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Shuffle polygraphic resolutions
for operads

Philippe Malbos - Isaac Ren

Abstract – Shuffle operads were introduced to forget the symmetric group actions on symmetric
operads while preserving all possible operadic compositions. Rewriting methods were then applied
to symmetric operads via shuffle operads: in particular, a notion of Gröbner basis was introduced
for shuffle operads with respect to a total order on tree monomials. In this article, we introduce
the structure of shuffle polygraphs as a categorical model for rewriting in shuffle operads, which
generalizes the Gröbner bases approach by removing the constraint of a monomial order for the
orientation of the rewriting rules. We define 𝜔-operads as internal 𝜔-categories in the category of
shuffle operads. We show how to extend a convergent shuffle polygraph into a shuffle polygraphic
resolution generated by the overlapping branchings of the original polygraph. Finally, we prove
that a shuffle operad presented by a quadratic convergent shuffle polygraph is Koszul.

Keywords – Shuffle operads, higher-dimensional rewriting, Gröbner bases, Koszulness.
M.S.C. 2020 – 18M70, 68Q42, 18N30.
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1. Introduction

1. Introduction

Algebraic rewriting theory provides methods to compute cofibrant replacements of algebraic structures
from presentations that take into account computational properties of these structures. This rewrit-
ing approach gives algebraic algorithmic methods to solve decidability and computational problems,
such as the ideal membership problem, and the computation of linear bases and of (co)homological
properties. Abelian resolutions for monoids [13, 33, 46], groups [18], small categories [26], associative
algebras [2, 25], and linear operads [19, 20] have been constructed using rewriting methods. The ma-
chinery at the heart of these constructions consists in presenting an algebraic structure by a system of
generators and rewriting rules, and producing a cofibrant replacement that involves the overlappings
occurring in the applications of the rewriting rules. Rewriting approaches for linear structures were de-
veloped inmany algebraic algorithmic contexts, notably by Janet and Buchberger for commutative alge-
bras [14, 30], Shirshov, Bokut, and Bergman for associative algebras [10, 11, 45], Dotsenko-Khoroshkin
for linear operads [19, 31]. In all of these works, the rewriting systems are formulated in terms of Gröb-
ner bases, and thus are defined with respect to a given monomial order. Rewriting approaches have also
been used in the categorical context to present higher categories by higher-dimensional rewriting sys-
tems, called polygraphs (or computads) [16, 48]. In this context, the cofibrant replacements of a higher
category are generated by polygraphic resolutions introduced in [26, 34, 40].

An important issue when studying algebras or operads is the automatic construction of small
abelian resolutions. There exist some inductive constructions that start from presentations with cer-
tain computational properties. In particular, Anick introduced a general machinery that computes a
resolution for an associative algebra, whose 𝑛-dimensional generators correspond to overlappings of
applications of 𝑛 defining relations. This resolution is a compromise between the bar resolution, which
is easy to compute but very large, and the minimal resolution, which is difficult to make explicit in gen-
eral. Moreover, it is difficult to determine conditions for which Anick’s resolution is minimal [49]. Some
conditions have been shown to be sufficient: as an immediate consequence of its construction, Anick’s
resolution is minimal for monomial algebras, and a quadratic algebra with a convergent presentation
has a minimal resolution given by its Koszul dual. For 𝑁 -homogeneous algebras, minimality is harder,
and Berger introduces an extra condition in [9]. Dotsenko and Khoroshkin constructed resolutions for
shuffle monomial operads by the inclusion-exclusion principle and for operads presented by a Gröbner
basis by deformation of the monomial case [20]. In this operadic case, the question of minimality of the
resolution is even more difficult due to the combinatorial complexity of the underlying tree structure
of shuffle operad terms. In particular, unlike for algebras the constructed resolution for a monomial
operad is not necessarily minimal.

In this work, we combine the polygraphic and the Gröbner bases approaches in order to compute
higher-dimensional presentations of shuffle operads using the polygraphic machinery. We define shuf-
fle 𝜔-operads as internal 𝜔-categories in the category of shuffle operads. We introduce the structure
of shuffle 𝜔-polygraphs as systems of generators and relations for shuffle 𝜔-operads. Unlike the Gröb-
ner bases approach, the orientation of the relations in a shuffle polygraph does not depend on a given
monomial order. The main construction of this article extends a confluent and terminating shuffle poly-
graph presenting a shuffle operad into a shuffle polygraphic resolution generated by the overlapping
branchings of the original polygraph. In order to address the question of minimal resolutions, we make
explicit these overlappings in all dimensions of the polygraphic resolution. We then give an inductive
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1. Introduction

method to compute a bimodule resolution that allows us to state a minimality result for shuffle operads,
as well as a condition for Koszulness.

Now we present the organization and the main results of this article.

Higher operads

The notion of a symmetric operad appears in many situations to describe operations in several argu-
ments, with symmetric group actions, acting on topological or algebraic objects [35, 39]. Shuffle operads
were introduced by Dotsenko and Khoroshkin in [19] to forget the symmetric group actions on the ar-
guments while preserving all possible operadic compositions. The shuffle version allows us to define
monomials and oriented relations in order to present symmetric operads by rewriting systems. Symmet-
ric and shuffle operads are defined as internal monoids in themonoidal presheaf categories of collections
and symmetric collections respectively, as recalled in Section 2.1. Explicitly, a collection is a presheaf on
the category Ord of nonempty finite ordered sets and order-preserving bijections, with values in the
category Vect of vector spaces. The monoidal product on collections is the shuffle composition recalled
in § 2.1.3. A symmetric collection is a presheaf on the category Fin of nonempty finite sets and bijections,
with values in the category Vect. The functor −𝑢 : Ord→ Fin that forgets the order induces a functor
−𝑢 : 𝔖Coll→ Coll from the category of symmetric collections to the category of collections. Since we
restrict to nonempty sets, none of the operads considered in this work have operations of arity 0.

In Section 2.3, we introduce the notion of a (strict) higher shuffle operad. We define a shuffle 𝜔-
operad as an internal 𝜔-category in the category ШOp of shuffle operads. Shuffle 𝜔-operads, with
internal 𝜔-functors, form a category denoted by ШOp𝜔 . In Section 2.4, we study the interaction be-
tween the higher-categorical structure of 𝜔-operads and its underlying linear structure. The object of
𝑛-cells of a shuffle 𝜔-operad has a shuffle operad structure, and the 𝑛-cells can be ★𝑘 -composed along
𝑘-dimensional cells for 0 ⩽ 𝑘 < 𝑛. Due to the linear structure, the ★𝑘 -composition of two 𝑛-cells 𝑎
and 𝑏 in a shuffle 𝜔-operad can be written as the following linear combination:

𝑎 ★𝑘 𝑏 = 𝑎 − 𝑡𝑘 (𝑎) + 𝑏,

where 𝑡𝑘 (𝑎) denotes the 𝑘-dimensional target of 𝑎, which coincides with the 𝑘-dimensional source of 𝑏.
In particular, every 𝑛-cell in a shuffle 𝜔-operad is invertible. Moreover, for 𝑛 ⩾ 1, the compatibility
between the shuffle composition and the★0-composition implies that the elementary composition 𝑎◦𝑖,𝜏 𝑏
of 𝑛-cells 𝑎 and 𝑏, as defined in § 2.2.1, can be seen either one of two orthogonal reduction paths from
𝑠0(𝑎) ◦𝑖,𝜏 𝑠0(𝑏) to 𝑡0(𝑎) ◦𝑖,𝜏 𝑡0(𝑏), pictured as follows:

𝑡0 (𝑎)
𝑠0 (𝑏) 𝑡0 (𝑎)

𝑏

((

𝑠0 (𝑎)
𝑠0 (𝑏)

𝑎

𝑠0 (𝑏)
00

𝑠0 (𝑎)
𝑏

..

𝑡0 (𝑎)
𝑡0 (𝑏)

𝑠0 (𝑎)
𝑡0 (𝑏)

𝑎

𝑡0 (𝑏)

66

The linear exchange relation introduced in § 2.4.2 states that these two reductions paths are equal. With
these remarkable relations, the axioms of shuffle 𝜔-operads can be simplified. We deduce a characteri-
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1. Introduction

zation of the structure of 𝜔-operad in terms of bimodules over shuffle operads. Our first result, Theo-
rem 2.4.8, proves that the categoryШOp𝜔 is isomorphic to the full subcategory ofRGlob(Bimod(ШOp)),
whose objects are pairs (𝑃,𝐴) where 𝑃 is a shuffle operad and 𝐴 = (𝐴𝑛)𝑛⩾0 is a reflexive globular 𝑃-
bimodule such that 𝐴0 = 𝑃 , and 𝐴𝑛 satisfies the linear exchange relation for all 𝑛 ⩾ 1.

Shuffle operadic polygraphs and rewriting

The notion of a polygraphwas introduced in the set-theoretical context by Street and Burroni as systems
of generators and relations for presentations of higher (strict) categories [15, 48]. A linear version of
polygraphs was introduced in [25] for the presentation of associative 𝜔-algebras. In Section 3.1, we
define an analogous notion for shuffle𝜔-operads, which we call shuffle polygraphs. Explicitly, for 𝑛 ⩾ 0,
a shuffle 𝑛-polygraph is a data 𝑋 = (𝑋0, . . . 𝑋𝑛) defined by induction, where 𝑋𝑘 , the set of 𝑘-generators,
forms a globular extension of the free shuffle (𝑘 −1)-operad generated by the shuffle (𝑘 −1)-polygraph
(𝑋0, . . . 𝑋𝑘−1). Such a data can be pictured as a diagram

𝑋Ш
0 𝑋Ш

1

𝑠Ш0
oo

𝑡Ш0

oo · · ·
𝑠Ш1

oo

𝑡Ш1

oo 𝑋Ш
𝑛−1

𝑠Ш𝑛−2
oo

𝑡Ш𝑛−2

oo 𝑋Ш
𝑛

𝑠Ш𝑛−1
oo

𝑡Ш𝑛−1

oo

𝑋0
?�

]0

OO

𝑋1
𝑠0

ee

𝑡0

ee

?�

]1

OO

· · ·
𝑠1

ee

𝑡1

ee

𝑋𝑛−1
𝑠𝑛−2

ee

𝑡𝑛−2

ee

?�

]𝑛−1

OO

𝑋𝑛

𝑠𝑛−1

ff

𝑡𝑛−1

ff

?�

]𝑛

OO

where 𝑠𝑖 and 𝑡𝑖 denote the source and target maps of the globular extensions, and the horizontal diagram
corresponds to the underlying globular operad of the free 𝑛-operad generated by the 𝑛-polygraph 𝑋 ,
denoted by 𝑋Ш

𝑛 . As for set-theoretical polygraphs, in Section 3.1 we define the category ШPol𝑛 of
shuffle 𝑛-polygraphs and the free 𝑛-operad functor (−)Ш : ШPol𝑛 → ШOp𝑛 by induction on the
dimension 𝑛, and the category of shuffle 𝜔-polygraphs as the limit of the forgetful functors ШPol𝑛 →
ШPol𝑛−1 for 𝑛 ⩾ 1.

The shuffle polygraphic approach lets us present shuffle operads by oriented presentations, called
rewriting systems: the shuffle operad 𝑋 presented by a shuffle 1-polygraph 𝑋 is defined as the coequal-
izer of the source and target morphisms 𝑠Ш0 , 𝑡Ш0 : 𝑋Ш

1 ⇒ 𝑋Ш
0 in the category ШOp. Note that, in this

work, we consider operads with only one color. The 0-generators correspond to the generators of the
shuffle operads, and the 1-generators correspond to the oriented relations. For presentations of multi-
colored shuffle operads, we need to consider shuffle two-dimensional polygraphs, whose 0-generators
correspond to colors, 1-generators to generators, and 2-generators to oriented relations.

We use rewriting theory on shuffle 1-polygraphs to deduce global rewriting properties, such as
confluence and termination from local properties of the 1-generators, also called rewriting rules. Without
loss of generality, in Section 4 wewill consider 1-polygraphs with left-monomial rules, reducing a single
monomial into a linear combination of monomials. A rewriting step of a left-monomial 1-polygraph 𝑋
is a 1-cell 𝑓 of the free shuffle 1-operad 𝑋Ш

1 of size 1, and of the form 𝑓 = _𝑔 + 1𝑐 , where _ is a nonzero
scalar, 𝑔 is a 1-monomial of𝑋Ш

1 , and 𝑐 is a 0-cell of the free shuffle operad𝑋Ш
0 such that the 0-monomial

𝑠0(𝑢) ∉ Supp(𝑐). A 1-cell of the free 1-operad 𝑋Ш
1 is positive if it is the ★0-composition of rewriting

steps. A polygraph is terminating if there is no infinite sequence of ★0-composition of rewriting steps.
This shuffle polygraphic approach generalizes that of Gröbner bases introduced by Dotsenko and

Khoroshkin in [19]. Indeed, the orientation of the polygraphic rules does not depend on a given mono-
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1. Introduction

mial order. However, termination is not ensured by a monomial order, so it must be proven by consid-
ering the rewriting rules themselves. Beyond the property of termination, the confluence property of a
1-polygraph𝑋 states that for every branching of two positive 1-cells 𝑓 , 𝑔 of𝑋Ш

1 with the same source 𝑎,
there exist two positive 1-cells ℎ and 𝑘 of 𝑋Ш

1 as in the following confluence diagram:

𝑏 ℎ
��

𝑎

𝑓 00

𝑔
//

𝑑

𝑐
𝑘

@@

When the system is terminating, confluence can be deduced from local confluence, that is, when
all the branchings of rewriting steps are confluent [29, 41]. Local confluence can be proven by the
confluence of all branchings involving minimal overlappings of the rules, called critical branchings.
This is the critical branching theorem proved in many algebraic contexts [17, 32, 42]. Coherent versions
of this result where introduced in [23, 25]. In § 4.2.2 we introduce essential branchings that refine
the notion of a critical branching, and generate all critical branchings by transitivity. Theorem 4.2.4
proves a coherent essential branching theorem for shuffle polygraphs. It states that we can extend a
terminating, convergent, left-monomial shuffle 1-polygraph 𝑋 into an acyclic shuffle 2-polygraph by
considering confluences of essential branchings.

In Section 4.3, we give several algebraic interpretations of the confluence property of a terminating,
left-monomial shuffle 1-polygraph 𝑋 . Proposition 4.2.6 proves that the confluence of 𝑋 is equivalent to
having a decomposition of the free shuffle operad 𝑋Ш

0 into a direct sum of the ideal generated by the
1-generators of𝑋 and the collection of normal forms with respect to this 1-generators. Proposition 4.3.2
proves that the notion of a convergent shuffle 1-polygraph, where the rules are oriented with respect
to a given monomial order, is equivalent to the notion of Gröbner bases introduced in [19]. Proposi-
tion 4.3.4 gives a polygraphic interpretation of the Poincaré-Birkhoff-Witt (PBW) criterion introduced
by Hoffbeck in [28] as a generalization of Priddy’s PBW criterion for associative algebras [43].

The overlapping polygraphic resolution and Koszulness

An 𝜔-polygraph 𝑋 is acyclic if, for every 𝑛 ⩾ 1, the quotient of the free shuffle 𝑛-operad 𝑋Ш
𝑛 by the

ideal generated by the cellular extension 𝑋𝑛+1 is aspherical, that is all parallel 𝑛-cells are equal. We
say that an acyclic 𝜔-polygraph 𝑋 is a shuffle polygraphic resolution of the shuffle operad it presents.
Section 5 presents the main result of this article, Theorem 5.2.6, which extends a reduced convergent
left-monomial shuffle 1-polygraph𝑋 into a polygraphic resolution, denoted by O𝑣 (𝑋 ), of the presented
shuffle operad. The generators of this polygraphic resolution correspond to higher-dimensional over-
lappings induced by the rewriting rules of 𝑋 , defined in § 5.2.1: an 𝑛-generator of O𝑣 (𝑋 ), called an
𝑛-overlapping, is a sequence of monomials, written

𝑢0 ®𝑣1 ®𝑣2 · · · ®𝑣𝑛,

where, when seen as planar trees, each sequence of monomials ®𝑣𝑖 = (𝑣𝑖,1, . . . , 𝑣𝑖,𝑘 ) is attached to the
leaves of the (𝑖 − 1)-overlapping 𝑢0 ®𝑣1 · · · ®𝑣𝑖−1 in a manner that adds exactly enough to apply a new
rewriting rule. Explicitly, for low dimensions, the 0-overlappings correspond to the 0-generators 𝑋0,
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2. Higher shuffle operads

the 1-overlappings correspond to the sources of the rewriting rules of 𝑋1, and the 2-overlappings cor-
respond to critical branchings of 𝑋 .

The acyclicity of the shuffle 𝜔-polygraph O𝑣 (𝑋 ) is proven by the construction of a homotopical
contraction. Thus the shuffle polygraphic resolution O𝑣 (𝑋 ) provides an alternative construction to
the differential-graded shuffle operads constructed by Dotsenko and Khoroshkin [20]. Moreover, since
associative algebras are particular cases of shuffle operads, the construction of O𝑣 (𝑋 ) is another way
to obtain the polygraphic resolutions for associative algebras introduced in [25].

The Quillen homology of a symmetric operad can be computed from its associated shuffle operad.
Indeed, the reduced bar complex of a symmetric operad 𝑃 is isomorphic, as a shuffle differential-graded
cooperad, to the reduced bar complex of the associated shuffle operad 𝑃𝑢 , that is, 𝐵(𝑃)𝑢 ≃ 𝐵(𝑃𝑢), [20,
Prop. 1.4]. In Section 5.3, we associate to an acyclic shuffle 𝜔-polygraph 𝑋 that presents a shuffle op-
erad 𝑃 a 𝑃-bimodule resolution 𝑃 ⟨𝑋 ⟩ of the trivial 𝑃-bimodule Ω𝑃 . Thus shuffle polygraphic resolutions
provide a constructive way to compute the homology of symmetric operads. Proposition 5.3.10 proves
that when there exists an increasing function 𝑤 : N → N \ {0} such that the 𝑛-generators of 𝑋 are
concentrated in weight 𝑤 (𝑛), then the resolution 𝑃 ⟨𝑋 ⟩ is minimal. Finally, we define in Section 5.4 a
criterion of Koszulness in terms of quadratic convergence: Theorem 5.4.2 states that shuffle operads
presented by quadratic convergent 1-polygraphs are Koszul. This result generalizes those obtained by
Dotsenko and Khoroshkin in [19] for shuffle operads with quadratic Gröbner bases defined with re-
spect to a given monomial order. This new rewriting-based sufficient condition for Koszulness does
not depend on a monomial order, which is required to define Gröbner bases.

Conventions and notations

Throughout this article k denotes a field of characteristic zero. All vector spaces are over this field k,
and we denote by Vect the category of vector spaces and linear maps as morphisms. We denote by N
the set of nonnegative integers. We denote byOrd the category of nonempty finite ordered sets, whose
morphisms are order-preserving bijections. We denote by Fin the category of nonempty finite sets,
whose morphisms are bijections.

2. Higher shuffle operads

In this section we introduce the notion of a higher shuffle operad. We first recall the structure of
shuffle operads from [19] and we decompose the shuffle composition into elementary compositions. We
then define the category of shuffle 𝜔-operads and characterize it as a certain subcategory of globular
bimodules over shuffle operads.

2.1. Shuffle operads

In this preliminary subsection we recall from [19] the definitions on shuffle operads used in this article.
We refer the reader to [36] or [12] for a complete account on symmetric and shuffle operads.
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2.1. Shuffle operads

2.1.1. Presheaves on finite sets. In general, a presheaf 𝑋 on Ord or Fin with values in a category C
are determined by the family of objects (𝑋 (𝑘))𝑘⩾1, where 𝑋 (𝑘) := 𝑋 ({1, . . . , 𝑘}). We will adopt this
notation for the following definitions.

An set indexed by the category Ord, or indexed set for short, is a presheaf on Ord with values in the
category Set. We denote by Ind the category of indexed sets with natural transformations asmorphisms.
A collection is a presheaf on Ord with values in the category Vect. We denote by Coll the category of
collections and their natural transformations. A basis of𝑉 is a indexed set 𝐵 = (𝐵(𝑘))𝑘⩾1 such that, for
each 𝑘 , 𝐵(𝑘) is a basis of the space 𝑉 (𝑘).

A symmetric collection is a presheaf on Fin with values in the category Vect. We denote by𝔖Coll
the category of symmetric collections and their natural transformations. The functor −𝑢 : Ord → Fin
that forgets the order induces a functor

−𝑢 : 𝔖Coll→ Coll. (2.1.2)

In addition, we denote by k⟨−⟩ : Ind→ Coll the left adjoint functor of the forgetful functorColl→ Ind.

2.1.3. Operads ([19]). The categories Coll and𝔖Coll are monoidal with the following products:

i) the shuffle composition on Coll denoted by ◦Ш, and defined for 𝑉 ,𝑊 ∈ Coll by

(𝑉 ◦Ш𝑊 ) (𝐼 ) :=
∞⊕
𝑘=1

𝑉 (𝑘) ⊗
©«

⊕
𝑓 :𝐼↠{1,...,𝑘 }

(∗)

𝑊 (𝑓 −1{1}) ⊗ · · · ⊗𝑊 (𝑓 −1{𝑘})
ª®®®¬ ,

where 𝐼 ∈ Ord𝑜 and the sum (∗) is taken on shuffle surjections, i.e., surjections 𝑓 : 𝐼 ↠ {1, . . . , 𝑘}
such that

min 𝑓 −1{1} < . . . < min 𝑓 −1{𝑘}.

ii) the symmetric composition on𝔖Coll, denoted by ◦𝔖, is defined for 𝑉 ,𝑊 ∈ 𝔖Coll by

(𝑉 ◦𝔖𝑊 ) (𝐼 ) :=
∞⊕
𝑘=1

𝑉 (𝑘) ⊗k[𝔖𝑘 ]
©«

⊕
𝑓 :𝐼↠{1,...,𝑘 }

𝑊 (𝑓 −1{1}) ⊗ · · · ⊗𝑊 (𝑓 −1{𝑘})ª®¬ ,
where 𝐼 ∈ Fin𝑜 , and the sum is taken on all surjections.

In both case, the unit is the collection I concentrated in arity 1 with I(1) = k.
A shuffle (resp. symmetric) operad is an internalmonoid (𝑃, `𝑃 , [𝑃 ) in (Coll, ◦Ш, I) (resp. (𝔖Coll, ◦𝔖, I)),

where `𝑃 is the multiplication morphism and [𝑃 is the unit morphism. We denote respectively by𝔖Op
and ШOp the category of symmetric operads and shuffle operads and their morphisms.

The free operad functors −∗Ш : Coll→ШOp and −∗𝔖 : 𝔖Coll→ 𝔖Op are defined using the free
monoid functor on left distributive categories as detailed in [7, Appendix B]. For an indexed set 𝑋 , we
denote by 𝑋Ш the free shuffle operad on 𝑋 given by the composite of free functor

Ind k
// Coll −

∗Ш
//ШOp. (2.1.4)

7



2. Higher shuffle operads

Recall from [19], see also [12], that the forgetful functor −𝑢 is monoidal in the sense that for all
symmetric collections𝑉 ,𝑊 , we have (𝑉 ◦𝔖𝑊 )𝑢 = 𝑉𝑢 ◦Ш𝑊 𝑢 inColl, and in particular that it commutes
with free operad functors −∗𝔖 and −∗Ш , in the sense that for every symmetric collection 𝑉 , we have
the isomorphism

(𝑉 ∗𝔖 )𝑢 = (𝑉𝑢)∗Ш . (2.1.5)

2.1.6. Shuffle composition on indexed sets. We define a monoidal shuffle composition on Ind, also
denoted by ×Ш, by setting, for indexed sets 𝑋,𝑌

(𝑋 ×Ш 𝑌 ) (𝐼 ) :=
∞∐
𝑘=1

𝑋 (𝑘) ×
©«

∐
𝑓 :𝐼↠{1,...,𝑘 }

(∗)

𝑌 (𝑓 −1{1}) × · · · × 𝑌 (𝑓 −1{𝑘})
ª®®®¬

where the coproduct (∗) is taken on shuffle surjections. The composition ×Ш has for unit the indexed
set concentrated in arity 1, denoted by 1, and such that 1(1) is a singleton, whose only element is
denoted by Y. The functor k is compatible with product and coproduct, hence the following diagram
commutes:

Ind × Ind
×Ш
��

k × k
// Coll × Coll

◦Ш
��

Ind
k

// Coll

(2.1.7)

Note that the adjunction between the monoidal categories (Set,×, {∗}) and (Vect, ⊗, k) is compatible
with the canonical isomorphisms of units, associativity, and distributivity, so the induced functors be-
tween (Ind,×Ш, I) and (Coll, ◦Ш, I) make a lax monoidal adjunction.

2.1.8. Tree monomials. The shuffle composition is monoidal, and we denote by ШTree the category
of internal monoids in Ind with respect to this composition. The functor k preserves colimits as a left
adjoint, and sends ×Ш to ◦Ш as a consequence of commutativity of (2.1.7). Free internal monoids in Ind
and Coll are constructed by colimits and shuffle composition, thus the linearization functor k induces
a linearization functor ШTree→ШOp such that the following square commutes:

Ind

−∗Ш
��

k
// Coll

−∗Ш
��

ШTree
k

//ШOp

For an indexed set 𝑋 , the elements of the free internal monoid 𝑋 ∗Ш in ШTree are called tree mono-
mials on 𝑋 . We have 𝑋 ∗Ш = (𝑋 ∗Ш

𝑘
)𝑘⩾0, and elements of 𝑋 ∗Ш

𝑘
are said to be of arity 𝑘 . In particular the

unit in 𝑋 ∗Ш corresponding to the indexed set 1 is called the trivial tree monomial. Elements of the free
operad 𝑋Ш are linear combination of tree monomials having a same given arity 𝑘 , and called terms
on 𝑋 of arity 𝑘 .
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2.1. Shuffle operads

2.1.9. Graphical representation of tree monomials. The elements of an indexed set can be repre-
sented graphically as (planar rooted) trees. For an indexed set𝑋 and an ordered set 𝐼 = {𝑖1 < 𝑖2 < · · · <
𝑖𝑘 }, an element 𝑥 ∈ 𝑋 (𝐼 ) is depicted by a corolla, that is, a tree with only one vertex:

𝑥

𝑖1 𝑖2 · · · 𝑖𝑘−1 𝑖𝑘

.

For indexed sets 𝑋,𝑌 , elements of (𝑋 ×Ш 𝑌 ) (𝐼 ) have the form

𝑥

𝑦1

min 𝑓 −1{1} · · · max 𝑓 −1{1}

· · · 𝑦𝑘

min 𝑓 −1{𝑘 } · · · max 𝑓 −1{𝑘 }

,

where 𝑘 ⩾ 1, 𝑓 : 𝐼 ↠ {1, . . . , 𝑘} is a shuffle surjection, 𝑥 ∈ 𝑋 (𝑘) and𝑦𝑖 ∈ 𝑌 (𝑓 −1{𝑖}) for all 𝑖 ∈ {1, . . . , 𝑘}.
In this way, a tree monomial 𝑢 on 𝑋 can be represented by a planar tree 𝑇 (𝑢), whose vertices are
elements of 𝑋 , and its arity is the number of its leaves. More generally, for𝑉 ,𝑊 two collections,𝑉 ◦𝑊
has a basis of tree monomials.

The weight of a tree monomial 𝑢 on an indexed set 𝑋 is the number of vertices of 𝑇 (𝑢). A tree
monomial 𝑣 is a (resp. rooted) submonomial of 𝑢 if 𝑇 (𝑣) is a (resp. rooted) subtree of 𝑇 (𝑢). If 𝑣 is a
rooted submonomial of 𝑢, we write 𝑣 ⊆ 𝑢. When listing submonomials of a tree monomial 𝑢, we
distinguish the different occurrences of a subtree of 𝑇 (𝑢): for instance, the tree monomial

𝑥
𝑥

1 2
𝑥

3 4

contains three distinct occurrences of the submonomial
𝑥

1 2 , one of which is rooted.

2.1.10. Inline notation for tree monomials. For 𝑛1, . . . , 𝑛𝑘 ⩾ 1, a shuffle surjection of type
(𝑛1, . . . , 𝑛𝑘 ) is a surjection 𝑓 : {1, . . . , 𝑛1 + · · · + 𝑛𝑘 } ↠ {1, . . . , 𝑘} such that, for all 𝑖 ∈ {1, . . . , 𝑘},
|𝑓 −1({𝑖}) | = 𝑛𝑖 , and

min 𝑓 −1{1} < · · · < min 𝑓 −1{𝑘}.

Denote by 𝑆 (𝑛1, . . . , 𝑛𝑘 ) the set of shuffle surjections of type (𝑛1, . . . , 𝑛𝑘 ).
Let 𝑋 be an indexed set. The inline notation for the indexed set of tree monomials 𝑋 ∗Ш is the term

algebra in indexed sets given by the Backus-Naur form

𝑋 ∗Ш ::= 1
�� (𝑋 (𝑘) | 𝑓 𝑋 ∗Ш (𝑛1) · · ·𝑋 ∗Ш (𝑛𝑘 )),

where 1 is the indexed set defined in 2.1.6, and 𝑓 is a shuffle surjection of type (𝑛1, . . . , 𝑛𝑘 ). When
possible, we omit subscript 𝑓 , and we write

(𝑢 | ®𝑣) := (𝑢 | 𝑣1 · · · 𝑣𝑘 ).
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Wewill use also the notation ®𝑣 for the list of tree monomials 𝑣1, . . . , 𝑣𝑘 . Finally, note that for two indexed
sets 𝑋,𝑌 the indexed set 𝑋 ×Ш 𝑌 can be written in an explicit way as, for 𝑛 ⩾ 1,

(𝑋 ×Ш 𝑌 ) (𝑛) =
 (𝑥 | 𝑓 𝑦1 · · ·𝑦𝑘 )

������ 𝑛1, . . . , 𝑛𝑘 ⩾ 1, 𝑛1 + · · · + 𝑛𝑘 = 𝑛,

𝑥 ∈ 𝑋 (𝑘), 𝑦1 ∈ 𝑌 (𝑛1), . . . , 𝑦𝑘 ∈ 𝑌 (𝑛𝑘 ),
𝑓 ∈ 𝑆 (𝑛1, . . . , 𝑛𝑘 )

 .
2.1.11. Explicit associativity of shuffle composition. Let 𝑢, ®𝑣, ®𝑣 ′ be monomials, and 𝑓 , 𝑓 ′ shuffle
surjections such that the tree monomial ((𝑢 | 𝑓 ®𝑣) | 𝑓 ′ ®𝑣 ′) is well defined. Denoting theminimal andmax-
imal elements of 𝑓 −1{𝑖} by 𝑓−𝑖 and 𝑓+𝑖 respectively for all 𝑖 ∈ {1, . . . , 𝑘}, this monomial is represented
graphically as

𝑢

𝑣1

𝑣 ′
𝑓−1

𝑓 ′− 𝑓−1 · · · 𝑓 ′+ 𝑓−1

· · · 𝑣 ′
𝑓+1

𝑓 ′− 𝑓+1 · · · 𝑓 ′+ 𝑓+1

· · · 𝑣𝑘

𝑣 ′
𝑓−𝑘

𝑓 ′− 𝑓−𝑘 · · · 𝑓 ′+ 𝑓−𝑘

· · · 𝑣 ′
𝑓+𝑘

𝑓 ′− 𝑓+𝑘 · · · 𝑓 ′+ 𝑓+𝑘

For 𝑖 ∈ {1, . . . , 𝑘}, the restriction of 𝑓 ′ to 𝑓 ′−1{𝑓 −1{𝑖}} is a shuffle surjection of domain 𝑓 −1{𝑖}. We intro-
duce the notation (®𝑣 | 𝑓 ,𝑓 ′ ®𝑣 ′) for the list of monomials {(𝑣𝑖 | 𝑓 ′

|𝑓 ′−1 (𝑓 −1{𝑖})
𝑣 ′min 𝑓 −1{𝑖 } · · · 𝑣

′
max 𝑓 −1{𝑖 })}1⩽𝑖⩽𝑘 .

Then
((𝑢 | 𝑓 ®𝑣) | 𝑓 ′ ®𝑣 ′) = (𝑢 | 𝑓 𝑓 ′ (®𝑣 | 𝑓 ,𝑓 ′ ®𝑣 ′)),

where 𝑓 𝑓 ′ is the composition of shuffle surjections.

2.1.12. Bimodules and ideals. Recall that a 𝑃-bimodule over a shuffle operad 𝑃 , called a linear module
over 𝑃 in [7, Def. 2.13], is a collection 𝐴 equipped with two families of morphisms of collections

_ : 𝑃 (𝑘) ⊗ 𝑃 (𝑓 −1{1}) ⊗ · · · ⊗ 𝐴(𝑓 −1{𝑖}) ⊗ · · · 𝑃 (𝑓 −1{𝑘}) → 𝐴(𝐼 ),
𝜌 : 𝐴(𝑘) ⊗ 𝑃 (𝑓 −1{1}) ⊗ · · · ⊗ 𝑃 (𝑓 −1{𝑘}) → 𝐴(𝐼 ),

for all shuffling surjections 𝑓 : 𝐼 ↠ {1, . . . , 𝑘}, defining a left crossed action and a right action re-
spectively, satisfying compatibility axioms with each other, and associativity and unit axioms with the
product of 𝑃 . A morphism of 𝑃-modules is a morphism of collections compatible with the left and right
actions. We denote by Bimod(𝑃) the category of 𝑃-bimodules and morphisms of 𝑃-bimodules, and by
Bimod(ШOp) :=

∐
𝑃∈ШOp Bimod(𝑃) the category of pairs (𝑃,𝐴) composed of an operad 𝑃 and a 𝑃-

bimodule 𝐴. We denote by L𝑃 : Coll→ Bimod(𝑃) the free bimodule functor defined in [7, Prop. 2.11],
see also [38], and given for every 𝑉 ∈ Coll and 𝐼 ∈ Ord by

L𝑃 (𝑉 ) (𝐼 ) :=
⊕
𝑘⩾1

𝑃 (𝑘) ⊗
©«

⊕
𝑓 :𝐼↠{1,...,𝑘 }

1⩽𝑖⩽𝑘

𝑃 (𝑓 −1{1}) ⊗ · · · ⊗ (𝐴 ◦Ш 𝑃) (𝑓 −1{𝑖}) ⊗ · · · ⊗ 𝑃 (𝑓 −1{𝑘})
ª®®®¬

For an indexed set 𝑋 , we denote by
𝑃 ⟨𝑋 ⟩ := L𝑃 (k𝑋 )

the free 𝑃-bimodule on 𝑋 .
An ideal of an operad 𝑃 is a 𝑃-bimodule I equipped with an inclusion of 𝑃-bimodules I ↩→ 𝑃 .
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2.2. Compositions in shuffle operads

2.1.13. Graphical description of bimodules. Let 𝑋 be an indexed set an 𝑃 a shuffle operad. The
free 𝑃-bimodule 𝑃 ⟨𝑋 ⟩ is the collection generated by tree monomials of the form

𝑢

𝑣1 · · · 𝑣𝑖−1 𝑥

𝑤1 · · · 𝑤𝑛

𝑣𝑖+1 · · · 𝑣𝑘 ,

where 𝑛, 𝑘 ⩾ 1, 𝑥 ∈ 𝑋 (𝑛), 𝑖 ∈ {1, . . . , 𝑘}, 𝑢, 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑘 ,𝑤1, . . . ,𝑤𝑛 ∈ 𝑃 , and the inputs are omitted.
We use the check notation 𝑣𝑖 to indicate that we omit 𝑣𝑖 , as opposed to the usual hat notation 𝑣𝑖 , in
order to avoid confusion with a notation in Section 5.

2.2. Compositions in shuffle operads

In this subsection, we decompose shuffle composition into partial compositions, and we introduce no-
tations for composition and terms in an operad.

2.2.1. Shuffle partial composition. Recall from [19, Prop. 2], that for 𝑘, ℓ ⩾ 1, a shuffle permutation
of type (𝑘, ℓ) is a permutation 𝜏 ∈ 𝔖𝑘+ℓ such that

𝜏 (1) < · · · < 𝜏 (𝑘), and 𝜏 (𝑘 + 1) < · · · < 𝜏 (𝑘 + ℓ) .

Denote by Ш(𝑘, ℓ) the set of shuffle permutations of type (𝑘, ℓ). Given indexed sets𝑋,𝑌 , and 𝑥 ∈ 𝑋 (𝑘),
𝑦 ∈ 𝑌 (ℓ), for 𝑖 ∈ {1, . . . , 𝑘} and 𝜏 ∈Ш(ℓ − 1, 𝑘 − 𝑖), we define the elementary composition 𝑥 ◦𝑖,𝜏 𝑦 as the
following tree

𝑥

1 · · · 𝑖 − 1 𝑦

𝑖 𝑖 + 𝜏 (1) · · · 𝑖 + 𝜏 (ℓ − 1)

𝑖 + 𝜏 (ℓ ) · · · 𝑖 + 𝜏 (𝑘 + ℓ − 1 − 𝑖 )

Elementary compositions are extended to collections by linearity and bidistributivity. We denote by
𝑉 (𝑘) ◦𝑖,𝜏 𝑊 (ℓ) the collection composed by elementary compositions of the form 𝑣 ◦𝑖,𝜏 𝑤 , for 𝑣 ∈ 𝑉 (𝑘)
and𝑤 ∈𝑊 (ℓ). Then the shuffle partial composition of collections 𝑉 ,𝑊 is defined by

(𝑉 ⊙Ш𝑊 ) (𝑛) :=
⊕
𝑘,ℓ,𝑖⩾1
𝑘+ℓ−1=𝑛

𝜏∈Ш(ℓ−1,𝑘−𝑖 )

𝑉 (𝑘) ◦𝑖,𝜏𝑊 (ℓ) .
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2.2.2. Properties of partial compositions. Note that there are isomorphisms

(𝑉 ⊙Ш𝑊 ) (𝑛)
(i)
≃

∞⊕
𝑘=1

𝑉 (𝑘) ⊗
©«

⊕
𝑖,ℓ⩾1

𝑘+ℓ−1=𝑛
𝜏∈Ш(ℓ−1,𝑘−𝑖 )

I({1}) ⊗ · · · ⊗ I({𝑖 − 1}) ⊗𝑊 ({𝑖, 𝑖 + 𝜏 (1), . . . , 𝑖 + 𝜏 (ℓ − 1)})

⊗ I({𝑖 + 𝜏 (ℓ)}) ⊗ · · · ⊗ I({𝑖 + 𝜏 (𝑘 + ℓ − 1 − 𝑖)})ª®¬
(ii)
≃

⊕
𝑘,ℓ,𝑖⩾1
𝑘+ℓ−1=𝑛

𝜏∈Ш(ℓ−1,𝑘−𝑖 )

𝑉 (𝑘) ⊗𝑊 (ℓ) .

The isomorphism (i) implies that there is an injection of collections

𝑉 ⊙Ш𝑊 ↩→ 𝑉 ◦Ш (I ⊕𝑊 ) .

The isomorphism (ii) implies that partial composition a bidistributive bifunctor ⊙Ш : Coll × Coll →
Coll. The partial composition ⊙Ш is not associative. However, if there is no possible confusion, we will
use the left bracket rule, that is,𝑈 ⊙ 𝑉 ⊙𝑊 := (𝑈 ⊙ 𝑉 ) ⊙𝑊 .

2.2.3. Decomposition of shuffle compositions. Let 𝐴 be a collection equipped with a morphism
[𝐴 : I→ 𝐴, that is, [𝐴 is an object of I/Coll. We can express the shuffle composition 𝐴 ◦Ш 𝐴 in terms
of partial compositions. There exists a natural transformation 𝜑 from the functor𝐴 ↦→

⊕
𝐴 ⊙Ш𝐴⊙Ш𝑝

to the functor 𝐴 ↦→ 𝐴 ◦Ш 𝐴 defined as follows:

𝜑𝐴 :
∞⊕
𝑝=1

𝐴 ⊙Ш 𝐴⊙Ш𝑝 →
∞⊕
𝑝=1

𝐴 ◦Ш (I ⊕ 𝐴)◦Ш𝑝

∑
1◦Ш ([𝐴+1)◦Ш𝑝

−−−−−−−−−−−−−−→ 𝐴 ◦Ш 𝐴.

In order to express 𝐴 ◦Ш 𝐴 in terms of partial compositions, it suffices to define a right inverse to 𝜑 ,
that is, a natural transformation 𝜎 from the functor 𝐴 ↦→ 𝐴 ◦Ш 𝐴 to the functor 𝐴 ↦→

⊕
𝐴 ⊙Ш 𝐴⊙Ш𝑝

such that 𝜑𝐴𝜎𝐴 = 𝑖𝑑𝐴◦Ш𝐴 for all 𝐴.
Define the morphism

𝜎𝐴 : 𝐴 ◦Ш 𝐴→
∞⊕
𝑝=1

𝐴 ⊙Ш 𝐴⊙Ш𝑝 ,

natural in 𝐴, as follows. An element 𝑎 of (𝐴 ◦Ш 𝐴) (𝑛) can be written

𝑎 =

𝑎0

𝑎1

min 𝑓 −1{1} · · · max 𝑓 −1{1}

· · · 𝑎𝑝

min 𝑓 −1{𝑝 } · · · max 𝑓 −1{𝑝 }
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2.3. Higher shuffle operads

where 𝑓 : {1, . . . , 𝑛} ↠ {1, . . . , 𝑝} is a shuffle surjection. Set 𝜎𝐴 (𝑎) := 𝑎0 ◦𝑝,𝜏𝑝 𝑎𝑝 ◦𝑝−1,𝜏𝑝−1 · · · ◦1,𝜏1 𝑎1,

where

𝜏𝑝 ∈Ш
(
|𝑓 −1{𝑝}| − 1, 0

)
= {𝑖𝑑 | 𝑓 −1{𝑝 } |−1},

𝜏𝑝−1 ∈Ш
(
|𝑓 −1{𝑝 − 1}| − 1, |𝑓 −1{𝑝}|

)
,

...

𝜏1 ∈Ш
(
|𝑓 −1{1}| − 1, |𝑓 −1{2, . . . , 𝑝}|

)
,

are the appropriate shuffle permutations. We check that, for every morphism 𝑓 : 𝐴→ 𝐵 of collections,
the square

𝐴 ◦Ш 𝐴
𝜎𝐴
//

𝑓 ◦Ш 𝑓

��

⊕
𝑝⩾0

𝐴 ⊙Ш 𝐴⊙Ш𝑝∑︁
𝑝⩾0

𝑓 ⊙Ш 𝑓 ⊙Ш𝑝

��

𝐵 ◦Ш 𝐵
𝜎𝐵
//

⊕
𝑝⩾0

𝐵 ⊙Ш 𝐵⊙Ш𝑝

commutes. This defines the natural transformation 𝜎 , and we check that it is a right inverse to the
natural transformation 𝜑 .

2.2.4. Example. Let 𝐴 be an object of I/Coll and

𝑎 =
𝑎0

𝑎1
1 3

𝑎2
2 4

and element of 𝐴 ◦Ш 𝐴, where 𝑎0, 𝑎1, 𝑎2 ∈ 𝐴(2). Then we have

𝜎𝐴 (𝑎) = 𝑎0 ◦2,𝑖𝑑1 𝑎2 ◦1,(1 2) 𝑎1 and 𝜑𝐴𝜎𝐴 (𝑎) =
𝑎0

1
𝑎1

1 3

𝑎2
2 4

=
𝑎0

𝑎1
1 3

𝑎2
2 4

.

2.3. Higher shuffle operads

In this subsection, we introduce the structure of (strict) shuffle 𝜔-operads.

2.3.1. Globular objects. We denote by RO the reflexive globe category, whose objects are natural
numbers, denoted by 𝑛, for 𝑛 ∈ N, and morphisms are generated by

𝜎𝑛 : 𝑛 → 𝑛 + 1, 𝜏𝑛 : 𝑛 → 𝑛 + 1, ]𝑛+1 : 𝑛 + 1→ 𝑛,

for all 𝑛 in N, and submitted to the following globular and identities relations:

𝜎𝑛+1 ◦ 𝜎𝑛 = 𝜏𝑛+1 ◦ 𝜎𝑛, 𝜎𝑛+1 ◦ 𝜏𝑛 = 𝜏𝑛+1 ◦ 𝜏𝑛,
]𝑛 ◦ 𝜎𝑛 = 𝑖𝑑𝑛, ]𝑛 ◦ 𝜏𝑛 = 𝑖𝑑𝑛,
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for all 𝑛 in N. Omitting the identity maps ]𝑛 gives the definition of the globe category O. We denote
by RO𝑛 (resp. O𝑛) the full subcategory of RO (resp. O) whose objects are 0, 1, . . ., 𝑛.

A reflexive globular object in a category C is a functor RO𝑜𝑝 → C, whose restriction to the cat-
egory RO𝑜𝑝𝑛 is called a reflexive 𝑛-globular object. Explicitly, a reflexive globular object is given by a
sequence 𝐴 = (𝐴𝑘 )𝑘∈N of objects of C, equipped with indexed morphisms

𝑠 = (𝑠𝑘 : 𝐴𝑘+1 → 𝐴𝑘 )𝑘∈N, 𝑡 = (𝑡𝑘 : 𝐴𝑘+1 → 𝐴𝑘 )𝑘∈N, 𝑖 = (𝑖𝑘 : 𝐴𝑘−1 → 𝐴𝑘 )𝑘∈N,

of degree −1, −1 and 1 respectively, and satisfying the following globular and identities relations

𝑠2 = 𝑠𝑡, 𝑡2 = 𝑡𝑠, 𝑠𝑖 = 𝑖𝑑𝐴, 𝑡𝑖 = 𝑖𝑑𝐴 . (2.3.2)

The elements of 𝐴𝑘 are called 𝑘-cells of 𝐴. A morphism of reflexive globular objects is an indexed mor-
phism of degree 0 that commutes with morphisms 𝑠 , 𝑡 and 𝑖 . We denote by RGlob(C) (resp. Glob(C))
the category of reflexive globular objects (resp. globular objects) in C and their morphisms. We denote
by RGlob𝑛 (C) (resp. Glob𝑛 (C)) the full subcategory of RGlob(ШOp) of reflexive 𝑛-globular objects
(resp. 𝑛-globular objects) in C. We will denote by

V𝑛 (C) : Glob𝑛+1(C) → Glob𝑛 (C)

the functor that forgets the (𝑛 + 1)-cells. For 𝐴 a globular object and ℓ ⩾ 𝑘 ⩾ 0, the (ℓ, 𝑘)-source and
(ℓ, 𝑘)-target morphisms

𝑠ℓ
𝑘

: 𝐴ℓ → 𝐴𝑘 , 𝑡 ℓ
𝑘

: 𝐴ℓ → 𝐴𝑘 ,

are respectively defined as the following iterated composition of source and target morphisms:

𝑠ℓ
𝑘

:= 𝑠𝑘 ◦ . . . 𝑠ℓ−2 ◦ 𝑠ℓ−1, 𝑡 ℓ
𝑘

:= 𝑡𝑘 ◦ . . . 𝑡ℓ−2 ◦ 𝑡ℓ−1.

We denote by 𝑖𝑘ℓ : 𝐴𝑘 → 𝐴ℓ the iterated identity 𝑖𝑘
𝑙
= 𝑖ℓ ◦ 𝑖ℓ−1 . . . ◦ 𝑖𝑘+1. When there is no ambiguity,

we will write 𝑠𝑘 and 𝑡𝑘 for source and target maps respectively, and we will omit 𝑖𝑘ℓ entirely, since 𝑖𝑘ℓ is
injective by (2.3.2). For 𝑘 ⩾ 0, we denote by 𝐴★𝑘 𝐴 the following pullback of globular operads

𝐴★𝑘 𝐴
𝜋1
//

𝜋2
��

𝐴

𝑠𝑘
��

𝐴
𝑡𝑘

// 𝐴𝑘

Let 𝐴 be a globular object of some category C. For 𝑛 ⩾ 1, two 𝑛-cells 𝑎, 𝑏 of 𝐴 are parallel if
𝑠 (𝑎) = 𝑠 (𝑏) and 𝑡 (𝑎) = 𝑡 (𝑏). An 𝑛-sphere of 𝐴 is a pair (𝑎, 𝑏) of parallel 𝑛-cells.

2.3.3. Higher categories for operads. Recall that, for 𝑛 ⩾ 0, an (internal strict) 𝑛-category in C is a

i) reflexive 𝑛-globular object, that is a diagram in C of the form

𝐴0 𝑖1 // 𝐴1

𝑠0
oo

𝑡0
oo

𝑖2 // · · ·
𝑠1

oo

𝑡1
oo

𝑖𝑛−1 // 𝐴𝑛−1

𝑠𝑛−2
oo

𝑡𝑛−2
oo

𝑖𝑛 // 𝐴𝑛

𝑠𝑛−1
oo

𝑡𝑛−1
oo

whose morphisms satisfy globular and identity relations (2.3.2),

14



2.3. Higher shuffle operads

ii) equipped with a structure of category in C on

𝐴𝑘 𝐴ℓ

𝑠𝑘
oo

𝑡𝑘
oo

for all 𝑘 < ℓ , whose ★𝑘 -composition morphism of ℓ-cells is denoted by ★ℓ
𝑘

: 𝐴ℓ ★𝑘 𝐴ℓ → 𝐴ℓ ,

iii) such that the 2-globular object

𝐴 𝑗 𝐴𝑘

𝑠 𝑗
oo

𝑡 𝑗
oo 𝐴ℓ

𝑠𝑘
oo

𝑡𝑘
oo

is a 2-category in C for all 𝑗 < 𝑘 < ℓ .

We denote by 𝑛Cat(C) the category of 𝑛-categories in C and their 𝑛-functors. The category 𝜔Cat(C)
of 𝜔-categories in C is the limit of

0Cat(C) ← 1Cat(C) ← · · · ← 𝑛Cat(C) ← · · ·

where each arrow forgets the cells of highest dimension.
For 𝑛 ∈ N ∪ {𝜔}, a shuffle (resp. symmetric) 𝑛-operad is an 𝑛-category in ШOp (resp. 𝔖Op). We

denote by ШOp𝑛 (resp.𝔖Op𝑛) the corresponding category with internal 𝑛-functors as morphisms. We
denote byUШ

𝑛 : ШOp𝑛 → Glob𝑛 (Ind) (resp.U𝔖
𝑛 : 𝔖Op𝑛 → Glob𝑛 (𝔖Coll)) the forgetful functor that

forgets the operadic structure.
Note that, in an 𝜔-shuffle operad 𝑃 , the composition ★𝑘

ℓ : 𝑃𝑘 ★ℓ 𝑃𝑘 → 𝑃𝑘 is a morphism of shuffle
operads. As a consequence, the composition satisfies the following exchange relation between ◦Ш and
★𝑘

(𝑃𝑘 ★ℓ 𝑃𝑘 ) ◦Ш (𝑃𝑘 ★ℓ 𝑃𝑘 )
(𝜋1 ◦Ш 𝜋1) ★ℓ (𝜋2 ◦Ш 𝜋2)

//

`𝑘 ((1★ℓ 1) ◦Ш (1★ℓ 1))
**

(𝑃𝑘 ◦Ш 𝑃𝑘 ) ★ℓ (𝑃𝑘 ◦Ш 𝑃𝑘 )

`𝑘 (1 ◦Ш 1) ★ℓ `𝑘 (1 ◦Ш 1)
tt

𝑃𝑛

(2.3.4)

As for associative 𝜔-algebras, [25, Prop. 1.2.3], the interaction between the categorical and linear
structures gives useful expressions:

2.3.5. Lemma. Let 𝑃 be a shuffle (resp. symmetric) 𝜔-operad.

i) For every 0 ⩽ 𝑘 < 𝑛 and ★𝑘 -composable pair (𝑎, 𝑏) of 𝑃𝑛 , we have 𝑎 ★𝑘 𝑏 = 𝑎 − 𝑡𝑘 (𝑎) + 𝑏.

ii) For all 𝑛 ⩾ 1, every 𝑛-cell 𝑎 of 𝑃 is invertible with inverse 𝑎− := 𝑠𝑛−1(𝑎) − 𝑎 + 𝑡𝑛−1(𝑎).

We deduce the following proposition:

2.3.6. Proposition. The category ШOp𝜔 (resp. 𝔖Op𝜔 ) is isomorphic to the category Gpd𝜔 (ШOp)
(resp. Gpd𝜔 (𝔖Op)) of internal 𝜔-groupoids in ШOp (resp.𝔖Op).
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2. Higher shuffle operads

Finally, we give some categorical properties of the categories of shuffle operads.

2.3.7. Proposition. The forgetful functorШOp→ Coll (resp.𝔖Op→𝔖Coll) reflects all limits, filtered
colimits, and reflexive coequalizers.

Proof. The statement for the functor 𝔖Op → 𝔖Coll is proven in [22, Prop. 1.2.4], where the limits,
filtered colimits, and reflexive coequalizers of symmetric operads are equipped with unique monoidal
structures. In particular, it is shown that the monoidal product ◦𝔖 in𝔖Coll preserves all limits, filtered
colimits and reflexive coequalizers. This comes from the fact that the tensor product of Vect preserves
these limits and colimits. Given the similarities between the monoidal products ◦𝔖 and ◦Ш, the same
arguments apply to the monoidal structure of Coll, and so we conclude that the functor ШOp→ Coll
preserves limits, filtered colimits, and reflexive coequalizers. □

2.3.8. Proposition. The category ШOp𝜔 is locally finitely presentable. In particular, it is complete and
cocomplete.

Proof. Let us first show thatШOp is locally finitely presentable by viewing it as the category of algebras
over an accessible monad. Recall that there exists an adjunction Coll ⊣ШOp where the left adjoint is
−Ш : Coll→ШOp. Therefore, ШOp is the category of algebras of the monad of free shuffle operads
𝑇 : Coll → Coll. By the Proposition 2.3.7, the forgetful functor ШOp → Coll preserves filtered
colimits, i.e. it is finitary, making the monad 𝑇 finitary. Moreover, the category Vect of vector spaces
is locally finitely presentable, and the category Ord is a small category, so Coll is also locally finitely
presentable. Thus 𝑇 is an accessible monad on a locally finitely presentable category. Following [1, §
2.78] the category of 𝑇 -algebras ШOp is locally finitely presentable.

The category ШOp𝜔 of 𝜔-categories internal in ШOp is the category of models of a finite limit
sketch [3], in the locally finitely presentable categoryШOp. By [1, Prop. 1.53], we conclude thatШOp𝜔
is also locally finitely presentable. □

2.4. Higher operads as globular bimodules

In Theorem 2.4.8, we show that the axioms of the definition of the categoryШOp𝜔 of shuffle𝜔-operads
are redundant by proving that it is isomorphic to a category with fewer axioms thanks to the linear
exchange relation. Throughout this section, the compositions ◦ and ⊙ designate ◦Ш and ⊙Ш.

2.4.1. Partial multiplication. For (𝑃, `, [) a shuffle operad, denote by ]𝑃 the morphism

]𝑃 : 𝑃 ⊙ 𝑃 ↩→ 𝑃 ◦ (I ⊕ 𝑃)
1◦([+1)
−−−−−−→ 𝑃 ◦ 𝑃 .

We equip the operad 𝑃 with a morphism called partial multiplication

`⊙ : 𝑃 ⊙ 𝑃
]
𝑃−→ 𝑃 ◦ 𝑃

`
−→ 𝑃 .

As a consequence, we have the equality of morphisms

`𝜑𝑃 =
∑︁
𝑝

(`⊙)⊙𝑝 :
∞⊕
𝑝=1

𝑃 ⊙ 𝑃⊙𝑝 → 𝑃 .
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2.4. Higher operads as globular bimodules

2.4.2. Linear exchange relation. Let (𝑃𝑛, `𝑛, [𝑛)𝑛⩾0 be an 𝜔-operad. By the exchange relation be-
tween compositions ◦ and ★0, we observe that, for every 𝑛 ⩾ 1,

`⊙𝑛 = `𝑛 ((1★0 𝑡0) ◦ (𝑠0 ★0 1))]𝑃𝑛
= (`𝑛 (1 ◦ 𝑠0) ★0 `𝑛 (𝑡0 ◦ 1))]𝑃𝑛 (2.3.4)

= (`𝑛 (1 ◦ 𝑠0) + `𝑛 (𝑡0 ◦ 1) − `𝑛 (𝑡0 ◦ 𝑠0))]𝑃𝑛 (Lemma 2.3.5)

= `⊙𝑛 (1 ⊙ 𝑠0) + `⊙𝑛 (𝑡0 ⊙ 1) − `⊙𝑛 (𝑡0 ⊙ 𝑠0) .

Similarly, we calculate

`⊙𝑛 = `⊙𝑛 (𝑠0 ⊙ 1) + `⊙𝑛 (1 ⊙ 𝑡0) − `⊙𝑛 (𝑠0 ⊙ 𝑡0) .

Regarding 𝑃𝑛 as a 𝑃0-bimodule, these equations still hold, although we need to introduce new notations
for the partial left and right actions of 𝑃0 on 𝑃𝑛 . This motivates the following definitions.

Let (𝑃, `, [) be a shuffle operad and (𝐴, _, 𝜌) be a 𝑃-bimodule such that (𝑃,𝐴) is a reflexive 1-globular
𝑃-bimodule. More explicitly, there are morphisms 𝑠, 𝑡 : 𝐴 → 𝑃 and 𝑖 : 𝑃 → 𝐴. We equip 𝐴 with
morphisms called partial actions

_⊙ : 𝑃 ⊙ 𝐴
𝜑
−→ 𝑃 ◦ (I ⊕ 𝐴)

1◦([⊕1)
−−−−−−→ 𝑃 ◦ (𝑃 ⊕ 𝐴) _−→ 𝐴,

𝜌⊙ : 𝐴 ⊙ 𝑃
𝜑
−→ 𝐴 ◦ (I ⊕ 𝑃)

1◦([+1)
−−−−−−→ 𝐴 ◦ 𝑃

𝜌
−→ 𝐴.

We also define the morphisms

`
↑
𝐴

:= 𝜌⊙ (1 ⊙ 𝑠) + _⊙ (𝑡 ⊙ 1) − 𝑖`⊙ (𝑡 ⊙ 𝑠),
`
↓
𝐴

:= _⊙ (𝑠 ⊙ 1) + 𝜌⊙ (1 ⊙ 𝑡) − 𝑖`⊙ (𝑠 ⊙ 𝑡)

and the multiplication

`𝐴 : 𝐴 ◦𝐴 𝜎𝐴−−→
⊕
𝑝

𝐴 ⊙ 𝐴⊙𝑝
∑(`↑

𝐴
)𝑝

−−−−−−→ 𝐴.

We say that a reflexive 1-globular 𝑃-bimodule (𝑃,𝐴) satisfies the linear exchange relation if the following
relation holds:

`
↑
𝐴
= `
↓
𝐴
. (2.4.3)

2.4.4. Interpretation of morphisms 𝝁↑

𝑨 and 𝝁↓

𝑨. If (𝑃,𝐴) is a reflexive 1-globular 𝑃-bimodule, we
can interpret the elements of 𝐴 as rewriting rules that relate elements of 𝑃 : an element 𝑎 ∈ 𝐴 rewrites
𝑠 (𝑎) as 𝑡 (𝑎), which we denote by 𝑎 : 𝑠 (𝑎) → 𝑡 (𝑎). Via the injection 𝑖 , an element 𝑥 of 𝑃 can also seen
as a trivial rewriting rule 𝑖 (𝑥) : 𝑥 → 𝑥 .

Let 𝑎, 𝑏 ∈ 𝐴. For every compatible elementary composition ◦𝑖,𝜏 , we would like to interpret the
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2. Higher shuffle operads

composition 𝑎 ◦𝑖,𝜏 𝑏 as a pair of orthogonal reductions:

𝑡 (𝑎)
𝑠 (𝑏)

𝑡 (𝑎)
𝑏

&&

𝑠 (𝑎)
𝑠 (𝑏)

𝑎

𝑠 (𝑏)
11

𝑠 (𝑎)
𝑏

--

𝑡 (𝑎)
𝑡 (𝑏)

𝑠 (𝑎)
𝑡 (𝑏)

𝑎

𝑡 (𝑏)

88

where
𝑠 (𝑎)
𝑠 (𝑏)

is a graphical representation of 𝑠 (𝑎) ◦𝑖,𝜏 𝑠 (𝑏), and so on. While 𝑎 ◦𝑖,𝜏 𝑏 is not necessarily

an element of 𝐴, we find that

`
↑
𝐴

(
𝑎
𝑏

)
=

𝑎

𝑠 (𝑏) −
𝑡 (𝑎)
𝑠 (𝑏) +

𝑡 (𝑎)
𝑏
,

`
↓
𝐴

(
𝑎
𝑏

)
=

𝑠 (𝑎)
𝑏 −

𝑠 (𝑎)
𝑡 (𝑏) +

𝑎

𝑡 (𝑏)
.

We see that `↑
𝐴
applies the rule 𝑎 first, and 𝑏 second, while `↓

𝐴
does the opposite; this motivates the

upwards and downwards arrow notations.

2.4.5. Example. Let 𝑎 =
𝑎0

𝑎1 𝑎2 be the element of 𝐴 ◦ 𝐴 from Example 2.2.4 with inputs omitted.
Then

`𝐴 (𝑎) =
𝑎0

𝑠 (𝑎1) 𝑠 (𝑎2) −
𝑡 (𝑎0)

𝑠 (𝑎1) 𝑠 (𝑎2) +
𝑡 (𝑎0)

𝑠 (𝑎1) 𝑎2 −
𝑡 (𝑎0)

𝑠 (𝑎1) 𝑡 (𝑎2) +
𝑡 (𝑎0)

𝑎1 𝑡 (𝑎2)
.

2.4.6. Lemma. Let (𝐴, _, 𝜌) be a 𝑃-bimodule such that (𝑃,𝐴) is a reflexive 1-globular 𝑃-bimodule satis-
fying the linear exchange relation. Then (𝐴, `𝐴, 𝑖[) is an operad.

Proof. Write `⊙
𝐴

:= `↑
𝐴
= `
↓
𝐴
. It suffices to check the associativity and unit axioms of internal monoidal

objects. The unit axioms are clearly satisfied, by definition of 𝜎𝐴 and by the unit axioms of 𝑃-bimodules.
To show the associativity axiom, we need to calculate and compare `𝐴 (`𝐴 ◦ 1) and `𝐴 (1 ◦ `𝐴). The

key calculation is the following, which generalizes the previous example: for all 𝑝 ⩾ 0 and 𝜏 ∈ 𝔖𝑝 , we
have the equality of morphisms

`⊙
𝐴
(1⊙𝑝) =

𝑝∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 1
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝 −

𝑝−1∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝 , (2.4.7)

where

𝑓 𝜏𝑖, 𝑗 =

{
𝑡 if 𝜏−1( 𝑗) < 𝑖,
𝑠 if 𝜏−1( 𝑗) > 𝑖,
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2.4. Higher operads as globular bimodules

and −⊙− represents _⊙ (−⊙−), 𝜌⊙ (−⊙−), or `⊙ (−⊙−) depending on the types of arguments, always
with bracketing to the left.

We show this equality by induction on 𝑝 . For 𝑝 = 0, 1, the result is trivial. For 𝑝 = 2, for 𝜏 = 𝑖𝑑 ,

`⊙
𝐴
= `
↑
𝐴
= 𝜌⊙ (1 ⊙ 𝑠) + _⊙ (𝑡 ⊙ 1) − 𝑖𝑛`⊙ (𝑡 ⊙ 𝑠),

by definition, and for 𝜏 = (1 2),

`⊙
𝐴
= `
↓
𝐴
= 𝜌⊙ (1 ⊙ 𝑡) + _⊙ (𝑠 ⊙ 1) − 𝑖𝑛`⊙ (𝑠 ⊙ 𝑡)

by hypothesis on (𝑃,𝐴).
Let 𝑝 ⩾ 2 and suppose that we have shown the equality for 𝑝 . Let 𝜏 ∈ 𝔖𝑝+1, and denote 𝑖0 =

𝜏−1(𝑝 + 1) and 𝜏 ′ = 𝜏 (𝑖0 𝑝 + 1). If 𝑖0 < 𝑝 + 1, then

(`⊙
𝐴
)𝑝+1(1⊙𝑝+1) = `⊙

𝐴
((`⊙

𝐴
)𝑝 (1⊙𝑝) ⊙ 1)

= `⊙
𝐴

(
𝑝∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1 −

𝑝−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1

)
=

(
𝑖0−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1 +

𝑝∑︁
𝑖=𝑖0

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑠
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1

+
𝑖0−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑠 +

𝑝∑︁
𝑖=𝑖0

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑡

−
𝑖0−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑠 −

𝑝∑︁
𝑖=𝑖0

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑠
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑡

)
−

(
𝑖0−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1 +

𝑝∑︁
𝑖=𝑖0+1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑠
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1

)
= 𝑓 𝜏

′
𝑖0,1 ⊙ · · · ⊙ 𝑠𝜏 ′ (𝑖0 )

⊙ · · · ⊙ 𝑓 𝜏 ′𝑖0,𝑝
⊙ 1

+
𝑝∑︁
𝑖=1
𝑖≠𝑖0

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑓 𝜏𝑖,𝑝+1 + 𝑓 𝜏

′
𝑖0,1 ⊙ · · · ⊙ 1

𝜏 ′ (𝑖0 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖0,𝑝

⊙ 𝑡

−
𝑝∑︁
𝑖=1
𝑖≠𝑖0

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑓 𝜏𝑖,𝑝+1 − 𝑓 𝜏

′
𝑖0,1 ⊙ · · · ⊙ 𝑠𝜏 ′ (𝑖0 )

⊙ · · · ⊙ 𝑓 𝜏 ′𝑖0,𝑝
⊙ 𝑡

=

𝑝+1∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 1
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝+1 −

𝑝∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝+1.
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If 𝑖0 = 𝑝 + 1, then

(`⊙
𝐴
)𝑝+1(1⊙𝑝+1) = `⊙

𝐴
((`⊙

𝐴
)𝑝 (1⊙𝑝) ⊙ 1)

= `⊙
𝐴

(
𝑝∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1 −

𝑝−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1

)
=

𝑝∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1 +

𝑝∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 1
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑠

−
𝑝∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 𝑠 −

𝑝−1∑︁
𝑖=1

𝑓 𝜏
′

𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 ′ (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏 ′𝑖,𝑝 ⊙ 1

=

𝑝+1∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 1
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝+1 −

𝑝∑︁
𝑖=1

𝑓 𝜏𝑖,1 ⊙ · · · ⊙ 𝑡
𝜏 (𝑖 )
⊙ · · · ⊙ 𝑓 𝜏𝑖,𝑝+1.

This proves (2.4.7) for 𝑝+1. Next, let𝑎 be an arbitrary treemonomial of𝐴◦𝐴◦𝐴 ≃ (𝐴◦𝐴)◦𝐴 ≃ 𝐴◦(𝐴◦𝐴).
We write

𝑎 = ((𝑎0 | 𝑎1 · · ·𝑎𝑘0) | 𝑎𝑘0+1 · · ·𝑎𝑘0+𝑘1 · · ·𝑎𝑘0+···+𝑘𝑘0−1+1 · · ·𝑎𝑘0+···+𝑘𝑘0
)

= (𝑎0 | (𝑎1 | 𝑎𝑘0+1 · · ·𝑎𝑘0+𝑘1) · · · (𝑎𝑘0 | 𝑎𝑘0+···+𝑘0+···𝑘𝑘0−1+1 · · ·𝑎𝑘0+···+𝑘𝑘0
)),

where 𝑘0 is the arity of 𝑎0 and, for 𝑖 ∈ {1, . . . , 𝑘0}, 𝑘𝑖 is the arity of 𝑎𝑖 . We can also understand 𝑎 via its
planar tree 𝑇 (𝑎):

𝑎0

𝑎1

𝑎𝑘0+1 · · · 𝑎𝑘0+𝑘1

· · · 𝑎𝑘0

𝑎𝑘0+···+𝑘0+···𝑘𝑘0−1+1 · · · 𝑎𝑘0+···+𝑘𝑘0

For the rest of this proof, we write · for all elementary compositions ◦𝑖,𝜏 . On the one hand, calculating
`𝐴 (`𝐴◦1) (𝑎) is equal to calculating (`⊙𝐴 ) (𝑎0 ·𝑎𝑘0 · · ·𝑎1 ·𝑎𝑘0+···+𝑘𝑘0

· · ·𝑎𝑘0+1) as in the previous calculation,
with 𝑝 = 𝑘0+· · ·+𝑘𝑘0 and the identity permutation. On the other hand, calculating `𝐴 (1◦`𝐴) (𝑎) is equal
to calculating (`⊙

𝐴
) (𝑎0 ·𝑎𝑘0 · · ·𝑎1 ·𝑎𝑘0+···+𝑘𝑘0

· · ·𝑎𝑘0+1) as in the previous calculation, with 𝑝 = 𝑘0+· · ·+𝑘𝑘0

and the permutation

[0, 𝑘0, 𝑘0 + · · · + 𝑘𝑘0, . . . , 𝑘0 + · · · + 𝑘𝑘0−1 + 1, . . . , 1, 𝑘0 + 𝑘1, . . . , 𝑘0 + 1],

where each integer 𝑖 represents the position of 𝑎𝑖 in the argument of `⊙
𝐴
. Thus, by the previous calcu-

lation, `𝐴 (`𝐴 ◦ 1) = `𝐴 (1 ◦ `𝐴). We conclude that (𝐴, `𝐴, 𝑖[) is an operad.
As an aside, calculating `𝐴 (`𝐴◦1) corresponds to a breadth-first traversal of a tree, while calculating

`𝐴 (1 ◦ `𝐴) corresponds to a depth-first traversal. □

2.4.8. Theorem. The following categories are isomorphic:

i) the category ШOp𝜔 ,

20



2.4. Higher operads as globular bimodules

ii) the full subcategory of RGlob(Bimod(ШOp)) whose objects are pairs (𝑃,𝐴) where (𝑃, `, [) is a
shuffle operad and 𝐴 = (𝐴𝑛, _𝑛, 𝜌𝑛)𝑛⩾0 is a reflexive globular 𝑃-bimodule such that 𝐴0 = 𝑃 and
(𝑃,𝐴𝑛) satisfies the linear exchange relation (2.4.3) for all 𝑛 ⩾ 1.

Proof. We show that each category is a full subcategory of the other.
(i ⊆ ii) Let 𝑃 = (𝑃𝑛, `𝑛, [𝑛)𝑛⩾0 be an 𝜔-operad. Forgetting the ★𝑘 -compositions and operadic mul-

tiplications `𝑛 , 𝑃 is equipped with a reflexive globular 𝑃0-bimodule structure. By the calculations and
discussion of 2.4.2, for all 𝑛 ⩾ 1, 𝑃𝑛 seen as a 𝑃0-bimodule satisfies the linear exchange relation (2.4.3).
Thus ШOp𝜔 is a full subcategory of the second category.

(ii ⊆ i) Let (𝑃, `, [) be an operad and (𝐴𝑛, _𝑛, 𝜌𝑛)𝑛⩾0 a globular reflexive 𝑃-bimodule satisfying the
linear exchange relation (2.4.3) and such that 𝐴0 = 𝑃 . We proceed in two steps: first we equip 𝐴 with a
globular reflexive operad structure, then we equip it with a 𝜔-operad structure.

First, let 𝑛 ⩾ 0. Equip 𝐴𝑛 with the partial multiplication `⊙𝑛 := `
↑
𝐴𝑛

= `
↓
𝐴𝑛

and then define the
operadic multiplication

`𝑛 : 𝐴𝑛 ◦𝐴𝑛

𝜎𝐴𝑛−−−→
⊕
𝑝⩾1

𝐴𝑛 ⊙ 𝐴⊙𝑝𝑛
∑(`⊙𝑛 )𝑝−−−−−−→ 𝐴𝑛 .

The multiplication `𝑛 satisfies the associativity and unit axioms by Lemma 2.4.6. Moreover, by con-
struction, `⊙𝑛 satisfies the relations

`⊙𝑛 = `⊙𝑛 (1 ⊙ 𝑠0) + `⊙𝑛 (𝑡0 ⊙ 1) − `⊙𝑛 (𝑡0 ⊙ 𝑠0) = `⊙𝑛 (𝑠0 ⊙ 1) + `⊙𝑛 (1 ⊙ 𝑡0) − `⊙𝑛 (𝑠0 ⊙ 𝑡0) . (2.4.9)

This gives𝐴 a globular reflexive operad structure. Next, for the 𝜔-operad structure on𝐴, we define the
★𝑘 -compositions as follows: for all ★𝑘 -composable 𝑛-cells 𝑎, 𝑏, define

𝑎 ★𝑘 𝑏 := 𝑎 − 𝑡𝑘 (𝑎) + 𝑏.

Let 0 ⩽ 𝑘 < ℓ < 𝑛 be three integers. The target morphism 𝑡ℓ : 𝐴𝑛 → 𝐴ℓ is linear, so it commutes with
★𝑘 . For all ★ℓ -composable pairs (𝑎, 𝑎′) and (𝑏, 𝑏′) of 𝐴𝑛 such that (𝑎, 𝑏) and (𝑎′, 𝑏′) are ★𝑘 -composable,
we calculate

(𝑎 ★ℓ 𝑎
′) ★𝑘 (𝑏 ★ℓ 𝑏

′) = (𝑎 − 𝑡ℓ (𝑎) + 𝑎′) ★𝑘 (𝑏 − 𝑡ℓ (𝑏) + 𝑏′)
= 𝑎 ★𝑘 𝑏 − 𝑡ℓ (𝑎) ★𝑘 𝑡ℓ (𝑏) + 𝑎′ ★𝑘 𝑏

′

= 𝑎 ★𝑘 𝑏 − 𝑡ℓ (𝑎 ★𝑘 𝑏) + 𝑎′ ★𝑘 𝑏
′

= (𝑎 ★𝑘 𝑏) ★ℓ (𝑎′ ★𝑘 𝑏
′) .

Thus the★𝑘 -compositions satisfy exchange relations. To show that𝐴 is an𝜔-operad, it suffices to show
that the ★𝑘 -compositions are morphisms of operads. 𝐴𝑛 ★𝑘 𝐴𝑛 is equipped with an operad structure
given by the multiplication

(𝐴𝑛 ★𝑘 𝐴𝑛) ◦ (𝐴𝑛 ★𝑘 𝐴𝑛)
(𝜋1◦𝜋1 )★𝑘 (𝜋2◦𝜋2 )−−−−−−−−−−−−−−→ (𝐴𝑛 ◦𝐴𝑛) ★𝑘 (𝐴𝑛 ◦𝐴𝑛)

`𝑘★𝑘`𝑘−−−−−−→ 𝐴𝑛 ★𝑘 𝐴𝑛,
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2. Higher shuffle operads

where 𝜋1, 𝜋2 are the projections of the fiber product𝐴𝑛★𝑘𝐴𝑛 . Therefore it suffices to check the exchange
relation (2.3.4):

(𝐴𝑛 ★𝑘 𝐴𝑛) ◦ (𝐴𝑛 ★𝑘 𝐴𝑛)
(𝜋1 ◦ 𝜋1) ★𝑘 (𝜋2 ◦ 𝜋2)

//

`𝑛 ((1★𝑘 1) ◦ (1★𝑘 1))
))

(𝐴𝑛 ◦𝐴𝑛) ★𝑘 (𝐴𝑛 ◦𝐴𝑛)

`𝑛 (1 ◦ 1) ★𝑘 `𝑛 (1 ◦ 1)
uu

𝐴𝑛

Writing

`𝑛 = `𝑛𝜑𝐴𝑛★𝑘𝐴𝑛
𝜎𝐴𝑛★𝑘𝐴𝑛

=

(∑︁
𝑝

(`⊙𝑛 )⊙𝑝
)
𝜎𝐴𝑛★𝑘𝐴𝑛

,

we get the diagram

(𝐴𝑛 ★𝑘 𝐴𝑛) ◦ (𝐴𝑛 ★𝑘 𝐴𝑛)
(𝜋1 ◦ 𝜋1) ★𝑘 (𝜋2 ◦ 𝜋2)

//

𝜎𝐴𝑛★𝑘𝐴𝑛

��

(𝐴𝑛 ◦𝐴𝑛) ★𝑘 (𝐴𝑛 ◦𝐴𝑛)
𝜎𝐴𝑛

★𝑘 𝜎𝐴𝑛

��⊕
(𝐴𝑛 ★𝑘 𝐴𝑛) ⊙ (𝐴𝑛 ★𝑘 𝐴𝑛)⊙𝑝

(𝜋1 ⊙ 𝜋⊙𝑝1 ) ★𝑘 (𝜋2 ⊙ 𝜋⊙𝑝2 )
//

`⊙𝑛 ((1★𝑘 1) ⊙ (1★𝑘 1)⊙𝑝) **

(⊕
𝐴𝑛 ⊙ 𝐴⊙𝑝𝑛

)
★𝑘

(⊕
𝐴𝑛 ⊙ 𝐴⊙𝑝𝑛

)
`⊙𝑛 (1 ⊙ 1⊙𝑝) ★𝑘 `

⊙
𝑛 (1 ⊙ 1⊙𝑝)tt

𝐴𝑛

The upper square commutes by naturality of 𝜎 . To show that the lower triangle commutes, it suffices
to show that, for all ★𝑘 -composable pairs (𝑎, 𝑎′) and (𝑏, 𝑏′) of 𝐴𝑛 and all elementary compositions ◦𝑖,𝜏
such that 𝑎 ◦𝑖,𝜏 𝑏 and 𝑎′ ◦𝑖,𝜏 𝑏′ are well defined,

(𝑎 ★𝑘 𝑎
′) ◦𝑖,𝜏 (𝑏 ★𝑘 𝑏

′) = (𝑎 ◦𝑖,𝜏 𝑏) ★𝑘 (𝑎′ ◦𝑖,𝜏 𝑏′) .

Write · for ◦𝑖,𝜏 . Let us begin with the case 𝑘 = 0. By definition of ★𝑘 -composition and bidistributivity
of ◦𝑖,𝜏 , we have

(𝑎 + 𝑎′ − 𝑡0(𝑎)) · (𝑏 + 𝑏′ − 𝑡0(𝑏)) = 𝑎 · 𝑏 + 𝑎 · 𝑏′ + 𝑎′ · 𝑏 + 𝑎′ · 𝑏′ − 𝑡0(𝑎) · 𝑏 − 𝑡0(𝑎) · 𝑏′

− 𝑎 · 𝑡0(𝑏) − 𝑎′ · 𝑡0(𝑏) + 𝑡0(𝑎) · 𝑡0(𝑏)

By applying (2.4.9) to 𝑎 · 𝑏′ and 𝑎′ · 𝑏, we get

𝑎 · 𝑏′ = 𝑡0(𝑎) · 𝑏′ + 𝑎 · 𝑠0(𝑏′) − 𝑡0(𝑎) · 𝑠0(𝑏′),
𝑎′ · 𝑏 = 𝑠0(𝑎′) · 𝑏 + 𝑎′ · 𝑡0(𝑏) − 𝑠0(𝑎′) · 𝑡0(𝑏) .

Since 𝑡0(𝑎) = 𝑠0(𝑎′) and 𝑡0(𝑏) = 𝑠0(𝑏′), we conclude that

(𝑎 + 𝑎′ − 𝑡0(𝑎)) · (𝑏 + 𝑏′ − 𝑡0(𝑏)) = 𝑎 · 𝑏 + 𝑎′ · 𝑏′ − 𝑡0(𝑎) · 𝑡0(𝑏)
= (𝑎 · 𝑏) ★0 (𝑎′ · 𝑏).
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Now, let 𝑘 ⩾ 1. In this case, 𝑛 ⩾ 2, so by globularity, 𝑡0(𝑎) = 𝑡0(𝑎′) and 𝑠0(𝑏) = 𝑠0(𝑏′). Write
𝑐 := 𝑡0(𝑎) = 𝑡0(𝑎′) and 𝑑 := 𝑠0(𝑏) = 𝑠0(𝑏′) . Using the exchange relations between ⊙ and ★0, and
between ★0 and ★𝑘 , we get

(𝑎 · 𝑏) ★𝑘 (𝑎′ · 𝑏′) = ((𝑎 ★0 𝑐) · (𝑑 ★0 𝑏)) ★𝑘 ((𝑎′ ★0 𝑐) · (𝑑 ★0 𝑏
′))

= ((𝑎 · 𝑑) ★0 (𝑐 · 𝑏)) ★𝑘 ((𝑎′ · 𝑑) ★0 (𝑐 · 𝑏′))
= ((𝑎 · 𝑑) ★𝑘 (𝑎′ · 𝑑)) ★0 ((𝑐 · 𝑏) ★𝑘 (𝑐 · 𝑏′)) .

By definition of ★𝑘 and by bidistributivity of ◦𝑖,𝜏 , we get

(𝑎 · 𝑑) ★𝑘 (𝑎′ · 𝑑) = 𝑎 · 𝑑 + 𝑎′ · 𝑑 − 𝑡𝑘 (𝑎) · 𝑑 = (𝑎 ★𝑘 𝑎
′) · 𝑑,

(𝑐 · 𝑏) ★𝑘 (𝑐 · 𝑏′) = 𝑐 · 𝑏 + 𝑐 · 𝑏′ − 𝑐 · 𝑡𝑘 (𝑏) = 𝑐 · (𝑏 ★𝑘 𝑏
′) .

Thus

(𝑎 · 𝑏) ★𝑘 (𝑎′ · 𝑏′) = ((𝑎 ★𝑘 𝑎
′) · 𝑑) ★0 (𝑐 · (𝑏 ★𝑘 𝑏

′))
= (𝑎 ★𝑘 𝑎

′) · (𝑏 ★𝑘 𝑏
′) .

Thus the exchange relation is satisfied, and we conclude that 𝐴 is an 𝜔-operad. □

3. Shuffle operadic polygraphs

In this section we introduce the notion of a shuffle polygraph that defines systems of generators and
oriented relations for higher shuffle operads.

3.1. Shuffle polygraphs

The structure of polygraph was introduced independently by Street and Burroni as a system of genera-
tors for free higher categories [16, 48]. This subsection introduces a version of this structure for higher
shuffle operads.

3.1.1. Cellular extensions. For 𝑛 ⩾ 0, a cellular extension of a shuffle 𝑛-operad 𝑃 is an indexed set 𝑋
equipped with two morphisms

𝑃𝑛 𝑋
𝑠𝑛
oo

𝑡𝑛
oo

in Ind satisfying the globular relations 𝑠𝑛−1𝑠𝑛 = 𝑠𝑛−1𝑡𝑛 and 𝑡𝑛−1𝑠𝑛 = 𝑡𝑛−1𝑡𝑛 , for 𝑛 ⩾ 1, and whose
elements are called (𝑛+1)-generators. Note that every𝑛-operad 𝑃 has two canonical cellular extensions:
the empty one, and the one denoted by Sph(𝑃𝑛) that consists of a (𝑛 + 1)-generator 𝑎 → 𝑏 for every
𝑛-sphere (𝑎, 𝑏) of 𝑃 .
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3.1.2. Extended higher operads. For 𝑛 ⩾ 0, the category of extended 𝑛-operads ШOp+𝑛 is defined by
the following pullback of forgetful functors

ШOp+𝑛 //

��

Glob𝑛+1(Ind)

V𝑛
��

ШOp𝑛 UШ
𝑛

// Glob𝑛 (Ind)

where the functor U𝑛 forgets the shuffle composition, and the functor V𝑛 forgets the (𝑛 + 1)-cells.
Explicitly, an extended shuffle𝑛-operad is a pair (𝑃,𝑋 )where 𝑃 is an𝑛-operad and𝑋 a cellular extension
of 𝑃𝑛 . Amorphism of extended𝑛-operads (𝑃,𝑋 ) → (𝑃 ′, 𝑋 ′) is amorphism of shuffle𝑛-operads 𝑓 : 𝑀 →
𝑀 ′ and a morphism 𝑔 : 𝑋 → 𝑋 ′ in Ind such that the two following square diagrams commute in Ind:

𝑃𝑛

𝑓𝑛
��

𝑋

𝑔

��

𝑠𝑛
oo

𝑡𝑛
oo

𝑃 ′𝑛 𝑋 ′
𝑠𝑛

oo

𝑡𝑛
oo

3.1.3. Proposition. Let 𝑃 be a shuffle (𝑛 − 1)-operad and 𝑋 be a cellular extension of 𝑃 . Let 𝑋Ш denote
the coequalizer of the two morphisms

(𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1) ⊙ (𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1)
`
↑
𝑃0 ⟨𝑋 ⟩⊕𝑃𝑛−1

//

`
↓
𝑃0 ⟨𝑋 ⟩⊕𝑃𝑛−1

// 𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1

in the category Bimod(𝑃), where the morphisms are defined relative to the pair (𝑃0, 𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1). Then
(𝑃,𝑋Ш) is the free shuffle 𝑛-operad on (𝑃,𝑋 ).

Proof. We will progressively enrich the cellular extension 𝑋 with more and more structure in order
to get a reflexive globular bimodule satisfying the linear exchange relation (2.4.3). First, let us define
categories of “enriched cellular extensions” of 𝑃 . Let D be a category such that 𝑃 is a reflexive (𝑛 − 1)-
globular object of D. Define

− Glob𝑃 (D) the full subcategory of Glob𝑛 (D) whose objects 𝑋 satisfy (𝑋0, . . . , 𝑋𝑛−1) = 𝑃 , and

− RGlob𝑃 (D) the full subcategory of RGlob𝑛 (D) whose objects 𝑋 satisfy (𝑋0, . . . , 𝑋𝑛−1) = 𝑃 .

Finally, denote by RGlob⊙
𝑃
(Bimod(𝑃0)) the full subcategory of RGlob𝑃 (Bimod(𝑃0)) whose objects sat-

isfy the linear exchange relation (2.4.3).
Following Theorem 2.4.8, given an extended (𝑛 − 1)-operad (𝑃,𝑋 ), in order to construct the free

𝑛-operad, it suffices to construct the free object on (𝑃,𝑋 ) ∈ Glob𝑃 (Ind) in RGlob⊙
𝑃
(Bimod(𝑃0)). There-

fore, it suffices to construct the sequence of free functors

Glob𝑃 (Ind) → Glob𝑃 (Bimod(𝑃0)) → RGlob𝑃 (Bimod(𝑃0)) → RGlob⊙
𝑃
(Bimod(𝑃0)) .
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3.1. Shuffle polygraphs

− Let (𝑃,𝑋 ) be and extended (𝑛 − 1)-operad. The first free functor is induced by the free functors
Ind→ Coll→ Bimod(𝑃0), so it sends 𝑋 to 𝑃0⟨𝑋 ⟩.

− Let (𝑃,𝑋 ) be an object ofGlob𝑃 (Bimod(𝑃0)). Since 𝑃 is already a reflexive (𝑛−1)-globular object,
the second free functor is induced by the free functor Bimod(𝑃0) → 𝑃𝑛−1/Bimod(𝑃0), so it sends
𝑋 to 𝑋 ⊕ 𝑃𝑛−1.

− Let (𝑃,𝑋 ) be an object of RGlob𝑃 (Bimod(𝑃0)). The third free functor sends 𝑋 to the coequalizer
of

𝑋 ⊙ 𝑋
`
↑
𝑋
//

`
↓
𝑋

// 𝑋

where the morphisms are defined relative to the pair (𝑃0, 𝑋 ).

By composing these functors, we get

𝑋Ш := coeq
(
`
↑
𝑃0 ⟨𝑋 ⟩⊕𝑃𝑛−1

, `
↓
𝑃0 ⟨𝑋 ⟩⊕𝑃𝑛−1

: (𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1) ⊙ (𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1) ⇒ 𝑃0⟨𝑋 ⟩ ⊕ 𝑃𝑛−1
)

and we conclude that (𝑃,𝑋Ш) is the free 𝑛-operad on (𝑃,𝑋 ). □

3.1.4. Free shuffle 𝒏-operad. For𝑛 ⩾ 1, the forgetful functorWШ
𝑛 : ШOp𝑛 →ШOp+𝑛−1 that forgets

the composition of 𝑛-cells admits a left adjoint

LШ
𝑛 : ШOp+𝑛−1 →ШOp𝑛 (3.1.5)

that associates to an extended (𝑛 − 1)-operad (𝑃,𝑋 ) the free 𝑛-operad over (𝑃,𝑋 ) given by LШ
𝑛 (𝑃,𝑋 ) =

(𝑃,𝑋Ш). In the sequel, the 𝑛-operad (𝑃,𝑋Ш) will be denoted by 𝑃 [𝑋 ], and its 𝑘-source and 𝑘-target
maps will be denoted by 𝑠𝑘 and 𝑡𝑘 respectively.

3.1.6. Shuffle polygraphs. We define the category ШPol𝑛 of 𝑛-polygraphs and the free functor

F𝑛 : ШPol𝑛 →ШOp𝑛,

by induction on 𝑛 ⩾ 0. For 𝑛 = 0, we define ШPol0 as the category Ind. The free 0-monoid functor

F0 : ШPol0 →ШOp0

is the composite of free functors (2.1.4). We suppose that for 𝑛 ⩾ 1 the category ШPol𝑛−1 of (𝑛 − 1)-
polygraphs is defined and that the free (𝑛 − 1)-operad functor

F𝑛−1 : ШPol𝑛−1 →ШOp𝑛−1

is constructed. The category ШPol𝑛 of 𝑛-polygraphs is defined as the following pullback in Cat

ШPol𝑛
Ũ𝑛−1

//

Ṽ𝑛−1
��

ШOp+𝑛−1

WШ
𝑛

��

ШPol𝑛−1 F𝑛−1
//ШOp𝑛−1

(3.1.7)

25



3. Shuffle operadic polygraphs

where the vertical functor on the right forgets the cellular extension of an extended monoid. The free
symmetric 𝑛-operad functor is defined as the composite

ШPol𝑛
Ũ𝑛−1

//ШOp+𝑛−1
LШ

𝑛
//ШOp𝑛,

where Ũ𝑛−1 is the functor defined by the pullback (3.1.7) and LШ
𝑛 is the free functor defined in (3.1.5).

The category ШPol𝜔 of 𝜔-polygraphs and the free 𝜔-operad functor F𝜔 : ШPol𝜔 → ШOp𝜔 are
defined as the limit of the functors:

· · · →ШPol𝑛
Ṽ𝑛−1−→ ШPol𝑛−1 → · · · →ШPol1

Ṽ0−→ШPol0,

in the category of categories, where the functors Ṽ𝑛−1 are defined by (3.1.7).
In this way, an 𝑛-polygraph 𝑋 is defined inductively as a data (𝑋0, . . . , 𝑋𝑛), where 𝑋0 is an in-

dexed set and for every 0 < 𝑘 < 𝑛, 𝑋𝑘 is a cellular extension of the free (𝑘 − 1)-operad generated by
(𝑋0, . . . , 𝑋𝑘−1), denoted by

𝑋Ш
𝑘

= 𝑋Ш
0 [𝑋1] · · · [𝑋𝑘 ] .

For 0 ⩽ 𝑝 < 𝑛, we will denote by 𝑋⩽𝑝 the underlying 𝑝-polygraph (𝑋0, . . . , 𝑋𝑝).

3.1.8. Higher-dimensional monomials. Let 𝑋 be an 𝜔-polygraph. Tree monomials in 𝑋 ∗Ш0 are
called 0-monomials of 𝑋Ш, and they form a linear basis of the collection 𝑋Ш

0 , which means that every
0-cell 𝑎 of 𝑋Ш

0 can be uniquely written as a (possibly empty) linear combination

𝑎 =

𝑝∑︁
𝑖=1

_𝑖𝑢𝑖 + _Y

of pairwise distinct 0-monomials 𝑢1, . . . , 𝑢𝑝 of 𝑋Ш
0 , with _𝑖 ∈ k \ {0}, _ ∈ k, and Y denotes the trivial

monomial. This expression is called the canonical decomposition of 𝑎, and we define the support of 𝑎 as
the set Supp(𝑎) =

{
𝑢1, . . . , 𝑢𝑝

}
.

For 𝑛 ⩾ 1, if 𝛼 is an 𝑛-cell of 𝑋 , and ®𝑣 is a list of 0-monomials, we will denote by (𝛼 | ®𝑣) the 𝑛-cell
of 𝑋Ш with source (𝑠 (𝛼) | ®𝑣) and target (𝑡 (𝛼) | ®𝑣). An 𝑛-monomial of 𝑋Ш is an 𝑛-cell of 𝑋Ш of the
form 𝑢 ◦𝑖,𝜏 (𝛼 | ®𝑣), where 𝛼 is an 𝑛-cell of 𝑋 , and 𝑢 and ®𝑣 are monomials of 𝑋Ш. By construction of the
free 𝑛-operad over (𝑋Ш

𝑛−1, 𝑋𝑛), and by freeness of 𝑋Ш
𝑛−1, every 𝑛-cell 𝑎 of 𝑋

Ш can be written as a linear
combination

𝑎 =

𝑝∑︁
𝑖=1

_𝑖𝑎𝑖 + 1𝑐 (3.1.9)

of pairwise distinct 𝑛-monomials 𝑎1, . . . , 𝑎𝑝 and of an identity 𝑛-cell 1𝑐 of 𝑋Ш, and this decomposition
is unique up to the linear exchange relation (2.4.3). The size of an 𝑛-cell 𝑎 of𝑋Ш is the minimal number
of 𝑛-monomials of 𝑋Ш required to write 𝑎 as in (3.1.9).

3.1.10. Graded shuffle polygraps. In order to define in Section 5 minimality and Koszulness proper-
ties with respect to a polygraphic resolution, we introduce the notion of a graded shuffle 𝜔-polygraph.
Just as we defined shuffle operads as internal monoids in the presheaf category VectOrd

𝑜

in Section 2.1,
we define graded shuffle operads as internal monoids in the presheaf category grVectOrd

𝑜

. For 𝑛 ∈
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3.2. Shuffle polygraphic resolutions

N ∪ {𝜔}, a graded shuffle 𝑛-operad is an 𝑛-category in grШOp, and we denote by grШOp𝑛 the corre-
sponding category with internal 𝑛-functors as morphisms. In particular, the source, target and compo-
sition morphisms of graded shuffle 𝑛-operad are graded.

The category grШOp+𝑛 of graded extended 𝑛-operads is defined similarly to ШOp+𝑛 : its objects are
pairs (𝑃,𝑋 ), where 𝑃 is a graded 𝑛-operad, and 𝑋 is a graded cellular extension of 𝐴, meaning that
𝑋 = ⨿𝑖⩾0𝑋

(𝑖 ) and that the source and target of each 𝑥 in 𝑋 (𝑖 ) are homogeneous of degree 𝑖 . In that
case, the free (𝑛 + 1)-operad 𝑃 [𝑋 ], defined as in the nongraded case, is also graded.

A graded 𝜔-polygraph is an 𝜔-polygraph 𝑋 such that each set 𝑋𝑛 is graded, for 𝑛 ⩾ 0. This notion
restricts to𝑛-polygraphs, and a 1-polygraph𝑋 is called quadratic if𝑋0 is concentrated in degree 1 and𝑋1
is concentrated in degree 2. We say that a graded 𝜔-polygraph 𝑋 is concentrated on the superdiagonal if
each graded set𝑋𝑛 , for 𝑛 ⩾ 0, is concentrated in degree 𝑛+1. In that case, because the source and target
maps are graded, for 𝑛 ⩾ 1, the source and target of every 𝑛-cell of 𝑋Ш are homogeneous (𝑛 − 1)-cells
of 𝑋Ш of degree 𝑛 + 1.

3.2. Shuffle polygraphic resolutions

In this subsection we introduce the notion of a polygraphic resolution for shuffle operads.

3.2.1. Presentation of a shuffle operad. The shuffle operad presented by a shuffle 1-polygraph 𝑋 is
the coequalizer in the category ШOp of the following source and target morphisms, denoted by 𝑋 ,

𝑋Ш
1

𝑠0
//

𝑡0
// 𝑋

Ш
0

𝜋𝑋
// 𝑋 . (3.2.2)

Following Proposition (2.3.7), the category ШOp preserves reflexive coequalizers and so the construc-
tion is well defined. We say that a shuffle operad 𝑃 is presented by a polygraph 𝑋 , or that 𝑋 is a presen-
tation of 𝑃 , if 𝑃 is isomorphic to 𝑋 in the category ШOp.

3.2.3. Shuffle polygraphic resolutions. For 𝑛 ⩾ 1, let 𝑃 be a shuffle 𝑛-operad. A cellular extension
𝑋 of 𝑃 is acyclic if for every 𝑛-sphere (𝑓 , 𝑔) in 𝑃𝑛 , there exists a shuffle (𝑛 + 1)-cell 𝐹 in the (𝑛 + 1)-
operad 𝑃 [𝑋 ] with source 𝑓 and target 𝑔. A coherent presentation of a shuffle polygraph 𝑃 is a shuffle 2-
polygraph𝑋 , that presents 𝑃 , and whose cellular extension𝑋2 is acyclic. A shuffle polygraphic resolution
of a shuffle operad 𝑃 is a shuffle 𝜔-polygraph 𝑋 that presents 𝑃 and whose cellular extensions 𝑋𝑘 are
acyclic for 𝑘 ⩾ 2.

3.2.4. Example: standard polygraphic resolution. Let 𝑃 be a shuffle operad, and 𝐵 a basis of 𝑃
seen as a collection. We then define the standard polygraphic resolution Std(𝑃) by induction as follows.
For 𝑛 = 0, we define the indexed set Std(𝑃)0 := 𝐵, and for 𝑢 ∈ 𝐵 we denote by [𝑢] the corresponding
element in Std(𝑃)0. Any element 𝑎 =

∑
𝑢∈𝐵 _𝑢𝑢 of 𝑃 then corresponds to a linear combination of

elements [𝑎] :=
∑

𝑢∈𝐵 _𝑢 [𝑢] in Std(𝑃)Ш0 . Next, for 𝑛 = 1, we set

Std(𝑃)1 := { [𝑢] ◦𝑖,𝜏 [𝑣] → [𝑢 ◦𝑖,𝜏 𝑣] | 𝑢, 𝑣 ∈ 𝐵 },

so that the pair (𝐵, Std(𝑃)1) forms a 1-polygraph that presents the shuffle operad 𝑃 . Now, suppose
that Std(𝑃)𝑛 is defined for 𝑛 ⩾ 1. Then we set Std(𝑃)𝑛+1 := Sph(Std(𝑃)Ш𝑛 ). By construction, the
𝜔-polygraph Std(𝑃) is a polygraphic resolution of the shuffle operad 𝑃 .
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3. Shuffle operadic polygraphs

3.2.5. Tietze equivalence of𝝎-polygraphs. Wedefine the notion of aweak-equivalence of𝜔-operads
as for𝜔-categories, defined in [34]. For 𝑛 ⩾ 0, two 𝑛-cells 𝑎, 𝑏 of an𝜔-operad 𝑃 are𝜔-equivalent if there
exists an (𝑛+1)-cell 𝑓 : 𝑎 → 𝑏 in 𝑃 . In that case, we write 𝑎 ∼𝜔 𝑏. A morphism of𝜔-operads 𝐹 : 𝑃 → 𝑄

is a weak equivalence if it satisfies the following properties:

i) For every 0-cell 𝑎 of 𝑄 , there exists a 0-cell 𝑎 in 𝑃 such that 𝐹 (𝑎) ∼𝜔 𝑎.

ii) For every pair of 0-cells 𝑎, 𝑏 of 𝑃 and every 1-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑄 , there exists a 1-cell
𝑓 : 𝑎 → 𝑏 of 𝑃 such that 𝐹 (𝑓 ) ∼𝜔 𝑓 .

iii) For 𝑛 ⩾ 1 and every pair of parallel 𝑛-cells 𝑎, 𝑏 of 𝑃 and every (𝑛 + 1)-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑄 ,
there exists an (𝑛 + 1)-cell 𝑓 : 𝑎 → 𝑏 of 𝑃 such that 𝐹 (𝑓 ) ∼𝜔 𝑓 .

We say that two shuffle 𝜔-polygraphs 𝑋 and 𝑌 are Tietze equivalent if the induced free 𝜔-operads
𝑋Ш and 𝑌Ш are weakly equivalent. The original notion of Tietze equivalence for 1-polygraphs is a
particular case of this notion for 𝜔-polygraphs. Two 1-polygraphs 𝑋 and 𝑌 are Tietze equivalent if the
presented shuffle operads 𝑋 and 𝑌 are isomorphic. In that case, extending 𝑋 and 𝑌 into 𝜔-polygraphs
with identities in higher dimensions gives two Tietze equivalent𝜔-polygraphs. Tietze equivalence also
generalizes the notion of Tietze equivalence between (3, 1)-polygraphs introduced in [23].

3.2.6. Proposition. Let 𝑋 and 𝑌 be two acyclic 𝜔-polygraphs. Then the presented shuffle operads 𝑋
and 𝑌 are isomorphic if, and only if, the polygraphs 𝑋 and 𝑌 are Tietze equivalent.

Proof. (⇒) Denote by𝜑 : 𝑋 → 𝑌 the isomorphism. We define amorphism of𝜔-operads 𝐹 : 𝑋Ш → 𝑌Ш

such that 𝜋𝑌 𝐹 = 𝜑𝜋𝑋 on 0-cells and show that it is a weak equivalence simultaneously. Since 𝑋Ш is a
free 𝜔-operad, it suffices to define 𝐹 on the 𝑛-generators of 𝑋 for all 𝑛 ⩾ 0. We proceed by induction
on 𝑛 ⩾ 0.

For 𝑛 = 0, define linear maps 𝑖𝑋 : 𝑋 → 𝑋Ш and 𝑖𝑌 : 𝑌 → 𝑌Ш, which are sections of 𝜋𝑋 and 𝜋𝑌 ,
respectively. For 𝑥 ∈ 𝑋0, we set 𝐹 (𝑥0) := 𝑖𝑌 (𝜑 (𝜋𝑋 (𝑥0))), and we check that 𝜋𝑌 𝐹 = 𝜑𝜋𝑋 on 0-cells. Now,
for a 0-cell 𝑎 of 𝑌Ш, let 𝑎 := 𝜑−1𝑖𝑌 (𝑎) ∈ 𝑋Ш. Then 𝜋𝑌 (𝐹 (𝑎)) = 𝜋𝑌 (𝑎), so 𝐹 (𝑎) ∼𝜔 𝑎.

For 𝑛 = 1, for 𝛼 : 𝑎 → 𝑏 a 1-generator of 𝑋 , 𝜋𝑌 (𝐹 (𝑎)) = 𝜋𝑌 (𝐹 (𝑏)), so there exists a 1-cell 𝑓 :
𝐹 (𝑎) → 𝐹 (𝑏) in 𝑌Ш. We set 𝐹 (𝛼) := 𝑓 . Then, for every pair of 0-cells 𝑎, 𝑏 of 𝑋Ш and every 1-
cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑌Ш, 𝜋𝑌 (𝐹 (𝑎)) = 𝜋𝑌 (𝐹 (𝑏)), which is equivalent to 𝜋𝑋 (𝑎) = 𝜋𝑋 (𝑏) via the
isomorphism 𝜑 . Therefore there exists 𝑓 : 𝑎 → 𝑏 in 𝑋Ш, and 𝐹 (𝑓 ) : 𝐹 (𝑎) → 𝐹 (𝑏) is parallel to 𝑓 . Since
𝑌 is acyclic, 𝐹 (𝑓 ) ∼𝜔 𝑓 .

Let 𝑛 ⩾ 1 and suppose that 𝐹 is defined on 𝑛-cells of 𝑋Ш. For 𝛼 : 𝑎 → 𝑏 an (𝑛 + 1)-generator of 𝑋 ,
the 𝑛-cells 𝑎 and 𝑏 of 𝑋Ш are parallel, so the 𝑛-cells 𝐹 (𝑎) and 𝐹 (𝑏) of 𝑌Ш are parallel. By acyclicity of
𝑌 , there exists an (𝑛 + 1)-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) in 𝑌Ш, so we set 𝐹 (𝛼) := 𝑓 . Now, let 𝑎, 𝑏 be two parallel
𝑛-cells of 𝑋Ш and 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) an (𝑛 + 1)-cell of 𝑌Ш. By acyclicity of 𝑋 , there exists an (𝑛 + 1)-cell
𝑓 : 𝑎 → 𝑏, so 𝐹 (𝑓 ) and 𝑓 are parallel in 𝑌Ш, so by acyclicity of 𝑌 we have 𝐹 (𝑓 ) ∼𝜔 𝑓 .

We conclude that 𝐹 : 𝑋Ш → 𝑌Ш is a weak equivalence, so 𝑋 and 𝑌 are Tietze equivalent.
(⇐) Let 𝐹 : 𝑋Ш → 𝑌Ш be a weak equivalence. By condition i), 𝜋𝑌 𝐹 : 𝑋Ш → 𝑌 is surjective.

Moreover, if 𝑎 ∼𝜔 𝑏 in 𝑋Ш, then 𝜋𝑌 𝐹 (𝑎) = 𝜋𝑌 𝐹 (𝑏), so 𝐹 induces a morphism of 𝜔-operads 𝐹 : 𝑋 → 𝑌 .
By condition ii), 𝐹 is injective. Thus 𝐹 is an isomorphism between 𝑋 and 𝑌 . □
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3.2.7. Reduced polygraphs. Let𝑋 be a left-monomial 1-polygraph. Recall from [3] that a 1-generator
𝛼 ∈ 𝑋1 is right (resp. left) reduced if 𝑡0(𝛼) ∈ Red(𝑋1) (resp. 𝑠0(𝛼) ∈ Red(𝑋1 \ {𝛼})). We say that 𝑋 is
reduced when each of its 1-generators is left and right reduced. We prove that every (finite) conver-
gent left-monomial 1-polygraph is Tietze-equivalent to a reduced (finite) convergent left-monomial
1-polygraph.

4. Shuffle operadic rewriting

The first part of this section presents the main rewriting properties of shuffle 1-polygraphs. We relate
the notion of a convergent shuffle polygraph, whose 1-generators are oriented with respect to a given
monomial order, with the notion of Gröbner bases introduced in [19], and with the notion of Poincaré-
Birkhoff-Witt bases introduced in [28]. Throughout this section, all operads and polygraphs are shuffle.

4.1. Rewriting in shuffle operads

We introduce a concept of rewriting in the context of shuffle operads.

4.1.1. The terminal indexed set. Denote by □ the terminal object of Ind, that is, the indexed set that
is a singleton □(𝑘) = {□𝑘 } for each arity 𝑘 ⩾ 1. Denote by ]𝑘 : Set→ Ind the inclusion functor defined
by ]𝑘 (𝑋0) (𝑘) = 𝑋0 and ]𝑘 (𝑋0) = ∅ for the other arities.

4.1.2. One-hole contexts of indexed sets. A one-hole context of an indexed set 𝑋0 is an element Γ
of the free 𝑋Ш

0 -bimodule 𝑋Ш
0 ⟨□⟩. We say that Γ is of inner arity 𝑘 if it is an element of 𝑋Ш

0 ⟨□(𝑘)⟩.
Let 𝐴 be an 𝑋Ш

0 -bimodule and 𝑎 ∈ 𝐴(𝑘). Identifying 𝐴(𝑘) with HomSet(□(𝑘), 𝐴(𝑘)), 𝑎 induces a
morphism

𝜑𝑎 : 𝑋Ш
0 ⟨□(𝑘)⟩ → 𝑋Ш

0 ⟨𝐴(𝑘)⟩.

via the the functor 𝑋Ш
0 ⟨]𝑘⟩ : Set→ Bimod(𝑋Ш

0 ). For Γ a one-hole context of 𝑋 ∗Ш0 of inner arity 𝑘 , we
write Γ [𝑎] := 𝜑𝑎 (Γ). Explicitly, Γ [𝑎] is a tree of the form

𝑢

𝑣1 · · · 𝑎

𝑤1 · · · 𝑤𝑘

· · · 𝑣𝑛
𝑖

where 𝑘, 𝑛 ⩾ 1, 𝑖 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝑋Ш
0 (𝑛), 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛,𝑤1, . . . ,𝑤𝑘 ∈ 𝑋Ш

0 and □𝑘 appears in the 𝑖th
position. The notation 𝑣𝑖 means that we omit 𝑣𝑖 . In this way, every one-hole context Γ on 𝑋0 can be
written Γ := 𝑤 ◦𝑖,𝜏 (□𝑘 | ®𝑤) with 𝑤, ®𝑤 ∈ 𝑋Ш

0 . In this work, we will only consider monomial one-hole
contexts, that is when𝑤, ®𝑤 are monomials of 𝑋 ∗Ш0 , so we will omit the word monomial.
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4. Shuffle operadic rewriting

4.1.3. Two-hole contexts of indexed sets. Let 𝑋0 be an indexed set. There exists a bifunctor
𝐶
𝑋0
2 : Ind × Ind → Ind which sends a pair of indexed sets 𝑌,𝑌 ′ to the indexed set of elements of
(𝑋0 ⊔ 𝑌 ⊔ 𝑌 ′)∗Ш with one occurrence of both 𝑌 and 𝑌 ′. A two-hole context of 𝑋 ∗Ш0 is an element Γ of
𝐶
𝑋0
2 (□,□). We say that Γ is of inner arities (𝑘, ℓ) if it is an element of 𝐶𝑋0

2 (□(𝑘),□(ℓ)).
Let 𝑃 be an operad equipped with a morphism 𝜋 : 𝑋Ш

0 → 𝑃 , and 𝑎 ∈ 𝑃 (𝑘), 𝑎′ ∈ 𝑃 (ℓ). Identifying

𝑃 (𝑘) × 𝑃 (ℓ) ≃ HomSet(□(𝑘), 𝑃 (𝑘)) × HomSet(□(ℓ), 𝑃 (ℓ))
≃ HomSet×Set((□(𝑘),□(ℓ)), (𝑃 (𝑘), 𝑃 (ℓ))),

the pair (𝑎, 𝑎′) induces a morphism

𝜑𝑎,𝑎′ : 𝐶𝑋0
2 (□(𝑘),□(ℓ)) → 𝐶

𝑋0
2 (𝑃 (𝑘), 𝑃 (ℓ))

via the bifunctor𝐶𝑋0
2 (]𝑘 , ]ℓ ) : Set×Set→ Ind. Moreover, 𝑓 induces a morphism 𝜋∗ : 𝐶𝑋0

2 (𝑃 (𝑘), 𝑃 (ℓ)) →
𝑃 . For Γ a two-hole context of 𝑋 ∗Ш0 of inner arities (𝑘, ℓ), we write Γ(𝑎, 𝑎′) := 𝑖∗𝜑𝑎,𝑎′ (Γ). Explicitly,
Γ(𝑎, 𝑎′) is a tree of one of the following two forms, where the application of 𝑖 is implicit:

i)

𝑢

𝑣1 · · · 𝑎

𝑤1 · · · 𝑤𝑘

· · · 𝑎′

𝑤 ′1 · · · 𝑤 ′ℓ

· · · 𝑣𝑛
𝑖 𝑗

where

𝑛 ⩾ 2, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝑋Ш
0 (𝑛), and

𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑛,𝑤1, . . . ,𝑤𝑘 ,𝑤
′
1, . . . ,𝑤

′
ℓ ∈ 𝑋Ш

0 ,

ii)

𝑢

𝑣1 · · · 𝑎

𝑥1 · · · 𝑥ℎ

𝑥 ′1 · · · 𝑎′

𝑤1 · · · 𝑤ℓ

· · · 𝑥 ′𝑚

· · · 𝑥𝑘

· · · 𝑣𝑛
𝑖

𝑗

where

𝑚,𝑛 ⩾ 1, 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}, ℎ ∈ {1, . . . , 𝑘}, and
𝑢, 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛,𝑤1, . . . ,𝑤ℓ , 𝑥1, . . . , 𝑥𝑘 , 𝑥

′
1, . . . , 𝑥

′
𝑗 , . . . , 𝑥

′
𝑚 ∈ 𝑋Ш

0 .
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4.1. Rewriting in shuffle operads

In this work, we will only consider monomial two-hole contexts, that is, when in i) and ii) the 𝑢, ®𝑣 , ®𝑥 ,
®𝑥 ′, ®𝑤 , ®𝑤 ′ are monomials of 𝑋 ∗Ш0 .

4.1.4. Left-monomiality and homogeneity. A cellular extension 𝑋1 of 𝑋Ш
0 is left-monomial if, for

every 1-generator 𝛼 in 𝑋1 the source 𝑠0(𝛼) is a non-trivial 0-monomial, and 𝑠0(𝛼) ∉ Supp(𝑡0(𝛼)). A
1-polygraph is left-monomial if 𝑋1 is so. We prove that every 1-polygraph is Tietze equivalent to a
left-monomial one. For 𝑁 ⩾ 1, a cellular extension𝑋1 of𝑋Ш

0 is homogeneous if, for every 1-generator 𝛼
in 𝑋1 the weight of 𝑠0(𝛼) and 𝑡0(𝛼) are equal to 𝑁 . A 1-polygraph is 𝑁 -homogeneous if 𝑋1 is so. When
𝑁 = 2 we say quadratic for 𝑁 -homogeneous.

4.1.5. Rewriting step. A rewriting step of a left-monomial 1-polygraph 𝑋 is a 1-cell 𝑓 of 𝑋Ш
1 of size

1 of the form
𝑓 = _𝑔 + 1𝑐 ,

where _ ∈ k \ {0}, 𝑔 is a 1-monomial of 𝑋Ш
1 , and 𝑐 is a 0-cell of 𝑋Ш

0 such that the 0-monomial 𝑠0(𝑢) ∉
Supp(𝑐). A 1-cell of 𝑋Ш

1 if positive if it is the ★0-composition of rewriting steps.
A 0-cell 𝑎 of 𝑋Ш

0 is reduced if there is no rewriting step with source 𝑎. We denote by Red(𝑋 ) the
indexed submodule of reduced 0-cells. The indexed set Red𝑚 (𝑋 ) of reduced 0-monomials of 𝑋Ш

0 forms
a basis of Red(𝑋 ). A normal form of 𝑎 is a reduced 0-cell 𝑏 such that there is a positive 1-cell with source
𝑎 and target 𝑏.

4.1.6. Monomial orders and termination. An indexed poset (𝐴, ≺) is an indexed set 𝐴, such that
each𝐴(𝑘) is equipped with a partial order ≺𝑘 ; we will omit the index on ≺. An indexed poset (𝐴, ≺) is
well-founded if each 𝐴(𝑘) is a well-founded poset.

Let 𝑋0 be an indexed set. An order relation ≺ on the free monoid 𝑋 ∗Ш0 of tree monomials is stable
by product if, for all 𝑢,𝑢′ ∈ 𝑋 ∗Ш0 (𝑘), 𝑣, 𝑣 ′ ∈ 𝑋

∗Ш
0 (ℓ), 𝑖 ∈ {1, . . . , 𝑘}, and 𝜏 ∈Ш(ℓ −1, 𝑘 − 𝑖), 𝑢 ≺ 𝑢′, 𝑣 ≺ 𝑣 ′

implies 𝑢 ◦𝑖,𝜏 𝑣 ≺ 𝑢′ ◦𝑖,𝜏 𝑣 ′. A total order relation stable by product is called a monomial order on 𝑋 ∗Ш0 .
Note that this notion also appears in [28] and [19].

For 𝑌 a left-monomial cellular extension of 𝑋Ш
0 , an order relation ≺ on 𝑋 ∗Ш0 is compatible with 𝑌 if,

for every 1-cell 𝛼 : 𝑢 → 𝑎 of 𝑌 and every monomial 𝑣 ∈ Supp(𝑎), 𝑣 ≺ 𝑢. The relation ≺ can be extended
to the free shuffle operad 𝑋Ш

0 as follows: for two 0-cells 𝑎, 𝑏 of 𝑋Ш
0 , we have 𝑏 ≺ 𝑎 if the two following

conditions are satisfied

i) Supp(𝑎) \ Supp(𝑏) ≠ ∅,

ii) for all 𝑣 ∈ Supp(𝑏) \ Supp(𝑎), there exists 𝑢 ∈ Supp(𝑎) \ Supp(𝑏) such that 𝑣 ≺ 𝑢.

For a left-monomial 1-polygraph 𝑋 , we denote by ≺𝑋1 the smallest partial order relation on 𝑋 ∗Ш0
stable by product and compatible with 𝑋1. A 1-polygraph 𝑋 is terminating if the relation ≺𝑋1 is well-
founded. In that case, for every rewriting step 𝑓 of 𝑋 , we have 𝑡0(𝑓 ) ≺𝑋1 𝑠0(𝑓 ), and thus there does not
exist infinite sequence of rewriting steps of 𝑋 .

4.1.7. Path-lexicographic order on 1-monomials. Let (𝑋0, ≺) be a totally ordered indexed set,
and ≺𝔖 a total order on permutations. Let us recall from [19, 28] the path-lexicographic monomial
order on 𝑋 ∗Ш0 . Given a 0-monomial 𝑢 of arity 𝑘 , there exists a unique path from its root to each of its
inputs. Write such a path as a word 𝑎 = 𝑥1 . . . 𝑥𝑛 in the alphabet 𝑋0 made of labels of the vertices of
the path. To the 0-monomial 𝑢 we associate the pair (𝐿, 𝑓 ) where 𝐿 is the sequence (𝑝1, . . . , 𝑝𝑘 ) of path
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4. Shuffle operadic rewriting

words from the root to the inputs of 𝑢, and 𝑓 is the permutation of the inputs of 𝑢. Then we define the
path-lexicographic order induced by the orders ≺ and ≺𝔖, denoted by ≺𝑝𝑙 , by setting

(𝐿, 𝑓 ) ≺𝑝𝑙 (𝐿′, 𝑓 ′) if
(
𝐿 ≺𝑙𝑒𝑥 𝐿′ or

(
𝐿 = 𝐿′ and 𝑓 ≺𝔖 𝑓 ′

) )
,

where ≺𝑙𝑒𝑥 denotes the lexicographic order on words on 𝑋0 induced by ≺.
Now, let 𝑋 be a left-monomial 1-polygraph. Consider a total order ≺ on 𝑋0 ⊔ 𝑋1, such that 𝛼 ≺ 𝑥 ,

for every 𝑥 ∈ 𝑋0 and 𝛼 ∈ 𝑋1, and ≺𝔖 a total order on permutations. We will denote by ≺𝑝𝑙 the induced
path-lexicographic order on (𝑋0 ⊔ 𝑋1)∗Ш , which induces a path-lexicographic order on 1-monomials.

4.1.8. Proposition. Let 𝑋 be a left-monomial 1-polygraph. If 𝑋 ∗Ш0 admits a well-founded monomial
order ≺ compatible with 𝑋1, then 𝑋 is terminating.

Proof. We have ≺𝑋1⊆≺, so ≺𝑋1 is well-founded, so 𝑋 is terminating. □

However, the converse implication is not true. In general, in order to prove termination when no
monomial order is known, it is necessary to use a proof strategy appropriated to the set of rules. The
following gives an illustration for one of the simplest strategies.

4.1.9. Proposition. A left-monomial 1-polygraph𝑋 terminates if, and only if, there exists a well-founded
indexed poset (𝑊, <) and a morphism of indexed sets Φ : 𝑋 ∗Ш0 → 𝑊 such that Φ(Γ [𝑣]) < Φ(Γ [𝑠 (𝛼)])
holds for every 1-generator 𝛼 ∈ 𝑋1, one-hole context Γ, and 𝑣 ∈ Supp(𝑡 (𝛼)).

Proof. Suppose that the polygraph 𝑋 terminates. Then 𝑋 ∗Ш0 is equipped with a well-founded partial
order ≺𝑋1 , and We set Φ to be the identity morphism on 𝑋 ∗Ш0 .

Conversely, let ≺ be the partial order generated by 𝑣 ≺ 𝑢 if there exists a rewriting rule 𝛼 ∈ 𝑋1 and
a one-hole context Γ such that 𝑢 = Γ [𝑠 (𝛼)] and 𝑣 ∈ Supp(Γ [𝑡 (𝛼)]). The order ≺ is stable by product
by considering

𝑢 ◦𝑖,𝜏 𝑣 ≺ 𝑢′ ◦𝑖,𝜏 𝑣 ≺ 𝑢′ ◦𝑖,𝜏 𝑣 ′,

for all tree monomials 𝑢, 𝑣,𝑢′, 𝑣 ′ in 𝑋 ∗Ш0 , and is compatible with 𝑋1 by definition. Thus ≺𝑋1⊆≺, and
so the map Φ : (𝑋 ∗Ш0 , ≺𝑋1) → 𝑊 is a strictly monotone morphism of indexed posets. Since 𝑊 is
well-founded, (𝑋 ∗Ш0 , ≺𝑋1) is as well, and so the 1-polygraph 𝑋 terminates. □

4.1.10. Example. We consider the polygraph 𝑋 with three 0-generators 𝑥,𝑦, 𝑧 and the following 1-
generator:

𝛼 :
𝑥

𝑦
1 2

𝑧
3 4

//

𝑥
𝑥

1 2
𝑥

3 4
+

𝑦

𝑦
1 2

𝑦
3 4

+
𝑧

𝑧
1 2

𝑧
3 4

For 𝑢 ∈ 𝑋 ∗Ш0 , we set Φ(𝑢) := |𝑢 |𝑥 + 3|𝑢 |𝑦−𝑧 , where |𝑢 |𝑥 denotes the number of occurrences of 𝑥 in𝑇 (𝑢)
and |𝑢 |𝑦−𝑧 the number of inner vertices of 𝑇 (𝑢) whose two children are, from left to right, 𝑦 and 𝑧.
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4.2. Confluence of shuffle polygraphs

Then Φ(Γ [𝑠 (𝛼)]) > Φ(Γ [𝑣]) for all contexts Γ of inner arity 4 and every 𝑣 ∈ Supp(𝑡 (𝛼)). Indeed,
for every Γ = 𝑤 ◦𝑖,𝜏 (□4 | 𝑤1𝑤2𝑤3𝑤4), we have

Φ
©« 𝑤

𝑥

𝑦

𝑤1 𝑤2
𝑧

𝑤3 𝑤4

−
𝑤
𝑥

𝑥

𝑤1 𝑤2
𝑥

𝑤3 𝑤4 ª®®¬ =

���
𝑥

𝑦 𝑧 −
𝑥

𝑦 𝑧
���
𝑥
+ 3

���
𝑥

𝑦 𝑧 −
𝑥

𝑥 𝑥
���
𝑦−𝑧

= (1 − 1) + (3 − 0) = 1,

Φ
©« 𝑤

𝑥

𝑦

𝑤1 𝑤2
𝑧

𝑤3 𝑤4

−

𝑤

𝑦

𝑦

𝑤1 𝑤2
𝑦

𝑤3 𝑤4 ª®®¬ =

���� 𝑥

𝑦 𝑧 −
𝑦

𝑦 𝑦
����
𝑥

+ 3

�����
𝑤
𝑥

𝑦 𝑧

−
𝑤

𝑦

𝑦 𝑦
�����
𝑦−𝑧

= 1 + 3
���

𝑥

𝑦 𝑧
���
𝑦−𝑧
+ 3|𝑤 |𝑦−𝑧 − 3|𝑤 ◦𝑖,𝜏 𝑦 |

=

{
4 if |𝑤 ◦𝑖,𝜏 𝑦 |𝑦−𝑧 = |𝑤 |𝑦−𝑧,
1 if |𝑤 ◦𝑖,𝜏 𝑦 |𝑦−𝑧 = |𝑤 |𝑦−𝑧 + 1,

Φ
©« 𝑤

𝑥

𝑦

𝑤1 𝑤2
𝑧

𝑤3 𝑤4

−
𝑤
𝑧

𝑧

𝑤1 𝑤2
𝑧

𝑤3 𝑤4 ª®®¬ =

{
4 if |𝑤 ◦𝑖,𝜏 𝑧 |𝑦−𝑧 = |𝑤 |𝑦−𝑧,
1 if |𝑤 ◦𝑖,𝜏 𝑧 |𝑦−𝑧 = |𝑤 |𝑦−𝑧 + 1.

Following Proposition 4.1.9 the polygraph 𝑋 terminates. Note that, there is no monomial order that
orients this rule in this way. Indeed, every orientation compatible with a monomial order reduces first
one of the term of right hand side.

4.2. Confluence of shuffle polygraphs

In this subsection we define and algebraically characterize the property of confluence of a shuffle poly-
graph. We prove the coherent critical branching theorem for shuffle polygraphs involving a restricted
notion of critical branchings. The definitions and results of this section do not differ much from the
case of associative algebras in [25], and indeed associative algebras can be seen as operads concentrated
in arity 1, but since the notion of contexts is not made explicit in previous works, we restate all of the
definitions and results.

4.2.1. Branchings. A branching of a left-monomial 1-polygraph 𝑋 is a pair (𝑓 , 𝑔) of positive 1-cells
of 𝑋Ш

1 where 𝑓 and 𝑔 have the same source 𝑠0(𝑓 ) = 𝑠0(𝑔), which we denote by 𝑠0(𝑓 , 𝑔). The branch-
ing (𝑓 , 𝑔) is said to be local if 𝑓 and 𝑔 are both rewriting steps.

Let𝑋 be a 2-polygraph such that𝑋⩽1 is left-monomial. A branching (𝑓 , 𝑔) of the 1-polygraph𝑋⩽1 is
𝑋2-coherently confluent, or (𝑓 , 𝑔) is coherently confluent for short, if there exist positive 1-cells ℎ and 𝑘
of 𝑋Ш

1 and a 2-cell 𝐹 of 𝑋Ш
2 as in the following diagram

𝑡0(𝑓 ) ℎ

&&

𝐹
��

𝑠0(𝑓 ) = 𝑠0(𝑔)

𝑓 11

𝑔 --

𝑡0(ℎ) = 𝑡0(𝑘)

𝑡0(𝑔) 𝑘

88
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4. Shuffle operadic rewriting

If 𝑢 is a 0-cell of 𝑋Ш
0 , the 2-polygraph 𝑋 is coherently confluent (resp. locally coherently confluent) at 𝑢

if every branching (resp. local branching) of 𝑋 of source 𝑢 is coherently confluent. The 2-polygraph 𝑋
is coherently confluent (resp. locally coherently confluent) if it is so at every 0-cell of 𝑋Ш

0 , and that 𝑋 is
coherently convergent if it is terminating and coherently confluent. A left-monomial 1-polygraph 𝑋 is
confluent (resp. locally confluent) if the 2-polygraph (𝑋0, 𝑋1, Sph(𝑋Ш

1 )) has the corresponding coherent
property, and it is convergent if it is both terminating and confluent.

4.2.2. Classification of local branchings. We distinguish the following four types of local branch-
ings of a left-monomial 1-polygraph 𝑋 :

i) aspherical branchings: (𝑓 , 𝑓 ), where 𝑓 is a rewriting step of 𝑋 ,

ii) additive branchings: (_𝑓 +`1𝑣 +1𝑐 , _1𝑢 +`𝑔+1𝑐), where 𝑓 : 𝑢 → 𝑎 and 𝑔 : 𝑣 → 𝑏 are 1-monomials
of 𝑋Ш

1 , _ and ` are nonzero scalars, 𝑐 is a 0-cell of 𝑋Ш
0 , 𝑢 ≠ 𝑣 , and 𝑢, 𝑣 ∉ Supp(𝑐).

iii) multiplicative branchings: (_Γ [𝑓 , 1𝑣] + 1𝑐 , _Γ [1𝑢, 𝑔] + 1𝑐), where Γ is a two-hole context of 𝑋 ∗Ш0 ,
𝑓 : 𝑢 → 𝑎 and 𝑔 : 𝑣 → 𝑏 are 1-monomials of 𝑋Ш

1 , _ is a nonzero scalar, 𝑐 is a 0-cell of 𝑋Ш
0 , and

Γ [𝑢, 𝑣] ∉ Supp(𝑐).

iv) intersecting branchings: local branchings that are neither aspherical, additive, nor multiplicative.

We define awell-founded partial order⊑ on branchings of𝑋 as follows: for every one-hole context Γ
of 𝑋 ∗Ш0 and every 0-cell 𝑐 of 𝑋Ш

0 , we set

(𝑓 , 𝑔) ⊑ (Γ [𝑓 ] + 1𝑐 , Γ [𝑔] + 1𝑐).
The critical branchings are the minimal intersecting branchings for this order. We denote the intersect-
ing branchings by (Γ [𝛼] + 1𝑐 ,Δ[𝛽] + 1𝑐), where 𝛼, 𝛽 are 1-generators of 𝑋 , Γ,Δ are one-hole contexts
of 𝑋 ∗Ш0 , and 𝑠0(Γ [𝛼]) = 𝑠0(Δ[𝛽]). An essential branching is a critical branching (Γ [𝛼],Δ[𝛽]) where
Γ [𝛼] and Δ[𝛽] are consecutive 1-monomials for the path-lexicographic monomial order ≺𝑝𝑙 defined in
§ 4.1.7.

Let 𝑋 be a 2-polygraph such that 𝑋⩽1 is left-monomial, and 𝑢 be a 0-cell of 𝑋Ш
1 . We say that 𝑋

is essentially coherently confluent at 𝑢 if every essential branching of 𝑋 of source 𝑢 is coherently con-
fluent, and that 𝑋 is essentially coherently confluent if it is so at every 0-cell of 𝑋Ш

0 . A left-monomial
1-polygraph 𝑋 is essentially confluent if the 2-polygraph (𝑋0, 𝑋1, Sph(𝑋Ш

1 )) is essentially coherently
confluent.

As for polygraphs of associative algebras, we have:

4.2.3. Lemma ([25, Lemmata 3.1.3 and 4.1.2.]). Let𝑋 be a 2-polygraph such that𝑋⩽1 is left-monomial,
and a 0-cell 𝑎 in 𝑋Ш

0 such that 𝑋 is coherently confluent at 𝑏 for any 𝑏 ≺𝑋1 𝑎. If 𝑓 is a 1-cell of 𝑋Ш
1 that

decomposes

𝑎0
𝑓1−→ 𝑎1

𝑓2−→ · · ·
𝑓𝑝−→ 𝑎𝑝

into 1-cells of size 1, with 𝑎𝑖 ≺𝑋1 𝑎 for all 𝑖 ∈ {1, . . . , 𝑝 − 1}, then there exists a 0-cell 𝑎′, 1-cells 𝑔, ℎ, and a
2-cell 𝐹 in 𝑋Ш

2 such that
𝑎𝑝

ℎ

��𝐹��
𝑎0

𝑓
77

𝑔
33 𝑎′
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4.2. Confluence of shuffle polygraphs

When 𝑝 = 1, then 𝐹 is an identity 2-cell.

4.2.4. Theorem (Coherent essential branchings theorem). Let 𝑋 be a 2-polygraph such that 𝑋⩽1
is terminating and left-monomial. If 𝑋 is essentially coherently confluent, then it is coherently confluent.

Proof. The structure of the proof is the same as for the similar result for associative algebras given
in [25]. The primary difference is that we prove that we can restrict the hypotheses to the critical
branchings that are essential. Suppose that 𝑋 is an essentially coherently confluent 2-polygraph. We
proceed by well-founded induction on the sources of the branchings of 𝑋⩽1, with respect to the order
≺𝑋1 , to prove that 𝑋 is coherently confluent at every 0-cell of 𝑋Ш

0 . For each source, we first prove
local coherent confluence and then deduce coherent confluence by Newman’s lemma, exactly as for
associative algebras in [25, Thm. 4.2.1].

A reduced 0-cell cannot be the source of a local branching, so𝑋 is coherently confluent at reduced 0-
cells. Now, fix a nonreduced 0-cell 𝑎0 of 𝑋Ш

0 , and assume that 𝑋 is coherently confluent at every 𝑏 ≺𝑋1

𝑎0. Then we proceed by case analysis on the type of the local branchings. If we show that critical
branchings are coherently confluent, then the cases of aspherical, additive, multiplicative, and non-
critical intersecting branchings are handled exactly as in [25, Thm. 4.2.1]. There remains to show the
coherent confluence of critical branchings.

Let (Γ [𝛼],Δ[𝛽]) be a critical branching of source 𝑎0 as in § 4.2.2. We proceed by induction on the
size of the source of the branching and the number of 1-monomials Λ[𝛾] of 𝑋Ш

1 such that Γ [𝛼] ≺𝑝𝑙
Λ[𝛾] ≺𝑝𝑙 Δ[𝛽]. If the branching is essential, then it is coherently confluent by hypothesis. Otherwise,
there exists a 1-monomial Λ[𝛾] of 𝑋Ш

1 between Γ [𝛼] and Δ[𝛽]. We get two branchings (Γ [𝛼],Λ[𝛾])
and (Λ[𝛾],Δ[𝛽]).

The branching (Γ [𝛼],Λ[𝛾]) is either multiplicative or intersecting. If it is multiplicative, then it is
coherently confluent by the multiplicative case. Otherwise, it is either non-minimal with respect to the
order ⊑ or a critical branching. In the non-minimal case, there exists a factorisation

Γ1Γ0 [𝑡 (𝛼)] Γ1 [𝑓0]
""

𝐹
��

Γ1Γ0 [𝑠 (𝛼)] = Γ1Λ0 [𝑠 (𝛾)]

Γ1Γ0 [𝛼] ..

Γ1Λ0 [𝛾]
00

Γ1 [𝑏0]

Γ1Λ0 [𝑡 (𝛾)] Γ1 [𝑔0]

<<

where (Γ0 [𝛼],Λ0 [𝛾]) is a critical branching, and by induction on the size of its source, Γ1 is a one-
hole context of 𝑋 ∗Ш0 , and 𝑓0, 𝑔0 are positive 1-cells of 𝑋Ш

1 making this critical branching coherently
confluent. In the critical case, the branching is either essential, or not. If it is essential, then it is
coherently confluent by hypothesis. Otherwise, it is coherently confluent by induction hypothesis.

We proceed similarly for the branching (Λ[𝛾],Δ[𝛽]): in every case, we write

− the branching (Γ [𝛼],Λ[𝛾]) as (Γ1Γ0 [𝛼], Γ1Λ0 [𝛾]), with Γ1 a one-hole context of𝑋 ∗Ш0 and (Γ0 [𝛼],Λ0 [𝛾])
a confluent branching,

− the branching (Λ[𝛾],Δ[𝛽]) as (Δ1Λ
′
0 [𝛾],Δ1Δ0 [𝛽]), withΔ1 a one-hole context of𝑋 ∗Ш0 and (Λ′0 [𝛾],Δ0 [𝛽])

a confluent branching.
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4. Shuffle operadic rewriting

We then construct the following coherently confluent diagram

Γ1Γ0 [𝑡 (𝛼)]
Γ1 [𝑓0]

--

𝐹
��

Γ1 [𝑏0]
ℎ1

!!𝐻
��

Γ [𝑠 (𝛼)]

Γ [𝛼] 44

Δ[𝛽] ))

Λ[𝛾] //

𝐺
��

Λ[𝑡 (𝛾)]

Γ1 [𝑔0] 66

Δ1 [𝑓 ′0 ] ''

𝑐

Δ1Δ0 [𝑡 (𝛽)]
Δ1 [𝑔′0]

11 Δ1 [𝑏′0]
ℎ′1

==

where the 2-cells 𝐹 and 𝐺 are defined by the aforementioned coherently confluent branchings and the
2-cell 𝐻 is given by induction hypothesis. □

4.2.5. Operad presented by an ideal. Let 𝑋0 be an indexed set and 𝐼 an ideal of the free shuffle
operad 𝑋Ш

0 . We equip the collection I ⊕ 𝐼 with a shuffle operad structure, with unit [ : I ↩→ I ⊕ 𝐼 and
multiplication given by the following composition

`𝐼 : (I ⊕ 𝐼 ) ◦Ш (I ⊕ 𝐼 ) ≃ (I ⊕ 𝐼 ) ⊕ (𝐼 ◦Ш (I ⊕ 𝐼 ))
→ (I ⊕ 𝐼 ) ⊕ (𝐼 ◦Ш 𝑋Ш

0 )
1⊕𝜌
−−−→ (I ⊕ 𝐼 ) ⊕ 𝐼
→ I ⊕ 𝐼 ,

where 𝜌 is the right action of 𝐼 as an𝑋Ш
0 -bimodule. Denote by𝑋Ш

0 /𝐼 the coequalizer of the morphisms
of shuffle operads

I ⊕ 𝐼
[ ⊕ 1

//

[ ⊕ 0
// 𝑋

Ш
0

in ШOp. Note that the underlying collection of𝑋Ш
0 /𝐼 is the cokernel of the inclusion 𝐼 ↩→ 𝑋Ш

0 in Coll.
Let 𝑋 be a 1-polygraph. The boundary of a 1-generator 𝛼 in 𝑋 is the 1-cell 𝜕(𝛼) := 𝑠0(𝛼) − 𝑡0(𝛼),

and we set 𝜕(𝑋1) := { 𝜕(𝛼) | 𝛼 ∈ 𝑋1 }. We denote by 𝐼 (𝑋 ) the ideal of the free operad 𝑋Ш
0 generated

by the set of boundaries of the 1-generators of 𝑋 , that is the free 𝑋Ш
0 -bimodule generated by 𝜕(𝑋1).

Explicitly, the ideal 𝐼 (𝑋 ) is made of all the linear combinations

𝑝∑︁
𝑖=1

_𝑖Γ𝑖 [𝜕(𝛼𝑖)]

where _𝑖 is a scalar and Γ𝑖 is a one-hole context. Note that the operad 𝑋 presented by 𝑋 is isomorphic
to 𝑋Ш

0 /𝐼 (𝑋 ).
We also have the result corresponding to [25, Prop. 3.3.4]:

4.2.6. Proposition. For a terminating left-monomial 1-polygraph 𝑋 , the following assertions are equiv-
alent :
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4.3. Monomial-ordered shuffle polygraphs

i) 𝑋 is confluent.

ii) Red(𝑋 ) ∩ 𝐼 (𝑋 ) = 0.

iii) 𝑋Ш
0 = Red(𝑋 ) ⊕ 𝐼 (𝑋 ).

4.3. Monomial-ordered shuffle polygraphs

In this subsection, we consider 1-polygraphs whose orientations of 1-generators are compatible with a
fixedmonomial order. We relate these polygraphs to the notion of Gröbner bases for operads introduced
in [19]. From Theorem 4.2.4 we deduce a completion procedure for these polygraphs as in [19], but by
resolving only essential branchings instead of all critical branchings.

4.3.1. Gröbner bases [19]. Let 𝑋0 be an indexed set and ≼ be a monomial order on the free op-
erad 𝑋Ш

0 . If 𝑎 is a nonzero 0-cell of 𝑋Ш
0 , the leading monomial of 𝑎 is the maximum element lm(𝑎)

of Supp(𝑎) with respect to ≼, and 0 when Supp(𝑎) is empty. The leading coefficient of 𝑎 is the coeffi-
cient lc(𝑎) of lm(𝑎) in 𝑎, and the leading term of 𝑎 is the element lt(𝑎) := lc(𝑎) lm(𝑎) of 𝑋Ш

0 . Observe
that, for 𝑎, 𝑏 in 𝑋Ш

0 , we have 𝑎 ≺ 𝑏 if, and only if, either lm(𝑎) ≺ lm(𝑏) or (lt(𝑎) = lt(𝑏) and 𝑎 − lt(𝑎) ≺
𝑏 − lt(𝑏)). For 𝑌 an indexed subset of 𝑋Ш

0 , we denote by lm(𝑌 ) the indexed set of leading monomials
of elements of 𝑌 .

Let 𝐼 be an ideal of the free operad𝑋Ш
0 . AGröbner basis for 𝐼 with respect to ≼ is an indexed subset G

of 𝐼 such that the ideals of 𝑋Ш
0 generated by lm(𝐼 ) and by lm(G) coincide.

4.3.2. Proposition. If 𝑋 is a convergent left-monomial 1-polygraph, and ≼ is a monomial order on 𝑋Ш
0

that is compatible with 𝑋1, then the indexed set 𝜕(𝑋1) forms a Gröbner basis of 𝐼 (𝑋 ).
Conversely, let 𝑋0 be an indexed set, let ≼ be a monomial order on 𝑋Ш

0 , let 𝐼 be an ideal of 𝑋Ш
0 and G

be a subset of 𝐼 . Define 𝑋 (G) as the 1-polygraph with 0-generators 𝑋0 and a 1-generator

𝛼𝑎 : lm(𝑎) → lm(𝑎) − 1
lc(𝑎)𝑎

for each 𝑎 in G. If G is a Gröbner basis for 𝐼 , then 𝑋 (G) is a convergent left-monomial presentation
of 𝑋Ш

0 /𝐼 , such that 𝐼 (𝑋 (G)) = 𝐼 , and ≼ is compatible with 𝑋 (G)1.

Proof. Suppose that𝑋 is convergent. For every 1-generator𝛼 of𝑋 , 𝜕(𝛼) is in 𝐼 (𝑋 ). Since ≼ is compatible
with 𝑋1, we have lm(𝜕(𝛼)) = 𝑠 (𝛼) for every 1-cell 𝛼 of 𝑋 . If 𝑎 is a nonzero 0-cell of 𝐼 (𝑋 ), then by
Proposition 4.2.6, there exists a positive 1-cell 𝑎 → 0. By compatibility between𝑋1 and ≼, any rewriting
rule that does not reduce the leading monomial lm(𝑎) will reduce 𝑎 into a 0-cell with the same leading
monomial. Thus, in order to rewrite to 0, we must apply a rewriting rule to lm(𝑎) at some point, and so
lm(𝑎) belongs to the ideal generated by the leading monomials of 𝜕𝑋1. Thus 𝜕(𝑋1) is a Gröbner basis
for (𝐼 (𝑋 ), ≼).

Conversely, assume that G is a Gröbner basis for (𝐼 , ≼). The monomial order ≼ is compatible
with𝑋 (G)1, hence by Proposition 4.1.8, the polygraph𝑋 (G) terminates. Moreover, we have 𝐼 (𝑋 (G)) =
𝐼 , so the algebra presented by 𝑋 (G) is indeed isomorphic to 𝑋Ш

0 /𝐼 . Moreover, the reduced monomials
of 𝑋 (G)Ш are the monomials of 𝑋Ш

0 that cannot be decomposed as Γ [lm(𝑎)] with 𝑎 in G and Γ a one-
hole context of𝑋 ∗Ш0 . Thus, if a reduced 0-cell 𝑎 of𝑋Ш

0 is in 𝐼 , its leading monomial must be 0, because G
is a Gröbner basis of (𝐼 , ≼). By proposition 4.2.6, we get that the polygraph 𝑋 (G) is confluent. □
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4. Shuffle operadic rewriting

4.3.3. Poincaré-Birkhoff-Witt bases [28]. Let 𝑃 be a operad, let𝑋0 be a generating indexed set of 𝑃 ,
and let ≼ be a monomial order of𝑋Ш

0 . A Poincaré-Birkhoff-Witt (PBW ) basis for (𝑃,𝑋0, ≼) is an indexed
subset B of 𝑋 ∗Ш0 such that:

i) B is a linear basis of 𝑃 , for 𝑢 ∈ 𝑋 ∗Ш0 , we write [𝑢]B :=
∑

𝑖 _𝑖𝑤𝑖 its decomposition in 𝑃 on the
basis B,

ii) for all 𝑢, 𝑣 in B and all compatible elementary compositions ◦𝑖,𝜏 , either 𝑢 ◦𝑖,𝜏 𝑣 belongs to B or
𝑢 ◦𝑖,𝜏 𝑣 ≻ [𝑢 ◦𝑖,𝜏 𝑣]B ,

iii) a tree monomial 𝑢 of 𝑋 ∗Ш0 is in B if, and only if, for every decomposition 𝑢 = Γ(𝑥 ◦𝑖,𝜏 𝑥 ′) of 𝑢
where 𝑥, 𝑥 ′ ∈ 𝑋0 and Γ is a one-hole context of 𝑋Ш

0 , 𝑥 ◦𝑖,𝜏 𝑥 ′ ∈ B.

4.3.4. Proposition. If 𝑋 is a convergent left-monomial quadratic presentation of an operad 𝑃 , and ≼ is
a monomial order on 𝑋Ш

0 compatible with 𝑋1, then the indexed set Redm(𝑋 ) is a PBW basis for (𝑃,𝑋0, ≼).
Conversely, let 𝑃 be a quadratic operad, 𝑋 a generating indexed set of 𝑃 , ≼ a monomial order on

𝑋Ш
0 , and B a PBW basis of (𝐴,𝑋0, ≼). Define 𝑋 (B) as the 1-polygraph with 0-genrators 𝑋0 and with a

1-generator

𝑥 ◦𝑖,𝜏 𝑥 ′
𝛼𝑥◦𝑖,𝜏 𝑥 ′−−−−−−→ [𝑥 ◦𝑖,𝜏 𝑥 ′]B

for all 𝑥, 𝑥 ′ in 𝑋0 ∩ B such that 𝑥 ◦𝑖,𝜏 𝑥 ′ ≠ [𝑥 ◦𝑖,𝜏 𝑥 ′]B in 𝑋Ш
0 . Then 𝑋 (B) is a quadratic convergent

left-monomial presentation of 𝑃 such that Redm(𝑋 (B)) = B and ≼ is compatible with 𝑋 (B)1.

Proof. Suppose that 𝑋 is a quadratic convergent left-monomial presentation of an operad 𝑃 . By propo-
sition 4.2.6, we have the following exact sequence of collections:

0→ 𝐼 (𝑋 ) → 𝑋Ш
0 → Red(𝑋 ) → 0.

Since 𝑃 is isomorphic to 𝑋Ш
0 /𝐼 (𝑋 ) as an operad, it is also isomorphic to Red(𝑋 ) as a collection, and

therefore Redm(𝑋 ) is a basis of 𝑃 . The fact that ≼ is compatible with 𝑋1 implies axiom (ii) of PBW
bases. Axiom (iii) comes from the definition of a reduced monomial for a quadratic left-monomial
1-polygraph.

Conversely, assume that B is a PBW basis for (𝑃,𝑋, ≼). By definition, 𝑋 (B) is quadratic and left-
monomial, and axiom (iii) of PBW bases implies Redm(𝑋 (B)) ∩ 𝐼 (𝑋 (B)) = 0. Termination of 𝑋 (B) is
given by axiom (ii) of PBWbases because ≼ is well-founded. By proposition 4.2.6, it is sufficient to prove
that Red(𝑋 (B)) ∩ 𝐼 (𝑋 (B)) = 0 to get confluence: on the one hand, a reduced 0-cell𝑢 of Red(𝑋 (B)) is a
linear combination of 0-cells of B, so that𝑢 is its only normal form; and, on the other hand, if𝑢 belongs
to 𝐼 (𝑋 (B)), then 𝑢 admits 0 as a normal form. Finally, the operad presented by 𝑋 (B) is isomorphic
to Red(𝑋 (B)), that is to kB, hence to 𝑃 by the previous exact sequence and because B is a linear basis
of 𝑃 . □

4.3.5. Completion procedure. For a 2-polygraph 𝑋 where 𝑋2 = Sph(𝑋Ш
1 ), Theorem 4.2.4 leads to

a completion procedure for 1-polygraphs that reaches a convergent polygraph by resolving essential
branchings. Given a terminating 1-polygraph 𝑋 , and a monomial order ≺ on 𝑋 ∗Ш0 compatible with 𝑋1,
the procedure works as follows
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5. Shuffle polygraphic resolutions from convergence

(i) for every essential branching (𝑓 , 𝑔) of 𝑋 , the 0-cells 𝑡0(𝑓 ) and 𝑡0(𝑔) are reduced to some normal
forms �𝑡0(𝑓 ) and �𝑡0(𝑔). If �𝑡0(𝑓 ) ≠ �𝑡0(𝑔):

𝑡0(𝑓 ) // �𝑡0(𝑓 )
OO

ℎ
��

𝑢

𝑓 //

𝑔 // 𝑡0(𝑔) //�𝑡0(𝑔)
a 1-generator ℎ : lm(𝑎) → 𝑎 − lm(𝑎), where 𝑎 = �𝑡0(𝑓 ) −�𝑡0(𝑔), is added to reach confluence of the
branching ;

(ii) the addition of 1-generators in the step (i) can create new essential branchings, whose confluence
must also be completed as in (i) ;

(iii) Repeat the previous steps until there are no non-confluent essential branchings.

As a consequence of Theorem 4.2.4, we have

4.3.6. Proposition. The procedure § 4.3.5 on a 1-polygraph 𝑋 produces a (possibly infinite) convergent
polygraph that presents the operad 𝑋 .

An analogue completion procedure for non-symmetric operads has been described in detail with
an explicit handling of the critical branchings in [37, Algorithm 2].

5. Shuffle polygraphic resolutions from convergence
In this section, unless otherwise specified, all operads and polygraphs are shuffle. We recall from [25]
the characterization of the property of acyclicity for an 𝜔-polygraph through the existence of a homo-
topical contraction. Subsection 5.2, presents the main result of this article, Theorem 5.2.6, that extends a
reduced convergent left-monomial 1-polygraph into a polygraphic resolution of the presented operad.
In Subsection 5.3, given a polygraphic resolution of an operad, we construct a bimodule resolution for
the operad. Finally, in Subsection 5.4 we prove a criterion of Koszulness in terms of quadratic conver-
gence.

5.1. Polygraphic resolutions and contractions

In this first subsection, we extend to𝜔-operads the notion of homotopy developed in [25] for𝜔-algebras,
see also [4] and [24]. Then we introduce the notion of a contraction of a polygraph, which allow us to
characterize acyclic 𝜔-polygraphs.

5.1.1. Homotopies. Let 𝑃 and 𝑄 be 𝜔-operads and 𝐹,𝐺 : 𝑃 → 𝑄 be morphisms of 𝜔-operads. A
homotopy from 𝐹 to 𝐺 is a graded linear map

[ : 𝑃 → 𝑄

of degree 1, i.e., [ sends 𝑛-cells to 𝑛 + 1-cells), such that, writing [𝑎 for [ (𝑎),
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5. Shuffle polygraphic resolutions from convergence

i) for every 𝑛 ⩾ 0, for every 𝑛-cell 𝑎 of 𝑃 ,

𝑠𝑛 ([𝑎) = 𝐹 (𝑎) ★0 [𝑡0 (𝑎) ★1 · · ·★𝑛−1 [𝑡𝑛−1 (𝑎) (5.1.2)
𝑡𝑛 ([𝑎) = [𝑠𝑛−1 (𝑎) ★𝑛−1 · · ·★1 [𝑠0 (𝑎) ★0 𝐺 (𝑎), (5.1.3)

ii) for all 0 ⩽ 𝑘 < 𝑛 and every ★𝑘 -composable pair (𝑎, 𝑏) of 𝑛-cells of 𝑃 ,

[𝑎★𝑘𝑏 = 𝐹 (𝑠𝑘+1(𝑎)) ★0 [𝑡0 (𝑏 ) ★1 · · ·★𝑘−1 [𝑡𝑘−1 (𝑏 ) ★𝑘 [𝑏

★𝑘+1 [𝑎 ★𝑘 [𝑠𝑘−1 (𝑎) ★𝑘−1 · · ·★1 [𝑠0 (𝑎) ★0 𝐺 (𝑡𝑘−1(𝑏)),

iii) for all 𝑛 ⩾ 0 and every 𝑛-cell 𝑎 of 𝑃 ,
[1𝑎 = 1[𝑎 .

In order for this definition to be licit, we need to check that the★𝑘 -compositions of (i) are well defined.
See [4, Appendix B.8] or [25, § 5.1.1] for the verification. Note that the mappings 𝑎 ↦→ 𝑠 ([𝑎) and 𝑎 ↦→
𝑡 ([𝑎) are operads morphisms because both are composites of operad morphisms. The globularity of [𝑎
follows from

𝑠𝑠 ([𝑎) = 𝑠 (𝐹 (𝑎)) ★0 [𝑡0 (𝑎) ★1 · · ·★𝑛−2 [𝑡𝑛−2 (𝑎) = 𝑠 ([𝑠 (𝑎) ) = 𝑠𝑡 ([𝑎)
and 𝑡𝑠 ([𝑎) = 𝑡 ([𝑡 (𝑎) ) = [𝑠𝑛−2 (𝑎) ★𝑛−2 · · ·★1 [𝑠0 (𝑎) ★0 𝑡 (𝐺 (𝑎)) = 𝑡𝑡 ([𝑎) .

5.1.4. Let us expand the homotopy [ in low dimension. It maps a 1-cell 𝑓 : 𝑎 → 𝑎′ of 𝑃 to a 2-cell

𝐹 (𝑎′) [𝑎′

##

[𝑓��𝐹 (𝑎)

𝐹 (𝑓 ) 22

[𝑎
,,

𝐺 (𝑎′)
𝐺 (𝑎) 𝐺 (𝑓 )

::

of 𝑄 , and a 2-cell 𝐴 : 𝑓 ⇒ 𝑓 ′ : 𝑎 → 𝑎′ of 𝑃 to the following 3-cell of 𝑄

𝐹 (𝑎′) [𝑎′

((

[𝑓 ′��𝐹 (𝑎)

𝐹 (𝑓 ) ''

𝐹 (𝑓 ′)
77

𝐹 (𝐴)!

[𝑎
..

𝐺 (𝑎′)
𝐺 (𝑎)

𝐺 (𝑓 ′)
66

[𝐴
⇛

𝐹 (𝑎′) [𝑎′

((

[𝑓��𝐹 (𝑎)

𝐹 (𝑓 ) 00

[𝑎
..

𝐺 (𝑎′)
𝐺 (𝑎)

𝐺 (𝑓 ) 00

𝐺 (𝑓 ′)

FF

𝐺 (𝐴)� 

5.1.5. Unital sections and contractions. Let𝑋 be a𝜔-polygraph. A unital section of𝑋 is a morphism
of 𝜔-operads ] : 𝑋 → 𝑋Ш, which is a section of the canonical projection 𝜋 : 𝑋Ш ↠ 𝑋 , and such that
]1 = 1, where 1 ∈ k ⊆ 𝑋Ш(1). The morphism ] assigns to every 0-cell 𝑎 of 𝑋 a representative 0-cell
]𝑎 in 𝑋Ш, in such a way that is the identity on the unit k. Note that a unital section is not necessarily
compatible with shuffle composition. For 𝑎 an 𝑛-cell of 𝑋Ш, we will write 𝑎 for ]𝜋 (𝑎). Note that
𝑎 = 1 �𝑠0 (𝑎) for 𝑛 ⩾ 1.

Fix ] a unital section of 𝑋 . An ]-contraction of 𝑋 is a homotopy 𝜎 : 𝑖𝑑𝑋Ш → ]𝜋 such that 𝜎𝑎 = 1𝑎 for
every 𝑛-cell 𝑎 of 𝑋Ш that belongs to the image of ] or 𝜎 . We say that 𝜎 is a right ]-contraction if, for all
𝑛 ⩾ 0, 𝑛-cells 𝑓 , 𝑔 of 𝑋Ш, and compatible elementary composition ◦𝑖,𝜏 ,

𝜎𝑓 ◦𝑖,𝜏𝑔 = (𝑠0(𝑓 ) ◦𝑖,𝜏 𝜎𝑔) ★0 𝜎𝑓 ◦𝑖,𝜏𝑔 . (5.1.6)
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5.1. Polygraphic resolutions and contractions

5.1.7. Lemma. Let 𝜎 be a ]-contraction. For 𝑛 ⩾ 1 and every 𝑛-cell 𝑎 of 𝑋Ш,

𝑠𝑛 (𝜎𝑎) = 𝑎 − 𝑡𝑛−1(𝑎) + 𝜎𝑡𝑛−1 (𝑎) and 𝑡𝑛 (𝜎𝑎) = 𝜎𝑠𝑛−1 (𝑎) . (5.1.8)

Note that for 𝑎 a 0-cell of 𝑋Ш, 𝑠0(𝜎𝑎) = 𝑎 and 𝑡0(𝜎𝑎) = 𝑎.

Proof. Let us first prove

𝑎 ★0 𝜎𝑡0 (𝑎) ★1 · · ·★𝑘 𝜎𝑡𝑘 (𝑎) = 𝑎 − 𝑡𝑘 (𝑎) + 𝜎𝑡𝑘 (𝑎)

by induction on 𝑘 ∈ {0, . . . , 𝑛 − 1}. The result is clear for 𝑘 = 0. For 𝑘 ⩾ 1, we calculate

𝑎 ★0 [𝑡0 (𝑎) ★1 · · ·★𝑘 𝜎𝑡𝑘 (𝑎) = 𝑎 ★0 𝜎𝑡0 (𝑎) ★1 · · ·★𝑘−1 𝜎𝑡𝑘−1 (𝑎)

− 𝑡𝑘 (𝑎 ★0 𝜎𝑡0 (𝑎) ★1 · · ·★𝑘−1 𝜎𝑡𝑘−1 (𝑎) )
+ 𝜎𝑡𝑘 (𝑎)

= (𝑎 − 𝑡𝑘−1(𝑎) + 𝜎𝑡𝑘−1 (𝑎) ) − 𝑡𝑘 (𝑎 − 𝑡𝑘−1(𝑎) + 𝜎𝑡𝑘−1 (𝑎) ) + 𝜎𝑡𝑘 (𝑎)
= 𝑎 − 𝑡𝑘 (𝑎) + 𝜎𝑡𝑘 (𝑎) ,

the last equality coming from the fact that 𝑡𝑘𝑡𝑘−1(𝑎) = 𝑡𝑘−1(𝑎) and 𝑡𝑘 (𝜎𝑡𝑘−1 (𝑎) ) = 𝜎𝑡𝑘−1 (𝑎) . Applying
𝑘 = 𝑛 − 1 and (5.1.2) with 𝐹 = 𝑖𝑑𝑋Ш , we conclude that

𝑠𝑛 (𝜎𝑎) = 𝑎 − 𝑡𝑛−1(𝑎) + 𝜎𝑡𝑛−1 (𝑎) .

For the second equation, we proceed similarly to show that, for all 𝑘 ∈ {0, . . . , 𝑛 − 1},

𝜎𝑠𝑘 (𝑎) ★𝑘 · · ·★1 𝜎𝑠0 (𝑎) ★0 𝑎 = 𝑎 − 𝑠𝑘 (𝑎) + 𝜎𝑠𝑘 (𝑎) = 𝜎𝑠𝑘 (𝑎)

because 𝑎 = 1 �𝑠0 (𝑎) . Applying 𝑘 = 𝑛 − 1 and (5.1.3) with 𝐺 = ]𝜋 , we conclude that

𝑡𝑛 (𝜎𝑎) = 𝜎𝑠0 (𝑎) .

□

5.1.9. Reduced and essential monomials. Let ] be an unital section of 𝑋 , and 𝜎 an ]-contraction of
an 𝜔-polygraph 𝑋 . A 0-monomial 𝑢 of 𝑋Ш is ]-reduced if 𝑢 = 𝑢. A non-]-reduced 0-monomial 𝑢 of the
free 𝜔-operad 𝑋Ш is ]-essential if 𝑢 = (𝑥 | ®𝑣) where 𝑥 is a 0-generator of 𝑋 and 𝑣1, . . . , 𝑣𝑘 are ]-reduced
0-monomials of 𝑋Ш. When the underlying 1-polygraph 𝑋⩽1 is convergent, and the section ] sends a
0-monomial on its unique normal form with respect to 𝑋1, the ]-reduced 0-monomials coincide with
reduced ones.

For 𝑛 ⩾ 0, an 𝑛-monomial 𝑎 of𝑋Ш is 𝜎-reduced if it is an identity or in the image of 𝜎 . If 𝜎 is a right
]-contraction of 𝑋 and 𝑛 ⩾ 0, then a non-𝜎-reduced 𝑛-monomial 𝑎 of 𝑋Ш is 𝜎-essential if 𝑎 = (𝛼 | ®𝑣),
where 𝛼 is a 𝑛-generator of 𝑋 and 𝑣1, . . . , 𝑣𝑘 are ]-reduced 0-monomials of the 𝜔-operad 𝑋Ш.

5.1.10. Lemma. Let 𝑋 be an 𝜔-polygraph and ] a unital section of 𝑋 . A right ]-contraction 𝜎 of 𝑋 is
uniquely and entirely determined by its values on the ]-essential 0-monomials and, for 𝑛 ⩾ 1, on the
𝜎-essential 𝑛-monomials of 𝑋Ш.
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5. Shuffle polygraphic resolutions from convergence

Proof. The proof follows the same arguments as in the case of associative algebras given in [25, Section
5.2], and it is divided in two steps:

i) First, we prove that a homotopy[ : 𝐹 → 𝐺 betweenmorphisms of𝜔-operads 𝐹,𝐺 : 𝑋Ш → 𝑋Ш is
uniquely and entirely determined by its values on 𝑛-monomials for all 𝑛 ⩾ 0, provided it satisfies
the following relation:

[
`
↑
𝑋Ш
𝑛

= [
`
↓
𝑋Ш
𝑛

, (5.1.11)

where `↑
𝑋Ш
𝑛

and `↓
𝑋Ш
𝑛

are defined considering 𝑋Ш
𝑛 as a 𝑋Ш

0 -bimodule.

ii) Next, we prove that the values of a right ]-contraction on 𝑛-monomials are uniquely and entirely
determined by the values on ]-essential and 𝜎-essential monomials, and that the resulting values
satisfy (5.1.11).

(i) Proceed by induction on 𝑛 ⩾ 0. For 𝑛 = 0, assume that [𝑢 : 𝐹 (𝑢) → 𝐺 (𝑢) is a fixed 1-cell of 𝑋Ш for
every 0-monomial 𝑢 of 𝑋Ш. Extend [ uniquely to every 0-cell 𝑎 of 𝑋Ш by linearity.

Now fix 𝑛 ⩾ 1 and assume that an (𝑛 + 1)-cell [𝑢 of 𝑋Ш has been chosen for every 𝑛-monomial
𝑢 of 𝑋Ш, with source and target given by the definition of homotopies, such that (5.1.11) holds for
𝑛-monomials. By construction, the 𝑛-cells of 𝑋Ш are linear combinations of 𝑛-monomials of 𝑋Ш and
of identities of (𝑛 − 1)-cells of 𝑋Ш up to the relation

`
↑
𝑋Ш

0 ⟨𝑋𝑛 ⟩⊕𝑋Ш
𝑛−1

= `
↓
𝑋Ш

0 ⟨𝑋𝑛 ⟩⊕𝑋Ш
𝑛−1
.

Thus we can extend [ to all 𝑛-cells 𝑎 of𝑋Ш by choosing a decomposition of 𝑎 into a linear combination
of 𝑛-monomials and an identity, and using (5.1.11) to ensure that the resulting cell does not depend on
the choice of decomposition. We check that the source and target of the resulting (𝑛 + 1)-cell [𝑎 match
the definition of homotopies by linearity of 𝐹,𝐺 and the ★𝑘 -compositions.

(ii) First, we construct 𝜎 as a graded linear map by induction on 𝑛. For 𝑛 = 0, if𝑢 is a non-]-essential
monomial, then either 𝑢 = 𝑢, or 𝑢 = (𝑥 | ®𝑣) where 𝑥 is a 0-cell of 𝑋 and some 𝑣𝑖 is a non-]-reduced
monomial. In the former case, 𝜎𝑢 = 1𝑢 is forced because𝑢 is ]-reduced. In the latter case, take 𝑖 maximal.
Writing (𝑥 | ®𝑣) = (𝑥 | 𝑣1 · · · 1 · · · 𝑣𝑘 ) ◦𝑖,𝜏 𝑣𝑖 for some shuffle permutation 𝜏 , (5.1.6) imposes

𝜎 (𝑥 | ®𝑣) = ((𝑥 | 𝑣1 · · · 1 · · · 𝑣𝑘 ) ◦𝑖,𝜏 𝜎𝑣𝑖 ) ★0 𝜎 (𝑥 |𝑣1 · · ·𝑣𝑖 · · ·𝑣𝑘 ) .

Then proceed by induction on the weight of the 𝑣𝑖 to define 𝜎𝑣𝑖 from the values of 𝜎 on ]-reduced
monomials.

Now let 𝑛 ⩾ 1. For every 𝑛-monomial Γ [𝛼], with 𝛼 a 𝑛-generator of 𝑋 and Γ a one-hole context
of 𝑋 ∗Ш0 , writing

Γ [𝛼] = 𝑢 ◦𝑖,𝜏 (𝛼 | ®𝑣)
and

(𝛼 | ®𝑣) = 𝛼 ◦𝑘,𝜏𝑘 𝑣𝑘 ◦𝑘−1,𝜏𝑘−1 · · · ◦1,𝜏1 𝑣1,

the equation (5.1.6) imposes that we set

𝜎Γ [𝛼 ] := (𝑢 ◦𝑖,𝜏 (𝑠0(𝛼) | 𝜎𝑣1 𝑣2 · · · 𝑣𝑘 )) ★0 · · ·★0 (𝑢 ◦𝑖,𝜏 (𝑠0(𝛼) | 𝑣1 · · · 𝑣𝑘−1 𝜎𝑣𝑘 ))
★0 (𝑢 ◦𝑖,𝜏 𝜎 (𝛼 | ®̂𝑣) ) ★0 𝜎𝑢◦𝑖,𝜏 �(𝛼 | ®𝑣) ,
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5.1. Polygraphic resolutions and contractions

where (𝛼 | ®̂𝑣) is a shortcut for (𝛼 | 𝑣1 · · · 𝑣𝑘 ). Let us check that this definition is well-founded. The 𝜎𝑣𝑖
are defined by induction on the weight of the 𝑣𝑖 , and 𝜎𝑢◦𝑖,𝜏 �(𝛼 | ®𝑣) = 𝜎𝑢◦𝑖,𝜏 �(𝑠0 (𝛼 ) | ®𝑣)

is defined by induction

on 𝑛. It remains to check that 𝜎 (𝛼 | ®̂𝑣) is defined. If (𝛼 |
®̂𝑣) is 𝜎-essential, then it is defined by hypothesis.

Otherwise, (𝛼 | ®̂𝑣) is 𝜎-reduced, in which case (𝛼 | ®̂𝑣) = 𝜎𝑏 for some (𝑛−1)-cell𝑏 of𝑋Ш, which imposes
𝜎 (𝛼 | ®̂𝑣) := 1𝜎𝑏 .

Now it remains only to show (5.1.11) and then apply the first point. More explicitly, we need to
show

𝜎𝑢◦𝑖,𝜏𝑠0 (𝑣) + 𝜎𝑡0 (𝑢 )◦𝑖,𝜏 𝑣 − 𝜎𝑡0 (𝑢 )◦𝑖,𝜏𝑠0 (𝑣) = 𝜎𝑢◦𝑖,𝜏 𝑡0 (𝑣) + 𝜎𝑠0 (𝑢 )◦𝑖,𝜏 𝑣 − 𝜎𝑠0 (𝑢 )◦𝑖,𝜏 𝑡0 (𝑣)

for all 𝑢, 𝑣 two 𝑛-monomials of 𝑋Ш and compatible elementary composition ◦𝑖,𝜏 . Write 𝑎 = 𝑠0(𝑢),
𝑎′ = 𝑡0(𝑢), 𝑏 = 𝑠0(𝑣), 𝑏′ = 𝑡0(𝑣), and · = ◦𝑖,𝜏 . On the one hand,

𝜎𝑢 ·𝑏 + 𝜎𝑎′ ·𝑣 − 𝜎𝑎′ ·𝑏 = (𝑎 · 𝜎𝑏) ★0 𝜎𝑢 ·𝑏 + (𝑎
′ · 𝜎𝑣) ★0 𝜎𝑎′ ·�̂� − (𝑎′ · 𝜎𝑏) ★0 𝜎𝑎′ ·𝑏

= 𝑎 · 𝜎𝑏 + 𝜎𝑢 ·𝑏 − 𝑎 · 𝑏 + 𝑎
′ · 𝜎𝑣 − 𝑎′ · 𝜎𝑏,

and on the other hand,

𝜎𝑢 ·𝑏′ + 𝜎𝑎 ·𝑣 − 𝜎𝑎 · 𝑏′ = (𝑎 · 𝜎𝑏′) ★0 𝜎𝑢 ·𝑏′ + (𝑎 · 𝜎𝑣) ★0 𝜎𝑎 ·�̂� − (𝑎 · 𝜎𝑏′) ★0 𝜎𝑎 ·𝑏′

= 𝜎
𝑢 ·𝑏′ + 𝑎 · 𝜎𝑣 − 𝑎 · �̂�

= 𝜎
𝑢 ·𝑏 + 𝑎 · 𝜎𝑣 − 𝑎 · 𝑏

Therefore it remains to prove
𝑎 · 𝜎𝑏 + 𝑎′ · 𝜎𝑣 = 𝑎 · 𝜎𝑣 + 𝑎′ · 𝜎𝑏 . (5.1.12)

Since ★0-composition in 𝑋Ш is a morphism of 𝜔-operads, we have

𝑢 · 𝜎𝑏 = 𝑢 · 𝑏 ★0 𝑎
′ · 𝜎𝑏 = 𝑎 · 𝜎𝑏 ★0 𝑢 · 𝑏.

Using the linear expression of ★0-composition, we get

𝑢 · 𝑏 + 𝑎′ · 𝜎𝑏 − 𝑎′ · 𝑏 = 𝑎 · 𝜎𝑏 + 𝑢 · 𝑏 − 𝑎 · 𝑏

Similarly, considering 𝑢 · 𝜎𝑣 , we get

𝑢 · 𝑏 + 𝑎′ · 𝜎𝑣 − 𝑎′ · 𝑏 = 𝑎 · 𝜎𝑣 + 𝑢 · 𝑏 − 𝑎 · 𝑏.

Taking the difference of the two previous equations gives us (5.1.12). □

5.1.13. Proposition. Let 𝑋 be an 𝜔-polygraph with a fixed unital section ]. Then 𝑋 is a polygraphic
resolution of the 𝜔-operad 𝑋 if, and only if, 𝑋 admits a right ]-contraction.

Proof. Suppose that 𝑋 is a polygraphic resolution of the operad 𝑋 , and define a right ]-contraction 𝜎
of 𝑋 . Using Lemma 5.1.10, we shall define 𝜎 on ]- and 𝜎-essential 𝑛-monomials of 𝑋Ш by induction on
𝑛 ⩾ 0. If (𝑥 | ®𝑣) is an ]-essential 0-monomial, then 𝜋𝑋 (𝑥 | ®𝑣) = 𝜋𝑋 (�(𝑥 | ®𝑣)) in 𝑋 , hence there exists a
1-cell 𝜎 (𝑥 | ®𝑣) : (𝑥 | ®𝑣) → �(𝑥 | ®𝑣) in 𝑋Ш. Now assume that 𝜎 is defined on the 𝑛-cells of 𝑋Ш for 𝑛 ⩾ 0
and let (𝛼 | ®𝑣) be a 𝜎-essential (𝑛 + 1)-monomial of 𝑋Ш. The 𝑛-cells defining 𝑠 (𝜎 (𝛼 | ®𝑣) ) and 𝑡 (𝜎 (𝛼 | ®𝑣) ) as
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5. Shuffle polygraphic resolutions from convergence

in (5.1.8) are parallel, so, by acyclicity of 𝑋 , there exists an (𝑛 + 2)-cell 𝜎 (𝛼 | ®𝑣) with this source and target
in 𝑋Ш.

Conversely, let 𝜎 be a right ]-contraction of the polygraph 𝑋 , and let 𝑎, 𝑏 be parallel 𝑛-cells of 𝑋Ш

for 𝑛 ⩾ 1. We have 𝑡 (𝜎𝑎) = 𝜎𝑠 (𝑎) = 𝜎𝑠 (𝑏 ) = 𝑡 (𝜎𝑏) by (5.1.8), so the (𝑛 + 1)-cell 𝜎𝑎 ★𝑛 𝜎
−
𝑏
is well defined,

with source 𝑠 (𝜎𝑎) and target 𝑠 (𝜎𝑏). Since 𝑡𝑘 (𝑎) = 𝑡𝑘 (𝑏) for 𝑘 ∈ {0, . . . , 𝑛 − 1}, we find that

(𝜎𝑎 ★𝑛 𝜎
−
𝑏
) ★𝑛−1 𝜎

−
𝑡𝑛−1 (𝑎) ★𝑛−2 · · ·★1 𝜎

−
𝑡0 (𝑎)

is a well defined (𝑛+1)-cell of𝑋Ш of source 𝑎 and target𝑏, thus proving that𝑋𝑛+1 is an acyclic extension
of 𝑋Ш

𝑛 . Thus 𝑋 is a polygraphic resolution of 𝑋 . □

5.2. Polygraphic resolution from a convergent presentation

This subsection contains themain result of this article. We show how to extend a reduced left-monomial
convergent shuffle 1-polygraph into a shuffle polygraphic resolution of its presented operad. The 𝑛-
generators of the resolution correspond to certain overlappings of the 1-generators of the polygraph.

5.2.1. Higher-dimensional overlappings. Let 𝑋 be a left-monomial 1-polygraph, and consider the
path-lexicographic order ≺𝑝𝑙 on 1-monomials of 𝑋 defined in § 4.1.7. We define the family of indexed
sets O𝑣 (𝑋 ) = (O𝑣 (𝑋 )𝑛)𝑛⩾0 by induction on 𝑛 ⩾ 0. The elements of O𝑣 (𝑋 )𝑛 are called 𝑛-overlappings
of 𝑋 , and for an 𝑛-overlapping 𝑢𝑛 we will also define its source 𝑠0(𝑢𝑛) and its set of branches 𝐵(𝑢𝑛).

For 𝑛 = 0, define a 0-overlapping 𝑢0 as a 0-generator in 𝑋0. Define its source as 𝑠0(𝑢0) := 𝑢0 and its
set of branches as 𝐵(𝑢0) := ∅.

Now suppose that 𝑛-overlappings are defined for 𝑛 ⩾ 0. Let 𝑢𝑛 be an 𝑛-overlapping and 𝐵(𝑢𝑛) =
{Γ1 [𝛼1] ≺𝑝𝑙 · · · ≺𝑝𝑙 Γ𝑛 [𝛼𝑛]} its set of branches, where each Γ𝑘 is a one-hole context and 𝛼𝑘 is a 1-
generator in 𝑋1. Given 0-monomials ®𝑣𝑛+1, we define

𝐸 (𝑢𝑛, ®𝑣𝑛+1) :=
 Γ [𝛼]

������ Γ one-hole context, 𝛼 ∈ 𝑋1,

Γ [𝑠0(𝛼)] = (𝑠0(𝑢𝑛) | ®𝑣𝑛+1),
Γ [𝛼] ≻𝑝𝑙 (Γ𝑛 [𝛼𝑛] | ®𝑣𝑛+1)

 .
An (𝑛+1)-overlapping is a tuple (𝑢𝑛, ®𝑣𝑛+1), denoted by𝑢𝑛 ®𝑣𝑛+1, where𝑢𝑛 is an𝑛-overlapping, and ®𝑣𝑛+1 is
a list of reduced 0-monomials such that, for any list of rooted submonomials ®𝑤𝑛+1 ⊊ ®𝑣𝑛+1, #𝐸 (𝑢𝑛, ®𝑤𝑛+1) <
#𝐸 (𝑢𝑛, ®𝑣𝑛+1). We then define its source as 𝑠0(𝑢𝑛 ®𝑣𝑛+1) := (𝑠0(𝑢𝑛) | ®𝑣𝑛+1) and its set of branches as
𝐵(𝑢𝑛 ®𝑣𝑛+1) := {(Γ𝑘 [𝛼𝑘 ] | ®𝑣𝑛+1) | 1 ⩽ 𝑘 ⩽ 𝑛} ∪ {max𝐸 (𝑢𝑛, ®𝑣𝑛+1)}.
5.2.2. Crowns. An (𝑛 + 1)-overlapping 𝑢𝑛 ®𝑣𝑛+1 can be represented graphically as

𝑢𝑛

𝑣𝑛+1,1 · · · 𝑣𝑛+1,𝑘
= Γ

𝑠0(𝛼)

where Γ [𝛼] is the maximal element of 𝐸 (𝑢𝑛, ®𝑣𝑛+1). We call the list ®𝑣𝑛+1 of reduced 0-monomial a crown
on 𝑢𝑛 . Given an 𝑛-overlapping 𝑢𝑛 and a list of 0-monomials ®𝑣𝑛+1, we define

𝐶 (𝑢𝑛, ®𝑣𝑛+1) := { ®𝑤𝑛+1 ⊆ ®𝑣𝑛+1 | 𝑢𝑛 ®𝑤𝑛+1 ∈ O𝑣 (𝑋 )𝑛+1},

that is, the set of crowns ®𝑤𝑛+1 on 𝑢𝑛 included in ®𝑣𝑛+1. This set is equipped with the total order defined
by ®𝑤𝑛+1 ≺ ®𝑤 ′𝑛+1 if max≺𝑝𝑙 𝐵(𝑢𝑛 ®𝑤𝑛+1) ≺𝑝𝑙 max≺𝑝𝑙 𝐵(𝑢𝑛 ®𝑤 ′𝑛+1). Note that 𝐶 (𝑢𝑛, ®𝑣𝑛+1) is empty if, and
only if, 𝐸 (𝑢𝑛, ®𝑣𝑛+1) is empty.
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5.2. Polygraphic resolution from a convergent presentation

5.2.3. Description in low dimensions. Let us look at the definitions of 𝑛-overlappings in low di-
mensions. A 1-overlapping 𝑢0 ®𝑣1 is associated to a single branch Γ [𝛼]. Since the 0-monomials ®𝑣1
are reduced and minimal, the context 𝐶 must be trivial. Thus O𝑣 (𝑋 )1 is in bijection with 𝑋1, and this
bijection is given by taking the unique branch of the 1-overlapping. Next, a 2-overlapping 𝑢0 ®𝑣1 ®𝑣2
corresponds to a pair of branches (Γ1 [𝛼1], Γ2 [𝛼2]) which form an critical branching in context. Since
the crown ®𝑣2 must be minimal, this context is trivial. Thus O𝑣 (𝑋 )2 is in bijection with the set of critical
branchings.

5.2.4. Overlappings as paths of crowns. Given a left-monomial 1-polygraph 𝑋 , the 𝑛-overlappings
can be defined inductively as certain paths of length 𝑛 in the directed graph G(𝑋 ) defined as follows.
Its vertices are the 0-monomials of 𝑋 ∗Ш0 , and its edges are

𝑢
®𝑣
// (𝑢 |®𝑣) ,

such that 𝑢 is the source of an overlapping and ®𝑣 is a crown. Then the indexed set of 𝑛-overlappings
of 𝑋 corresponds to a subset of paths of G(𝑋 ), starting in 𝑋0 and of length 𝑛, where each step of the
path corresponds to the addition of a crown. That is 𝑢0 ®𝑣1 · · · ®𝑣𝑛 corresponds to a path

𝑢0 → (𝑢0 | ®𝑣1) → · · · → (𝑢0 | ®𝑣1 | · · · | ®𝑣𝑛).

5.2.5. Examples. (i) Consider the following binary quadratic 1-polygraph

𝑋 :=

〈
𝑥 ∈ 𝑋0(2)

����� 𝑥
𝑥

1 2
3 → 0,

𝑥
𝑥

1 3
2 → 0,

𝑥
1 𝑥

2 3
→ 0

〉
.

It has 15 critical branchings, which correspond to all possible critical branchings in the quadratic binary
case. Let us draw the part of the directed graph G(𝑋 ) corresponding to O𝑣 (𝑋 )2:
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1 4
2

3

1 2
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3

1 3
4

2

1 4
3

2 1

2 3
4

1

2 4
3

1
2 3

4
1

2 4

3
1

3 4

2

1 3 2 4

1
2

3 4

1 2 3 4 1 2
3

VV OO II

\\ BB

oo
1 4 2 3 1 3

2

VV OO II

\\
BB

oo 1
2 3

OO II

BB

1 2

jj

OO

77

Every internal vertex of every tree monomial is 𝑥 , so we omit them.
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5. Shuffle polygraphic resolutions from convergence

(ii) Next, consider the following binary cubic 1-polygraph

𝑋 :=

〈
𝑥 ∈ 𝑋0(2)

������
𝑥

𝑥
𝑥

1 2
3

4
𝛼−→ 0,

𝑥
𝑥

1 𝑥
2 3

4

𝛽
−→ 0,

𝑥
1 𝑥
𝑥

2 3
4 𝛾
−→ 0,

𝑥
1 𝑥

2 𝑥
3 4

𝛿−→ 0

〉
,

and consider the path-lexicographic order ≺𝑝𝑙 on 1-monomials where 𝛼 ≺ 𝛽 ≺ 𝛾 ≺ 𝛿 (see § 4.1.7). Let
us draw a part of the directed graph G(𝑋 ) around 𝑠0(𝛼):

1 2 3 4 5 6 7 8 1 2
3 4

5 6

7

1 2 3 4 5 6
7

OO

1 2 3 4
5

6 7 1 2
3 4 5

6

77
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3
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OO

1
2 3
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5
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4

hh

`` OO >>
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This drawing is not exhaustive, but presents some interesting phenomena. For example, due to our
choice of order ≺𝑝𝑙 , the top left 4-overlapping can only be obtained in one way, by adding 𝛼 , 𝛽 , 𝛾 , and 𝛿
in order. In addition, the top right monomial can be reached from 𝑠0(𝛼) by a path of length 2 or 3, and
so corresponds to a 3-overlapping and a 4-overlapping, depending on if 𝛽 is present or not.

5.2.6. Theorem (Overlapping polygraphic resolution). Let𝑋 be a reduced, convergent, left-monomial
1-polygraph and ] the unital section sending every monomial to its reduced form. Then there exist a
unique 𝜔-polygraph structure on O𝑣 (𝑋 ) and a unique right ]-contraction 𝜎 of O𝑣 (𝑋 ) such that, for all
𝑛-overlappings 𝑢𝑛 of O𝑣 (𝑋 ) and reduced 0-monomials ®𝑣𝑛+1 of 𝑋 ∗Ш0 ,

𝜎 (𝑢𝑛 | ®𝑣𝑛+1) =


𝑢𝑛 ®𝑣𝑛+1 if 𝑢𝑛 ®𝑣𝑛+1 ∈ O𝑣 (𝑋 )𝑛+1,
an identity if 𝐶 (𝑢𝑛, ®𝑣𝑛+1) = ∅,
𝜎 (𝑢𝑛 | ®𝑣𝑛+1) otherwise (tautological condition).

(5.2.7)

As a consequence, O𝑣 (𝑋 ) is a polygraphic resolution of the operad 𝑋 .
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5.2. Polygraphic resolution from a convergent presentation

Proof. By induction on 𝑛 ⩾ 0, we simultaneously construct the source and target maps of the 𝜔-
polygraph structure on the (𝑛 + 1)-generators of O𝑣 (𝑋 ) and the right ]-contraction 𝜎 : O𝑣 (𝑋 )Ш𝑛 →
O𝑣 (𝑋 )Ш𝑛+1. By Lemma 5.1.10, it suffices to define𝜎 on the ]- and𝜎-essential𝑛-monomials of the𝜔-operad
O𝑣 (𝑋 )Ш.

Let 𝑛 = 0. The ]-essential 0-monomials of O𝑣 (𝑋 )Ш are the (𝑢0 | ®𝑣1) where 𝑢0 is a 0-generator of 𝑋
and the 𝑣1,𝑖 are reduced 0-monomials of 𝑋Ш

0 such that (𝑢0 | ®𝑣1) is not reduced. By (5.1.8), it suffices
to define 𝜎 (𝑢0 | ®𝑣1) such that 𝑠0𝜎 (𝑢0 | ®𝑣1) = (𝑢0 | ®𝑣1) and 𝑡0𝜎 (𝑢0 | ®𝑣1) = �(𝑢0 | ®𝑣1). If 𝑢0 𝑣1 is a
1-overlapping, then we set

𝑠0(𝑢0 ®𝑣1) := (𝑢0 | ®𝑣1), 𝑡0(𝑢0 ®𝑣1) := �(𝑢0 | ®𝑣1),

and the first case of (5.2.7) imposes 𝜎 (𝑢0 | ®𝑣1) := 𝑢0 ®𝑣1. Otherwise, since we have supposed (𝑢0 | ®𝑣1)
reducible, 𝐶 (𝑢0, ®𝑣1) is nonempty. Let ®𝑤1 = max𝐶 (𝑢0, ®𝑣1) and write (𝑢0 | ®𝑤1 | ®𝑤2) = (𝑢0 | ®𝑣1). Then
𝑢0 ®𝑣1 ∈ O𝑣 (𝑋 )1 and 𝐸 (𝑢0 ®𝑤1, ®𝑤2) = ∅, so by the second case of (5.2.7), the (not yet defined) 2-cell
𝜎 (𝑢0 ®𝑤1 | ®𝑤2) is an identity. By (5.1.8), we know that the target of 𝜎 (𝑢0 ®𝑤1 | ®𝑤2) is 𝜎 (𝑠0(𝑢0 ®𝑤1) |
®𝑤2) = 𝜎 (𝑢0 | ®𝑣1). Thus we set

𝜎 (𝑢0 | ®𝑣1) := 𝑡0𝜎 (𝑢0 ®𝑤1 | ®𝑤2) = 𝑠0𝜎 (𝑢0 ®𝑤1 | ®𝑤2) = (𝑢0 ®𝑤1 | ®𝑤2) ★0 𝜎 ( �(𝑢0 | ®𝑤1) | ®𝑤2) .

Since 𝑋 is terminating, we define 𝜎 ( �(𝑢0 | ®𝑤1) | ®𝑤2) : ( �(𝑢0 | ®𝑤1) | ®𝑤2) → �(𝑢0 | ®𝑤1 | ®𝑤2) by well-founded
induction on ≺𝑋1 , so this definition is licit.

Now let 𝑛 ⩾ 1. The essential 𝑛-cells of O𝑣 (𝑋 )Ш are the (𝑢𝑛 | ®𝑣𝑛+1) where 𝑢𝑛 is an 𝑛-overlapping
and the 𝑣𝑛+1,𝑖 are reduced 0-monomials of 𝑋Ш

0 such that (𝑢𝑛 | ®𝑣𝑛+1) is not 𝜎-reduced. Denote the
branches of 𝑢𝑛 by (Γ1 [𝛼1], . . . , Γ𝑛 [𝛼𝑛]). We distinguish the three cases of (5.2.7). The induction step for
the 𝜔-polygraph structure on O𝑣 (𝑋 ) is entirely contained within the first case.

First case. First, suppose that 𝑢𝑛 ®𝑣𝑛+1 is an (𝑛 + 1)-overlapping. Since condition (5.2.7) imposes
𝑢𝑛 ®𝑣𝑛+1 = 𝜎 (𝑢𝑛 | ®𝑣𝑛+1), and (5.1.8) gives us the source and target of the (not yet defined) (𝑛 + 1)-cell
𝜎 (𝑢𝑛 | ®𝑣𝑛+1), we set

𝑠𝑛 (𝑢𝑛 ®𝑣𝑛+1) := (𝑢𝑛 | ®𝑣𝑛+1) − (𝑡𝑛−1(𝑢𝑛) | ®𝑣𝑛+1) + 𝜎 (𝑡𝑛−1(𝑢𝑛) | ®𝑣𝑛+1),
𝑡𝑛 (𝑢𝑛 ®𝑣𝑛+1) := 𝜎 (𝑠𝑛−1(𝑢𝑛) | ®𝑣𝑛+1),

which are indeed globular, and define 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) := 𝑢𝑛 ®𝑣𝑛+1. This gives us the polygraphic structure
on the (𝑛 + 1)-overlappings.

Second case. Next, suppose that 𝐶 (𝑢𝑛, ®𝑣𝑛+1) = ∅. Writing 𝑢𝑛 = 𝑢𝑛−1 ®𝑣𝑛 , we make the following
observations:

− the pair (𝑢𝑛−1, (®𝑣𝑛 | ®𝑣𝑛+1)) is not an 𝑛-overlapping.

− 𝐶 (𝑢𝑛−1, (®𝑣𝑛 | ®𝑣𝑛+1)) is nonempty, since it includes ®𝑣𝑛 .

− The 0-monomials of (®𝑣𝑛 | ®𝑣𝑛+1) are reduced. Indeed, if not, then there would exist Γ𝑛+1 [𝛼𝑛+1] ≻𝑝𝑙
(Γ𝑛 [𝛼𝑛] | ®𝑣𝑛+1) in 𝐸 (𝑢𝑛, ®𝑣𝑛+1), which contradicts the fact that 𝐶 (𝑢𝑛, ®𝑣𝑛+1) is empty.
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5. Shuffle polygraphic resolutions from convergence

In particular, the third observation says that (𝑢𝑛−1 | ®𝑣𝑛 | ®𝑣𝑛+1) is an essential (𝑛 − 1)-monomial. Thus
we are in the third case of the induction hypothesis. Following the calculations of the induction hy-
pothesis in the third case below, let ®𝑤𝑛 be the maximal element of 𝐶 (𝑢𝑛−1, (®𝑣𝑛 | ®𝑣𝑛+1)) and let ®𝑤𝑛+1 be
0-monomials such that (𝑢𝑛−1 | ®𝑤𝑛 | ®𝑤𝑛+1) = (𝑢𝑛−1 | ®𝑣𝑛 | ®𝑣𝑛+1). Then, by induction, the source and
target of 𝜎 (𝑢𝑛−1 ®𝑤𝑛 | ®𝑤𝑛+1) are equal.

Suppose by contradiction that ®𝑣𝑛 ≠ ®𝑤𝑛 . Let Γ′𝑛 [𝛼 ′𝑛] be the last branch associated to ®𝑤𝑛 . Then there
exists a (𝑛 + 1)-overlapping 𝑢𝑛−1 ®𝑣𝑛 ®𝑤 ′𝑛+1 ∈ O𝑣 (𝑋 )𝑛+1, whose branches are

{(Γ1 [𝛼1] | ®𝑤 ′𝑛+1), . . . , (Γ𝑛 [𝛼𝑛] | ®𝑤 ′𝑛+1), (Γ′𝑛 [𝛼 ′𝑛] | ®𝑣 ′𝑛)}

where ®𝑣 ′𝑛 is the appropriate list of 0-monomials. Thus ®𝑤 ′𝑛+1 ∈ 𝐶 (𝑢𝑛, ®𝑣𝑛+1), which contradicts the hy-
pothesis that 𝐶 (𝑢𝑛, ®𝑣𝑛+1) is empty. Therefore ®𝑣𝑛 = ®𝑤𝑛 , and we conclude that the source and target of
𝜎 (𝑢𝑛−1 ®𝑣𝑛 | ®𝑣𝑛+1) = 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) are equal, allowing us to define 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) as an identity.

Third case. Otherwise, 𝐶 (𝑢𝑛, ®𝑣𝑛+1) is nonempty. Let ®𝑤𝑛+1 be its maximal element, Γ𝑛+1 [𝛼𝑛+1] the as-
sociated 1-monomial, and write (𝑢𝑛 | ®𝑣𝑛+1) = (𝑢𝑛 | ®𝑤𝑛+1 | ®𝑤𝑛+2). Then

𝐸 (𝑢𝑛 ®𝑤𝑛+1, ®𝑤𝑛+2) ⊆ {Γ′ [𝛼 ′] ∈ 𝐸 (𝑢𝑛, ®𝑣𝑛+1) | Γ′ [𝛼 ′] ≻𝑝𝑙 Γ𝑛+1 [𝛼𝑛+1]} = ∅.

In addition, the monomials ®𝑤𝑛+2 are reduced, so this is exactly the condition of the second case, so we
have the constraint that the source and target of the (not yet defined) (𝑛 + 2)-cell 𝜎 (𝑢𝑛 ®𝑤𝑛+1 | ®𝑤𝑛+2)
are equal.

The rest of this case is rather technical, so we summarize our strategy here. We prove and use
Lemma 5.2.8 in order to get an explicit expression of 𝜕𝜎 (𝑢𝑛 ®𝑤𝑛+1 | ®𝑤𝑛+2), which must be equal to 0, as
we have observed. This expression consists of many terms, including 𝜎 (𝑢𝑛 | ®𝑣𝑛+1), which is the term
that we have to define. We then proceed by well-founded induction on the terms of 𝜕𝜎 (𝑢𝑛 ®𝑤𝑛+1 | ®𝑤𝑛+2)
to define 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) using the other terms.

Let 𝑘 ⩾ 1 and ®𝑣0, ®𝑣1 . . . , ®𝑣𝑘 0-cells of 𝑋Ш such that {(𝑣0,𝑖 | ®𝑣𝑖1 | · · · | ®𝑣𝑖𝑛)}𝑖 is a well-defined list
of 0-monomials of 𝑋Ш where ®𝑣0 is the list of roots and, for ℓ ∈ {1, . . . , 𝑘}, ®𝑣𝑖ℓ is the sublist of ®𝑣ℓ of
ancestor 𝑣0,𝑖 . We denote this list by (®𝑣0 | · · · | ®𝑣𝑛). Similarly, we denote by �(®𝑣0 | ®𝑣1) the list of reduced
0-cells �(𝑣0,𝑖 | ®𝑣𝑖1). Finally, we denote by (®𝑣0∥ · · · ∥®𝑣𝑘 ) the list of 𝑘-cells

𝜎 (𝜎 (· · ·𝜎 (𝜎︸         ︷︷         ︸
𝑘

(𝑣0,𝑖 | ®𝑣𝑖1) | ®𝑣𝑖2) | · · · ®𝑣𝑖𝑘−1) | ®𝑣
𝑖
𝑘
).

Note that, if 𝑢0 ®𝑣1 · · · ®𝑣𝑘 is an 𝑘-overlapping, then 𝑢0 ®𝑣1 · · · ®𝑣𝑘 = (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑘 ).

5.2.8. Lemma. For 𝑛 ⩾ 2 and ®𝑣0, . . . , ®𝑣𝑛 0-monomials of 𝑋Ш
0 , we have the equality of (𝑛 − 1)-cells

𝜕(®𝑣0∥ · · · ∥®𝑣𝑛) = ((®𝑣0∥ · · · ∥®𝑣𝑛−1) | ®𝑣𝑛)

+
𝑛∑︁

𝑘=1
(−1)𝑘 (®𝑣0∥ · · · ∥ �(®𝑣𝑛−𝑘 | ®𝑣𝑛−𝑘+1)∥ · · · ∥®𝑣𝑛)

+ (−1)𝑛+1(®𝑣0 | (®𝑣1∥ · · · ∥®𝑣𝑛)) + 1𝑐 ,

where 𝜕 = 𝑠 − 𝑡 and 𝑐 is some (𝑛 − 2)-cell.
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5.2. Polygraphic resolution from a convergent presentation

Proof. Proceed by induction on 𝑛 ⩾ 2. According to (5.1.8), for every 𝑛-cell 𝑎,

𝜕𝜎 (𝑎) = 𝑎 − 𝜎 (𝜕𝑎) + 1𝑐 ,

where 𝑐 = −𝑡𝑛−1(𝑎) is an (𝑛 − 1)-cell. For 𝑛 = 2, applying this equality to (®𝑣0∥®𝑣1∥®𝑣2) gives

𝜕(®𝑣0∥®𝑣1∥®𝑣2) = 𝜕𝜎 (𝜎 (®𝑣0 | ®𝑣1) | ®𝑣2)
= (𝜎 (®𝑣0 | ®𝑣1) | ®𝑣2) − 𝜎 (𝜕𝜎 (®𝑣0 | ®𝑣1) | ®𝑣2) + 1𝑐

= (𝜎 (®𝑣0 | ®𝑣1) | ®𝑣2) + 𝜎 (�(®𝑣0 | ®𝑣1) | ®𝑣2) − 𝜎 (®𝑣0 | ®𝑣1 | ®𝑣2) + 1𝑐

= (𝜎 (®𝑣0 | ®𝑣1) | ®𝑣2) + 𝜎 (�(®𝑣0 | ®𝑣1) | ®𝑣2) − (®𝑣0 | 𝜎 (®𝑣1 | ®𝑣2)) − 𝜎 (®𝑣0 | �(®𝑣1 | ®𝑣2)) + 1𝑐′ + 1𝑐

= ((®𝑣0∥®𝑣1) | ®𝑣2) + (−1)1(®𝑣0∥�(®𝑣1 | ®𝑣2)) + (−1)2(�(®𝑣0 | ®𝑣1)∥®𝑣2) + (−1)3(®𝑣0 | (®𝑣1∥®𝑣2)) + 1𝑐+𝑐′ .

Let 𝑛 ⩾ 2. Recall that, for all (𝑛 − 1)-cells 𝑢 and 0-cells ®𝑣 ,

𝜎 (𝑢 | ®𝑣) = (𝑠0(𝑢) | 𝜎 (®𝑣)) ★0 (𝑢 | ®̂𝑣) = 𝜎 (𝑢 | ®̂𝑣) + 1𝑐

with 𝑐 an (𝑛 − 1)-cell. We calculate

𝜕(®𝑣0∥ · · · ∥®𝑣𝑛+1) = 𝜕𝜎 ((®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1)
= ((®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1) − 𝜎 (𝜕(®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1) + 1𝑐
= ((®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1) − 𝜎 ((®𝑣0∥ · · · ∥®𝑣𝑛−1) | ®𝑣𝑛 | ®𝑣𝑛+1)

−
𝑛∑︁

𝑘=1
(−1)𝑘𝜎 ((®𝑣0∥ · · · ∥ �(®𝑣𝑛−𝑘 | ®𝑣𝑛−𝑘+1)∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1)

− (−1)𝑛+1𝜎 (®𝑣0 | (®𝑣1∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1) + 𝜎 (1𝑐′) + 1𝑐

= ((®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1) − 𝜎 ((®𝑣0∥ · · · ∥®𝑣𝑛−1) | �(®𝑣𝑛 | ®𝑣𝑛+1)) − 1𝑐′′

−
𝑛∑︁

𝑘=1
(−1)𝑘 (®𝑣0∥ · · · ∥ �(®𝑣𝑛−𝑘 | ®𝑣𝑛−𝑘+1)∥ · · · ∥®𝑣𝑛+1)

− (−1)𝑛+1(®𝑣0 | 𝜎 ((®𝑣1∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1)) + 1𝜎 (𝑐′ ) + 1𝑐
= ((®𝑣0∥ · · · ∥®𝑣𝑛) | ®𝑣𝑛+1)

+
𝑛+1∑︁
𝑘=1
(−1)𝑘 (®𝑣0∥ · · · ∥ �(®𝑣𝑛−𝑘+1 | ®𝑣𝑛−𝑘+2)∥ · · · ∥®𝑣𝑛+1)

+ (−1)𝑛+2(®𝑣0 | (®𝑣1∥ · · · ∥®𝑣𝑛+1)) + 1𝑐+𝜎 (𝑐′ )−𝑐′′,

which concludes the induction step, and the proof of the lemma. □

Writing𝑢𝑛 = 𝑢0 ®𝑣1 · · · ®𝑣𝑛 , we apply the lemma to𝜎 (𝑢𝑛 ®𝑤𝑛+1 | ®𝑤𝑛+2) = (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2)
to get the equation of (𝑛 + 1)-cells

𝜕𝜎 (𝑢𝑛 ®𝑤𝑛+1 | ®𝑤𝑛+2) = 0 = ((𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1) | ®𝑤𝑛+2)

+
𝑛+2∑︁
𝑘=1
(−1)𝑘 (𝑢0∥®𝑣1∥ · · · ∥ �(®𝑣𝑛−𝑘+2 | ®𝑣𝑛−𝑘+3)∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2)

+ (−1)𝑛+3(𝑢0 | (®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2)) + 1𝑐 ,
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5. Shuffle polygraphic resolutions from convergence

where 𝑐 is an 𝑛-cell. On the righthand side, the (𝑛 + 1)-cell

(𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛 ∥ �( ®𝑤𝑛+1 | ®𝑤𝑛+2)) = 𝜎 (𝑢𝑛 | ®𝑣𝑛+1)
appears. We want to define this (𝑛 + 1)-cell using the other (𝑛 + 1)-cells that appear, that is,

(𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛 ∥𝑤𝑛+1), (®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2),

(𝑢0∥®𝑣1∥ · · · ∥ �(®𝑣𝑛−𝑘+2 | ®𝑣𝑛−𝑘+3)∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2), 𝑘 ∈ {2, . . . , 𝑛 + 2}.
(5.2.9)

We define awell-founded order≺ on (𝑛+1)-cells of the form (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛) by setting (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛) ≺
(𝑢′0∥®𝑣 ′1∥ · · · ∥®𝑣 ′𝑛) if

i) 𝑇 (𝑢0 | ®𝑣1 | · · · | ®𝑣𝑛) is a proper submonomial of 𝑇 (𝑢′0 | ®𝑣 ′1 | · · · | ®𝑣 ′𝑛), or

ii) 𝑇 (𝑢0 | ®𝑣1 | · · · | ®𝑣𝑛) = 𝑇 (𝑢′0 | ®𝑣 ′1 | · · · | ®𝑣 ′𝑛) and there exist 𝑖, 𝑗 such that 𝑢0 = 𝑢′0, ®𝑣1 = ®𝑣 ′1, . . . , ®𝑣𝑖−1 =

®𝑣 ′𝑖−1, 𝑣𝑖,1 = 𝑣
′
𝑖,1, . . . , 𝑣𝑖, 𝑗−1 = 𝑣

′
𝑖, 𝑗−1, and the weight of 𝑣𝑖, 𝑗 is less than that of 𝑣 ′𝑖, 𝑗 , or

iii) there exists a positive 1-cell 𝑓 : (𝑢′0∥®𝑣 ′1∥ · · · ∥®𝑣 ′𝑛) → 𝑏 of𝑋Ш such that (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛) ∈ Supp(𝑏).
The relation ≺ is an order because the 1-polygraph 𝑋 is supposed reduced (so we cannot rewrite
a 0-monomial into a larger 0-monomial). The relation ≺ is well-founded because every sequence
((𝑢𝑖0∥®𝑣𝑖1∥ · · · ∥®𝑣𝑖𝑛))𝑖⩾0 that decreases for ≺ can be rearranged into the concatenation of a decreasing
sequence for iii) followed by a decreasing sequence for the lexicographic order induced by i) and ii)
(if we can rewrite a submonomial of a 0-monomial, then we can rewrite the 0-monomial following the
same rule).

We initialize our well-founded induction on the (𝑛 + 1)-overlappings, since 𝑢0 ®𝑣1 · · · ®𝑣𝑛+1 =

(𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛+1) is already defined. We then check that all of the (𝑛 + 1)-cells of (5.2.9) are smaller
than 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) for the order ≺: (𝑢0∥®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1) and (®𝑣1∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2) satisfy i), and
(𝑢0∥®𝑣1∥ · · · ∥ �(®𝑣𝑛−𝑘+2 | ®𝑣𝑛−𝑘+3)∥ · · · ∥®𝑣𝑛 ∥ ®𝑤𝑛+1∥ ®𝑤𝑛+2) satisfies ii) if (®𝑣𝑛−𝑘+2 | ®𝑣𝑛−𝑘+3) is reduced, and iii)
otherwise, by confluence of 𝑋 . Thus we can define 𝜎 (𝑢𝑛 | ®𝑣𝑛+1) by well-founded induction.

Finally, by Proposition 5.1.13, the 𝜔-polygraph O𝑣 (𝑋 ) is acyclic. Since 𝑋 is reduced, by the dis-
cussion of § 5.2.3, O𝑣 (𝑋 )⩽1 coincides with 𝑋 . Therefore O𝑣 (𝑋 ) is a polygraphic resolution of the
operad 𝑋 . □

5.2.10. Corollary. Let 𝑋 be an essentially confluent reduced, terminating, left-monomial 1-polygraph.
Then there exists a 𝜔-polygraph structure on O𝑣 (𝑋 ) making it a polygraphic resolution of 𝑋 .

Proof. By Theorem 4.2.4, the polygraph 𝑋 is convergent. Thus, following Theorem 5.2.6, O𝑣 (𝑋 ) is
equipped with a 𝜔-polygraph structure and is a polygraphic resolution of 𝑋 . □

5.2.11. Coherent presentations from convergence. In [47], Squier showed how to compute a co-
herent presentation of a monoid from a convergent one. This construction is described in the case of
associative algebras in [25, Thm 4.3.2], and in the case of shuffle operads by using the following re-
sult. For a convergent left-monomial 1-polygraph 𝑋 , and a cellular extension 𝑌 of 𝑋Ш

1 that contains a
2-generator 𝐴𝑓 ,𝑔 of shape

𝑏 ℎ
��

𝐴𝑓 ,𝑔��𝑎

𝑓 00

𝑔 ..

𝑑

𝑐
𝑘

AA
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5.3. Bimodule resolutions from polygraphic resolutions

with ℎ and 𝑘 positive 1-cells of 𝑋Ш
1 , for every critical branching (𝑓 , 𝑔) of 𝑋 , then the 2-polygraph

(𝑋,𝑌 ) is acyclic. The 2-generator𝐴𝑓 ,𝑔 is called a generating confluence associated to the critical branch-
ing (𝑓 , 𝑔). Note that such a generating confluence depends on the choice of the positives cells ℎ and 𝑘
and the orientation of the 2-cell 𝐴𝑓 ,𝑔. The proof of this result is done in two steps. First, we show that
the 2-polygraph (𝑋,𝑌 ) is coherently confluent, then we prove acyclicity of the cellular extension 𝑌 ,
see [27, Thm. 4.3.2].

The proof of Theorem 5.2.6 makes explicit the generating confluences, which can be represented as
follows:

(�(𝑢0 | ®𝑣1) | ®𝑣2) 𝜎 (�(𝑢0 | ®𝑣1 ) | ®𝑣2 )
&&

𝑢0 ®𝑣1 ®𝑣2
��

(𝑢0 | ®𝑣1 | ®𝑣2)

(𝑢0 ®𝑣1 | ®𝑣2) 44

(𝑢0 |𝜎 (®𝑣1 | ®𝑣2 ) )
**

�(𝑢0 | ®𝑣1 | ®𝑣2)

(𝑢0 |�(®𝑣1 | ®𝑣2))
𝜎 (𝑢0 |�(®𝑣1 | ®𝑣2 ) )

99

(�(𝑢0 | ®𝑣1) | ®𝑣2) 𝜎 (�(𝑢0 | ®𝑣1 ) | ®𝑣2 )
''

𝑢0 ®𝑣1 ®𝑣2
��

(𝑢0 | ®𝑣1 | ®𝑣2)

(𝑢0 ®𝑣1 | ®𝑣2) 44

(𝑢0 ®𝑤1 | ®𝑤2) **

�(𝑢0 | ®𝑣1 | ®𝑣2)

(�(𝑢0 | ®𝑤1) | ®𝑤2)
𝜎 (�(𝑢0 | ®𝑤1 ) | ®𝑤2 )

88

where 𝑢0 ®𝑣1 ®𝑣2 is a 2-overlapping of 𝑋 . If (®𝑣1 | ®𝑣2) is reducible, we have the left diagram. If (®𝑣1 | ®𝑣2)
is reduced, we take ®𝑤1 = max𝐶 (𝑢0, (®𝑣1 | ®𝑣2)) and get the right diagram.

5.2.12. Examples.

i) The terminating reduced 1-polygraph 𝑋 defined in Example 4.1.10 does not have critical branch-
ings. As a consequence, it is convergent and can be extended into a polygraphic resolution O𝑣 (𝑋 ),
with O𝑣 (𝑋 )𝑛 empty for 𝑛 ⩾ 2.

ii) Following Proposition 3.2.6, if 𝑋 is an acyclic 𝜔-polygraph whose underlying 1-polygraph 𝑋⩽1
is left-monomial and convergent, then 𝑋 is Tietze equivalent to the 𝜔-polygraph O𝑣 (𝑋⩽1). In
particular, for every operad 𝑃 , the 𝜔-polygraphs Std(𝑃) and O𝑣 (Std(𝑃)⩽1) are Tietze equivalent.

5.3. Bimodule resolutions from polygraphic resolutions

In this subsection, we show how to deduce the homology of a shuffle operad with coefficients in bi-
modules from a shuffle polygraphic resolution of the operad.

5.3.1. Construction of a chain complex. Let 𝑋 be a shuffle 𝜔-polygraph, and denote 𝑃 the shuffle
operad presented by𝑋 . Denote by𝑢 the image of𝑢 by the canonical projection𝜋𝑋 defined in (3.2.2). Con-
sider the chain complex (𝑃 ⟨𝑋 ⟩𝑛)𝑛⩾−1 in the category Bimod(𝑃) generated by 𝑋 , that is, for all 𝑛 ⩾ −1,
𝑃 ⟨𝑋 ⟩𝑛 := 𝑃 ⟨𝑋𝑛⟩ is the free 𝑃-bimodule on 𝑋𝑛 , where 𝑋−1 is the unit indexed set 1 defined in§ 2.1.6. The
generators of 𝑃 ⟨𝑋 ⟩𝑛 , are denoted [𝑥] for 𝑥 in 𝑋𝑛 . The boundary map 𝛿𝑛 : 𝑃 ⟨𝑋 ⟩𝑛+1 → 𝑃 ⟨𝑋 ⟩𝑛 is defined
as follows

i) For 𝑥 ∈ 𝑋0(𝑘), we set

𝛿−1( [𝑥]) = (Y | 𝑥) −
𝑘∑︁
𝑖=1
(𝑥 | 1 · · · Y

𝑖
· · · 1). (5.3.2)
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5. Shuffle polygraphic resolutions from convergence

ii) Consider the derivation [ ] : 𝑋Ш
0 → 𝑃 ⟨𝑋0⟩ defined by induction on the weight of monomials 𝑢

in 𝑋Ш
0 , by setting [1] := 0, [𝑥] := 𝑥 and

[𝑢 | ®𝑣] := ( [𝑢] | 𝑣1 · · · 𝑣𝑘 ) +
𝑘∑︁
𝑖=1
(𝑢 | 𝑣1 · · · [𝑣𝑖] · · · 𝑣𝑘 ) .

We set 𝛿0 the Fox differential defined for every 1-generator 𝛼 in 𝑋1 by

𝛿0( [𝛼]) := [𝑠0(𝛼)] − [𝑡0(𝛼)] .

iii) For 𝑛 ⩾ 1, we define the map [ ] : 𝑋Ш
𝑛 → 𝑃 ⟨𝑋𝑛⟩ by setting, for

𝑓 =

𝑝∑︁
𝑖=1

_𝑖Γ𝑖 [𝛼𝑖] + 1𝑐

an 𝑛-cell of 𝑋Ш, where 𝛼𝑖 ∈ 𝑋𝑛 and Γ𝑖 is a one-hole context of 𝑋 ∗Ш0 ,

[𝑓 ] =
𝑝∑︁
𝑖=1

_𝑖Γ𝑖
[
[𝛼𝑖]

]
,

where Γ𝑖 is the one-hole context of 𝑃 induced by the context Γ𝑖 . Note that [𝑓 ] does not depend
on the choice of decomposition, so [ ] is well defined. We set for every (𝑛 + 1)-generator 𝐴 in
𝑋𝑛+1

𝛿𝑛 ( [𝐴]) := [𝑠𝑛 (𝐴)] − [𝑡𝑛 (𝐴)] .

As a consequence of the globularity of the polygraph 𝑋 , for all 𝑛 ⩾ −1, we have 𝛿𝑛+1𝛿𝑛 = 0 and
thus 𝑃 ⟨𝑋 ⟩ forms a chain complex.

5.3.3. Lemma. For every 0-monomial 𝑢 ∈ 𝑋 ∗Ш0 (𝑘), we have

𝛿−1( [𝑢]) = (Y | 𝑢) −
𝑘∑︁
𝑖=1
(𝑢 | 1 · · · Y

𝑖
· · · 1).

Proof. Proceed by induction on the depth of the 0-monomial 𝑢. The equality is true by definition for
𝑥 ∈ 𝑋0. For the induction step, consider (𝑢 | ®𝑣) with 𝑢 ∈ 𝑋 ℓ

0 (𝑘), 𝑣𝑖 ∈ 𝑋 ℓ
0 (ℓ𝑖) for all 1 ⩽ 𝑖 ⩽ 𝑘 :

𝛿−1( [𝑢 | ®𝑣]) = (𝛿−1( [𝑢]) | 𝑣1 · · · 𝑣𝑘 ) +
𝑘∑︁
𝑖=1
(𝑢 | 𝑣1 · · · 𝛿−1( [𝑣𝑖]) · · · 𝑣𝑘 )

= (Y | 𝑢 | 𝑣1 · · · 𝑣𝑘 ) −
𝑘∑︁
𝑖=1
(𝑢 | (1 | 𝑣1) · · · (Y | 𝑣𝑖) · · · (1 | 𝑣𝑘 ))

+
𝑘∑︁
𝑖=1
(𝑢 | 𝑣1 · · · (Y | 𝑣𝑖) · · · 𝑣𝑘 ) −

𝑘∑︁
𝑖=1

ℓ𝑖∑︁
𝑗=1
(𝑢 | 𝑣1 · · · (𝑣𝑖 | 1 · · · Y

𝑗
· · · 1) · · · 𝑣𝑘 )

= (Y | (𝑢 | ®𝑣)) −
ℓ1+···+ℓ𝑘∑︁

𝑖=1
((𝑢 | ®𝑣) | 1 · · · Y

𝑖
· · · 1) .

□
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5.3.4. Trivial 𝑷-bimodule. Define the trivial 𝑃-bimodule, denoted by Ω𝑃 , as the free 𝑃-bimodule gen-
erated by the unit indexed set 1 quotiented by the relations

(Y | 𝑢) =
𝑘∑︁
𝑖=1

𝑢 ◦𝑖 Y (5.3.5)

for every 𝑘 ⩾ 1 and 𝑢 ∈ 𝑃 (𝑘). Every element of the 𝑃-bimodule Ω𝑃 can be written as a linear combina-
tion of monomials of the form 𝑢 ◦𝑖 Y where 𝑘 ⩾ 1, 𝑢 ∈ 𝑃 (𝑘), and 1 ⩽ 𝑖 ⩽ 𝑘 .

5.3.6. Proposition. Let 𝑋 be an acyclic shuffle 𝜔-polygraph and 𝑃 the shuffle operad presented by 𝑋 .
Then the chain complex 𝑃 ⟨𝑋 ⟩ is a resolution of Ω𝑃 in the category Bimod(𝑃).

Proof. Note that Ω𝑃 is exactly the cokernel of 𝛿−1. Thus it suffices to show that the chain complex 𝑃 ⟨𝑋 ⟩
is exact.

Let us fix ] a unital section of 𝑋 . Following Proposition 5.1.13, the acyclicity of the polygraph 𝑋
implies that it admits a right ]-contraction. Let 𝜎 be such a right ]-contraction. We define the linear
map 𝑖0 : 𝑃 ⟨1⟩ → 𝑃 ⟨𝑋0⟩ by

𝑖0(𝑢 | 𝑣1 · · · (Y | 𝑤)
𝑖

· · · 𝑣𝑘 ) := (𝑢 | 𝑣1 · · · [𝑤]
𝑖

· · · 𝑣𝑘 ),

for 𝑢, 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛,𝑤 ∈ 𝑃 , and, for 𝑛 ⩾ 1, the linear map 𝑖𝑛 : 𝑃 ⟨𝑋𝑛−1⟩ → 𝑃 ⟨𝑋𝑛⟩ by

𝑖𝑛 (𝑢 | 𝑣1 · · · ( [𝑥] | 𝑤1 · · ·𝑤ℓ )
𝑖

· · · 𝑣𝑘 ) := (𝑢 | 𝑣1 · · · [𝜎 (𝑥 |𝑤1 · · ·𝑤ℓ ) ]
𝑖

· · · 𝑣𝑘 ),

and 𝑢, 𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑘 ,𝑤1, . . . ,𝑤ℓ ∈ 𝑃 . Note that the linear maps 𝑖𝑛 are compatible with the left action
of 𝑃 . Hence, we prove that the maps 𝑖𝑛 define a contracting homotopy of the complex 𝑃 ⟨𝑋 ⟩, by showing
that the identity 𝑖𝑛𝛿𝑛−1 + 𝛿𝑛𝑖𝑛+1 = 𝑖𝑑𝑃 ⟨𝑋𝑛 ⟩ holds on generators of the 𝑃-bimodule 𝑃 ⟨𝑋𝑛⟩ as follows.

For 𝑛 = 0, on the one hand, we have

𝑖0𝛿−1( [𝑥] | 𝑤1 · · ·𝑤𝑛) = 𝑖0(Y | 𝑥 | ®𝑤) −
𝑛∑︁
𝑖=1

𝑖0(𝑥 | (1 | 𝑤1) · · · (Y | 𝑤𝑖) · · · (1 | 𝑤𝑛))

= [�(𝑥 | ®𝑤)] − 𝑛∑︁
𝑖=1
(𝑥 | 𝑤1 · · · [𝑤𝑖] · · ·𝑤𝑛) .

On the other, we have

𝛿0𝑖1( [𝑥] | 𝑤1 · · ·𝑤𝑛) = 𝛿0 [𝜎 (𝑥 |𝑤1 · · ·𝑤𝑛 ) ]

= 𝛿0 [(𝑥 | 𝑤1 · · ·𝑤𝑛)] − 𝛿0 [�(𝑥 | ®𝑤)]
= ( [𝑥] | 𝑤1 · · ·𝑤𝑛) +

𝑛∑︁
𝑖=1
(𝑥 | 𝑤1 · · · [𝑤𝑖] · · ·𝑤𝑛) − [�(𝑥 | ®𝑤)],

proving the equality 𝛿0𝑖1 + 𝑖0𝛿−1 = 𝑖𝑑𝑃 ⟨𝑋0 ⟩ .
For𝑛 ⩾ 1, by definition of the right ]-contraction𝜎 , we show that, for every (𝑛−1)-cells𝑢,𝑤1, . . . ,𝑤𝑛

of 𝑋Ш,
𝑖𝑛 [(𝑢 | 𝑤1 · · ·𝑤𝑛)] = [𝜎 (𝑢 |𝑤1 · · ·𝑤𝑛 ) ] .
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Therefore, for every 𝑛-generator 𝐴 : 𝑎 → 𝑏 in 𝑋𝑛 , we have

𝑖𝑛𝛿𝑛−1( [𝐴] | 𝑤1 · · ·𝑤𝑛) = 𝑖𝑛 [(𝑎 | ®𝑤)] − 𝑖𝑛 [(𝑏 | ®𝑤)] = [𝜎 (𝑎 |𝑤1 · · ·𝑤𝑛 ) ] − [𝜎 (𝑏 |𝑤1 · · ·𝑤𝑛 ) ],
𝛿𝑛𝑖𝑛+1( [𝐴] | 𝑤1 · · ·𝑤𝑛) = [(𝐴 | 𝑤1 · · ·𝑤𝑛) ★0 𝜎 (𝑏 |𝑤1 · · ·𝑤𝑛 ) ] − [𝜎 (𝑎 |𝑤1 ...𝑤𝑛 ) ]

= ( [𝐴] | 𝑤1 · · ·𝑤𝑛) + [𝜎 (𝑏 |𝑤1 · · ·𝑤𝑛 ) ] − [𝜎 (𝑎 |𝑤1 · · ·𝑤𝑛 ) ],

proving that 𝑖𝑛𝛿𝑛−1 + 𝛿𝑛𝑖𝑛+1 = 𝑖𝑑𝑃 ⟨𝑋𝑛 ⟩ . □

5.3.7. Homology of shuffle operads. Recall that the Cartan-Eilenberg homology of a shuffle op-
erad 𝑃 with coefficients in a 𝑃-bimodule 𝐴 is defined by

𝐻𝐶𝐸
• (𝑃,𝐴) := TorBimod(𝑃 )

• (Ω𝑃 , 𝐴).

In addition, the Quillen homology of 𝑃 is defined with coefficients in Ab(ШOp/𝑃), the category of
abelian groups internal to ШOp/𝑃 [44]. The category Ab(ШOp/𝑃) is equivalent to the category
Bimod(𝑃) of 𝑃-bimodules [7], and we define the Quillen homology of 𝑃 with coefficients in a 𝑃-
bimodule 𝐴 by setting

𝐻
𝑄
• (𝑃,𝐴) := 𝐻•(Ab(X) ⊗𝑃 𝐴),

where X is a simplicial cofibrant resolution of the operad 𝑃 in the category ШOp/𝑃 , and Ab(−) :
ШOp/𝑃 → Ab(ШOp/𝑃) ≈ Bimod(𝑃) is the abelianization functor. Following [5, Thm. 4.1], see also
[6, Thm. 6.2.1], these two homologies are isomorphic up to shift in degree:

𝐻
𝑄
• (𝑃,𝐴) ≃ 𝐻𝐶𝐸

•+1(𝑃,𝐴) .

5.3.8. Finite homological type. From Theorem 5.2.6 we deduce a generalization of Squier’s homo-
logical finiteness condition [46], for finite convergence in the case of operads. We say that a shuffle
operad 𝑃 has finite homological type, 𝐹𝑃∞ for short, if the 𝑃-bimodule Ω𝑃 has a resolution in Bimod(𝑃)
by finitely generated projective bimodules. If 𝑃 admits a finite convergent presentation 𝑋 , then by
Theorem 5.2.6, the overlapping polygraphic resolution O𝑣 (𝑋 ) is finite and the complex 𝑃 ⟨O𝑣 (𝑋 )⟩ is a
finitely generated free resolution of Ω𝑃 . Thus, 𝑃 has homological type 𝐹𝑃∞.

5.3.9. Minimal resolutions. A minimal bimodule resolution of an operad 𝑃 is a minimal free 𝑃-
bimodule resolution (𝐴•, 𝛿) of its trivial 𝑃-bimodule Ω𝑃 . The minimal condition means that the se-
quence (𝐴• ⊗𝑃 k, 𝛿 ⊗𝑃 𝑖𝑑) has a null differential, where k denotes the 𝑃-bimodule concentrated in
degree 0, whose left and right actions vanish.

5.3.10. Proposition. Let 𝑋 be an acyclic shuffle 𝜔-polygraph and 𝑤 : N → N \ {0} an increasing
function such that 𝑋𝑛 is concentrated in weight 𝑤 (𝑛). Then 𝑃 ⟨𝑋 ⟩ is a minimal 𝑃-bimodule resolution of
the operad 𝑃 presented by 𝑋 .

Proof. The 1-generators of 𝑋 are of homogeneous weight, so 𝑃 is equipped with a weight grading.
Given an 𝑛-generator 𝑢𝑛 in 𝑋𝑛 , we have 𝛿𝑛−1 [𝑢𝑛] =

∑
𝑖 _𝑖Γ𝑖 [𝑢𝑛−1,𝑖] + 1𝑐 , where the _𝑖 are scalars, the Γ𝑖

are one-hole contexts of 𝑋 ∗Ш0 , the 𝑢𝑛−1,𝑖 are (𝑛 − 1)-overlappings, and 𝑐 is an (𝑛 − 2)-cell in 𝑋Ш
𝑛−2. The

map 𝛿𝑛−1 preserves weight, and since the (𝑛− 1)-overlappings 𝑢𝑛−1,𝑖 are of strictly smaller weight than
𝑢𝑛 , it follows that the Γ𝑖 are nontrivial. As a consequence, tensoring over 𝑃 by k sends 𝛿𝑛−1(𝑢𝑛) to 0,
so 𝑃 ⟨𝑋 ⟩ is minimal. □
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5.3.11. Examples. Consider the convergent 1-polygraph 𝑋 with one 1-generator 𝑥 ∈ 𝑋 (2) of weight
1 and one 2-generator

𝑥
𝑥 𝑥 → 0

Then O𝑣 (𝑋 )𝑛 is a polygraphic resolution concentrated in degree 2𝑛+1, so by Proposition 5.3.10 𝑃 ⟨𝑋 ⟩ is
a minimal bimodule resolution of the operad 𝑃 presented by 𝑋 . Note however that, for the convergent
1-polygraph with one 1-generator 𝑥 ∈ 𝑋 (1) of weight 1 and one 2-generator 𝑥3 → 0, the resolution
induced by O𝑣 (𝑋 ) is not minimal.

5.4. Confluence and Koszulness

In this subsection, we show that shuffle operads presented by a quadratic convergent 1-polygraph are
Koszul. Our result does not suppose that the rewriting rules are oriented with respect to a monomial
order. In this way, it generalizes the result obtained by Dotsenko and Khoroshkin in [19] for shuffle
operads with quadratic Gröbner bases. We first begin by recalling the Koszul property for operads.

5.4.1. Koszul operads. Let 𝑃 be a (connected and graded) symmetric operad. We denote by 𝐵(𝑃) for
the reduced bar complex on 𝑃 . Recall from [21, Def. 5.2.3] that the Koszul complex on 𝑃 is defined by

𝐾 (𝑃) (𝑠 ) := 𝐻𝑠 (𝐵(𝑃) (𝑠 ) , 𝛿) = ker(𝛿 : 𝐵𝑠 (𝑃) (𝑠 ) → 𝐵𝑠−1(𝑃) (𝑠 ) ),

the second equality coming from the fact that 𝐵𝑛 (𝑃) (𝑠 ) = 0 when 𝑛 > 𝑠 , and where (𝑠) denotes the
degree of 𝑃 . By definition, the complex 𝐾 (𝑃) (𝑠 ) is concentrated in degree 𝑠 . The operad 𝑃 is Koszul
if the inclusion morphism 𝐾 (𝑃) ↩→ 𝐵(𝑃) is a quasi-isomorphism [21, Def. 5.2.8], or equivalently the
homology of the reduced bar complex of 𝑃 is concentrated on the diagonal [21, Thm. 5.3.3], that is,

H𝑛 (𝐵(𝑃) (𝑠 ) ) = 0, for 𝑛 ≠ 𝑠 .

Recall that the bar-cobar construction on 𝑃 is a resolution, whose abelianization is the reduced bar
complex [20, § 1.1], so that the operad 𝑃 is Koszul if, and only if, its Quillen homology is concentrated
on the diagonal. Finally, recall from [20, Cor. 1.5] that for a symmetric operad 𝑃 , there is an isomorphism

H•(𝐵(𝑃))𝑢 ≃ H•(𝐵(𝑃𝑢)) .

As a consequence, the Koszulness of a symmetric operad can be proved via its shuffle version as follows.

5.4.2. Theorem. Let 𝑃 be a quadratic symmetric operad. If the associated shuffle operad 𝑃𝑢 has a
quadratic convergent presentation, then 𝑃 is Koszul.

Proof. Let𝑋 be a quadratic convergent 1-polygraph presenting 𝑃𝑢 . By definition, the 0-generators in𝑋0
are concentrated in degree 1 and the 1-generators in 𝑋1 in degree 2. By construction, the polygraphic
resolution O𝑣 (𝑋 ), constructed in Theorem 5.2.6, is concentrated on the superdiagonal, that is for 𝑛 ⩾ 2,
the 𝑛-generators in O𝑣 (𝑋 )𝑛 are of degree 𝑛 + 1; these cells are the generators of the 𝑃-bimodules of the
resolution 𝑃 ⟨O𝑣 (𝑋 )⟩ ofΩ𝑃 of Theorem 5.3.6. Thus, the Cartan-Eilenberg homology of 𝑃 is concentrated
in degree 𝑛 + 1, and so the Quillen homology is concentrated on the diagonal. Following 5.4.1, we
conclude that 𝑃 is Koszul. □

55



5. Shuffle polygraphic resolutions from convergence

5.4.3. Remark. If we consider a quadratic symmetric operad whose generators are all of arity one,
using Theorem 5.4.2 we recover the similar result for quadratic associative algebras: every algebra
having a quadratic convergent presentation is Koszul, as proved in [25, Prop. 7.2.2] by a polygraphic
construction, see also [36, Sec. 4.3], and [8] for a such a criterion with the rewriting rules ordered with
respect to a monomial order.

5.4.4. Koszul associative algebra without monomial order. Let 𝐴 be the associative algebra pre-
sented by 〈

𝑤, 𝑥,𝑦, 𝑧
�� 𝑤2 = 𝑤𝑥, 𝑥2 = 𝑦𝑥, 𝑦2 = 𝑦𝑧, 𝑧2 = 𝑤𝑧

〉
.

If we orient the relations according to a monomial order, say the order generated by 𝑤 < 𝑥 < 𝑦 < 𝑧,
this gives a 1-polygraph with two critical branching that are non-confluent

𝑦2𝑧

##

𝑦𝑧2

33

,,

𝑦3

𝑦𝑤𝑧

𝑤𝑧𝑧

##

𝑧𝑧𝑧

33

++

𝑤𝑤𝑧

𝑧𝑤𝑧

Moreover, we show that any alphabetic order conduces to a similar situation of non-confluent critical
branching. Instead, consider the following 1-polygraph:

𝑋 :=
〈
𝑤, 𝑥,𝑦, 𝑧

�� 𝑤𝑥 → 𝑤2, 𝑦𝑥 → 𝑥2, 𝑦𝑧 → 𝑦2, 𝑤𝑧 → 𝑧2 〉
.

The termination of 𝑋 is equivalent to the termination of the following 1-polygraph

⟨ 𝑤, 𝑥,𝑦, 𝑧 | 𝑤𝑥 → 𝑤, 𝑦𝑥 → 𝑥, 𝑦𝑧 → 𝑦, 𝑤𝑧 → 𝑧 ⟩ ,

and this second 1-polygraph clearly terminates by considering the lengths of words, so 𝑋 terminates.
Moreover,𝑋 has no critical branchings, so it is confluent. Thus𝑋 is a convergent quadratic 1-polygraph,
so by [25, Prop. 7.2.2], thus the algebra 𝐴 is Koszul.

5.4.5. Koszul operad without monomial order. Following the previous example, let 𝑃 be the sym-
metric operad presented by〈

𝑤, 𝑥,𝑦, 𝑧 ∈ 𝑃 (2)

������ 𝑤 (1 2) = 𝑤, 𝑥 (1 2) = 𝑥, 𝑦 (1 2) = 𝑦, 𝑧 (1 2) = 𝑧,
𝑤 ◦1,𝑖𝑑 𝑤 = 𝑤 ◦1,𝑖𝑑 𝑥, 𝑥 ◦1,𝑖𝑑 𝑥 = 𝑦 ◦1,𝑖𝑑 𝑥,

𝑦 ◦1,𝑖𝑑 𝑦 = 𝑦 ◦1,𝑖𝑑 𝑧, 𝑧 ◦1,𝑖𝑑 𝑧 = 𝑤 ◦1,𝑖𝑑 𝑧,

〉
.

Consider the associated shuffle operad 𝑃𝑢 , which is presented by

〈
𝑤, 𝑥,𝑦, 𝑧 ∈ 𝑃𝑢 (2)

�������������������

𝑤
𝑤

1 2
3 =

𝑤
𝑥

1 2
3 ,

𝑤
𝑤

1 3
2 =

𝑤
𝑥

1 3
2 ,

𝑤
1 𝑤

2 3
=

𝑤
1 𝑥

2 3
,

𝑥
𝑥

1 2
3 =

𝑦
𝑥

1 2
3 ,

𝑥
𝑥

1 3
2 =

𝑦
𝑥

1 3
2 ,

𝑥
1 𝑥

2 3
=

𝑦
1 𝑥

2 3
,

𝑦

𝑦
1 2

3 =
𝑦

𝑧
1 2

3 ,
𝑦

𝑦
1 3

2 =
𝑦

𝑧
1 3

2 ,
𝑦

1 𝑦
2 3

=
𝑦

1 𝑧
2 3

,

𝑧
𝑧

1 2
3 =

𝑤
𝑧

1 2
3 ,

𝑧
𝑧

1 3
2 =

𝑤
𝑧

1 3
2 ,

𝑧
1 𝑧

2 3
=

𝑤
1 𝑧

2 3

〉
.
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If we orient the induced relations according to a monomial order, say an order where 𝑤 < 𝑥 < 𝑦 < 𝑧,
then in particular we get the rewriting rule

𝑧
𝑧

1 2
3 →

𝑤
𝑧

1 2
3 .

Comparing the this rewriting rule with those of the previous example, we find that this rule creates a
non-confluent critical pair. By Proposition 4.3.2, this also means that this presentation of 𝑃 does not
admit a quadratic Gröbner basis.

Instead, if we orient every relation from right to left, we get a shuffle 1-polygraph 𝑋 with 0-
generators 𝑤, 𝑥,𝑦, 𝑧 ∈ 𝑋0(2) and with twelve 1-generators. With arguments similar to previous exam-
ple, we show that 𝑋 is terminating. Moreover, there are no critical branchings, so by Theorem 4.2.4 the
1-polygraph 𝑋 is confluent. In this way, 𝑋 is a convergent quadratic 1-polygraph, so by Theorem 5.4.2,
the operad 𝑃 is Koszul.
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