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Abstract

In this paper, we come back on the notion of local simulation allowing
to transform a cellular automaton into a closely related one with different
local encoding of information. In a previous paper, we applied it to the
Firing Squad Synchronization Problem. In this paper, we show that the
approach is not tied to this problem by applying it to the class of Real-
Time Sequence Generation problems. We improve in particular on the
generation of n® sequence by using local mappings to obtain millions of 5-
state solution, one of them using 58 transitions. It is based on the solution
of Kamikawa and Umeo that uses 6 states and 74 transitions. Then, we
explain in which sense even bigger classes of problems can be considered.

1 Introduction

1.1 Local Mappings to Explore the Cellular Solution Space

This paper is about the formal concepts of local mapping and local simulation
which found their firsts applications in the study of the so-called Firing Squad
Synchronization Problem (FSSP) proposed by John Myhill in 1957. In the lat-
ter, the goal is to find a single cellular automaton such that any one-dimensional
horizontal array of an arbitrary number of cells synchronizes, i.e. such that a
special state is set for all the cells at the same time. As explained in [§], there
was a race to obtain solutions with as few states as possible, leading in 1987
to a situation where it was established, for minimal-time time solutions, that
there were no 4-state solutions, and only one solution had 6-state using a unique
strategy. In 2018, a surprise came when 718 solutions were found using massive
computing power, but a bigger surprise came in 2020 when many millions of
solutions where discover using ordinary computer power. It is still not known
whether this is a 5 state solution, but the concept used to generate the millions
of solutions, local mappings and local simulation still have many things to tell,
a story that is not tied to FSSP, but that may lead to some ideas about the
famous 5-state FSSP question. More information can be found in [9 [§].

1.2 Real-Time Sequence Generation Problems

To show explicitly in which sense the approach can be applied to other problems,
let us focus here on the so-called Real-Time Sequence Generation problems, or



RTSG problems for short. In the latter, given a fixed sequence S C N, the goal
is to find a cellular automaton running on an one-dimensional horizontal array
of cells such that the leftmost cell is in a special state exactly when the number
of transition ¢ from the beginning belongs to S. A formal description is given
later. In the following, we write f(n) to mean S = {f(n) | n > 1}.

The study of such problems began in 1965 for the sequence of prime num-
bers, with a description of a cellular automaton algorithm by Fischer [I]. In
1998, Korec [6] proposed a 9-state solution. Other sequences where considered
in 2007 by Kamikawa and Umeo [7] who gave some different algorithms for the
sequences 2", n2, and 3" using one-bit inter-cell-communication cellular au-
tomata. In 2012, Kamikawa and Umeo [3] described the sequence generation
powers of CAs having a small number of states, focusing on the CAs with one
(only one sequence n of all positive natural numbers), two, and three internal
states, respectively. The authors enumerate all of the sequences generated by
two-state CAs (linear sequences: 2n,4n,3n — 1,n,3n — 2,2n — 1,n + 1; non-
regular sequences: 2"t — 2 2™ — 1) and present several non-regular sequences
like 27, n2 3™ that can be generated in real-time by three-state CAs, but not
generated by any two-states CA. In 2016 [4], they gave a construction for the
Fibonacci sequence using five-state, followed in 2019 [B] by two solutions of
8 states and 6 states for the sequence n3. In these studies, much attention
has been paid to the developments of real-time generation algorithms and their
small-state implementations on CAs for specific non-regular sequences. Other
complexities are also studied such as the space, communication or state-change
complexities.

Here we consider the sequence n® and provide millions of 5 states solutions
using local mappings to improve on the previous 6-state solution. This reduction
from 6-state to 5-state is reminiscent of the FSSP situation. For the particular
n? sequence, this leaves open the question of the existence of solutions with 3
or 4 states. We did not try to improve on any other work listed above, the goal
here being simply to illustrate the generality of the approach.

1.3 Organization of the Content

In Section 2] we begin by defining formally cellular automata, local mappings,
local simulations, RT'SG solutions and related objects in a suitable way for this
study. In Section [3] we explain how local mappings can be used firstly to obtain
a first 5-state solution to the n3-RTSG problem, and then to generate millions of
other solutions. These other solutions are essentially the same, but differ in the
way the local information is encoded, leading to different numbers of transitions
for example. This is in direct comparison with compiler optimization where a
program is optimized but stays essentially the same. We finish this section by
making more precise the generality of the approach. We conclude in Section
with a discussion of some additional aspects of this investigation, in particular
with the relation with some topological concepts.

2 Preliminaries

We summarize here the formal definitions of cellular automata, local mappings
solutions as defined in [8]. More detailed explanations can be found in [8] [9].



We then define RT'SG solutions in a formally relevant way for this framework.
As for the other papers, the formal setting is presented for one dimensional
cellular automata with usual neighborhood {—1,0,+1}, but is easily extended
to any (non necessarily commutative) group and any (none necessarily fixed)
neighborhood.

2.1 Cellular Automata, Local Mappings, and Local Sim-
ulations

The purpose of these following definitions is to describe cellular automata with
partial transition table first directly and then in terms of their deterministic
family of space-time diagrams. With this more explicit representation, the con-
cepts of local mapping and local simulations are more easily understood. Non
necessarily deterministic family of space-time diagrams also plays a role in this
story.

Definition 1 A cellular automaton « consists of a finite set of states X, a set
of initial configurations I, C EQZ and a partial function 64 : Eag -+ Y called
the local transition function or local transition table. The elements of Lo % are
called (global) configurations and those of o2 are called local configurations.
For any c € 1, its space-time diagram D, (¢) : N x Z — X, is defined as:

c(p) if t =0,

Da(e)(t,p) = {5a(01, co,c1) if t >0 with ¢; =Dy(c)(t —1,p + i).

The partial function 0., is required to be such that all space-time diagrams are
totally defined. When Dy (c)(t,p) = s, we say that, for the cellular automaton
a and initial configuration c, the cell at position p has state s at time t.

Definition 2 A family of space-time diagrams D consists of a set of states ¥ p
and an arbitrary set D C ¥ <2 of space-time diagrams. The local transition
relation 6p € Xp° x Xp of D is defined as:

((®1, e, ¢%), ¢d) €dp = 3(d,t,p) e DX NXZ s.t. ¢ =d(t+3,p+1).
We call D a deterministic family if its local transition relation is functional.

Definition 3 Given a deterministic family D, its associated cellular automa-
ton I'p is defined as having the set of states Xp, = Xp, the set of initial
configurations Ir,, = {d(0,—) € £,% | d € D}, and the local transition function
or, =9dp.

Definition 4 Given a cellular automaton «, its associated family of space-time
diagrams (abusively denoted) D, is defined as having the set of states ¥p, = X,
and the set of space-time diagrams { Do(c) | ¢ € 1, } and is clearly deterministic.

Definition 5 A local mapping ¢ from a CA « to a finite set X consists of two
functions £, : {d(0,p) | (d,p) € Dy x Z} — X and £s : dom(dy) — X. We
define its associated family of diagrams ®, = {¢(d) | d € Do} where:

2,(d(0,p)) ift =0,

((d)(t,p) = {Md(t —1,p—1),d(t—1,p),d(t—1,p+1)) ift>0.

If @, is deterministic, we say that £ is a local simulation from CA « to CA I's,.
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Figure 1: Transition table of Kamikawa and Umeo’s 6-state solution using 74
transitions.

2.2 Real-Time Sequence Generators

Definition 6 A cellular automaton is RTSG-candidate if there are four special
states *o,Ba, Qa, Sa € Ba, if Lo = {@a} with 3, being the RTSG initial con-
figuration infinite to the right, i.e. @a(p) = *xqo, Ba and Qg if p is respectively
p<0,p=1andp > 2. Moreover, x, must be the outside state, i.e. for any
(c_1, co, c1) € dom(da), we must have d(c_1, co, ¢1) = *o if and only if cg = *4.
Also, Qo must be a quiescent state s0 9o (Qa, Qu, Qa) = da(*a, Qa; Qa) = Qo

The %, state is not really counted as a state since it represents cells that
should be considered as non-existing. Therefore, an RTSP-candidate cellular
automaton « will be said to have s states when | X, \ {xo} | = s, and m
transitions when | dom(d,) \ Zo X {*a} X Zo |= m.

Definition 7 Given a sequence S C N, a RTSG-candidate cellular automaton
a is a S-RTSG solution if for any time t, Da(ﬁa)(t,O) = S, if and only if
tes.

Proposition 8 There is a n3-RTSG solution using 6 states and 74 transitions.

Proof

In Figure [1] is the solution of Kamikawa and Umeo, re-
produced with the same format as their paper to ease
comparison. Also, the local transition function § con-
tains the above entries and additional obvious entries for
the outside state x. The proof of correction can be found
in [5].

The space-time diagram of this solution is depicted up in the two left columns
of Figure [2] where the cell at position 0 has the state A at time 1, 8, 27, and



64 as expected. In [B], note that table of D wrongly has column C' filled with
the content of column E. This mistake is easy to catch by examining the proofs
and space-time diagrams of the paper.

3 Exploring RTSG Solutions and More via Lo-
cal Mappings

Let us now describe how to apply the same techniques used for the FSSP in [§]
in order to first obtain a first optimization from 6-state to 5-state, and then use
the exploration algorithm to generate millions of other 5-state solutions. The
first step is to study those local mappings which complies with RTSG problems.

3.1 Compliant Local Mappings

Given two cellular automata « and 3, a local mapping between them associates
to each triplet found in a space-time diagram d at position p and time ¢ of a to
the state found in the associated diagram d’ at position p and time ¢+ 1. When
both of these cellular automata are RT'SG solutions, this implies the following
properties on the local mapping.

Definition 9 A local mapping ¢ from an RTSG solution « to the states Xg of
an RTSG-candidate CA B is said to be RTSG-compliant if it is such that (0) £,
maps *o, B, and Qq respectively to x, Bg, and Qg, (1) ls(c_1,co, 1) = % if
and only if 64 (c_1, co, €1) = %o (Meaning simply co = *4), (2) ls(*a, o, €1) = Sp
if and only Z.féa(*ou Co, cl) = Sa, and (3) gs(Qa; Qas Qa) = gs(*aaQaaQa) =Qg-

Proposition 10 Given a sequence S C N, let o be an S-RTSG solution CA,
B an S-RTSG-candidate CA and ¢ a local simulation from o to B. B is an
S-RTSG solution if and only if £ is RTSG-compliant.

Proof

To see this, consider the diagram d € D, of the solution
a. The special RT'SG states appear at specific places and
{ ensures or witnesses, depending on the direction of the
implication considered, that these special states/places
are conserved in /(d) € Dg, (Definition [5). Indeed, con-
dition (0) is just about the initial configuration, condition
(1) is about the conservation of the outside state, con-
dition (2) is about the conservation of the special gen-
eration state for the leftmost cell only and condition (3)
about the conservation of the quiescent state behaviour.
These conditions are sufficient to ensure and 3 is a so-
lution, and clearly necessary since they perfectly match
Definitions [] and [7] of the problem.

Note that once « fixed, 5 can be reconstructed from ¢, and ¢ from . So the
local mapping ¢ is just another representation of the RTSG-candidate 8 that
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Figure 2: 6-state diagram, hand-crafted local mapping and resulting 5-state
diagram.

it generates (see Definition , but it is much easier to check the compliance of
the local mapping than the correction of CA 3 as an RTSG solution, and this
is the key property than justifies this particular application of local mappings.

3.2 A Hand-Crafted Local Simulation

The first local mapping that we consider the identity local mapping id given by
the local transition function of the 6-state solution of Proposition [§ This local
mapping simply transforms this solution into itself. The point here is that we
can now work with the local mapping. However, the reader should be careful to
clearly distinguish modifications made the id local mapping, and the resulting
modifications in the transition table. It is easier to think in terms of space-time
diagram, since each modification in the local mapping corresponds directly to a
uniform set of modifications in the space-time diagram which may or may not
be deterministic after these modifications.

Let us now describe how the second, hand-crafted, local mapping is obtained,
as we come back on the process itself later. It is build by noticing different
features of the original space-time diagram on the left of Figure The first
thing is that the state A is not often used, so we can try to remove it entirely.
This means changing every entry (z,y, z) of ids such that ids(z,y,z) = A. But
since A is the special generating state, we can not replace it by B, @ or E since
they already appear in the evolution of the leftmost cell. So we can consider
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Figure 3: Transition table of the hand-crafted 5-state solution using 72 transi-
tions.

either C' or D. However, looking at time 1, we see changing A into C would
lead to a CCQ local configuration, which is already used. So we heuristically
choose D instead, to have DCQ at time 1, an unused local configuration. To
summarize, for the leftmost cell we choose to change A by D, and for the other
cells, we can choose any state a priori.

The second local mapping is thus obtained by taking every local configura-
tions (z,y, z) of ids such that ids(x,y, z) = A, and setting them to D if z = x,
and to E otherwise. The result is not a deterministic space-time diagram, but
this is easily corrected with two additional modifications for ACQ and QQC,
leading to the local mapping depicted in the center of Figure 2| The space-time
diagram on the right is obtained by applying the local mapping on the space-
time on the left as indicated by the outlined local configuration on the left, and
resulting state on the right, at the following timestep in direct application of
Definition Bl

Proposition 11 There is a n3-RTSG solution using 5 states and 72 transi-
tions.

Proof

First note that the right space-time diagram is determin-
istic. We can therefore extract the transition table given
in Figure |3| from it. No additional transitions appear
after the space-time shown in Figure To prove this
CA to be an n3-RTSG solution, it is enough to check
that the local mapping is RTSG-compliant, and since
the source CA is an n3-RTSG solution, we can conclude
using Proposition [I0]

To ease the comparison of this 5-state solution with the original 6-state
solution, the transitions that are different, added or removed are highlighted in
the above table. Of course, all transition containing A should be considered as
removed. The reader can check that these differences do not correspond exactly
to those described in the local mapping.



3.3 Optimizing Through Millions of Solutions

Now that we have a first 5-state solution, we are ready to generate millions
of them. The generated solutions are essentially the same, but can have fewer
states or/and a different number of transitions. We begin by a brief summary
of the algorithm (more details in [§]) and then examine the results.

3.3.1 The Exploration Algorithm

The exploration algorithm is related to the hand-crafted process above. In our
case, we make it begin with an identity local mapping of the 5-state hand-crafted
solution and let it explore many of its possible modifications by applying one
modification at a time. Only compliant modifications are considered. In fact,
this is a graph exploration algorithm, the node of this graph being compliant
local mappings from the hand-crafted 5-state solution to a fixed set of 5 states
(and an outside * state). The neighbors of a local mapping ¢ are all the local
mapping obtained by exactly one compliant modification on ¢. The identity local
mapping is obviously a compliant local simulation, and the algorithm generates
all its neighbors and add to the “remaining tasks” queue any neighbor that is
also a compliant simulation. Continuing in this way with the content of the
queue, the algorithm explores the complete connected component of compliant
simulations. By Proposition all these compliant local simulations are n3-
RTSG solutions. Let us describe two additional ingredients.

The first one is that there is an initialization step. To check that a local
mapping /¢ is a local simulation, we need generate its local transition relation
ds, to check if it is a function or not. This is easy to do for all the local mappings
if we first collect all the super-local transition of the hand-crafted solution, i.e. all
quintuplets of states with their resulting triplet of states appearing anywhere in
the space-time diagram of the hand-crafted solution. From these data, and for
any local mapping ¢, it is enough to apply ¢s on all the super local transitions
to generate the entries of associated local transition relation dg,.

The second ingredient is that a parameter k£ to allow the discovery of more
compliant simulation connected component. Indeed, with ¥ = 0, the algorithm
is unchanged and a compliant local simulation is reached only if its modifications
can be applied one at a time while leading to compliant local simulation all
the way through. With k£ > 1, the algorithm randomly apply &k additional
modifications simultaneously on any given compliant local simulation. If fact, it
is often the case that many modifications need to be applied simultaneously, for
example the two last modifications described in the design of the hand-crafted
solution. So there is clearly room for improvement in the algorithm in this
regard.

3.3.2 Generated Solutions and Optimizations

Running the algorithm on a 32 cores of 2.00GHz machine having 126Gb of
memory, we obtain so many solutions that the algorithm stops because it runs
out of memory resource. The first time, we ran the algorithm with £ = 0. The
program actually uses 2 cores and about 43 Gb of memory. We did not optimize
the program nor did we check the configuration of the Java Virtual Machine for
this Java implementation. Since the machine is shared, the following data are
not really reproducible, but gives an idea of the execution.
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Figure 4: Hand-crafted 5-state diagram and optimized 5-state diagram using 58
transitions.

e after 1 days, about 15 millions local simulations.
e after 6 days, about 85 millions local simulations.
e after 20 days, about 90 millions local simulations.

The number of solutions found each day was steady for the 6 firsts days then
dropped, presumably because of memory issues. Running concurrently the pro-
gram with k = 2, it uses 2 cores and 36 Gb of memory before it stops because
of the same lake of memory.

e after 1 days, about 15 millions local simulations.
e after 6 days, about 70 millions local simulations.
e after 20 days, about 74 millions local simulations.

In fact, we had to keep in memory all the solutions and check whether we obtain
new solutions up to permutations, in order to be able to have a total number
of generated solutions. Better strategies can be found if the goal is only to
optimize the solution.

Proposition 12 There are at least 90,000,000 n®-RTSG solutions using 5 states.

Among these millions of solutions, no 4-state solutions are found, but 32379
of them have fewer transitions. In the following table, the first line indicates a
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Figure 5: Transition table of the generated 5-state solution using 58 transitions.

number of transition and the second line the number of solutions having this
number of transitions.

Proposition 13 There is a n3-RTSG solution using 5 states and 58 transi-
tions.

Proof

The transition table of the generated solution is shown in
Figure [5| The local mapping having 45 entries different
from the identity local mapping, it is not very practical
to display it as the previous one, but it is possible to
reconstruct it from both cellular automaton. It is then a
matter of checking that it is compliant and apply Propo-
sition [I0] to conclude as before.

3.4 Beyond RTSG and FSSP Optimizations

It should be clear by now that the approach can be applied to a large class of
problems. For example, the same algorithm used here for the n3-RTSG problem
is not particular to the n® sequence and can be used for any sequence S, as
clearly indicated in the definitions and propositions above. Also, the slightly
differently parameterized algorithm for the minimal-time FSSP is not particular
to minimal-time solutions and can be used for any synchronization time, without
even specifying this synchronization time to the algorithm. The difference in
the parameter only reflects the slightly different notion of compliance for RTSG
problems and FSSP. Because the notion of compliance is the only changing
factor, the approach can readily be adapted to any class of problem for which
an appropriate notion of compliance can be designed. As examplified here, and
in the FSSP case described in [§], the compliance property is a direct translate
of the problem.
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4 Conclusion

There are still many components of this work to communicate properly, in-
cluding how local mappings compose and relate to each other and how the
integration of non-deterministic family of space-time diagrams can allow to ex-
plore even more (deterministic) solutions. Beginning these discussions in this
conclusion is not necessarily useful. There is nonetheless one aspect on which we
should comment. The notion of local mapping appears to be a bridge between
a common practice and a topological tool. Indeed, on the practical side, it is
common to work directly at the level of space-time diagrams, and this is prac-
tice that is captured formally, and only partly, by local mappings. This allows
to automate this practice. On the other hand, a question was raised about the
relation with conjugacy classes, a standard notion in the cellular automata and
symbolic dynamics literature [2]. In fact, the concept of local mapping appears
to be an adaptation of the notion of shift-equivariant homomorphism between
two cellular automaton. Such homomorphisms are usually described on total
transition functions, with any configuration being a valid initial configuration.
This is a dynamical system point of view not necessarily aligned with the more
algorithmic point of view of FSSP and RTSG problems. Local mappings aug-
ment the notion of homomorphism by including the partiality of the transition
functions and the temporal aspect of the space-time diagrams, essential for the
very specification of many algorithmic problem. Forming a bridge between the
algorithmic and dynamical points of view might be the reason of their effective-
ness.
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