q′−p−1, indexed by columns ci , c j , and positions p ′,q′, where ci

and c j are glued at position q > k such that ci |qc j is not row connected and cki 6 c1j .

5.1.2. Example. The following reduction sequence reduces the Young tableau w into its right-bottom
recti�cation πrb (w).

w =

1 2 3 4
2 3 4
3 4
5

αc1,c2
=⇒

1 2 3 4
2 3 4
3 4

5

γc1,c2
=⇒

1 3 4
2 2 4
3 3

4
5

γc2,c3
=⇒

1 4
2 2
3 3 3

4 4
5

γc3,c4
=⇒

1
2 2
3 3 3

4 4 4
5

αc2,c3
=⇒

1
2 2
3 3 3

4 4 4
5

αc3,c4
=⇒

1
2 2
3 3 3

4 4 4
5

αc4,c5
=⇒

1
2 2
3 3 3

4 4 4
5

αc1,c2
=⇒

1
2 2

3 3 3
4 4 4

5
= πrb (w)

5.1.3. Theorem. The rewriting system RBTn is convergent. In particular, the normal form of any Young
tableau with respect to RBTn is a quasi-ribbon tableau. Moreover, RBTn computes Qrn (resp. Qln), that is,
the equality

CQrn (w) = Nf([w]Y ,RBTn) (resp. CQln (w) = Nf([w]Y ,RBTn)) (5.1.4)

holds, for anyw ∈ [n]∗.

The rest of this section is devoted to the proof of this result. Lemmata 5.1.9 and 5.1.10 show that the
rewriting system RBTn is convergent. As a consequence, we obtain that the normal form of any Young
tableau with respect to RBTn is a quasi-ribbon tableau. Lemma 5.1.7 together with the convergence
of RBTn yield that RBTn computes Qrn (resp. Qln).

5.1.5. Lemma. For any ci = (c1i , . . . , c
i1
i) and c j = (c

1
j , . . . c

i2
j) in Coln , we have

ci ?Hr c j = ρ
>
RBTn
(ci | |c j |c j), c j ?Hl ci = ρ

⊥
RBTn
(ci | |c j |c j). (5.1.6)

Moreover, for any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | inRBTn , we have ρ
>
RBTn
(|c j1 |c j2 |) = |ci1?Hr ci2 | and ρ

⊥
RBTn
(|c j1 |c j2 |) =

|ci2 ?Hl ci1 |.

31

5. Convergence of the right-bottom recti�cation

Proof. Prove the �rst equality of (5.1.6), the proof being similar for the second one. We consider two
cases depending on whether or not ci | |c j |c j belongs to Scol6n .
Case 1. Suppose that ci | |c j |c j ∈ Scol6n . If ci1i 6 c1j , then applying the rule γci ,c j yields to ci ?Hr c j .
Otherwise, by applying a reduction sequence of rules α and γ starting in each step from the left, we
reduce ci | |c j |c j into a string of columns of the following form

c1i

...

... ...

ci1i

...

ci2j

Similarly, we reduce t =

... ...

ci1i

...

ci2j

into a string of columns made of a quasi-ribbon tableau glued to the top of

a new string of columns t ′ in Scol6n . We reduce t ′ in the same way and we continue until a quasi-ribbon
tableau appear which is equal by construction to ci ?Hr c j .
Case 2. Suppose that ci | |c j |c j < Scol

6
n . Suppose �rst that ci2j < c1i , then the rule δαci ,c j yields to ci ?Hr c j .

Suppose now that k is maximal such that ci |kc j ∈ Scol6n . If (c1i , c
l
j) is a row such that cl−1j < c1i , then:

c1i c1j

... ...

ci1i

...

ci2j

δα
=⇒

c1j

...

cl−1j

c1i clj

... ...

cki

... ...

ci1i

...

ci2j

= q

By Case 1, we obtain ρ>
RBTn
(q) = ci ?Hr c j . Otherwise, if s is minimal such that csi < c

p
j < cs+1i , then we

apply the following reduction sequence of rules α , δα and γ starting in each step from the left:

c1i c1j

... ...

ci1i

...

ci2j

δα
=⇒

c1j

...

c1i clj

... ...

csi c
p
j

cs+1i c
p+1
j

... ...

cki

... ...

ci2j

...

ci1i

γ
=⇒

c1j

...

c1i

... ...

csi

c
p+1
j

... ...

ci2j

...

cki

...

ci1i

(αγ)∗
=⇒

... c
p+1
j

...

ci2j

...
...

cki

...

ci1i

γ
=⇒

...
...

...

cki

...

c
p+1
j

... ...

ci2j

...

ci1i

= q.

By Case 1, we obtain ρ>
RBTn
(q) = ci ?Hr c j .

Similarly, we show that for any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | in RBTn , we have ρ>
RBTn
(|c j1 |c j2 |) = |ci1 ?Hr

ci2 | (resp. ρ⊥
RBTn
(|c j1 |c j2 |) = |ci2 ?Hl ci1 |). Indeed, the rules αci ,c j and δαci ,c j followed by a reduction

sequence of rules α and γ starting in each step from the left (resp. right) yield to ci ?Hr c j (resp. c j ?Hl ci).

32

5.1. Convergence of the right-bottom recti�cation

Moreover, if the �rst element of ci is smaller or equal than the last element of c j , then the target of the
rule γci ,c j is equal to ci ?Hr c j . Otherwise, the rule γ is followed by a sequence of rules α and γ starting
in each step from the left (resp. right) in order to obtain ci ?Hr c j (resp. c j ?Hl ci). Finally, the target of
the rule δci ,c j is equal to ci ?Hr c j . �

The following result shows that the right and left insertions Hr and Hl correspond respectively to
the leftmost and rightmost reduction paths with respect the rewriting system RBTn .

5.1.7. Lemma. For any wordw in [n]∗, we have

(∅

Hr w) = ρ>RBTn ([w]Y), (w Hl ∅) = ρ⊥RBTn ([w]Y). (5.1.8)

Proof. We prove the �rst equation of (5.1.8) by induction on the number of columns in [w]Y , the proof
being similar for the second one. If [w]Y is of length 2, then the equality is a consequence of Lemma 5.1.5.
For k > 3, suppose that the equality holds for words of length k − 1, and consider [w]s = c1 |Y . . . |Yck .
By induction hypothesis, we have (∅

Hr w) = ρ
>
RBTn
(c1 |Y . . . |Yck−1)?Hr ck . Let us show that

ρ>RBTn (c1 |Y . . . |Yck−1)?Hr ck = ρ
>
RBTn
(c1 |Y . . . |Yck).

We will represent ρ>
RBTn
(c1 |Y . . . |Yck−1) by the following diagram:

. . .

...
...

...

The computation of ρ>
RBTn
(c1 |Y . . . |Yck−1) ?Hr ck corresponds to the following reduction sequence,

where some rewriting rules can be identities:

. . .

... ...

...
... ...

(αγ)∗
=⇒

. . .

...
...

... ...
...

α
=⇒

. . .

...
...

... ...
...

(δα)∗
=⇒

. . .

... ...
...

... ...
...

We then apply the leftmost reduction path with respect RBTn on the red boxes until we obtain a
quasi-ribbon tableau. After we apply rules γ in the same places where we have applied rules δα before.
Finally, we apply the leftmost reduction path with respect RBTn on the green boxes until a quasi-ribbon
tableau appear which is equal by construction to ρ>

RBTn
(c1 |Y . . . |Yck−1)?Hr ck , showing the claim. �

5.1.9. Lemma. The rewriting system RBTn is terminating.

Proof. We prove that for any reduction w ⇒ w ′ with respect to RBTn , we have w �t l w
′ for the

order�rb de�ned in 3.5.2. Suppose �rst that w ⇒ w ′ is a reduction with respect to RSn , that is, with
respect to the rules α or δα . If the target of α consists of two or three columns (resp. one column), then
we have RSW (w) <lex RSW (w

′) (resp. RSW (w) = RSW (w
′) and | |w | | < | |w ′ | |). Similarly, for the reduction

with respect to δα , we obtain RSW (w) <lex RSW (w
′) or RSW (w) = RSW (w

′) and | |w | | < | |w ′ | |. Hence,
for any reduction w ⇒ w ′ with respect to RSn , we have w �t l w

′. Suppose now that w ⇒ w ′ is a
reduction with respect to BSn ∪TSn , we have RSW (w) = RSW (w

′) andw vlex w ′, and thusw �rbl w
′,

showing the claim. �

33

5. Convergence of the right-bottom recti�cation

5.1.10. Lemma. The rewriting system RBTn is con�uent.

Proof. Following 3.4.7, we show the con�uence of the rewriting system RBTn by showing that all
its critical branchings are con�uent. By Lemma 5.1.5, for any rule |ci1 |ci2 | ⇒ |c j1 |c j2 | in RBTn , we
have ρ>

RBTn
(|c j1 |c j2 |) = |ci1 ?Hr ci2 | and ρ⊥

RBTn
(|c j1 |c j2 |) = |ci2 ?Hl ci1 |. Then, any critical branching

of RBTn has the following form

|c ′i |c
′
j |ck |

ρ>RBTn %9 |ci ?Hr c j ?Hr ck |
|ci |c j |ck |

ε1 &:

ε2
$8 |ci |c

′′
j |c
′
k |
ρ⊥RBTn

%9 |ck ?Hl c j ?Hl ci |

where ε1 and ε2 are RBTn-reductions. Moreover, the right and left insertions Hr and Hl commute, [9].
Hence, the equality ci ?Hr c j ?Hr ck = ck ?Hl c j ?Hl ci , holds in Qrn , showing the con�uence of the
critical branching. �

5.2. Right-bottom recti�cation as morphism

5.2.1. Hypoplactic monoids. The hypoplactic monoid Hpn of rank n introduced in [13], is the monoid
generated on [n] and submitted to the Knuth relations (4.1.2) and the following relations:

zxty = xzyt for 1 6 x 6 y < z 6 t 6 n, tyzx = ytxz for 1 6 x < y 6 z < t 6 n. (5.2.2)

The congruence generated by this presentation is called the hypoplactic congruence and is denoted
by ≈Hpn . The cross-section property for the hypoplactic monoid is proved in [13, 19].

5.2.3. Theorem. The right-bottom recti�cation map πrb : Ytn → Qrn extends into a surjective morphism
of string data structures:

π rrb : Yrn → Q
r
n (resp. π crb : Ycn → Q

l
n). (5.2.4)

Proof. We prove that π rrb (resp. π crb) is a morphism of string data structures by showing Conditions i), ii)
and iii) of 3.4.9. Condition i) is a consequence of Theorem 4.2.3. Prove Condition ii), that is, for any
rule d ⇒ d ′ in RBTn , we have RSW (d) ≈Hpn RSW (d

′). It su�ces to show that RSW (s(η)) ≈Hpn RSW (t(η))
for anyη inRBTn . It is obvious forγ or δ . For ruleα as in 5.1.1, we prove the property by induction on |c j |,
Suppose that |c j | = 1, and consider RSW (s(α)) = cki . . . c

p
i . . . c

1
i c

1
j and RSW (t(α)) = c

p
i . . . c

1
i c

k
i . . . c

p+1
i c1j .

Then we have
RSW (t(α)) = c

p
i . . . c

1
i c

k
i c

k−1
i . . . c

p+1
i c1j

(4.1.2)
= . . .

(4.1.2)
= c

p
i c

k
i . . . c

1
i c

k−1
i ck−2i . . . c

p+1
i c1j

(4.1.2)
= . . .

(4.1.2)
=

cpi c
k
i c

p−1
i ck−1i . . . c1i c

k−2
i . . . c

p+1
i c1j

(5.2.2)
= cki c

p
i c

k−1
i c

p−1
i . . . c1i c

k−2
i ck−3i . . . c

p+1
i c1j

(4.1.2)
= . . .

(4.1.2)
=

cki c
p
i c

k−1
i cp−1i ck−2i . . . c1i c

k−3
i . . . c

p+1
i c1j

(5.2.2)
= cki c

k−1
i c

p
i c

k−2
i c

p−1
i . . . c1i c

k−3
i ck−4i . . . c

p+1
i c1j .

In the same way, we continue applying Relations (4.1.2) and (5.2.2) on cki c
k−1
i c

p
i c

k−2
i . . . c1i c

k−3
i ck−4i . . . c

p+1
i c1j

and the equivalence RSW (t(α)) ≈Hpn RSW (s(α)) holds. Suppose now that the property holds when |c j | =
l − 1, and prove it when |c j | = l . Consider RSW (s(α)) = cki . . . c

p
i . . . c

1
i c

l
j . . . c

m
j . . . c

2
j c

1
j and RSW (t(α)) =

c
p
i . . . c

1
i c

k
i . . . c

p+1
i cmj . . . c

1
j c
l
j . . . c

m+1
j . By induction hypothesis,

RSW (s(α)) ≈Hpn c
p
i . . . c

1
i c

k
i . . . c

p+1
i cmj . . . c

2
j c
l
j . . . c

m+1
j c1j .

34

5.2. Right-bottom recti�cation as morphism

Moreover, we have cpi . . . c
1
i c

k
i . . . c

p+1
i cmj . . . c

2
j c

l
jc
l−1
j . . . c

m+1
j c1j

(4.1.2)
= . . .

(4.1.2)
= c

p
i . . . c

1
i c

k
i . . . c

p+1
i cmj . . . c

l
jc
l−1
j . . . c

2
j c

m+1
j c1j

(4.1.2)
= . . .

(4.1.2)
= RSW (t(α)). Hence, we obtain

that RSW (t(α)) ≈Hpn RSW (s(α)). Similarly, we show the property for rule δα .
Prove Condition iii), that is, for allw,w ′ in [n]∗,w ≈Hpn w ′ implies Nf([w]Y ,RBTn) = Nf([w ′]Y ,RBTn).

Since RBTn is convergent, we show that for all w,w ′ ∈ [n]∗, w ≈Hpn w ′ implies [w]Y ≈RBTn [w ′]Y .
Suppose �rst that w = ux1xzyy1v and w ′ = ux1zxyy1v , for all 1 6 x 6 y < z 6 n, u,v ∈ [n]∗

and x1,y1 ∈ [n], and prove that [w]Y ≈RBTn [w ′]Y . We consider the following four cases:
Case 1. x1 6 x and y 6 y1.

ux1zxyy1v %9

[w ′]Y ��

ux1xzyy1v

[w]Y��

[ux1]Y
�� x y

z

�� [y1v]Y α%9 [ux1]Y �� x y
z

�� [y1v]Y
Case 2. x1 6 x and y > y1. Suppose that v = y2 . . .yqy ′v ′ such that y1 > y2 > . . . > yq 6 y

′. We
consider the following sub-case: x 6 yi , for all 1 6 i 6 q (resp. x 6 yi , for all 1 6 i 6 k − 1 and x > yk).

ux1zxyy1v %9

[w ′]Y
��

ux1xzyy1v

[w]Y
��

[ux1]Y
�� x yq

z

...

y1
y

�� [y ′v ′]Y
δα �2

[ux1]Y
�� x yq

...

y1
y
z

�� [y ′v ′]Y
[ux1]Y

�� yq

...

y1
x y

z

�� [y ′v ′]Y
γEY

(
resp.

ux1zxyy1v %9
[w ′]Y ��

ux1xzyy1v
[w]Y��

[ux1]Y
�� x yq

z
...

y1

y

�� [y ′v ′]Y
δα ��

[ux1]Y
�� x yq

...

y1

y

z

�� [y ′v ′]Y
δα ��

[ux1]Y
�� yq

...

y1

x y

z

�� [y ′v ′]Y
γ
��

[ux1]Y
�� yq

...

yk

x yk+1

...

y1

y

z

�� [y ′v ′]Y

[ux1]Y
�� yq

...

yk

x yk+1

...

y1

y

z

�� [y ′v ′]Yα -A

)

Case 3. x < z < x1 and y 6 y1. Suppose u = u ′x ′xp . . . x1 such that x ′ 6 xp > . . . > x1.

ux1zxyy1v %9

[w ′]Y
��

ux1xzyy1v

[w]Y
��

[u ′x ′]Y
�� x y

z
x1
x2

...

xp

�� [y1v]Y
α��

[u ′x ′]Y
�� x y

x1 z
x2

...

xp

�� [y1v]Y
δα��

[u ′x ′]Y
�� x y

z
x1
x2

...

xp

�� [y1v]Y [u ′x ′]Y
�� y

x z
x1
x2

...

xp

�� [y1v]Yγ
ey

35

5. Convergence of the right-bottom recti�cation

The case x < z < x1 and y > y1 is similar to Case 2.

Case 4. x < x1 6 z and y 6 y1. Suppose u = u ′x ′xp . . . x1 such that x ′ 6 xp > . . . > x1.

ux1zxyy1v %9
[w ′]Y ��

ux1xzyy1v
[w]Y��

[u ′x ′]Y
�� x1 x y

x2 z

...

xp

�� [y1v]Y
α ��

[u ′x ′]Y
�� x y

x1 z

...
xp

�� [y1v]Y
γ ��

[u ′x ′]Y
�� x1 x y

x2 z

...

xp

�� [y1v]Y
δα ��

[u ′x ′]Y
�� x

x1
x2

...

y
z

...

xp

�� [y1v]Y
[u ′x ′]Y

�� x
x1 y
x2 z

...

xp

�� [y1v]Yγ
,@

or

ux1zxyy1v %9

[w ′]Y ��

ux1xzyy1v
[w]Y��

[u ′x ′]Y
�� x1 x y

x2 z

...

xp

�� [y1v]Y
α ��

[u ′x ′]Y
�� x y

x1 z

...

xp

�� [y1v]Y
α ��

[u ′x ′]Y
�� x1 x y

x2 z

...

xp

�� [y1v]Y
δα �3

[u ′x ′]Y
�� x y

x1 z

...

xp

�� [y1v]Y
[u ′x ′]Y

�� x
x1 y
x2 z

...

xp

�� [y1v]Yδα
EY

The case x < x1 6 z and y > y1 is similar to Case 2.

Suppose that w = uy1yzxx1v and w ′ = uy1yxzx1v , for all 1 6 x < y 6 z 6 n, u,v ∈ [n]∗
and x1,y1 ∈ [n], and prove that [w]Y ≈RBTn [w ′]Y . If y1 6 y, x 6 x1 and z 6 x1, then

uy1yzxx1v %9

[w]Y ��
uy1yxzx1v

[w ′]Y��

[uy1]Y
�� y x

z

�� [x1v]Y
δα

 4

[uy1]Y
�� x z

y

�� [x1v]Y
γ��

[uy1]Y
�� x

y z

�� [x1v]Y
Similarly, we study the cases (y1 > y and x > x1), (y1 6 y and x > x1) and (y1 > y and x 6 x1).

Suppose now w = ux1zxtyy1v and w ′ = ux1xzyty1v , for all 1 6 x 6 y < z 6 t 6 n, u,v ∈ [n]∗
and x1,y1 ∈ [n], and prove that [w]Y ≈RBTn [w ′]Y . We will consider the following cases:

Case 1. x1 6 x and y 6 y1. If t 6 y1, then

ux1zxtyy1v %9

[w]Y ��
ux1xzyty1v

[w ′]Y��

[ux1]Y
�� x y

z t

�� [y1v]Y
α ��

[ux1]Y
�� x y t

z

�� [y1v]Y
γh|

[ux1]Y
�� x y

z t

�� [y1v]Y
Otherwise, suppose that v = y2 . . .yqy ′v ′ such that t > y1 > . . . > yq 6 y ′. If y 6 yi , for all 1 6 i 6 q

36

5.2. Right-bottom recti�cation as morphism

(resp. y 6 yi , for all 1 6 i 6 k − 1 and y > yk), then

ux1zxtyy1v %9

[w]Y ��

ux1xzyty1v

[w ′]Y��

[ux1]Y
�� x y yq

z t

...

y1

�� [y ′v ′]Y
δα ��

[ux1]Y
�� x y yq

z

...

y1
t

�� [y1v]Y
δα ��

[ux1]Y
�� yq

...

x y y1
z t

�� [y ′v ′]Y
α
��

[ux1]Y
�� yq

...
x y

z
...

y1
t

�� [y ′v ′]Y
[ux1]Y

�� yq

...

x y y1
z t

�� [y ′v ′]Y γ
%9
[ux1]Y

�� yq

...

x y
z

...

y1
t

�� [y ′v ′]YαEY

(
resp.

ux1zxtyy1v %9

[w]Y ��
ux1xzyty1v

[w ′]Y��

[ux1]Y
�� x y yq

z t

...

y1

�� [y ′v ′]Y
δα ��

[ux1]Y
�� x y yq

z

...

y1
t

�� [y1v]Y
δα��

[ux1]Y
�� yq

...

x y y1
z t

�� [y ′v ′]Y
γ
��

[ux1]Y
�� yq

...

yk

...

x y
z

...

y1
t

�� [y ′v ′]Y
[ux1]Y

�� yq

...

yk

...

x y
z

...

y1
t

�� [y ′v ′]Y α
%9
[ux1]Y

�� yq

...

yk
x y

z

...

y1
t

�� [y ′v ′]Yδα EY

)

Case 2. x1 6 x and y > y1. In the same way, we study the cases (x1 > x and y > y1) and (x1 > x
and y 6 y1). Suppose v = y2 . . .yqy ′v ′ such that y1 > . . . > yq 6 y ′.

ux1zxtyy1v %9

[w]Y ��

ux1xzyty1v

[w ′]Y��

[ux1]Y
�� x y yq

z t

...

y1

�� [y ′v ′]Y
δα ��

[ux1]Y
�� x y yq

z

...

y1
t

�� [y1v]Y
δα��

[ux1]Y
�� yq

...

y1
x y
z t

�� [y ′v ′]Y
α ��

[ux1]Y
�� yq

...

y1
x y t

z

�� [y ′v ′]Y
γj~

[ux1]Y
�� yq

...

y1
x y

z t

�� [y ′v ′]Y
Suppose �nally that w = uy1tyzxx1v and w ′ = uy1yxtzx1v , for all 1 6 x < y 6 z < t 6 n, u,v ∈ [n]∗
and x1,y1 ∈ [n], and prove that [w]Y ≈RBTn [w ′]Y . We study the case (y1 6 x < y and x 6 x1),
where u = u ′y ′yq . . .y2 such that yq > . . .y2 > y1, y ′ 6 yq and y2 6 y, the others cases being similar.

uy1tyzxx1v %9
[w]Y ��

uy1yxtzx1v
[w ′]Y��

[u ′y ′]Y
�� y1 y x

y2 t z

...

yq

�� [x1v]Y
δα ��

[u ′y ′]Y
�� y1 x z

y2 y t

...

yq

�� [x1v]Y
γ��

[u ′y ′]Y
�� x
y1 y z
y2 t

...

yq

�� [x1v]Y
α ��

[u ′y ′]Y
�� y1 z
y2 t

...

x
‘ y

...

yq

�� [x1v]Y
[u ′y ′]Y

�� x
y1 y z
y2 t

...

yq

�� [x1v]Yγ
+?

Prove �nally that the map πrb is surjective. Recall from [3, Sect.8.2.] the north-west recti�cation
map πnw : Qrn → Ytn that transforms a quasi-ribbon q into a Young tableau by sliding all its columns

37

REFERENCES

to the top until the topmost box of each is on the �rst row of q and then by sliding all its boxes leftwards
along their rows until the leftmost box in each row is in the �rst column and such that all the rows remain
connected. The equality πnw (q) = CYrn (RSW (q)) holds, for any q in Qrn , [3, Proposition 8.9], showing
that RSW (πnw (q)) ≈Pn RSW (q) ≈Hpn RSW (q). Moreover, since the rewriting system RBTn is compatible
with ≈Hpn , the equivalence RSW (π

nw (q)) ≈Hpn RSW (πrb (π
nw (q))) holds, for any q in Qrn , showing

that RSW (q) ≈Hpn RSW (πrb (π
nw (q))). Then, since RBTn computes ≈Hpn , the equality πrb (πnw (q)) = q

holds in Qrn . Hence, the map πrb is surjective. �

As a direct consequence of this result, we deduce

5.2.5. Corollary. The string data structure Qrn (resp. Qln) satis�es the cross-section property for the
monoid Hpn , and the structure monoidM(Qrn) is isomorphic to Hpn .

As a consequence of Proposition 3.3.8 and Theorem 5.2.3, we deduce

5.2.6. Corollary. The morphism of string data structures π rrb : Yrn → Qrn , (resp. π crb : Ycn → Qln) induces
a crystal isomorphism from Γ(qK,d) to Γ(qK,πrb (d)), for every d in Ytn .

5.2.7. Remark. Note �nally that the procedure that transforms a skew tableau into a quasi-ribbon
tableau by applying �rst the jeu de taquin followed by the right-bottom recti�cation can be also
described by crystal isomorphisms using Kashiwara and quasi-Kashiwara crystals as shown in the
following example:

1 1
1 2

1
zz

2
$$

1 1 1
2

1
zz

2
$$

1 1 1
2

2
$$

1 2
1 2

1��
2
$$

1 1
1 3

1��

1 1 2
2

1��
2
$$

1 1 1
3

1��

1 1
2 2

2
$$

1 1 1
3

1��

1 2
2 2

2��

1 3
1 2

2��
1
zz

1 2
1 3

1��

1 2 2
2

2��

1 1 3
2

2��
1
zz

1 1 2
3

1��

1
2 2 2

2��

1 1
2 3
2��

1 1 2
3

1��

1 3
2 2

2��

1 3
1 3

1��

2 2
1 3

1��
2
zz

1 2 3
2

2��

1 1 3
3

1��

1 2 2
3

1��
2
zz

1
2 2 3

2��

1 1
3 3
1��

1 2 2
3

1��

1 3
2 3

2��

2 3
1 3

2
zz 1 $$

2 2
2 3

2��

1 3 3
2

2��

1 2 3
3

2
zz 1 $$

2 2 2
3

2��

1
2 3 3

2��

1 2
3 3

1 $$

2 2 2
3

1 3
3 3

1
$$

2 3
2 3

2zz

1 3 3
3

1
$$

2 2 3
3

2zz

1
3 3 3

1
$$

2 2
3 3

2 3
3 3

2 3 3
3

2
3 3 3

where dotted arrows show action of the quasi-Kashiwara’s operators and the other ones show action of
the Kashiwara’s operators. These connected components are isomorphic and every skew tableau, Young
tableau and quasi-ribbon tableau situated at the same place in these crystal isomorphisms can be related
by sliding.

References

[1] David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting to the Baik-Deift-
Johansson theorem. Bull. Amer. Math. Soc. (N.S.), 36(4):413–432, 1999.

38

REFERENCES

[2] Alan J. Cain, Robert D. Gray, and António Malheiro. Rewriting systems and biautomatic structures for
Chinese, hypoplactic, and Sylvester monoids. Internat. J. Algebra Comput., 25(1-2):51–80, 2015.

[3] Alan J. Cain and António Malheiro. Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators
to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tableaux. J. Algebraic Combin.,
45(2):475–524, 2017.

[4] William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1997. With applications to representation theory and geometry.

[5] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos.
Math., 151(5):957–998, 2015.

[6] Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math.,
231(3-4):2294–2351, 2012.

[7] Yves Guiraud and Philippe Malbos. Polygraphs of �nite derivation type. Math. Structures Comput. Sci.,
28(2):155–201, 2018.

[8] Nohra Hage and Philippe Malbos. Knuth’s coherent presentations of plactic monoids of type A. Algebr.
Represent. Theory, 20(5):1259–1288, 2017.

[9] Nohra Hage and Philippe Malbos. Coherence of monoids by insertions and Chinese syzygies. preprint,
arXiv:1901.09879, February 2019.

[10] Masaki Kashiwara. Crystallizing the q-analogue of universal enveloping algebras. In Proceedings of the
International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages 791–797. Math. Soc. Japan, Tokyo,
1991.

[11] Masaki Kashiwara and Toshiki Nakashima. Crystal graphs for representations of the q-analogue of classical
Lie algebras. J. Algebra, 165(2):295–345, 1994.

[12] Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Paci�c J. Math., 34:709–727, 1970.

[13] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions iv: Quantum linear groups and
hecke algebras at q = 0. Journal of Algebraic Combinatorics, 6(4):339–376, Oct 1997.

[14] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions v: A degenerate version of Uq(дln).
International Journal of Algebra and Computation, 09(03n04):405–430, 1999.

[15] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Crystal graphs and q-analogues of weight multiplici-
ties for the root system An . Lett. Math. Phys., 35(4):359–374, 1995.

[16] Alain Lascoux and Marcel-P. Schützenberger. Le monoïde plaxique. In Noncommutative structures in algebra
and geometric combinatorics (Naples, 1978), volume 109 of Quad. “Ricerca Sci.”, pages 129–156. CNR, Rome,
1981.

[17] Cristian Lenart. On the combinatorics of crystal graphs. I. Lusztig’s involution. Adv. Math., 211(1):204–243,
2007.

[18] Maxwell Newman. On theories with a combinatorial de�nition of “equivalence”. Ann. of Math. (2), 43(2):223–
243, 1942.

39

REFERENCES

[19] Jean-Christophe Novelli. On the hypoplactic monoid. volume 217, pages 315–336. 2000. Formal power series
and algebraic combinatorics (Vienna, 1997).

[20] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math., 13:179–191, 1961.

[21] M.-P. Schützenberger. La correspondance de Robinson. pages 59–113. Lecture Notes in Math., Vol. 579, 1977.

[22] Alfred Young. On Quantitative Substitutional Analysis. Proc. London Math. Soc. (2), 28(4):255–292, 1928.

Nohra Hage
nohra.hage@usj.edu.lb

École supérieure d’ingénieurs de Beyrouth (ESIB)
Université Saint-Joseph de Beyrouth (USJ), Liban

Philippe Malbos
malbos@math.univ-lyon1.fr

Univ Lyon, Université Claude Bernard Lyon 1
CNRS UMR 5208, Institut Camille Jordan

43 blvd. du 11 novembre 1918
F-69622 Villeurbanne cedex, France

— December 31, 2020 - 16:04 —

40

nohra.hage@usj.edu.lb
malbos@math.univ-lyon1.fr

	Introduction
	String data structures
	String data structures
	String data structures and crystal structures

	String of columns rewriting
	Strings of columns
	Examples of plactic-like structures
	Crystal structures on strings of columns
	String of columns rewriting
	Terminations orders

	Convergence of the jeu de taquin
	Jeu de taquin
	Jeu de taquin as rewriting
	Jeu de taquin as morphism

	Convergence of the right-bottom rectification
	Convergence of the right-bottom rectification
	Right-bottom rectification as morphism

