N

N

String of columns rewriting and confluence of the jeu de
taquin
Nohra Hage, Philippe Malbos

» To cite this version:

Nohra Hage, Philippe Malbos. String of columns rewriting and confluence of the jeu de taquin. 2020.
hal-03161577v1

HAL Id: hal-03161577
https://hal.science/hal-03161577v1

Preprint submitted on 7 Mar 2021 (v1), last revised 7 Feb 2022 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03161577v1
https://hal.archives-ouvertes.fr

STRING OF COLUMNS REWRITING
AND PLACTIC-LIKE DATA STRUCTURES

NoHRA HAGE PaiLippE MALBOS

Abstract — In this article, we prove combinatorial and algebraic properties on the plactic and
hypoplactic congruences via a new rewriting approach on tableaux, that we apply to the jeu
de taquin and the right-bottom rectification algorithms. The jeu de taquin is an algorithm that
transforms a skew tableau into a Young tableau by local transformation rules on the columns of the
tableaux. This algorithm has remarkable combinatorial and algorithmic properties, in particular it is
confluent, that is the resulting Young tableau does not depend on the way the local transformations
rules are applied. We introduce the notion of string of columns rewriting system in order to
study rewriting properties of algorithms defined on glued sequences of columns. We prove the
convergence of the jeu de taquin and we show how to deduce algebraic properties on the plactic
congruence. We define the right-bottom rectification algorithm that transforms a Young tableau
into a quasi-ribbon tableau by a string of columns rewriting system. We prove its convergence and
we deduce algebraic properties on the hypoplactic congruence.

Keywords — Jeu de taquin, plactic monoids, hypoplactic monoids, string data structures, string of
columns rewriting.

M.S.C. 2010 — Primary: 05E99. Secondary: 20M05, 68Q42, 20M35.

[1__Introduction| 2
[2 String data structures| 5
2.1 String data structures| Lo Lo 5

2.2 String data structures and crystal structures| 7

3 String of columns rewriting 9
3.1 Stringsofcolumns|. o 9

3.2 Examples of plactic-like structures|. 11

3.3 Crystal structures on strings of columns| 13

3.4 String of columns rewriting| oL, 17
inations orders| 20

4 Convergence of the jeu de taquin 21
41 Jeudefaquin].o 21

4.2 Jeudetaquinasrewriting|. Lo oL L 22
4.3 Jeudetaquin as morphism| Lo Lo L 27
EConvergence of the right-bottom rectification| 30
5.1 onvergence of the right-bottom rectification| 30

5.2 Right-bottom rectification as morphism| 34

1. Introduction

1. INTRODUCTION

The jeu de taquin was introduced by Schiitzenberger as an algorithm on the structure of tableaux in
order to give one of the first correct proofs of the Littelwood-Richardson rule on the multiplicity of
a Schur polynomial in a product of Schur polynomials, [21]. A Young tableau is a collection of boxes
in left-justified rows filled with elements of the totally ordered alphabet [n] := {1 < -+ - < n}, where
the entries weakly increase along each row and strictly increase down each column. A skew tableau
is obtained by eliminating boxes from the rows of a Young tableau starting from top to bottom and
from right to left. The eliminated boxes are called inner corners of the skew tableau. We read tableaux
column-wise from left to right and from bottom to top: the following tableaux

Ti]1[z]
1[3] [2[3]
3]

are respectively skew tableau and Young tableau whose readings are 3121312 and 3213112, where the
red empty boxes denote the inner corners. The jeu taquin consists in applying successively forward
sliding operations on a skew tableau that move an inner corner into an outer position by keeping the
rows weakly increasing and the columns strictly increasing, until no more inner corners remain in the

initial skew tableau, as follows

\. 11z 1]1]2] 1]1]2] [1]1]2] 1]1]2] 1]1]2 1J1]1]2 1[1]1]2
2[3] 2[3 1[2[3 1[2[3] — — ZH3
= Il 1_ ; = = 3] ;
L]

Schiitzenberger proved remarkable properties of the jeu de taquin on skew tableaux, [21]]. He proved
that the rectification 7,4(w) of a skew tableau w by the jeu de taquin is a Young tableau whose reading
is equivalent to the reading of w with respect the plactic congruence relation generated by the following
Knuth relations, [12]]:

1]1]2]

s

==

zxy =xzy, for 1< x<y<z<n, and yzx =yxz, for I<x<y<z<n

As a consequence, he proved that the resulting Young tableau does not depend on the order in which we
choose inner corners in the forward slidings. This is the confluence property of the jeu de taquin. Here,
this property follows the cross-section property of Young tableaux with respect the plactic congruence,
proved by Knuth in [12]], namely two words on [n] are plactic congruent if and only if they lead to
the same Young tableau after applying Schensted’s insertion algorithm, [20]. Explicitly, if there are
two sequences of sliding operations that transform a tableau w into two different tableaux w; and wy,
then we continue applying sliding operations until we reach normal forms w; and w,, that is tableaux
without inner corners:
WL W

w
\\}Wz—)\’;z

Since w; and w; are two Young tableaux such that their readings are plactic congruent, following the
cross-section property, we deduce that w; = w.

In this article, we introduce a rewriting machinery to prove in a direct way the confluence of the
jeu de taquin. We define the sliding operations as rewriting rules on strings of columns, that is strings

1. Introduction

composed by glued sequences of columns, with a gluing map that describes the relative positions of
columns. In this way, the jeu de taquin is described by a rewriting system on strings of columns. Our
first main result, Theorem [4.2.3] proves that this rewriting system is confluent and terminating and that
the normal form of any skew tableau is a Young tableau. We show how to deduce from the confluence
and normalization property of this rewriting system the cross-section property of Young tableaux with
respect the plactic congruence, and the commutation of right and left Schensted’s algorithms. Moreover,
using this rewriting description of Schiitzenberger’s sliding operations, Theorem shows that the
rectification defines a morphism of string data structures from the string data structure of skew tableaux
to the string data structure of Young tableaux. Finally, we show that this morphism induces a Kashiwara
crystal isomorphism between skew tableaux and Young tableaux.

In a second part of this article, using the same machinery we give a rewriting description of the right-
bottom rectification algorithm that transforms a Young tableau into a quasi-ribbon tableau. This structure
of tableaux was used by Krob and Thibon in [13] and plays a similar role to that of the structure of
Young tableaux in the theory of non-commutative symmetric functions and quasi-symmetric functions.
Recall that a quasi-ribbon tableau is a collection of boxes filled with elements of [n], where the entries
weakly increase along each row and strictly increase down each column, and where the columns are
arranged from left to right so that the bottom box in each column aligns with the top box of the next
column. We read a quasi-ribbon tableau column-wise from left to right and from bottom to top: the
following tableau

EINER!

Lels

NIE

88]9]

is a quasi-ribbon tableau whose reading is 1165687689.

We define an algorithm, the right-bottom rectification algorithm, that transforms a Young tableau w
into a quasi-ribbon tableau 7,,(w) whose reading is equivalent to the reading of w with respect the
congruence relation generated by the hypoplactic relations defined as the Knuth relations together with
the following relations, [13]:

zxty = xzyt for 1<x<y<z<t<n tyzx = ytxz for 1I<x<y<z<t<n.

Our rectification algorithm is defined by a string of columns rewriting system whose rules describe the
elementary right and bottom slidings of columns. The second main result of this article, Theorem
proves that this rewriting system is confluent and terminating and that the normal form of any Young
tableau is a quasi-ribbon tableau. Theorem 5.2.3|shows that the right-bottom rectification 7, defines a
morphism of string data structures from the string data structure of Young tableaux to the string data
structure of quasi-ribbon tableaux. We deduce from this morphism that the set of quasi-ribbon tableaux
satisfies the cross-section property for the hypoplactic congruence. Finally, we show that this morphism
induces a quasi-Kashiwara crystal isomorphism between Young tableaux and quasi-ribbon tableaux.

To summarize the constructions introduced in this article, we construct two surjective morphisms
of string data structures

Ttrq TTrb r

Y, Qn

from string data structure of skew tableaux dS/,, to string data structure of Young tableaux Y7, and
to string data structure of quasi-ribbon tableaux Q) that induce surjective morphisms of monoids

dsr,

1. Introduction

[n]* - P, - Hp,,, where P,, and Hp,, are respectively the plactic monoid and the hypoplactic monoid,
and that also induce crystal isomorphisms

I(K.d) ~T(K,mq(d), and T(gK.,d') =T(qK, mp(d")),

for every skew tableau d and Young tableau d’, with respect the Kashiwara crystal structure K [11] and
the quasi-Kashiwara crystal structure /K [3].

We expect that the convergent string of columns rewriting systems introduced in this article can be
used to explicit the relations among the relations for the jeu de taquin and the right-bottom rectification
algorithms. Indeed, convergent presentations allow us to compute coherent presentations of monoids,
that is presentations by generators, relations, and relations between the relations, [5,7,[8]. A coherent
presentation constitutes the first step in an explicit construction of a cofibrant approximation of the
monoid in the category of (oo, 1)-categories, [6]].

Organization of the article. In Section 2] we recall the notion of string data structures from [9], that
correspond to presentations of monoids defined by data structures and whose relations are formulated
by an insertion algorithm. We introduce the notion of morphisms of string data structures and we show
how the property of commutation of insertion algorithms can be preserved by such a morphism. We
recall in the notion of crystal structure on words from [0} [I1]], and we define a compatibility
condition between a crystal structure and a string data structure so that the corresponding crystal
monoid is isomorphic to the monoid presented by the string data structure.

In Section 3} we study two-dimensional strings defined by glued sequences of columns that we call
string of columns. We define a plactic-like structure as a string data structure whose data are string of
columns with respect a fixed gluing sequence. We define in the notion of string of columns rewriting
system as a binary relation on the set of strings of columns, whose rules are applied with respect to right
and left positions. We show how to present a plactic-like structure by such a rewriting system.

In Section[4 we describe the jeu de taquin by a string of columns rewriting system, whose the rules
describe forward slidings. We prove its confluence and termination. We deduce that the jeu de taquin
defines a morphism of string data structures from skew tableaux to Young tableaux, and thus a crystal
isomorphism between skew tableaux and Young tableaux.

In Section[5} we define the right-bottom rectification algorithm that transforms a Young tableau into a
quasi-ribbon tableau. The algorithm is defined as a string of columns rewriting system, whose the rules
describe right and bottom slidings. We prove that this rewriting system is confluent and terminating,.
Finally, we deduce that the right-bottom rectification defines a morphism of string data structures from
Young tableaux to quasi-ribbon tableaux, and thus a crystal isomorphism between Young tableaux and
quasi-ribbon tableaux.

Conventions and notations. We will consider the totally ordered set [n] := {1 < -+ < n},forn € Z-,,
as ground alphabet. We denote by [n]* the free monoid of words over [n], whose empty word is denoted
by A. The congruence generated by a set S of relations on [n]* is denoted by ~s. The length of a word w
in [n]* is denoted by |w|, and the number of times the element i of [n] appears in w is denoted by |w|;.
The weight map is the map wt : [n]* — (NU {0})”, defined by wt(w) = (Jwly, . . ., |[w|n), for all w in [n]*.
Let w = x1X; . ..x; be a word in [n]*. We will denote by w = xi ... x2x; its mirror word. We denote
by £(w) the leftmost letter of w and by Rem(w) the subword of w such that w = £(w) Rem(w). We will
denote by <jex the lexicographic order on [n]* induced by the order on [n], and by <jex (resp. <revlex)
the lexicographic (resp. reverse lexicographic) order on tuples of natural numbers.

2. String data structures

2. STRING DATA STRUCTURES

This section recalls the notions of string data structure from [[9] and of crystal structure from [[10} 11]].
We define a compatibility condition between a crystal structure and a string data structure so that the
corresponding crystal monoid and structure monoid are isomorphic.

2.1. String data structures

2.1.1. String data structures. A right (resp. left) string data structure S (over [n]) is a triple (D, I, R)
made of a set D with a distinguished element @, and two maps R : D — [n]*and [: D X [n] —» D
satisfying the three following conditions:

i) R(I(0,x)) = x for all x in [n],

ii) therelation (0 e~ R(d)) = d) (resp. (R(d) ~»; 0)=d) holds for any d in D, where ¢~; : D X [n]* — D,
(resp. m»1: D X [n]* — D) is the map defined by

(d e~y u) = (I(d, £(u)) «~1 Rem(u))
(resp. (u w1 d) = (Rem() w I(d, (W)
foralld in Dand u in [n]*, and d <~ A = d (resp. A ~»; d = d) for alld € D,
iii) the map R is injective and R(0) = A.

We say that R is the reading map of S, and that I inserts an element of [n] into an element of D.
The map <~ (resp.) is called the insertion map of words in [n]* into elements of D. The map Cs :
[n]" — D sending a word w to (0 «~; w) (resp. (w ~»1 0)), is called the constructor of S from words
in [n]*, and it is surjective as a consequence of ii). We will denote by 1p : [n] — D the map that
sends a letter x in [n] on the single element data I(0, x), that we write simply x when no confusion can
arise. For a given string data structure S, we will denote by Dg its underlying set, and by Is and Ryg its
insertion and reading maps. A string data structure S is called weight-preserving if, for every u in [n]”,
the condition wt(u) = wt(R(Cs(u))) holds. In the sequel, if there is no possible confusion all string data
structures are right. The proofs of stated properties for left ones are similar.

In this article, all string data structures are also associative, that is the product x; on D, defined
by d x; d’ := (d e~ R(d")), for all d,d” in D, is associative. As a consequence, the set D with the
product *; is a monoid called the structure monoid of S, and denoted by M(D, I) or M(S). A string data
structure S satisfies the cross-section property for a congruence relation = on [n]*, if u ~ v holds if and
only if Cs(u) = Cs(v) holds for all u, v in [n]*. In that case, the quotient monoid [n]*/~ is isomorphic to
the monoid M(S), [9]. We say that S satisfies the cross-section property for a monoid M if S satisfies the
cross-section property for the congruence ~y on [n]* defined by M.

Let (D,I,R) and (D,], R) be right and left string data structures. We say that the insertion maps I
and J commute if

Yy~ (de~vpx) = (y wyd) o x, (2.1.2)

holds for all d in D and x,y in [n]. In this case, the compositions *; and *; are associative, and the
relation d *x; d’ = d’ x; d, holds for all d,d” in D, [9]].

2. String data structures

2.1.3. Morphisms of string data structures. Given two string data structures S = (D,I,R) and
S” = (D’,I’,R’), a morphism of string data structures from S to S’ isa map f : D — D’ that maps 0 to 0’
and satisfies the following two conditions:

i) f(d e~y x) = f(d) e~p x,foralld € D and x € [n],

ii) for every d in D, Cy/(R(d)) = Cs(R’(f(d))) holds.

2.1.4. Lemma. Any morphism of string data structures f : S — S’ induces a morphism of monoids M(f) :
M(S) — M(S).

Proof. Following condition i) in (2.1.3), we prove f(d e~; u) = f(d) ~p u, for all d in D and u in [n]*
by induction on |u|. Suppose the equality holds when |u| = k — 1, then for y in [n] we have

flderpuy) = f((d e~pu) e~py) = f((d evpw) evp y = (f(d) e~p u) evp y) = f(d) e~p uy.

In an other hand, following condition ii), we have Cs/(R(d")) = Cy(R'(f(d"))), for all d’ in D, hence
Cy(R'(f(d)R(d")) = Cy(R'(f(d)R'(f(d"))). As a consequence, we have

fld*rd’) = f(d e~ R(d') = f(d) evp R(d') = f(d) e~p RI(f(d') = f(d) *p f(d),

for all d,d’ in D, proving that M(f) is a morphism of monoids.]

The commutation of insertions of a string data structure can be proved using the following result.
2.1.5. Lemma. Let(D, I, R) and(D,], R) be right and left string data structures such that I and J commute.
Let (D', I',R’) and (D', J', R’) be right and left string data structures. If there exists a surjective morphism
of string data structures from D to D’ with respect to insertions I and I’ and to insertions J and J', then I’

and J' commute.

Proof. Suppose that f : D — D’ is a surjective map that extends into morphisms of string data
structures (D,I,R) — (D’,I’,R") and (D, J,R) — (D’, J’,R"). We have

fly vy (devpx)) =y wop (fldervr x)) =y wp (f(d) e x),
and
fly wyd)err x) = f((y wy d) evp x = (y wy f(d) e~r x,
for all d in D and x, y in [n]. By commutation of I and J, we deduce the following equality

y oy (f(d) e~p x) = (y vy f(d) e~p x.

The map f being surjective, we deduce that I’ and J’ commute.]

2.2. String data structures and crystal structures

2.2. String data structures and crystal structures

2.2.1. Crystals. Recall from [11], that a crystal structure on a subset S of [n]* isadata C = ((e;)ie[n-1]. (f1)ie[n-1])
made of families of crystal operators, that is maps

ei, fi : S = SU {0},
satisfying the following properties:
i) e; and f; are mutually inverse, i.e. for all u,v € S, v = f;(u) holds if and only if u = e;(v) holds,
ii) if u € S satisfies e;(u) # 0 (resp. f;(u) # 0), then
eilei(w) = ei(u) — 1, pi(ei(u)) = @i(u) +1 and Wt(u) <weight Wt(e;(u))

(resp. &i(fi(w) = &:(w) + 1, i(fiw)) = @i(w) — 1 and Wt(fi(w)) <weight Wt(u)),
where ¢;(u) = max{k € NU {0} | ef(u) # 0} and ¢;(u) = max{k € NU {0} | fik(u) # 0}

A word u in S is of highest-weight if e;(u) = 0, for all i in [n — 1].

2.2.2. Kashiwara and quasi-Kashiwara crystal structures. We recall from [11]] the Kashiwara

crystal structure for type A on [n]*, that we will denote by K = (e;, ﬁ) . For i € [n — 1], the Kashiwara
operators

&, fi: [n]" — [n]" U {0}

are defined as follows. A word w in [n]* is transformed into a word in {+, —}*, by replacing each letter i
of w by +, each letter i + 1 by —, and every other letter by A, and by keeping a record of the original
letter replaced by each symbol. Then we delete the subwords —+ until no such subwords remain. The
final word is of the form +”—. Note that the method given in [11] consists of eliminating sub-words +—,
this is because the choice of convention for the reading map on Young tableaux. If r > 0, then ﬁ(w) is
obtained by replacing in w the rightmost element i by i + 1 and the others elements of w stay unchanged.
If r = 0, then ﬁ(w) = 0. If] > 0, then e;(w) is obtained by replacing in w the leftmost element i + 1 by i
and the others elements of w stay unchanged. If [= 0, then ¢;(w) = 0.

Recall from [3] the quasi-Kashiwara crystal structure on [n]*, that we denote by qK = (&, f;).
For i € [n — 1], the quasi-Kashiwara operators

& f: [l — [n]" U {0}

are defined as follows. Let w in [n]*. If i appears to the right of i + 1 in w, then &;(w) = fi(w) = 0. If i
does not appear to the right of i + 1 in w, and w contains at least one element i, then f;(w) is obtained
from w by replacing the rightmost i by i + 1. If w does not contain i, then f;(w) = 0. If i does not appear
to the right of i + 1 in w, and w contains at least one element i + 1, then €;(w) is obtained from w by
replacing the leftmost i + 1 by i. If w does not contain i + 1, then é;(w) = 0. Note that the quasi-Kashiwara
operators act as restriction of the Kashiwara operators, that is for u in [n]*, if & (u) (resp. f;(u)) is defined,

so is e;(u) (resp. ﬁ(u)), and e;(u) = é;(u) (resp. ﬁ(u) = fi(u)), [3, Prop. 5.2].

2. String data structures

2.2.3. Crystal graphs. The crystal graph of C is the oriented graph, denoted by I'(C), whose vertex set

is S, and for all u, u’ in S, there is a labelled arrow u 4w ifand only if fi(u) = u’, or equivalently e;(u”) =
u. For u in S, we will denote by I'(C, u), or I'(u) for short, the connected component of the crystal
graph T'(C) containing u. A crystal isomorphism from I'(u) to T'(u’) is a bijective map ¢ : T'(u) — T'(u’)
satisfying the following two conditions:

i) it is weight-preserving, that is wt(y/(v)) = wt(v), for every v in I'(u),

ii) for every arrow v 5 v in I'(u), there is an arrow ¥/(v) 5 Y(0')in T'(w').

2.2.4. Crystal congruence. We define a relation ~¢ on S by setting, for all u,u’ € S, u ~¢ u’ if there
is a crystal isomorphism ¢/ : I'(u) — I'(u’) such that ¢(u) = u’.

For i € [n — 1], we say that the operator e; (resp. f;) is monomial if for all u,v,u’,v’ € S such
thatu ~¢c vand u’ =¢ v’, then e;(uu’) # 0 (resp. fi(uu’) # 0) if and only if e;(vv”) # 0 (resp. fi(vv’) # 0),
and if both are non-zero, one of the following properties holds:

i) ej(uu’) = ue;(u’) and e;(vv’) = ve; (V') (resp. fi(uu') = uf;(w’) and fi(vv’) = vf;(v"));
ii) e;(uu’) = e;(w)u’ and e;(vv’) = e;(v)v’ (resp. fi(uu’) = fi(w)u’ and f;(vv’) = fi(v)v').
A crystal structure is called monomial if its operators are.

2.2.5. Compatibility with a string data structure. Let S = (D,I,R) be a string data structure.
For i € [n — 1], we say that the crystal operator e; (resp. f;) commutes with I if, for u € S, such
that e;(u) # 0 (resp. fi(u) # 0), we have

ei(R(Cs(w)) = R(Cs(ei(w)) (resp. fi(R(Cs(w))) = R(Cs(fi(w)))).
In that case, we say that the crystal structure C commutes with the string data structure S.

2.2.6. Theorem. LetS be a weight-preserving string data structure, and C be a monomial crystal structure
that commutes with S. Then the relation ~¢ is a congruence on [n]*. Moreover, if there is at most one
element of Rg(Ds) in each ~¢-class, then S satisfies the cross-section property for ~¢.

Proof. We first prove that ~¢ is a congruence on [n]*. Consider u,u’,v,v’ in [n]* such that u ~¢ v
and u’ ~¢ v/, that is, there exist crystal isomorphisms ¢ : I'(u) — I'(v) and ¢" : T'(w’) — T'(v’). We
prove that uu’ ~¢ vv’ by showing that the following map

y"” : T(uu') - I'(vo')

sending any w = f;, .. fi, (u') in T(uo) to f, ... f;,(v0'), where fi...... fi, € {(fiefnor]. (€)icfnn)}
is a crystal isomorphism. This result is a consequence from the facts that C is monomial and ¢ and ¢’
are crystal isomorphisms, see [3] for the quasi-Kashiwara case. Let us now show that S satisfies the
cross-section property for ~¢. Define first the map

® : T(u) — T(R(Cs(u))) (2.2.7)

for all u in [n]*, sending any w in I'(u) to R(Cs(w)). For every arrow w L W in I'(u), there is an
arrow O(w) N O(w’) in T'(R(Cs(w))). Indeed, the equality f;(R(Cs(w))) = R(Cs(fi(w))) = R(Cs(w’))

3. String of columns rewriting

(resp. €;(R(Cs(w’))) = R(Cs(ei(w”))) = R(Cs(w))) holds. Since S is weight-preserving, we conclude
that © is a crystal isomorphism. Suppose now that u ~¢ v, for all u,v € [n]*. By isomorphism (2.2.7),
we have u ~¢ R(Cs(u)) and v ~¢ R(Cs(v)). Hence R(Cs(u)) ~¢ R(Cs(v)) holds. Since there is at most
one element of Rg(Ds) in each ~¢-class, the equality R(Cs(u)) = R(Cs(v)) holds in [n]*. Since R is
injective, we deduce that Cs(u) = Cs(v). Conversely, suppose that Cs(u) = Cs(v). By (2.2.7), we have
u ~¢ R(Cs(u)) and v ~¢ R(Cs(v)), showing that u ~¢ v. This proves the result. O

The quotient of the free monoid [n]* by the congruence ~¢ is called the crystal monoid of C, denoted
by M(C). A monomial crystal structure C is called compatible with a string data structure S if the
monoids M(C) and M(S) are isomorphic.

3. STRING OF COLUMNS REWRITING

In this section, we study two-dimensional strings defined by gluing columns and called string of columns.
This combinatorial structure generalizes many structures of tableaux such as skew tableaux, [21]], Young
tableaux of type A, [22]], Young tableaux of type B, C, D and G, [11]], quasi-ribbon tableaux, [19], and
Patience Sorting structures [1l]. We give explicitly in the plactic-like structures on skew, Young
and quasi-ribbon tableaux. We formulate in Kashiwara (resp. quasi-Kashiwara) crystal operators
in terms of columns by introducing a crystal structure on Scol,, that restricts the Kashiwara (resp.
quasi-Kashiwara) crystal structure defined on [n]* with respect to the reading Rsyy . Finally, we define
in the notion of string of columns rewriting system as a binary relation on the set of string of
columns, whose rules are applied with respect to right and left positions, and we show how to present a
plactic-like structure by such a rewriting system.

3.1. Strings of columns
3.1.1. Columns. A column (over [n]) is a decreasing string c* ...c! over [n], ie, with ¢!*' > ¢,
for 1 < i < k. It is represented by a collection of boxes in left-justified rows, filled with elements of [n],
whose each row contains only one box, and the entries strictly increase down. A column is pictured by

-
where 1 < ¢! < ... < ¢k < n, and is also denoted by (ch... ;ck). We say that the i-th box contains the

entry c’, and that k is the length of c, that we will denote by |c|. We denote by Col,, the set of columns
over [n]. A column of length 0 is the empty column denoted by A..

3.1.2. String of columns. Two columns ¢y, ¢; in Col, can be glued at position p in Z as follows:

1

)

€1 |p(32 = 4]

3. String of columns rewriting

For 1 < j < p, we say that (c{, c;ﬂ) is a full row of length 2 in c1|,c,. A pair (], c]), fori1<j<i,anda
pair (¢, [1), for p+ 1 < j < k, is called a row of length 2, where [] denotes the empty box. A string of
columns is a sequence of glued columns:

w = cilpC2lp, - - - Cmlpy,Cmr1- (3.1.3)

The sequence (p1, 2, - - ., Pm) in Z™ is called the gluing sequence of w. Gluing sequences can be defined
in a consistent way by considering a gluing map g : Col,, X Col,, — Z that associates to columns c and ¢’,
a gluing position g(c, ¢’). Given a gluing map g, we define the set of strings of columns constructed with
respect to g as the set of string of columns of the form (3.1.3), where for any 1 < i < m, p; = g(c;, ¢i+1)-
The total length of w is the tuple tl(w) = (|c1], ..., |cm+1]) € N™*1. We will denote by ||w|| the number
of columns of w. We denote by w’ the i-th row of w, by |w’| the number of non-empty boxes in w’, and
by w]‘: the element in the j-th box of w’, where the rows are ordered from top to bottom and their boxes
are ordered from left to right.

For 3 < k < m+ 1, a connected row of length k is a sequence (c{ll, e cf’k‘) such that (c{l’, cfl’:) is a full
row of length 2 in ¢;, lPiz ¢ij,,» for 1 < I < k. A connected row (cfll, e, cf]’:) is increasing if cfll <...< c{’k‘
We call a row (over [n]) a string of columns whose gluing sequence is constant equal to 1 and columns
are of length 1. A string of columns is row connected (resp. row increasing) if all its rows are connected
(resp. increasing).

Given a fixed gluing map g, we define the shape of a row connected string of columns, constructed
with respect the gluing g, and containing k rows as the sequence (1;, ..., Ax) € N¥ such that the i-th
row contains A; boxes for 1 < i < k.

3.1.4. Monoids of string of columns. We will denote by Scol,, the set of strings of columns over [n]
and by Scol the set of row connected and row increasing string of columns over [n]. We denote
by String, the subset of Scol,, made of strings of columns of length 1 and the gluing sequence contains
only 1.

Given a fixed gluing map g, we define a concatenation operation with respect to g by the map
‘|g+ + Scol, X Scol, — Scol,, by setting

(C1lpy - - lpmCms1) lg (cilgy - - lgnCnsr) = ctlp, - - - |mem+1|g(cm+1,c;)Ci|q1 o gnChar-

The operation |4 is associative and unitary, where the identity is the empty string of columns denoted
by A.. We denote by Scol?, the set of string of columns in Scol, whose gluing sequence is given by the
gluing map g. In other words, Scolj is the free monoid on Col,, with respect the product |,.

3.1.5. The four corner readings. The south-west reading is the map Rgy : Scol,, — [n]* that reads a
string of columns, column-wise from left to right and from bottom to top. There are three other corner
readings Ryw, RNE, Rsw and Rsg defined in a similar way and that read a string of columns, column
by column, with respect right or left and top or bottom directions.

Define the map Fac : [n]* — [n]" sending a word w into the factorization w = wy ... wy, where
each w;, fori = 1,...,k, is a maximal strictly decreasing sequence, that is, the Rgy-reading of a column
in Col,,. For a fixed gluing map g € Z", consider the map

[1g: [n]" — Scol, (3.1.6)

that transforms each word w in [n]* into a string of columns (cy, . . ., cx) where each column ¢; is filled
by the elements of w; in Fac(w) from bottom to top, for i = 1, .. ., k, with respect the gluing map g.

10

3.2. Examples of plactic-like structures

3.1.7. Properties of strings of columns. A row connected string of columns w as in 1) is called

i) left-justified (resp. right-justified) if |c;| > |civ1| and |cit1| < pi < |ci (resp. |ci1| > |ci| and |c¢;| <
pi < |cipa]), forall1 < i < m.

ii) top-justified, (resp. bottom-justified) if p; = |ci11| (resp. p; = |¢i|), forall 1 < i < m.
iii) decreasing (resp. increasing) if its gluing sequence is decreasing (resp. increasing).

3.1.8. Plactic-like structures. A plactic-like structure (over [n]) is a string data structure S, whose
underlying set Dy is a subset of Scol, with a fixed gluing map, and whose reading is a four corner
reading. A monoid is called plactic-like if it is isomorphic to the structure monoid of a plactic-like
structure. In the rest of this article we suppose that any plactic-like structure is defined with respect the
south-west reading Rgyy.

3.2. Examples of plactic-like structures

3.2.1. Skew tableaux. A skew tableau with m + 1 columns is a string of columns w = c|p, ... |p,,Cm+1
in Scol$, whose gluing sequence satisfies pr < |cky1], for all 1 < k < m. A diagonal skew tableau is a
skew tableau ci|p, . . .|p,,cm+1 Whose gluing sequence satisfies py = 1, for all 1 < k < m. We denote
by s the gluing map for diagonal skew tableaux. We will denote by Sk, (resp. dSk,) the set of skew
(resp. diagonal skew) tableaux over [n]. Any string u over [n] is the Rgy -reading of a unique diagonal
skew tableau, thus the map Rgy defines a bijection from dSk, to [n]*. Consider a skew tableau w. An
inner corner in w is an empty box located above and to the left of two non-empty boxes. An outer corner
in w is an empty box located to the end of a row or at the bottom of a column or to the right and beyond
of two non-empty boxes.

3.2.2. Young and quasi-ribbon tableaux. A Young (resp. quasi-ribbon) tableau with m + 1 columns
is a string of columns w = c¢i|p, ... p,,Cm+1 in Scol§ whose gluing sequence is decreasing and satisfies

Pk = leks1| (resp. pr = |ck| + lek41]| = 1), foralll <k <m. (3.2.3)

We denote by Y the gluing map for Young tableaux, and by Yt,, (resp. Qr,) the set of Young (resp. quasi-
ribbon) tableaux over [n].

3.2.4. Top and bottom concatenation. We define the top (resp. bottom) concatenation of an element

x in a column ¢ = (c!;... ;ck) as the skew tableau defined by
clix ifx > c!, (cl;...;ck;x) if x > ¢k,
cenvg X = . B (resp.xwac =)
(x;¢t;...5¢%) else. x|ic else.

We extend these concatenations into insertions maps on skew tableaux, defined for x € [n] and
w = cilp, - . |p,Cm in Sk, by setting

W ewra X = Cilp, ... p,(Cm €V X), (resp. x e W= (x g c)lpy -+ - |puCm)- (3.2.5)

The top and bottom concatenation on diagonal skew tableaux given in (3.2.5) define two plactic-like
structures on diagonal skew tableaux: a right one dS;, := (dSky, I}') and a left one dSj, := (dSk,, I}").

11

3. String of columns rewriting

The top (resp. bottom) concatenation on a diagonal skew tableau w acts only on the last (resp. first)
column of w and do not change the others columns. As a consequence, for all x, y € [n], we have the
following commutation property:

y e (wevpe x) = (Y wpe w) evpa X. (3.2.6)
Hence the insertions maps I} and I} commute, and the structure monoid M(dS},) is isomorphic to [n]".

3.2.7. Schensted’s insertion algorithms, [20]. Given a row r (resp. a column c), we denote by
RoWINSERT(r, x) (resp. COLUMNINSERT(c, x)) the procedure that inserts an element x in a row r (resp. col-
umn c) and returns a pair (r’, y) (resp. (¢’, y)) made of the resulting row r’ (resp. column ¢’) and the
bumping element y that can be empty, as follows. If x is bigger or equal (resp. strictly bigger) than all the
elements of r (resp. c¢), then r’ (resp. ¢’) is obtained by adding x to the end (resp. the bottom) of r (resp. c)
and y is empty. Otherwise, let y be the smallest element of r (resp. ¢) such that x < y (resp. x < y),
then r’ (resp. ¢’) is obtained from r (resp. c) by replacing y by x. The right (resp. left) insertion algorithm
computes a tableau (¢ ¢~g_ x) (resp. (x wg, t)) as follows:

RiGHTINSERTYT(, x) LEFTINSERTYT(Z, x)
Input: A Young tableau t and x in [n]. Input: A Young tableau ¢ and x in [n].
Output: The Young tableau (¢ e~g, x). Output: The Young tableau (x ~»g, t).
y=x;t":=0; y=x;t":=0;
while y # 1 do while y # 1 do
r:=t[1]; =113
t:=t/r; b=ty
(r’,y) := ROWINSERT(r, 1) (¢’,y) := COLUMNINSERT(c, i)
t = (t';r") t' = [t';c']
end end
return (t';t) return [t';t]
Algorithm 1: Schensted’s right algorithm Algorithm 2: Schensted’s left algorithm

where t[i] (resp. f[;)) denotes the i-th row (resp. column) of the tableau ¢, and t/¢[1] (resp. t/;,) the
Young tableau obtained from ¢ by removing its first row (resp. column), and where (t;t’) (resp. [t;t’])
denotes the Young tableau obtained by concatenating ¢ over (resp. to the right of) a Young tableau #’
when the concatenation defines a Young tableau.

These two algorithms define two plactic-like structures on Young tableaux: a right one Y}, := (Yt,, S,)
and a left one Y¢ := (Yt,, ;).

3.2.8. Insertion algorithms in quasi-ribbon tableaux. Given two quasi-ribbon tableaux ¢ and ¢’,
we denote by [g; q’] the quasi-ribbon tableau obtained by concatenating q over g’ by gluing the rightmost
and bottommost box b of g over the leftmost and topmost box b’ of q’, when the element of b is strictly
smaller than the element of b’, as illustrated in the following diagrams:

R 2 DHWD,

q = - q = E-5 lg:9'] = m.m

where 1 < x < y < n. In this way, we will represent a quasi-ribbon tableau g with k rows by [¢';. . .; ¢].
Recall from [[19] Algorithm 4.4] (resp. [2, Algorithm 4.4]) the right (resp. left) insertion algorithm,
denoted by (q «~p, x) (resp. (x ~> g, q)) that inserts an element x in [n] into a quasi-ribbon tableau g.

12

3.3. Crystal structures on strings of columns

RIGHTINSERTQR(q, x)
Input: A quasi-ribbon q with R rows and x in

[n].
Output: The quasi-ribbon tableau g <~ x.
q =0;q"=0;r=0;r:=0;
if x < g; then

q =(x);
return [¢’; q]

end

fori=R,...,1do
forj =|q'|,...,1do

if x > qj. then
r= (qi,.-. .,q},x) 3
= Gy D) s
q =lg"..:q"75r]s
q// — [r/; qz+1; o ;qR] :
return [q¢’;q"]

LEFTINSERTQR(q, x)
Input: A quasi-ribbon q with R rows and x in

Output: The quasi-ribbon tableau x ~>p;, q.
q=0;q9"=0;r=0;r:=0;
if x > qf’R‘ then

q =);
return [q; q’]
end

fori=1,...,Rdo
forj=1,...,|¢'| do
if x < g} then
r=(ngh . q);
e Gl
q =1Iq%...:q" 7]
q// — [r;qu;_._;qR] :
return [q’;q"']

end end

end end
end end

Algorithm 3: Right quasi-ribbon insertion Algorithm 4: Left quasi-ribbon insertion

Left and right insertion H, and H; induce two string data structures on Qr,,: a right one Q, :=
(Qr,, H,) and a left one Q/, := (Qr,,, H)).

3.3. Crystal structures on strings of columns

3.3.1. Kashiwara crystal operators on Scol,,. Foriin [n — 1], we define operators
€. f; : Scol, — Scol, U {0}, (3.3.2)

as follows. A string of columns w in Scol,, is transformed into a string over {+, —} by replacing each
column of w, from left to right, by the symbol + if the column contains the letter i and does not contain
the letter i + 1, the symbol — if the column contains the letter i + 1 and does not contain the letter i,
the empty string A, in the other cases, and by keeping a record of the original column replaced by each
symbol. Then we eliminate the substrings —+ until no such substrings remain. The final string will be
of the form +" /.

i) Ifr > 0, then?,-(w) is obtained from w by considering the column that was replaced by the rightmost
symbol + and replace its element i by i + 1. If r = 0, then f;(w) = 0.

ii) If [> 0, then e;(w) is obtained from w by considering the column that was replaced by the leftmost
symbol — and replace its element i + 1 by i. If [= 0, then €;(w) = 0.

13

3. String of columns rewriting

il in Scoly. Compute E(w) and €;(w).

For instance, consider w =

[1]2] 2 1
[Tlafafers] — +—A++- —> 44— = +
175}
4
7 2] ~ HE! . F ~
Then f,(w) = [Tlala[r] and ey(w) = [EEEEZ | In the same way, we obtain f3(w) = 0, e3(w) =
En :
[1]2] —~ [1]2] s [1]2]
i[3[s[2[3), €;(w) = _[pleE and fi(w) = 2Bl .

3] Ei Eg
2 2 2
4 4 4
3.3.3. Quasi-Kashiwara crystal operators on Scol,,. For i in [n — 1], we define operators

e;, f; : Scol,, — Scol, U {0}, (3.3.4)

as follows. Let w in Scol,,. If a column of w contains both i and i + 1, or it contains i and is situated to the
right of a column containing i + 1, then e;(w) = f;(w) = 0. In the other cases, suppose that at least one
column of w contains the letter i + 1 (resp. i), then e;(w) (resp. f;(w)) is obtained from w by considering
its leftmost (resp. rightmost) column containing i + 1 (resp. i) and by replacing the corresponding i + 1
(resp. i) by i (resp. i + 1).

(=[]

ifies] in Scoly. Since the first column of w contains 1 and 2,

For instance, consider w = u
113]

then f;(w) = e;(w) = 0. Since the fourth column of w contains 2 and is situated to the right of the
second column containing 3, then f,(w) = ez(w) = 0. In the same way, we obtain f3(w) = e3(w) = 0.

3.3.5. Remarks. By definition, the Kashiwara and quasi-Kashiwara operators on Scol,, preserve gluing
sequences. Note also that the Kashiwara (resp. quasi-Kashiwara) crystal structure on Scol,, is a restriction
of the Kashiwara (resp. quasi-Kashiwara) crystal structure on [n]* with respect the reading Rsy . Indeed,
by definition of the operators e, fj, e;, fj, for a fixed gluing map g, we have

&(w) = [EG(Rsw(w)ly and fi(w) = [fiRsw(w))y, (33.6)
(resp. ei(w) = [¢é:(Rsw(w))l; and fi(w) = [fiRsw(w))],). (33.7)
for every w in Scol?l, and i € [n— 1]. As a consequence, for every w in Scolﬁ, we have
Rsw(@(w)) = &(Rsw(w)) and Rsw(fi(w)) = fi(Rsw(w)),
(resp. Rsw(ei(w)) = &(Rsw(w)) and Rsw(fi(w)) = fi(Rsw(w))),
that is, the following diagrams commute
Scol, RS—W> [n]* Scol, RS—W> [n]" Scol, RS—W> [n]" Scol, RS—W> [n]*
Eil F} EJ fi (resp. eli léi le fi).

Scol,, —— [n]*
sw

14

i
Scol,, —— [n]”
Rsw

Scol,, —— [n]"
Rsw

Scol,, —— [n]"
Rsw

3.3. Crystal structures on strings of columns

Conversely, for every u in [n]*, we have
@) = Rsw(@([uly) and fi(u) = Rsw(fi([ul,))

(resp. &(u) = Rswi(ei([uly)) and fi(w) = Rsw(fi([ul,)).

Indeed, suppose that Fac(u) = u; ... ug. For a fixed i in [n — 1], compute ﬁ(u) and e;(u). If u;, for j =
1,...,k, contains both i + 1 and i, then i + 1 and i appear only once in u;, and i + 1 is located to the left
of i. Otherwise, i or i + 1 appears only once in u;. Then, following the definition of ﬁ and e; recalled
in we replace u;, for j = 1,...,k, by — if it contains only i + 1, by + if it contains only i, and by A
in the other cases. After, ones eliminates the subwords —+ until no such subwords remain. We obtain a
word of the form +"—!. If r > 0, then ﬁ(u) is obtained from w by considering the strictly decreasing
subword in Fac(w) that was replaced by the rightmost symbol + and replace its element i by i + 1. If
r = 0, then ﬁ(u) = 0. If | > 0, then e;(u) is obtained from u by considering the strictly decreasing
subword in Fac(u) that was replaced by the leftmost symbol — and replace its element i + 1 by i. If
I =0, then ¢;(u) = 0. Hence, ¢;(u) = Rsw(e;([u]y)) and ﬁ(u) = RSW(E([u]g)), for a fixed gluing map g.
Similarly, we show that €;(u) = Rsw(e;([u]y)) and fi(u) = Rsw(fi([uly)).

As a consequence, the crystal operators (resp. (3.3.4)) define a crystal structure on Scol,,,
denoted by K (resp. %), that coincides with the crystal structure K (resp. ¢X) on [n]*, in the sense
that the following diagrams commute

[lg ., [lg ., [lg ., [lg .,

Scol,, ——— [n] Scol,, —— [n] Scol,, ——— [n] Scol,, —— [n]

T F A b e koAb

Scol,, —— [n]" Scol, —— [n]* Scol,, —— [n]" Scol,, —— [n]*
Rsw sw Rsw sw

Denoting I'(K, d) (resp. T(¢X, d)) the connected component of d in Scol, with respect e; and f;
(resp. e; and f;), we have a set-theoretical isomorphism of connected component I'(K, d) = I'(qK, Rsw (d))
(resp. T'(gK, d) ~ T'(gK, Rsw(d))). As a consequence, the following two properties hold:

i) The vertex set of every connected component of F(%, d) is a union of vertex sets of connected
component of I'(q%X, d), for every d € Scol,, [3 Proposition 8.4].

i) Let ¥ : T(K,d) —>_F(%, (d)) be a crystal isomorphism. Then, ¢ restricts to a quasi-crystal
isomorphism ¢ : T'(¢K, d") — T(qK, ¥(d")), for every d’ in I'(K, d), [3, Proposition 8.5].

3.3.8. Proposition. Let S and S’ be two plactic-like structures. Let C be a crystal structure on [n]*
compatible with S’. Any morphism of string data structures f : S — S’ induces a crystal isomorphism
fromT(C,R(d)) toT(C,R'(f(d))), for everyd in Ds.

Proof. By definition of f, we have Cy/(R(d)) = Cs/(R'(f(d))), for every d in Ds. In an other hand, the
crystal structure C being compatible with S’, the crystal monoid M(C) is isomorphic to the structure
monoid M(S’). As a consequence, R(d) and R’(f(d)) are equal in the crystal monoid M(C), and thus the
connected components I'(C, R(d)) and T(C, R’(f(d))) are isomorphic, for every d in Ds. O

15

3. String of columns rewriting

3.3.9. Crystal operators on Scol. We define a restriction of crystal operators on ScolS. For i in [n—1]

and w in Scol;, we define the operators et Scol; — Scol§ U {0}, as in 1i except for conditions
i) and ii), defined as follows

i)’ If r > 0, consider the diagram d obtained from w by considering the column that was replaced by
the rightmost symbol + and replace its element i by i + 1. If d € Scol$, then f;(w) = d. Otherwise,
f;(w) =0.If r = 0, then f;(w) = 0.

ii)’ If [> 0, consider the diagram d’ obtained from w by considering the column that was replaced by
the leftmost symbol — and replace its element i + 1 by i. If ’ € Scol}, then €;(w) = d’. Otherwise,
€;(w)=0.If] =0, then'e;(w) = 0.

Note that by restricting this crystal structure to the set of quasi-ribbon tableaux, we recover the
Krob—Thibon quasi-crystal introduced in [14].

3.3.10. Proposition. LetS be a plactic-like structure, and C be the crystal structure on Scol, presented
in (3.3.9). Let w be in Scol}, with k rows, whose i-th row consists entirely of i, for 1 < i < k, then w is of
highest-weight.

Proof. Let w be in Scol§ with k rows, where each i-th row consists entirely of i, for 1 < i < k. The
symbols i and i + 1 appear together in each column of w, for 1 < i < k — 1. Then €;(w) = 0, for
all 1 < i < k— 1. Moreover, fori = k,...,n— 1, the symbol i + 1 do not appear in w, and then €;(w) = 0,
showing the claim.]

Note that the converse of this property is not true in general. For example, for the following skew

. ~ . . .
tableau w = in Sks, we have €;(w) = 0 but its second row does not consist entirely of 2. However,
the converse of this property is true in the case of Young (resp. quasi-ribbon) tableaux.

3.3.11. Proposition. The set of Young (resp. quasi-ribbon) tableaux of a given shape A forms single
connected components with a unique highest-weight string of columns with respect to the crystal structure

on Scol$ presented in (3.3.9).

Proof. Let w be a highest-weight Young (resp. quasi-ribbon) tableau of shape A, that is, €;(w) = 0, for
all i in [n—1]. By definition, €;(w) = 0 if and only if w consists of columns which contain both i and i + 1,
columns which contain neither i or i + 1, columns containing i without i + 1 and columns containing i + 1
without i, such that each column containing only the symbol i + 1 is followed by a column that contains
only the symbol i. Since w is a Young (resp. quasi-ribbon) tableau with a fixed shape A, then w is unique.
Moreover, by definition of the crystal operators on Scol, applying these operators does not change
the gluing sequence of a given tableau and then preserves its shape. Hence, starting from a unique
highest-weight Young (resp. quasi-ribbon) tableau of shape A and by applying the crystal operators on
it we recover all the tableaux of the same shape, showing the claim.]

3.3.12. Proposition. Let S be a weight-preserving string data structure, and C be a monomial crystal
structure that commutes with S, such that there is at most one element of Rs(Ds) in each ~¢-class. If each
connected component I'(C, R(d)), ford € Ds, contains a unique highest-weight string of columns, then in
every connected component in T'(C) there is a unique highest-weight word.

16

3.4. String of columns rewriting

Proof. Consider u in [n]*. By Theorem|2.2.6] the monoids [n]*/~¢ and M(S) are isomorphic. Since Cs(u) =
Cs(R(Cs(u))), the connected component I'(C, u) is isomorphic to T'(C, R(Cs(u))) which contains a unique
highest-weight string of columns. Hence, every connected component in I'(C) contains a unique
highest-weight word. o

3.3.13. Example:Kashiwara and quasi-Kashiwara crystals. Consider the Kashiwara crystal struc-

ture K = (e;, ﬁ) on [n]*. This crystal structure is monomial and commutes with Y7, [1115]. Moreover,
there is at most one element of Rsy/(Yt,) in each ~¢-class. Indeed, if two Young tableaux are at the
same place in two isomorphic connected components of the crystal graph of K, then they have the same
weight and thus they are equal. Note also that the plactic-like structure Y7 is weight-preserving. Then,
by Theorem the crystal structure K is compatible with Y7, and its crystal monoid is isomorphic
to M(Y7). Moreover, we recover from Proposition that in every connected component in T'(%)
there is a unique highest-weight word. Consider now the quasi-Kashiwara crystal structure gX = (&;, f;)
on [n]*. This crystal structure is monomial, [3, Lemma 5.4], and commutes with Q7, [3| Lemma 6.9].
Moreover, there is at most one element of Ry (Qr,,) in each ~ggc-class, [3, Proposition 6.7]. Note also
that Q) is weight-preserving. Then, by Theorem the crystal structure q/K is compatible with Q7,
and its crystal monoid is isomorphic to M(Q},). Moreover, we recover from Proposition|[3.3.12| that in
every connected component in I'(gK) there is a unique highest-weight word, [3, Proposition 6.13].

3.4. String of columns rewriting

3.4.1. Rewriting steps. Let define Scol”’ = ZxScol, xZ, whose elements are triples (p, u, q) where p, g
are positions in Z and is a string of columns, that we will denote by |,u|,. We define a string of columns
rewriting system, called rewriting system for short in the sequel, as a binary relation on Scolnp. That is, a
set of rules of the form

@ = |Psu|q$ = |pzvlqt’ (342)

where u, v are strings of columns in Scol,, and ps, gs, ps, q; are positions in Z. The pair (ps, gs) (resp. (ps, q:)
is called the source (resp. target) positions, and u (resp. v) is called the string of columns source (resp.
target) of the rule «, denoted by s(@) (resp. t(@)).

A string of columns w is said to be reducible with respect to a, if there is a factorization w =
wi|p,S(a)|g, w2 in Scol,,. In that case, w reduces into w' = wy |, t(a)|q, w2. Such a reduction is denoted by
Wi p, &|q, w2, or a if there is no possible confusion. Given a rewriting system R, the set of all reductions
defines a binary relation on Scol,,, called the R-rewrite relation that we will denote by =g, or = if there
is no possible confusion. The elements of =g are called R-rewriting steps, and have the form

I WilpS(@)g, Walp, = lpywilp, t(@)lg, W2lp,, (3.4.3)

for all a in R and wy, w, in Scol,. In (3.4.3) the data |, w1l — |, W2lp, is called the context of the rule a.
If we denote by C this context, the reduction (3.4.3) can be also denoted by C[«].

We denote by =7, the reflexive and transitive closure of the relation =g, whose elements are called
R-rewriting paths.

17

)

3. String of columns rewriting

3.4.4. Rewriting properties. We say that a rewriting system R is terminating if there is no infinite
R-rewriting path. A local branching (resp. branching) of R is a pair (¢, /) of R-rewriting steps (resp.
R-rewriting paths) having the same source as depicted in the following reduction diagram:

¢
|P1W1|q1

|pW|q

= bl

Such a branching is confluent if there exist R-rewriting paths ¢’ and 1/’ with a common target as follows:

(p/ |p1W1|q1 \(p

|pW|q |p’W,|q’

ffémwmzﬁz

We say that R is locally confluent (resp. confluent) if any local branching (resp. branching) of R is
confluent, and that R is convergent if it is confluent and terminating. A string of columns w is in normal
form with respect to R, if there is no rule that reduces w. When R is convergent, any string of columns w
has a unique normal form, denoted by Nf(w, R).

(3.4.5)

3.4.6. Critical branching. A local branching of the form (¢, ¢) is called aspherical. A local branch-
ing (¢, V) is called orthogonal if the source of ¢ does not overlap with the source of i, that is the source of
the branching is of the form |, w1 |p, s(¢)lg, W2lp,$(¥)lg, W3|p;» With w1, wo, w3 in Scol,,. A local branching
that is neither aspherical nor orthogonal is called overlapping. There are three shapes of overlapping

branchings (¢, ¥), where s(¢) = |p,w1lp,s(@)lg,W2lp,» and s(¥) = |y wilp;s(B)lg, wylp;, with a, f € R,
described by the following situations:

i) (position overlapping) qs = q;,
ii) (string overlapping) s(a) = |p, talp,Valg, and s(B) = |y valq, uplq,
iii) (inclusion) s(B) = |y uglp,s(a)lq,vplq,-

An overlapping branching that is minimal for the relation T on branchings generated by

lrulp@la®les | ul, wi
prttlpwilg,0ly
qo |p1W1|q1 ' '

[pwlq C pulpwlgoly

e prulpylgoly bl ele.vly
for any branching (¢, ¢) and context u|, — |4v of reductions ¢, 1, is called a critical branching.

3.4.7. Lemma. A rewriting system R is locally confluent if and only if all its critical branchings are
confluent. Moreover, if R is terminating with all its critical branchings are confluent, then it is confluent.

18

3.4. String of columns rewriting

Proof. The first statement is the critical branching lemma. Suppose that all the critical branchings of R are
confluent and prove that any local branching of R is confluent. By definition, every aspherical branching
is trivially confluent, and every orthogonal local branching is confluent. Consider an overlapping but
not minimal local branching (¢, /), there exist factorizations ¢ = C[¢’] and ¢ = C[{/], where (¢’,¢’) is
a critical branching of R. By hypothesis, this branching is confluent, and there are reductions paths
¢" :t(¢") = wand ¥ : t(y’) — w that reduce targets of ¢’ and ¢/’ to the same string of columns w. It
follows that the reductions paths C[¢”’] and C[/”'] make the branching (¢, /) confluent.

The second statement is an immediate consequence of Newman’s lemma, [18]], that proves that any
locally confluent terminating rewriting system is confluent. O

3.4.8. Normalization strategies. A reduction strategy for a rewriting system R specifies a way to
apply the rules in a deterministic way. When R is normalizing, a normalization strategy is a mapping
o of every string of columns |,wl|q to a rewriting path o),,,, with source |,wl|, and target a chosen
normal form of |, w|, with respect to R. For a reduced rewriting system, we distinguish the leftmost
reduction strategy and the rightmost one, according to the way we apply first the rewriting rule that
reduces the leftmost or the rightmost string of columns. They are defined as follows. For every string
of columns |, wlg, the set of rewriting steps with source |, wl|, can be ordered from left to right by
setting ¢ < i, for rewriting steps ¢ = |,wi|p,lq, W2lq and ¢ = |, W] |y, flq, w)lq such that [[wy|| < |[w]]].
If R is finite, then the order < is total and the set of rewriting steps of source |,w|, is finite. Hence this
set contains a smallest element o7, and a greatest element 7,,,,,|, respectively called the leftmost and
the rightmost rewriting steps on |, w|y. If, moreover, the rewriting system terminates, the iteration of o
(resp. n7) yields a normalization strategy for R called the leftmost (resp. rightmost) normalization strategy
of R:
Prpwlg) = 0yl IR (G el,) (Tesp. pipwle) = 1y, IOR(E 1))

The leftmost (resp. rightmost) rewriting path on a string of columns |,w| is the rewriting path obtained
by applying the leftmost (resp. rightmost) normalization strategy pg (resp. pz). We refer the reader
to [6l] and [[7] for more details on rewriting normalization strategies.

3.4.9. Projections by reductions. Let S = (D,I) and S’ = (D’,I’) be two plactic-like structures,
and let g be the gluing map of S. Let S’ C S be two sets of relations on [n]* such that S satisfies
the cross-section property for ~s. Let R be a convergent rewriting system satisfying the following
conditions:

i) (R computes S’) for any w € [n]*, Cs(w) = Nf([w]g, R),
ii) (R is compatible with ~g') for any rule d = d’ in R, we have Rsy(d) ~s» Rsw(d’),
iii) (R computes ~g') for all w,w” € [n]*, w x5 w’ implies Nf([w],, R) = Nf([w']4, R).

We deduce from these three conditions that S’ satisfies the cross-section property for ~s. Moreover,
we prove that the mapping
f:dvw— Nf(d,R) (3.4.10)

for all d € D, defines a morphism of string data structures from S to S’. The fact that f is compatible
with the readings follows from Condition i). Indeed, for any d in D, we have f(d) = Cy(Rsw(d)),
showing that Cs/(Rsw(d)) = Cs/(Rsw(f(d))). Let us prove that f commutes with insertions. By ii),

19

3. String of columns rewriting

we have Rsw(f(d e~; x)) =s¢ Rsw(d e~; x). Moreover, we have Ry (d «~; x) =s Rsw(d)x,
hence Rsw (f(d ¢~ x)) =s» Rgw(d)x . On the other hand, the following equalities holds in D’

f(d) €1 x = Co(Rsw (F(@))x) 2 NE(Rsw (£ (@)x]gs R).
Then f(d) e~p x =g [Rsw(f(d))x]y, and thus by ii), we deduce
Rsw(f(d) e~1 x) =5 Rsw(f(d)x ~s Rsw(d)x,
showing that Rsw (f(d «~1 x)) s Rsw(f(d) e~ x). Finally, following Condition iii), we obtain
f(d ey x) = f(d) o~p x.

3.5. Terminations orders

A way to prove termination of a string of columns rewriting system R is to consider amap f : Scol, — (X, <),
where (X, <) is a well-ordered set satisfying, for all w, w” € Scol,,,

w=gw implies f(w') < f(w).
In this subsection, we define two termination orders that will be useful in the following sections.

3.5.1. Top-left sliding order. Let w = u|p, ... |p,,_,um be in Scol,. We denote by h,, the number of
empty boxes between the top box of the column uj and the top position of w, shown by the blue line in

the following picture
O
3

Define the top deviation of w as the sequence d'(w) = (hy,, ..., h,,) € N™ We will denote by <. the
total order on Scol,, defined by w <j., w’ if and only if

(W) <reprex tH(w') or (tl(w) =tl(w') and d'(w) <jex d' (W')).

In order to prove the termination of top-left sliding operations presented in [4.2.1] we define the total
order <;; on Scol, by setting, for w, w’ in Scol,, w <;; w’ if and only if

llwll < [lw'll or (Ilwll = [lwl| and w Zjex w').

3.5.2. Right-bottom sliding order. Let w = uy|p, ... |p,,,um be in Scol,. The deviation of a string of
two columns u |,u; is defined by d(u;|,uz) = |uy| + |uz| — p. The total deviation of w is the tuple

d(W) = (d(ul |p1 uZ)’ d(uZ |p2u3)’ D) d(um—l |pm—1 um)) € Nm_l .
We will denote by Cj., the total order on Scol,, defined by w Cj., w’ if and only if
[lwll < [[w[| or ([lwll = [[w’[| and d(w) <jex d(w))

for all w, w” in Scol,. In order to prove the termination of right-bottom sliding operations presented
in[5.1.1} we define the total order <,; on Scol, by setting, for w, w’ € Scol,, w <, w’ if and only if

Rsw(w) <iex Rsw(w’) or (Rsw(w) = Rsw(w’) and w Cjex w').

20

4. Convergence of the jeu de taquin

4., CONVERGENCE OF THE JEU DE TAQUIN

In this section, we study the confluence of the jeu de taquin through a rewriting system defined by
column sliding. We show that this rewriting system is convergent and we describe the jeu de taquin
as a morphism of string data structures from skew to Young tableaux. We show how to deduce that
the Young tableaux satisfy the cross-section property for plactic monoid, that left and right Schensted’s
algorithms commute, and that the jeu de taquin induces a crystal isomorphism between the sets of skew
and Young tableaux.

4.1. Jeu de taquin

4.1.1. Plactic monoids. Recall that the plactic monoid (of type A) of rank n, introduced in [16], and
denoted by P, is generated on [n] and submitted to the following Knuth relations, [12]):

zxy =xzy, for 1<x<y<z<n and yzx =yxz, for I<x<y<z<n (4.1.2)

Knuth in [12] described the congruence ~p, generated by these relations in terms of Young tableaux
and proved the cross-section property for the monoid P,,.

4.1.3. Forward sliding, [21]]. A forward sliding is a sequence of the following slidings:

<—> for x < y, <—> forx <y, <—>, <—>
y] [y] \ L]]

starting from a skew tableau and one of its inner corners, and moving the empty box until it becomes
an outer corner. The jeu de taquin on a skew tableau w consists in applying successively the forward
slide algorithm starting from w until we get a string of columns without inner corners denoted 7;4(w),
which is shown to be a Young tableau. In this way, the jeu de taquin defines a map

Ttq * Skn 4 Ytn,

also called the rectification of skew tableaux. Schiitzenberger proved in [21]] many properties of the
jeu de taquin. These properties are also presented by Fulton in [4], as follows. For any w € Sk, the
following conditions hold

i) [4, Proposition 2]. Rsw(w) ~p, Rsw(7:q(w)),
ii) [4 Corollary 1]. The rectification 7;4(w) is the unique Young tableau satisfying i),
iii) [4} Claim 2]. The map 7;4 does not depend on the order in which the inner corners are chosen.

Note that condition ii) is a consequence of the cross-section property for P,, proved in [12] and
condition i). Moreover, condition iii) is a consequence of conditions i) and ii). In the rest of this section,
we show that conditions i) and ii) are direct consequence of a confluence property of a rewriting system
that computes the map 7,4, and without supposing the cross-section property for P, which is also
consequence of this confluence property.

21

4. Convergence of the jeu de taquin

4.1.4. Example. The jeu de taquin on the following skew tableau w starting with the inner corner |
applies three occurrences of forward sliding, where B denotes the empty box, and [the outer corner:

1[1]2] 1[1 1[1]2 1[1]2
[1]3 2|3 2[3 1]2[3 1]2]3
= = [5 = =3
3 L]
[1]1]2] 11]1]2]
- [2]3] - — 230
B = mrq(W)

4.2. Jeu de taquin as rewriting

4.2.1. Rules of the jeu de taquin. The jeu de taquin map 7,4 is described by the union of rewriting
systems FS, = LS, UIS, UTS, whose sets of rules are defined as follows.

i) LS, the set of left-sliding rules that move sub-columns to the left in the following two situations:

a’) aci,cj

b) 8¢

Ci,Cj

|p/

: |P'

1
i

¢y = |p’

£l

iz
c
J

q/ = |p, ,;Jl

1
i

o
o
3

1
<

|¢» indexed by columns c;, ¢;, and positions p’, ¢’, such

; <
iy and ¢;|(j, +i,—m)cj € Scol;.

lg/+(p—q)> indexed by columns c;, ¢, and positions p’, ¢’, such

that c¢;|(;,+1,-¢)c; & Scolyy, and m is maximal such that c¢;|(;,+,—p)c; € Scol; and iy < p.

ii) 7S, is the set of insert-sliding rules performing insertions in the following two situations:

a) ﬁci,(—'j

22

|p’

-1
i

g =

W1
<

|p’

lg/» indexed by columns c;, ¢;, and positions p’, q’, such

4.2. Jeu de taquin as rewriting

that c;[xc; € Scoly, with 1 < k < i; and k < iz, and [is minimal such that (cf, c]’."“) is a row and

-1 m 1
Ci < Cj < Ci.

1 1
o5 ¢

b) 5£,cj p ’ g = ly |g/+(ir +i,-p—q)» indexed by columns c;, ¢;, and positions p’, q’,

e

iy
i

such that c¢;|(;,+1,—q)Cj ¢ Scol$, where p is maximal such that cilpcj € Scol$, and 7 is minimal
such that (c}, C;+1) is a row with ¢! < c; <ch

iii) 78, is the set of left top sliding rules that move columns to the top as follows

1
c ¢

L LI
Ea i |er
1 r
a) Ve, * lp P lg = lp—s-r) 1 lg» indexed by columns c;, ¢; and positions p’, ¢,
cf ciz cy c]iz
& ¢!
c;!

< I .
such that c;|,c; € Scol;; with 1 < r < iy, or ¢;|,c; is not row connected with c} < c]’.z, and s is

maximal such that ¢;|sc; € Scol,f and s < i,.

CL Cl C]
cf < cf
e e . "
b) Scic; Iy " ¢ = |y " lg+(i1-p), indexed by columns c;, ¢j, and positions p’, ¢’, such
g
J

that ¢;(;,+1,—p)cj & Scoly and c;l;,c; € Scoly, or ¢l +1,-p)c; € Scoly and iy > p, or ¢;|kc; is not

row connected with k > iy and ¢;' < cjl..

In the sequel, if there is no possible confusion, we will omit the subscripts c;, ¢; in the notation of the
rules. Moreover, for any rule p in 78, we will denote by y* any composition of rewriting sequences
involving the rules p and ending on a normal form with respect to p.

4.2.2. Example. The rectification of the skew tableau w from Example can be computed with the
following reduction of FSp,:
1]1]2] 1]1]2]

[1]2] [1]2]
;\2 Yeo, s Yer, o ,Bcl,cz Acy,c5 23] = 7 (W)
w = %l — — — — E tq

=]

=
e

EE

23

4. Convergence of the jeu de taquin

4.2.3. Theorem. The rewriting system ¥S,, is convergent. In particular, the normal form of any skew
tableau with respect to ¥ S,, is a Young tableau. Moreover, ¥S,, computes Y, (resp. Y¢,), that is, the equality

Cyr(w) = Nf([w]s, FS,) (resp. Cye(w) = Nf([w]s, FSn)) (4.2.4)
holds, for any w € [n]*.

The rest of this section is devoted to the proof of this result. Lemmata [4.2.10|and [4.2.11| show that
the rewriting system S, is convergent. As a consequence, we obtain that the normal form of any
skew tableau with respect to S, is a Young tableau. Lemma [4.2.7] together with the convergence of
the rewriting system S, yield that #S,, computes Y}, (resp. Y¢).

4.2.5. Lemma. For any rule|c; |c;,| = |cj |cj,| in FS,, we have |c;, *s, c;,| = p;s (lej, lej, |). Moreover,
n

foranyc; = (cg, .. .,cfl) andc;j = (ch,.. .,cji.z) in Col,,, we have

¢i *s, ¢j = pyg (cilicy), ¢j *s, ¢i = pyg (cilic)). (4.2.6)

Proof. Prove that for any rule |c; |c;,| = |cj,|cj,| in FS,, we have [c; *s, ¢;,| = p;sn(|cj1|cjz|). The

rules Ueicps 55,(:]»’ ﬁci’cj and 551.’%. followed by f* yield to the Young tableau |c; x5, c;|. Consider now
the rule ye, ;- If ;| < |ei] and c;l|c;|c; € Scol, then the target of y., ; is equal to [c; xs, cj|. If |c;| < [¢)]
and c¢;||¢;|¢c; € Scoly, then the rule y, ., is followed by the rule a, ., in order to obtain |c; *s, ¢j|.
If ¢il|c;|c; ¢ Scol, then the rule y, ¢; followed by ac, ; and then by f*, or only followed by f* yield
to |c; xs, cj|. Consider finally the rule &, ;. If |cj| < |c;| then the target &, ., is equal to [c; s, ¢;l.
Otherwise, if [¢;| < |c;| then &, , is followed by a, ; in order to obtain [c; *s, c;l.

Prove the first equality of by induction on |c;|, the proof being similar for xs,. Suppose
that |c;| = 1, we consider the following two cases. If cl! < ch., then c;|ic; is equal to ¢; xs, c;. If ch. < c},
then by applying 67 on cilic; we obtain ¢; xs, ¢j. Suppose the equality holds when |[cj| = i — 1, and
prove it when |c;j| = i,. First consider the case when ¢; < c]’?. Suppose that by induction we have

X1 |
— S _ 2 iz
) = v —ci*gr(c,...,cj),
[|
£l
X1 | %
where x; and y; are elements of ¢; and c¢; with t < s. We prove that p;s (i) = ¢; x5, Cj, by
n Yt
x|
considering the following two cases.
Case 1. x; < cjl. and xp1 < yg, forallk =1,...,t - 1:
cj' X1 c/' X1 c/‘ c]\ x C/;
X1 | L X2 | Y1 é X2 | Y X1 | L X2 |
=c¢; xs, ¢j, for s=1t or T .1 =cixs, cj, for s>t
Xs | Yt Xs |Yt-1 Xs {Yr-1 Yt Y
Yt Yt L L
X, X,

24

4.2. Jeu de taquin as rewriting

Case 2. x; < cjl. (resp. ch. < x1) and let x; be minimal such that x;_; < y;—; < x;:

c} Xy cj‘ ”1‘ LJ‘ Y
X1 | X2 | Y X1 |t X1 | Y2
io1|yis yi| i = ¢ x5, Cj. (resp. v w] = ¢jks, Cj.)
Xi | Y Xi |Yi+1 :
: : X, X,
Yt Yt
Xs Xs

l

1 iy . s
Suppose finally that ¢; > ¢;*. We obtain: 775

The following result shows that the right and left Schensted insertions correspond respectively to
the leftmost and rightmost reduction paths with respect the rewriting system 7S,,.

4.2.7. Lemma. For any word w in [n]*, we have
(0 evs, w) = plhg (Wly), (wews, 0) = prg ([wl). (428)

Proof. We prove the first equality in by induction on the number of columns in [w];, the proof being
similar for the insertion S;. When [w]; is of length 2, then the equality is a consequence of Lemma [4.2.5]
For k > 3, suppose that the equality holds for words of length k — 1, and consider [w]s = ¢1]; . . . |ick- By
induction hypothesis, we have (0 e~g. w) = p;sn (c1l1 ... lick=1) *s, ck. Let us show that

p;‘sn(clll o l1ek-1) *s, o = p;gn(clll o liek). (4.2.9)

Since inserting cx into p;s (c1]1 - - - |1ck—1) consists into inserting its elements one by one from bot-
n

tom to top, it suffices to prove 1) for ¢ = (x). If x is bigger or equal to the last element xil of
the first row of p;s (c1]1...lick-1), then p;s (c1]1 -+ - l1ek=1)l1t(x) is a Young tableau that is equal

to p;sn (c1l1 - lick=1) *s, 1(x). Otherwise, if x < xil, we first apply a rule 67 in order to slide the box

containing x to the top of the one containing xi‘. We then apply the following reduction rules as shown
in the following reduction diagrams. Note that, the elements in the colored boxes represent the ones

that are bumped when inserting x into the tableau p;s (c1lr .+ lick-1)-
n
x:“ ‘M—l Ik ‘AM xf’ X:‘,H xf‘ :\M i\,q
P IO P T O 1 O e[e T T b R [] P kord
1 1+1 ks | Ks+1) kg | k1]

ks

i ks
R

I=
I~

25

I~

I~

4. Convergence of the jeu de taquin

K+
il IO

k3 | ks+1| kg1 i i |+l ky ip |+l
PN O e et il]
K| Ks+1| ks | ks+1| ik Ky ko ip | g+ ks | ks+1| ks +1| i1 ig ki ip |+l ks [ks+1| K+ 1]
X T gt b T RPNl IO o P [Pl I [- i I S I I e IO I et T [T e kT
ik Ky ka ks K| s+ ks | k1] ik ky ks K| ks+1 ks
J(2 X2 J(2 XZ xl 2 Xz 9 Xz e | Xy xZ "1 23 J(2
i ki ke it . i ki i
5P X3 X3 X3 X3 B X3 Xy Xy
ik Ky Kz 1 ik ky i
X X121 S X1 X121 i X
i Ky ka i ik k1
XI Xl XI .’(I XI X!
X1 XL
* i | i+ i | ikt * i | i+ i | ik * i | i1 ks | ks+] kit
Ky i | i+l ks | ka+1] kg +1| iy i [i+ ky i | i+l ks | ka+1] kg +1| iy i [i+ ky ip | i+l Ky | ks +1] Ky [ka+1|
. X2 Xz XZ Xl 1 X 1 Xl XZ 2 X2 XZ XZ X‘ 1 X 1 Xl XZ 2 XZ XZ X2 Xl) X2 2
ki ks K | s+ ks | ka+]] ik | g+ ki ks K| K3+ ks | ka+1] ik | g+ Ky ks
I P I - s oy s 7 e B O) B - s [oy s I 23 ¥ B P O
Ky ir ik i+ Ky i i i+ Ky i
Ky i i | it Kz i ik [ikt
B BN I n I Fave iy
Ky ik ki ik ki
& o X |t o X |t
The resulted Young tableau is equal to p (c1l1 -+ |1ck=1) *s, 1(x), showing the claim. O
n

4.2.10. Lemma. The rewriting system S, is terminating.

Proof. We prove that for any reduction w = w’ with respect to ¥S,,, we have w <;; w’ for the order <
defined[3.5.1} If w = w’ is a reduction with respect to LS, then ||w|| = ||w’|| and tI(w) <;eviex tI(W'),
showing that w <;; w’. Suppose now that the reduction is with respect to 7S,,. There are two cases
depending on the number of columns in the targets of the rules and 67. If the targets consist only
of one column then [|w]|| < |[|w’||. If they consist of two columns then ||w|| = ||w’|| and t](W) <,colex
tl(w’). Then, if w = w’ is a reduction with respect to 7S,,, we obtain w <;; w’. Finally, for any
reduction w = w’ with respect to 7S, we have ||w|| = ||w’||, tl(w) = tl(w’) and dT(w) <jex dT (W),
showing that w <<;; w’. O

4.2.11. Lemma. The rewriting system S, is confluent.

Proof. Following Lemma [3.4.7} we prove that the rewriting system 7S, is confluent by showing the
confluence of all its critical branchings. Consider first the rewriting system R(Col,, Y7,) whose rules are
of the formy, : [c|c’| = |cks, c’|, foralle, ¢’ in Col, such that ¢|yc” # cxg, c’. Prove that starting from a
string of columns consisting of three columns |c;|cj|ck |, we lead to the Young tableau |c; ks, ¢ s, ck| after
applying at most three steps of reductions with respect R(Col,,, Y7,) starting from the left or from the right.
We prove this result using Schiitzenberger’s involution on columns as shown in 8, Remark 3.2.7]. Let ¢
be a column of length p, the Schiitzenberger involution of c, denoted by c*, is the column of length n — p
obtained by taking the complement of the elements of c. This involution is extended to string of
columns by setting (ci|...[c,)" =cy|...|c],forallcy,...,c, in Col,. If ¢1]y ... |yc, is a Young tableau,
then (ci|ly ... |lyc,)" = crly ... |lyc] is also a Young tableau. Moreover, we have (c; *s, ... s, ¢,)" =
(cy xs, ... %s, cy), forallcy,...,c, in Col,. In particular, for three columns c;, ¢; and ¢ in Col,, we
have (c; xs, ¢j *s, ck)* = (¢} *s, c;f *s, c;), see [17]. In one hand, by definition of Schensted’s insertion S,,

starting from |c;|cj|ck |, we lead to |c; *s, ¢ x5, ci| after applying at most three steps of reductions with
respect R(Col,, Y7}) starting from the left. That is, we have

}/Ci,Cj|Ck Cflh/t‘n’,ck ch,CS|CS'
leilejlex] = lenlyewlel = lenleslyesl = lei s, ¢j *s, ckl.

26

4.3. Jeu de taquin as morphism

In an other hand, we have

ll}/j Ycl,c1|cl’ leYc ey
leilcjlek leil(cjxs, ci)l = leilellyer] = |(cixs,en)ler| = lemlyemler] = leml(cm*s,cr)l.

Let us show that |c,,|(cpy *s, cir)| = |ci *s, ¢j *s, ck|. By applying the involution on tableaux, we obtain
lexlejleil = I(cx *s, cpleil = leplycrleil = Iepl(e; *s, el = leplepylycn] = 1(cp *s, cp)leml.

By definition of S, we have |c; *s, C;*s, cil = |(cl, *s, Cpyr)|y |- Since (¢ *s, ¢ '*Sr ;) = (cixs, cj*s, cx)",
we deduce that |(¢; x5 c; *xs ci)*| = |(c}, *xs. ¢*,)|ck |. Fmall , by a l in the involution on tableaux,
r =] r 1 rm m Y, by applying
we obtain [(c; xs, ¢j *s, ck)| = [em|(cnr *s, cr)l.
Following Lemrna 5 for any rule |c; [c;,| = |cj |cj,| in FS,, we have [c;, *s, ¢;,| = p()TtSn(|cj1 lcj, 1)
Hence, any critical branching of 7°S,, has the following confluence diagram

S, (cjlejr) S, (cxrleir) p(fs (ckler)
lejlej |Cl"[;r |Ck|yckflcl'f = |cklcrlyer| => ek lycrrler| < Fevr.cr
|cilci i ci *s, cir xs, cir|
leilemlem) == lc; |Cn|y0n | |C§ lyes |C | ek lerr|yerl cxrer
Ps, cmlcmﬁ L T(esrlen)

where ¢; and ¢, are 7 S;,-reductions and where some indicated rules can correspond to identities, such
that cx|ycr = cjxs, cjr, cilycy = cprks, cim, cprlycrr = ks, cl, Cnlycn = cm *s, Co, Crrlycs = i ks, ¢
and cpr|ycp = ¢y s, Cpr. O

4.3. Jeu de taquin as morphism

4.3.1. Theorem. The rectification map ;4 : dSk, — Yt, extends into a surjective morphism of string
data structures:

Mg 0 dSy = Y, (resp. mj, = dSy, — Y). (4.3.2)

Proof. The surjectivity of ;4 is a consequence of the relation 7;4([Rsw(d)]s) = d, that holds for any d
in Yt,. Prove that ;. (resp. 7; q) is a morphism of string data structures by showing Conditions i), ii)
and iii) of [3.4.9 Condltlon i) is a consequence of Theorem [4.2.3] Prove Condition ii), that is, for
any rule d = d’ in £8,, we have Rsw(d) ~p, Rsw(d’). It suffices to show that Rsw (s(n)) ~p

Rsw (t(n)), for every rule 17 in ¥8,. This is obvious for y and §. For the rule @, consider RSW(s(a)) =

e cllcj’2 e c]m“cjm c and Rsw (t(a)) = c’2 c]m“cl‘1 ¢ et c . On one hand, we have
iy 2 iy m+1,.m 1 - - 11 iy i1— 1 2 1 -1 m+1.m 1
c;'...cicf et) cilefel T L eleigt T L e e
- - 11 iz -1 i1—1 1,.02—2 m+1,.m 1 @.1.2)
) ¢leie e ccc] ...cj e =
clich'lcl:z—lcl:l 1 C2C clz -2 cmtlem cl - - cm+1cmc 1 clem-1 c!
Felel e T efeiet T et) el Lee e
In an other han h iz mtlch 2elem | ol) Lemtlemeh o plem=1 ol
an other hand, we have c; el .. efefc cj - -] etielel et ¢j

Hence, Rsw (s()) ~p, Rsw(t(a)). Similarly, we show the property for rules 8, §% and 5'3.

27

4. Convergence of the jeu de taquin

Prove Condition iii), that is, for all w, w” € [n]*, w ~p, w’ implies Nf([w]s, FS,) = Nf([w']s, FSn).
Since S, is convergent, we show that for all w, w’ € [n]*, w =p, w’ implies [w]s ~¢s, [w']s. Suppose
first that w = uxyxzyy,v and w’ = uxyzxyyio, forall 1 < x <y <z < n,u,v € [n]" and x1,y; € [n],
and show that [w]s =#s, [w'];. We consider the following cases:

Case 1. x; < xand y < y;.

uxlzxyyl UV =—— ux1XzYy1v

[J’[W]s
[ux1]s [ux1]s [y1 v]s
Y
[uxl] s

Case 2. x; < x and y > y;. Suppose that v = y, ... yqy’v" such that y; >y > ... > ygand y4 < y'.
UX) ZXYY1 U =y UN1XZYY1V

wls

| [yl

Rl

5
IS

[]=f=T-]

4

| [y"v']s

]
FEEFELE]

Case 3. x < z < x; and y < y;. Suppose that u = u’x’x, ... x; such that x’ < x, and x, > ... > x;.

UX1ZXY Y1V =——=> UX1XZYY1V

[wls | 1wl
'l | 5 | ol B luxls | 2| ol
l [

The case x < z < x; and y > y; is studied in the same way.
Case4.x < x; < zandy > y;. We study similarly the case x < x; < z and y < y;. Suppose

thatu = u'x'x,...x;and v =y, ...yqy’v" such that x’ < x, > ... >xjandy; > ... > y4 < y'.

UX1ZXYY1 VU =——=p UX1XZYY1V

28

4.3. Jeu de taquin as morphism

Suppose now that w = uy;yzxx;v and w = uy;yxzxjo, forall1 < x <y < z < n,u,v € [n]
and x1,y; € [n], and show that [w]; =¢s, [W']s. f y1 <y and x < xy, then

UY1YZXX1V ————— UY1YXZX10V
[wlsl Lw']s
[uys]s | 6l | Baols F lunls | G| Dol

The cases (y; > y and x > x1), (y; < y and x > x7) and (y; > y and x < xy) are studied similarly. m]

As a direct consequence of this result, we deduce

4.3.3. Corollary. The string data structure Y}, (resp. Y¢,) satisfies the cross-section property for the
monoid P,,.

The commutation of S, and S;, proved by Schensted by a direct method, [20, Lemma 6], is a
consequence of Lemma and Theorem [4.3.1}

4.3.4. Corollary. The insertions S, and S; commute, and the structure monoid M(Y?)) is isomorphic to
the monoid P,,.

As a consequence of Proposition and Theorem[4.3.1] we deduce

4.3.5. Corollary. The morphism of string data structures ;. : dS};, — Y} (resp. m;, : dS; — Y7)
induces a crystal isomorphism from T'(K, d) to T'(K, n,5(d)), for every d in dSk,.

4.3.6. Example. The following two connected components are isomorphic with respect to Kashiwara’s

crystal structure defined in

1 1+
24 24
24 24
1+ 1+

where the skew tableaux and Young tableaux situated at the same place in this crystal isomorphism can
be related by the jeu de taquin slidings.

4.3.7. Remark. Note that Schensted’s insertions are related to the jeu de taquin by the following
formulas

t e~s, x = mq([Rsw(t)]s evia x), x g b= mpg(x o [Rsw(B)]s),

for all t in Yt, and x in [n]. Note also that the associativity of x5, can be deduced from the morphism 7;.
Indeed, for all ¢ in Yt,, and x in [n], we have t ewg, x = m;4(t|11(x)), and thus t x5, t' = m:4(t]1t’), for
all t,t’ € Yt,. By Theorem[4.2.3] we obtain

(t xs, t') ks, t"" = mq(thit'[1t") = txs, (t' *s, t"'),

for any t,¢’,t" € Yt,.

29

5. Convergence of the right-bottom rectification

5. CONVERGENCE OF THE RIGHT-BOTTOM RECTIFICATION

In this section, we introduce the right-bottom rectification as a morphism of string data structures from
Young tableaux to quasi-ribbon tableaux using a rewriting system made of right-bottom sliding rules.
We show that this rewriting system is convergent and we deduce that the set of quasi-ribbon tableaux
satisfies the cross-section property for the hypoplactic monoid and that the right-bottom rectification
induces a crystal isomorphism between the sets of Young and quasi-ribbon tableaux.

5.1. Convergence of the right-bottom rectification

5.1.1. Right-bottom rectification algorithm. The right-bottom sliding m,, : Yt, — Scol} is the
union of rewriting systems RB7, = RS, U BS, U T S, whose sets of rules are defined as follows.

i) RS, the set of right-sliding rules that move sub-columns to the right in the following two situations:

P | .m v

. i i s b ’ ’
a) Ucic; |y i g = |p—k+p) c{jﬂ |(q’~m)» indexed by columns c;, c;, and positions p’, q’,

m+1]

such that c;|(x4+1-g)cj € Scolf, and where p is minimal such that cf < c}’." < cf“. Note that the

elements c;’, for m + 1 < n < [, can be empty. Note also that when cf’ = c]’.”, the elements c]'.‘,
for 1 < n < m— 1, are empty.

b) 6% . : |y

Ci,Cj

PR

¢ = lp |¢~(p-q)» indexed by columns c;, ¢, and positions p’, q’,

k q n s
G| ¢ |

E

c

such that ¢;|(x+1-q)cj ¢ Scol$, where m is maximal such that c; l(k+1-p)cj € Scol$, and where n is

n+1

minimal such that ¢’ < c]S. <!t

ii) BS, the set of bottom-sliding rules that move columns to the bottom in the following situation:

30

5.1. Convergence of the right-bottom rectification

il
< c}

Yene, © lpr 7 = Iy |(¢—p)> indexed by columns c;, ¢;, and positions p’, ¢’, where c;

q | .l
¢ |c

]
C]

k
Ci

and c; are gh;d at position g, such that g > 1 and ¢;|4¢; € Scol, or g < 1and ¢} < c]l., and where s

is maximal such that c¢;|(x+;-s)cj € Scols.

iii) 7S, the set of top-sliding rules that move columns to the top in the following situation:

< |
5c,~,cj oy lg = |y || lg—p-1, indexed by columns c;, ¢;, and positions p’, g’, where c;
< i
J
and c; are glued at position g > k such that c;|4c; is not row connected and cf.‘ < cjl..

5.1.2. Example. The following reduction sequence reduces the Young tableau w into its right-bottom
rectification 7,5 (w).

3[4 1 =
|

3]4] 3]4]

-
Q
¢
o
.
e[

]2 12 [1]
B de B e G Yeo HR ol
W= Em 15 = [fl on
B B 5
EN [[E
ey, cs AU Aes, ey i ey, cs e 3 Qcy,ep 2 §

4[4]4] ? (4[4 > 4[a[4 > = mrp(w)
[5] 5]

5.1.3. Theorem. The rewriting system RBT, is convergent. In particular, the normal form of any Young
tableau with respect to RBT,, is a quasi-ribbon tableau. Moreover, RBT,, computes Q' (resp. QL), that is,

the equality
Caor(w) = Nf([w]y, RBT,) (resp. CQL(W) = Nf([w]y, RBT,)) (5.1.4)

holds, for any w € [n]*.

The rest of this section is devoted to the proof of this result. Lemmata and[5.1.10| show that the
rewriting system RBT,, is convergent. As a consequence, we obtain that the normal form of any Young

tableau with respect to R8T, is a quasi-ribbon tableau. Lemma together with the convergence
of RBT, yield that RB7,, computes Q7, (resp. Q).

5.1.5. Lemma. Foranyc; = (cg, .. .,cfl) andcj = (cl,.. .C;Z) in Col,,, we have
ci *H, Cj = p,;B(/;(cihcﬂcj), Cj*H, Ci = pJ,,éB%(c,-hcﬂcj). (5.1.6)

Moreover, for any rule|c; |c;,| = |cj, |cj,| inRBT,, we havep%gﬁ(|cjl|cjz|) = |ci % H, Ciy| a”dpngg;r];ﬂle lcj,|) =
|ci, *m, ciyl.

31

5. Convergence of the right-bottom rectification

Proof. Prove the first equality of (5.1.6), the proof being similar for the second one. We consider two
cases depending on whether or not c;||;|c; belongs to Scol.
Case 1. Suppose that c;||¢;|c; € Scol$. If ¢! < cjl., then applying the rule y, ., yields to ¢; xg, c;.
Otherwise, by applying a reduction sequence of rules « and y starting in each step from the left, we
reduce c;||;|¢; into a string of columns of the following form

Similarly, we reduce ¢t = —|+|into a string of columns made of a quasi-ribbon tableau glued to the top of

iz
c
i

a new string of columns ¢’ in Scol;. We reduce ¢’ in the same way and we continue until a quasi-ribbon

tableau appear which is equal by construction to ¢; g, c;.

1

Case 2. Suppose that c;|;|c; ¢ Scol$. Suppose first that ¢! < c}, then the rule 8¢, ¢, vields to ¢; *p, ¢j.
Suppose now that k is maximal such that c;|xc; € Scoly. If (cl, ch.) is a row such that c]l._1 < c}, then:

1 1 1

Cx C C]
5[1 —

=

o
i

By Case 1, we obtain p;e BT (@) = c¢i *g, c;. Otherwise, if s is minimal such that c; < cf < cf“, then we
apply the following reduction sequence of rules ¢, §* and y starting in each step from the left:

1| .1 1 1
¢ |c c 5
,) G \ \

5 ot Yy m (@)
; ar) o

i i iy
e & e

By Case 1, we obtain pg .. (q) = ¢; *m, ¢;.

Similarly, we show that for any rule [c;, |c;,| = [cj,|cj,| in RBT,, we have quQB,]_ (lej, lej, 1) = lei, *m,
ci,| (resp. pJqéB%(|cjl|cj2|) = |ci, *m, c;|). Indeed, the rules a., ., and 55,9— followed by a reduction
sequence of rules a and y starting in each step from the left (resp. right) yield to ¢; g, c; (resp. ¢j xp, ¢;).

32

5.1. Convergence of the right-bottom rectification

Moreover, if the first element of ¢; is smaller or equal than the last element of ¢;, then the target of the
rule y¢, ¢, is equal to ¢; xp, ¢;. Otherwise, the rule y is followed by a sequence of rules « and y starting
in each step from the left (resp. right) in order to obtain c; *g, c; (resp. ¢j g, c;). Finally, the target of
the rule 5ci,cj is equal to ¢; *p, c;. O

The following result shows that the right and left insertions H, and H; correspond respectively to
the leftmost and rightmost reduction paths with respect the rewriting system RB7,.

5.1.7. Lemma. For any word w in [n]*, we have
(0 vy, w) = prgy ((Wly), (w~om, 0) = prgs ((Wly). (5.1.8)

Proof. We prove the first equation of by induction on the number of columns in [w]y, the proof
being similar for the second one. If [w] y is of length 2, then the equality is a consequence of Lemmal.1.5|
For k > 3, suppose that the equality holds for words of length k — 1, and consider [w]s = ¢1|y ... |yck.
By induction hypothesis, we have (0 e~y w) = p;BTn(clly ... lyck=1) *m, ck. Let us show that

Prar(Cily - lyek-1) *u, ck = prags (@ly ... lyck).

We will represent pg BT (c1ly - - . |yck-1) by the following diagram:

'y

s

The computation of p; BT (c1ly ... |lyck-1) *H, ck corresponds to the following reduction sequence,
where some rewriting rules can be identities:
iy (] 0
(;}/)* B o] $ B i1 [E] (2* . i
==
(][]][] E: E

We then apply the leftmost reduction path with respect RB7, on the red boxes until we obtain a
quasi-ribbon tableau. After we apply rules y in the same places where we have applied rules §* before.
Finally, we apply the leftmost reduction path with respect RB7,, on the green boxes until a quasi-ribbon
tableau appear which is equal by construction to pg g7 (C1ly - lyck-1) *H, ck, showing the claim. O

5.1.9. Lemma. The rewriting system RBT, is terminating.

Proof. We prove that for any reduction w = w’ with respect to RB7,, we have w <;; w’ for the
order <, defined in[3.5.2] Suppose first that w = w’ is a reduction with respect to RSy, that is, with
respect to the rules & or §%. If the target of @ consists of two or three columns (resp. one column), then
we have Rgy (W) <jex Rsw(w’) (resp. Rsw(w) = Rsw(w’) and ||w]| < [|[w’||). Similarly, for the reduction
with respect to §%, we obtain Rgy(w) <jex Rsw(w’) or Rgw(w) = Rsw(w’) and ||w|| < ||w’||. Hence,
for any reduction w = w’ with respect to RS,,, we have w <;; w’. Suppose now that w = w’ is a
reduction with respect to 8BS, U T S,,, we have Rsy (w) = Rgw(w’) and w Ej., w’, and thus w <, p; W',
showing the claim.]

33

5. Convergence of the right-bottom rectification

5.1.10. Lemma. The rewriting system RBT, is confluent.

Proof. Following [3.4.7, we show the confluence of the rewriting system R87, by showing that all
its critical branchings are confluent. By Lemma |5.1.5] for any rule [c; |c;,| = |cj |cj,| in RBT,, we
have p%B%(|cjl|ch|) = |ci, *m, ci,| and p;B%(lcjllchD = |ci, *p, ¢;,|- Then, any critical branching
of RBT, has the following form

.
PRr8T,
&
—= l¢jIcjlex| === |ci *m, ¢j *n, ckl
leilejlexl
$ leile!’ler | == lex *m, ¢j *m, cil
Pr8T,

where ¢; and ¢; are RBT,,-reductions. Moreover, the right and left insertions H, and H; commute, [9].
Hence, the equality ¢; *p, ¢j *g, ¢k = ck *p, ¢j *g, ¢;, holds in Qr,, showing the confluence of the
critical branching.]

5.2. Right-bottom rectification as morphism

5.2.1. Hypoplactic monoids. The hypoplactic monoid Hp,, of rank n introduced in [13], is the monoid
generated on [n] and submitted to the Knuth relations and the following relations:

zxty =xzyt for 1<x<y<z<t<n, tyzx = ytxz for 1<x<y<z<t<n (5.2.2)

The congruence generated by this presentation is called the hypoplactic congruence and is denoted
by ~pp, . The cross-section property for the hypoplactic monoid is proved in [13} 19].

5.2.3. Theorem. The right-bottom rectification map m,p, : Yt, — Qr,, extends into a surjective morphism
of string data structures:
1
m, Y, —Qp (resp.my, 1Y, — Q). (5.2.4)

Proof. We prove that 77, (resp. 7¢,) is a morphism of string data structures by showing Conditions i), ii)
and iii) of Condition i) is a consequence of Theorem[4.2.3] Prove Condition ii), that is, for any
ruled = d’ in RBT,, we have Rsw(d) ~np, Rsw(d’). It suffices to show that Rsw (s(n)) ~mp, Rsw(t(n))
for any in RB7,,. It is obvious for y or §. For rule a as in[5.1.1} we prove the property by induction on |c;|,
Suppose that |c;| = 1, and consider Rsw (s(a)) = cF ...l .. .c%c} and Rgw(t(a)) = /' ...clck ... cf“cjl..
Then we have

Ei2d @i
Rswi(t(a)) = .. .clekekt. . . cf P+l 1- . -cpck clek k=2, e gg

171 : i j
1 +1 - 1 +
fff ci‘l. llfz cf c1 kcpklc’i7 cllc1 zc}‘3...cf cjl. == . =
kPk1P1k2 1 +11-_ k k-1 -2 p-1 clok—3ck—4 +1 1
c;cc ...cl.cl. cf ¢ = GG cfc c‘lo c;c; ¢ cf Cje

In the same way, we continue applying Relations (4.1.2) and 1) on ci.‘ci.C tePek=2 clek3ck=t P HC}.
and the equivalence Rsw (t(a)) np, Rsw(s(@)) holds. Suppose now that the property holds when [c;| =

I — 1, and prove it when |c;| = I. Consider Rsw(s(a)) = ck...c? .. .c}cjl. ot cjzcj1 and Rsw (t(a)) =
cf e c}cﬁC .. .cf“cm chcJI. .]’7’“. By induction hypothesis,

Rsw(s(a)) ~mp, .. clek cf“c}” .. .c?c]l- .. .c}"“c}.

34

5.2. Right-bottom rectification as morphism

1
Moreover, we have cp llcf .. cf+ cJ'." cJ2 Jl } 1. .cm“c1
- - 1 - -
) o elek T .. c]lc]l L ..cjzcjm+1 Jl) Rsw (t(ar)). Hence, we obtain

that ng(t(a)) NHPn st(s((x)). Similarly, we show the property for rule 6¢.
Prove Condition iii), that is, for all w, w” in [n]*, w ~pp W’ implies Nf([w]y, RBT,) = Nf([w']y, RBTy).
Since RBT, is convergent, we show that for all w, w’ € [n]*, w ~pp w’ implies [w]y ~rg7, [W']y.
Suppose first that w = ux;xzyy 0 and w’ = uxjzxyyo, forall1 < x < y < z < n,u,v € [n]*
and x1,y; € [n], and prove that [w]y =rg7, [W']y. We consider the following four cases:
Case 1.x; < xand y < y;.

UX1ZXYY1 U = UX1XZYY1V

[wly] [[wly

Case 2. x; < x and y > y;. Suppose that v = y,...ysy’v" such thaty; >y, > ... >y, < y’. We
consider the following sub-case: x < y;, forall 1 < i < g (resp. x < y;, forall 1 <i < k—1andx > yy).

UX1ZXYY1 0 ——————> UX1XZYY10 uxlzxyylv _ uxlxz Y10
[wly | [[wly E
’,.! E 1\ (resp. uX1 y| 1
[ux;]y |[yv]y [wxily | 14| [y'v'ly B
1 Y1
[y [4]
\ 2] 5%
5« g g [vd]
m [uxi]y |]
[warly | 2] [y'v']y]
Y
[ux1]y | y:q
| Uk |
[x o]
v
1Y |

Case 3. x < z < x; and y < y;. Suppose u = u'x'x;, ... x; such that x’ < x, > ... > x1.

UX1ZXY YV =——=> UX1XZYY10V
[l

35

5. Convergence of the right-bottom rectification

The case x < z < x; and y > y; is similar to Case 2.

Case 4. x < x; < zand y < y;. Suppose u = u'x’x, ... x; such that x” < x, > ... > xy.

UX1ZXYY1 U == UX1XZ y]]U UXZXYY1V ——y UX1XZYY1V
I W]Lzlt\y\ ront :/gw 4 [Wl]yl l[W]y
[wxly | 55" | [yoly [wxly | 5] o]y v | B '
]] [w'x']y |] | lyioly [wxy [y10]y
iw;\y\ Y? or @
[wxy | e | oy [wx'ly | o | [y10]y [w'x]y | ,H [y1v]ly [w'x']y | [y1o]y
%]] %)
se]| / 8 s e
' 5 [u'x'] | [y1o]
[wxNy | 5| [y1o]y 2 v Y

]

The case x < x; < zand y > y; is similar to Case 2.

Suppose that w = uy,yzxx;v and w' = uyjyxzxjv, forall1l < x <y €< z < n,u,v € [n]*
and x1,y; € [n], and prove that [w]y =87, [W']y. Ify1 <y, x < x; and z < xy, then

UY1YZXX 1V =———=p UY1YXZX1V

(wlyl Uw'ly
[uyly | "] [aoly [unly | B | [aoly

a vy
Cugily | Bl | oty

Similarly, we study the cases (y; > y and x > x7), (y; < y and x > x7) and (y; > y and x < xy).

Suppose now w = ux;zxtyy;v and w’ = ux;xzyty;v, foralll1 < x <y <z <t < nu,v € [n]*
and x1,y; € [n], and prove that [w]y =rg7, [W']y. We will consider the following cases:

Case 1.x; < xandy < y;. Ift < yy, then

Ux1zxtyy, v =———— ux1xzytyiv

[wlyl Uw'ly
[ux1]y | [yivly [uxily ’ | [y1v]y
& v

[ux1]y | | [y1v]y

Otherwise, suppose that v = y, ... ygy’v" such thatt > y; > ... >y, <y’ . Ify <y;, forall1<i<gq

36

5.2. Right-bottom rectification as morphism

(resp.y < y;, forall1 <i < k-—1andy > yi), then

Ux12xtYY; v =——— Ux1XZYty;v ux1zxtyy; v =——= ux1xZYty;v
wly | W'y [wly L AWy
. [Yq| ’.,.7 X q
[]y | [ux:] rui | [y'v'ly [uxly | "4 [yivly
m Y

5(1

5|

(resp. [ux1]y

[a]=]
=

E-"Iﬁ\ g\

FELE

=

[ux:]y |

=]
FEEE)

[x[y

x
EELL L -ETE

Case 2. x; < x and y > y;. In the same way, we study the cases (x; > x and y > y;) and (x; > x
and y < y;). Suppose v =y ... yqy'v" such thaty; > ... >y, <y’

uxlzxtyylv —— ux1xzyty,v

1wy
[ux1]y --- [ux]y | *f 'm [y1v]y
5“\1L
[uxi]y | | vy uxly|*|
.I
..
[ux1]y | E |
[x]y]

Suppose finally that w = uy tyzxx;v and w’ = uy yxtzxyo, forall 1 < x <y < z<t<n,u,v € [n]
and x1,y; € [n], and prove that [w]y ~grg7, [W']y. We study the case (y; < x < yand x < xy),
where u = u'y'yq ...y such that y, > ...y > y1, y’ < y4 and y < y, the others cases being similar.

uy1tYzxx v =—————— UY1Yxtzx;v
(Wt Hw'ly

[wyly | B | xoly [wy'ly | B boly
ud d
S Y
[wyly |sin| avly [wyly |5 B aoly
Qv sﬁ”ifjj? ;y
[w'y'ly | itz | [x10]y
]
ud

Prove finally that the map 7, is surjective. Recall from [3| Sect.8.2.] the north-west rectification
map ™" : Qr, — Yt, that transforms a quasi-ribbon g into a Young tableau by sliding all its columns

37

REFERENCES

to the top until the topmost box of each is on the first row of g and then by sliding all its boxes leftwards
along their rows until the leftmost box in each row is in the first column and such that all the rows remain
connected. The equality 7" (q) = Cyr (Rsw(q)) holds, for any q in Qr,,, [3, Proposition 8.9], showing
that Rsw (7" (q)) ~p,, Rsw(q) ~np, Rsw(q). Moreover, since the rewriting system R8T, is compatible
with ~p, , the equivalence Rsw (7" (q)) ~up, Rsw(m-5(7""(q))) holds, for any g in Qr,, showing
that Rsw(q) ~up, Rsw(mr5(7n""(q))). Then, since RBT, computes ~y, , the equality 7,,(7""(q)) = q
holds in Qr,,. Hence, the map 7, is surjective.]

As a direct consequence of this result, we deduce

5.2.5. Corollary. The string data structure Q', (resp. Q\,) satisfies the cross-section property for the
monoid Hp,,, and the structure monoid M(QY},) is isomorphic to Hp,,.

As a consequence of Proposition and Theorem|[5.2.3] we deduce

5.2.6. Corollary. The morphism of string data structures xr, : Y} — Qy, (resp. 7, : Y, — Q!) induces
a crystal isomorphism from I'(qK, d) toT'(qK, 7,(d)), for every d in Yt,.

5.2.7. Remark. Note finally that the procedure that transforms a skew tableau into a quasi-ribbon
tableau by applying first the jeu de taquin followed by the right-bottom rectification can be also
described by crystal isomorphisms using Kashiwara and quasi-Kashiwara crystals as shown in the
following example:

. - 2
- e & ,
[1]2] 11 1[1]2 1]1]1 11 [1]1]1]
Lo 4 L L i
1]2 ’ 1]3 1]2 [1]2]2] J\1|1\3\ [1]1]2] [1] J11 1]1]2
2[2 1]2 1[3 2] 2] [3] 2[2]2 2[3 13]
i2 1/ i2 il i2 1/ i2 il i2 i2 il
13 13 2]2 [1]2]3] [1]1]3] [1]2]2] [1] 11 1]2]2
2]2 EIE 2] 3] E 2]2]3 3]3 3]
v‘ V\ V Vl 4 V\ / Vl v’ V\ V\
1]3 2[3 2[2 [1]3]3] [1]2]3] [2]2]2] [1] 1]2 2[2]2
2[3 13 2[3 2] 3] [3] 2[3]3 313] 13]
2 Z/ 1 ¥l 12 i Z/ 17 12 32 1 "y
2[3 1[3]3 2]2]3 [1]
2[3 B 3] 3303,

where dotted arrows show action of the quasi-Kashiwara’s operators and the other ones show action of
the Kashiwara’s operators. These connected components are isomorphic and every skew tableau, Young
tableau and quasi-ribbon tableau situated at the same place in these crystal isomorphisms can be related

by sliding.
REFERENCES

[1] David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting to the Baik-Deift-
Johansson theorem. Bull. Amer. Math. Soc. (N.S.), 36(4):413-432, 1999.

38

REFERENCES

(2]

(3]

(10]

(11]

(12]

(13]

Alan J. Cain, Robert D. Gray, and Anténio Malheiro. Rewriting systems and biautomatic structures for
Chinese, hypoplactic, and Sylvester monoids. Internat. J. Algebra Comput., 25(1-2):51-80, 2015.

Alan J. Cain and Anténio Malheiro. Crystallizing the hypoplactic monoid: from quasi-Kashiwara operators
to the Robinson-Schensted-Knuth-type correspondence for quasi-ribbon tableaux. J. Algebraic Combin.,
45(2):475-524, 2017.

William Fulton. Young tableaux, volume 35 of London Mathematical Society Student Texts. Cambridge
University Press, Cambridge, 1997. With applications to representation theory and geometry.

Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. Coherent presentations of Artin monoids. Compos.
Math., 151(5):957-998, 2015.

Yves Guiraud and Philippe Malbos. Higher-dimensional normalisation strategies for acyclicity. Adv. Math.,
231(3-4):2294-2351, 2012.

Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Math. Structures Comput. Sci.,
28(2):155-201, 2018.

Nohra Hage and Philippe Malbos. Knuth’s coherent presentations of plactic monoids of type A. Algebr.
Represent. Theory, 20(5):1259-1288, 2017.

Nohra Hage and Philippe Malbos. Coherence of monoids by insertions and Chinese syzygies. preprint,
arXiv:1901.09879, February 2019.

Masaki Kashiwara. Crystallizing the g-analogue of universal enveloping algebras. In Proceedings of the
International Congress of Mathematicians, Vol. I, I (Kyoto, 1990), pages 791-797. Math. Soc. Japan, Tokyo,
1991.

Masaki Kashiwara and Toshiki Nakashima. Crystal graphs for representations of the g-analogue of classical
Lie algebras. J. Algebra, 165(2):295-345, 1994.

Donald E. Knuth. Permutations, matrices, and generalized Young tableaux. Pacific J. Math., 34:709-727, 1970.

Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions iv: Quantum linear groups and
hecke algebras at q = 0. Journal of Algebraic Combinatorics, 6(4):339-376, Oct 1997.

Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions v: A degenerate version of Uy(gl,,).
International Journal of Algebra and Computation, 09(03n04):405-430, 1999.

Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Crystal graphs and g-analogues of weight multiplici-
ties for the root system A,,. Lett. Math. Phys., 35(4):359-374, 1995.

Alain Lascoux and Marcel-P. Schiitzenberger. Le monoide plaxique. In Noncommutative structures in algebra
and geometric combinatorics (Naples, 1978), volume 109 of Quad. “Ricerca Sci.”, pages 129-156. CNR, Rome,
1981.

Cristian Lenart. On the combinatorics of crystal graphs. I. Lusztig’s involution. Adv. Math., 211(1):204-243,
2007.

Maxwell Newman. On theories with a combinatorial definition of “equivalence”. Ann. of Math. (2), 43(2):223-
243, 1942.

39

REFERENCES

[19] Jean-Christophe Novelli. On the hypoplactic monoid. volume 217, pages 315-336. 2000. Formal power series

and algebraic combinatorics (Vienna, 1997).

[20] C. Schensted. Longest increasing and decreasing subsequences. Canad. j. Math., 13:179-191, 1961.

[21] M.-P. Schiitzenberger. La correspondance de Robinson. pages 59-113. Lecture Notes in Math., Vol. 579, 1977.

[22] Alfred Young. On Quantitative Substitutional Analysis. Proc. London Math. Soc. (2), 28(4):255-292, 1928.

40

— December 31, 2020 - 16:04 —

NoHRA HAGE

nohra.hageeusj.edu. 1b

Ecole supérieure d’ingénieurs de Beyrouth (ESIB)
Université Saint-Joseph de Beyrouth (USJ), Liban

PHILIPPE MALBOS
malbos@emath.univ-1lyonl. fr

Univ Lyon, Université Claude Bernard Lyon 1
CNRS UMR 5208, Institut Camille Jordan

43 blvd. du 11 novembre 1918

F-69622 Villeurbanne cedex, France

nohra.hage@usj.edu.lb
malbos@math.univ-lyon1.fr

	Introduction
	String data structures
	String data structures
	String data structures and crystal structures

	String of columns rewriting
	Strings of columns
	Examples of plactic-like structures
	Crystal structures on strings of columns
	String of columns rewriting
	Terminations orders

	Convergence of the jeu de taquin
	Jeu de taquin
	Jeu de taquin as rewriting
	Jeu de taquin as morphism

	Convergence of the right-bottom rectification
	Convergence of the right-bottom rectification
	Right-bottom rectification as morphism

