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Shuffle polygraphic resolutions for operads

Introduction

Algebraic rewriting theory provides methods to compute cofibrant replacements of algebraic structures from presentations that take into account computational properties of these structures. This rewriting approach gives algebraic algorithmic methods to solve decidability and computational problems, such as the ideal membership problem, and the computation of linear bases and of (co)homological properties. Abelian resolutions for monoids [13,[START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF][START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], groups [START_REF] Dehornoy | Homology of Gaussian groups[END_REF], small categories [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF], associative algebras [2,[START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], and linear operads [19,[START_REF] Dotsenko | Quillen homology for operads via Gröbner bases[END_REF] have been constructed using rewriting methods. The machinery at the heart of these constructions consists in presenting an algebraic structure by a system of generators and rewriting rules, and producing a cofibrant replacement that involves the overlappings occurring in the applications of the rewriting rules. Rewriting approaches for linear structures were developed in many algebraic algorithmic contexts, notably by Janet and Buchberger for commutative algebras [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal[END_REF][START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles[END_REF], Shirshov, Bokut, and Bergman for associative algebras [START_REF] Bergman | The diamond lemma for ring theory[END_REF]11,[START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF], Dotsenko-Khoroshkin for linear operads [19,[START_REF] Khoroshkin | On generating series of finitely presented operads[END_REF]. In all of these works, the rewriting systems are formulated in terms of Gröbner bases, and thus are defined with respect to a given monomial order. Rewriting approaches have also been used in the categorical context to present higher categories by higher-dimensional rewriting systems, called polygraphs (or computads) [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF][START_REF] Street | Limits indexed by category-valued 2-functors[END_REF]. In this context, the cofibrant replacements of a higher category are generated by polygraphic resolutions introduced in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Lafont | A folk model structure on omega-cat[END_REF][START_REF] Métayer | Resolutions by polygraphs[END_REF].

An important issue when studying algebras or operads is the automatic construction of small abelian resolutions. There exist some inductive constructions that start from presentations with certain computational properties. In particular, Anick introduced a general machinery that computes a resolution for an associative algebra, whose 𝑛-dimensional generators correspond to overlappings of applications of 𝑛 defining relations. This resolution is a compromise between the bar resolution, which is easy to compute but very large, and the minimal resolution, which is difficult to make explicit in general. Moreover, it is difficult to determine conditions for which Anick's resolution is minimal [START_REF] Tamaroff | Minimal models for monomial algebras[END_REF]. Some conditions have been shown to be sufficient: as an immediate consequence of its construction, Anick's resolution is minimal for monomial algebras, and a quadratic algebra with a convergent presentation has a minimal resolution given by its Koszul dual. For 𝑁 -homogeneous algebras, minimality is harder, and Berger introduces an extra condition in [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF]. Dotsenko and Khoroshkin constructed resolutions for shuffle monomial operads by the inclusion-exclusion principle and for operads presented by a Gröbner basis by deformation of the monomial case [START_REF] Dotsenko | Quillen homology for operads via Gröbner bases[END_REF]. In this operadic case, the question of minimality of the resolution is even more difficult due to the combinatorial complexity of the underlying tree structure of shuffle operad terms. In particular, unlike for algebras the constructed resolution for a monomial operad is not necessarily minimal.

In this work, we combine the polygraphic and the Gröbner bases approaches in order to compute higher-dimensional presentations of shuffle operads using the polygraphic machinery. We define shuffle 𝜔-operads as internal 𝜔-categories in the category of shuffle operads. We introduce the structure of shuffle 𝜔-polygraphs as systems of generators and relations for shuffle 𝜔-operads. Unlike the Gröbner bases approach, the orientation of the relations in a shuffle polygraph does not depend on a given monomial order. The main construction of this article extends a confluent and terminating shuffle polygraph presenting a shuffle operad into a shuffle polygraphic resolution generated by the overlapping branchings of the original polygraph. In order to address the question of minimal resolutions, we make explicit these overlappings in all dimensions of the polygraphic resolution. We then give an inductive 1. Introduction method to compute a bimodule resolution that allows us to state a minimality result for shuffle operads, as well as a condition for Koszulness. Now we present the organization and the main results of this article.

Higher operads

The notion of a symmetric operad appears in many situations to describe operations in several arguments, with symmetric group actions, acting on topological or algebraic objects [START_REF] Loday | La renaissance des opérades[END_REF][START_REF] May | The geometry of iterated loop spaces[END_REF]. Shuffle operads were introduced by Dotsenko and Khoroshkin in [19] to forget the symmetric group actions on the arguments while preserving all possible operadic compositions. The shuffle version allows us to define monomials and oriented relations in order to present symmetric operads by rewriting systems. Symmetric and shuffle operads are defined as internal monoids in the monoidal presheaf categories of collections and symmetric collections respectively, as recalled in Section 2.1. Explicitly, a collection is a presheaf on the category Ord of nonempty finite ordered sets and order-preserving bijections, with values in the category Vect of vector spaces. The monoidal product on collections is the shuffle composition recalled in § 2.1.3. A symmetric collection is a presheaf on the category Fin of nonempty finite sets and bijections, with values in the category Vect. The functor -𝑢 : Ord → Fin that forgets the order induces a functor -𝑢 : 𝔖Coll → Coll from the category of symmetric collections to the category of collections. Since we restrict to nonempty sets, none of the operads considered in this work have operations of arity 0. In Section 2.3, we introduce the notion of a (strict) higher shuffle operad. We define a shuffle 𝜔operad as an internal 𝜔-category in the category ШOp of shuffle operads. Shuffle 𝜔-operads, with internal 𝜔-functors, form a category denoted by ШOp 𝜔 . In Section 2.4, we study the interaction between the higher-categorical structure of 𝜔-operads and its underlying linear structure. The object of 𝑛-cells of a shuffle 𝜔-operad has a shuffle operad structure, and the 𝑛-cells can be ★ 𝑘 -composed along 𝑘-dimensional cells for 0 ⩽ 𝑘 < 𝑛. Due to the linear structure, the ★ 𝑘 -composition of two 𝑛-cells 𝑎 and 𝑏 in a shuffle 𝜔-operad can be written as the following linear combination:

𝑎 ★ 𝑘 𝑏 = 𝑎 -𝑡 𝑘 (𝑎) + 𝑏,
where 𝑡 𝑘 (𝑎) denotes the 𝑘-dimensional target of 𝑎, which coincides with the 𝑘-dimensional source of 𝑏. In particular, every 𝑛-cell in a shuffle 𝜔-operad is invertible. Moreover, for 𝑛 ⩾ 1, the compatibility between the shuffle composition and the ★ 0 -composition implies that the elementary composition 𝑎 • 𝑖,𝜏 𝑏 of 𝑛-cells 𝑎 and 𝑏, as defined in § 2.2.1, can be seen either one of two orthogonal reduction paths from 𝑠 0 (𝑎) • 𝑖,𝜏 𝑠 0 (𝑏) to 𝑡 0 (𝑎) • 𝑖,𝜏 𝑡 0 (𝑏), pictured as follows: The linear exchange relation introduced in § 2.4.2 states that these two reductions paths are equal. With these remarkable relations, the axioms of shuffle 𝜔-operads can be simplified. We deduce a characteri-
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zation of the structure of 𝜔-operad in terms of bimodules over shuffle operads. Our first result, Theorem 2.4.8, proves that the category ШOp 𝜔 is isomorphic to the full subcategory of RGlob(Bimod(ШOp)), whose objects are pairs (𝑃, 𝐴) where 𝑃 is a shuffle operad and 𝐴 = (𝐴 𝑛 ) 𝑛⩾0 is a reflexive globular 𝑃bimodule such that 𝐴 0 = 𝑃, and 𝐴 𝑛 satisfies the linear exchange relation for all 𝑛 ⩾ 1.

Shuffle operadic polygraphs and rewriting

The notion of a polygraph was introduced in the set-theoretical context by Street and Burroni as systems of generators and relations for presentations of higher (strict) categories [START_REF]Albert Higher-dimensional word problem[END_REF][START_REF] Street | Limits indexed by category-valued 2-functors[END_REF]. A linear version of polygraphs was introduced in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] for the presentation of associative 𝜔-algebras. In Section 3.1, we define an analogous notion for shuffle 𝜔-operads, which we call shuffle polygraphs. Explicitly, for 𝑛 ⩾ 0, a shuffle 𝑛-polygraph is a data 𝑋 = (𝑋 0 , . . . 𝑋 𝑛 ) defined by induction, where 𝑋 𝑘 , the set of 𝑘-generators, forms a globular extension of the free shuffle (𝑘 -1)-operad generated by the shuffle (𝑘 -1)-polygraph (𝑋 0 , . . . 𝑋 𝑘 -1 ). Such a data can be pictured as a diagram 

𝑋 Ш 0 𝑋 Ш 1 𝑠 Ш 0 o o 𝑡 Ш 0 o o • • • 𝑠 Ш 1 o o 𝑡 Ш 1 o o 𝑋 Ш 𝑛-1 𝑠 Ш 𝑛-2 o o 𝑡 Ш 𝑛-2 o o 𝑋 Ш 𝑛 𝑠 Ш 𝑛-1 o o 𝑡 Ш 𝑛-1 o o 𝑋 0 ? 𝜄 0 O O 𝑋 1
O O 𝑋 𝑛 𝑠 𝑛-1 f f 𝑡 𝑛-1 f f ? 𝜄 𝑛 O O
where 𝑠 𝑖 and 𝑡 𝑖 denote the source and target maps of the globular extensions, and the horizontal diagram corresponds to the underlying globular operad of the free 𝑛-operad generated by the 𝑛-polygraph 𝑋 , denoted by 𝑋 Ш 𝑛 . As for set-theoretical polygraphs, in Section 3.1 we define the category ШPol 𝑛 of shuffle 𝑛-polygraphs and the free 𝑛-operad functor (-) Ш : ШPol 𝑛 → ШOp 𝑛 by induction on the dimension 𝑛, and the category of shuffle 𝜔-polygraphs as the limit of the forgetful functors ШPol 𝑛 → ШPol 𝑛-1 for 𝑛 ⩾ 1.

The shuffle polygraphic approach lets us present shuffle operads by oriented presentations, called rewriting systems: the shuffle operad 𝑋 presented by a shuffle 1-polygraph 𝑋 is defined as the coequalizer of the source and target morphisms 𝑠 Ш 0 , 𝑡 Ш 0 : 𝑋 Ш 1 ⇒ 𝑋 Ш 0 in the category ШOp. Note that, in this work, we consider operads with only one color. The 0-generators correspond to the generators of the shuffle operads, and the 1-generators correspond to the oriented relations. For presentations of multicolored shuffle operads, we need to consider shuffle two-dimensional polygraphs, whose 0-generators correspond to colors, 1-generators to generators, and 2-generators to oriented relations.

We use rewriting theory on shuffle 1-polygraphs to deduce global rewriting properties, such as confluence and termination from local properties of the 1-generators, also called rewriting rules. Without loss of generality, in Section 4 we will consider 1-polygraphs with left-monomial rules, reducing a single monomial into a linear combination of monomials. A rewriting step of a left-monomial 1-polygraph 𝑋 is a 1-cell 𝑓 of the free shuffle 1-operad 𝑋 Ш 1 of size 1, and of the form 𝑓 = 𝜆𝑔 + 1 𝑐 , where 𝜆 is a nonzero scalar, 𝑔 is a 1-monomial of 𝑋 Ш 1 , and 𝑐 is a 0-cell of the free shuffle operad 𝑋 Ш 0 such that the 0-monomial 𝑠 0 (𝑢) ∉ Supp(𝑐). A 1-cell of the free 1-operad 𝑋 Ш 1 is positive if it is the ★ 0 -composition of rewriting steps. A polygraph is terminating if there is no infinite sequence of ★ 0 -composition of rewriting steps.

This shuffle polygraphic approach generalizes that of Gröbner bases introduced by Dotsenko and Khoroshkin in [19]. Indeed, the orientation of the polygraphic rules does not depend on a given mono-1. Introduction mial order. However, termination is not ensured by a monomial order, so it must be proven by considering the rewriting rules themselves. Beyond the property of termination, the confluence property of a 1-polygraph 𝑋 states that for every branching of two positive 1-cells 𝑓 , 𝑔 of 𝑋 Ш 1 with the same source 𝑎, there exist two positive 1-cells ℎ and 𝑘 of 𝑋 Ш 1 as in the following confluence diagram:

𝑏 ℎ 𝑎 𝑓 0 0 𝑔 / / 𝑑 𝑐 𝑘 @ @
When the system is terminating, confluence can be deduced from local confluence, that is, when all the branchings of rewriting steps are confluent [START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF][START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]. Local confluence can be proven by the confluence of all branchings involving minimal overlappings of the rules, called critical branchings. This is the critical branching theorem proved in many algebraic contexts [START_REF] Chenavier | Confluence of algebraic rewriting systems[END_REF][START_REF] Knuth | Simple word problems in universal algebras[END_REF][START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF]. Coherent versions of this result where introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF][START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. In § 4.2.2 we introduce essential branchings that refine the notion of a critical branching, and generate all critical branchings by transitivity. Theorem 4.2.4 proves a coherent essential branching theorem for shuffle polygraphs. It states that we can extend a terminating, convergent, left-monomial shuffle 1-polygraph 𝑋 into an acyclic shuffle 2-polygraph by considering confluences of essential branchings.

In Section 4.3, we give several algebraic interpretations of the confluence property of a terminating, left-monomial shuffle 1-polygraph 𝑋 . Proposition 4.2.6 proves that the confluence of 𝑋 is equivalent to having a decomposition of the free shuffle operad 𝑋 Ш 0 into a direct sum of the ideal generated by the 1-generators of 𝑋 and the collection of normal forms with respect to this 1-generators. Proposition 4.3.2 proves that the notion of a convergent shuffle 1-polygraph, where the rules are oriented with respect to a given monomial order, is equivalent to the notion of Gröbner bases introduced in [19]. Proposition 4.3.4 gives a polygraphic interpretation of the Poincaré-Birkhoff-Witt (PBW) criterion introduced by Hoffbeck in [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] as a generalization of Priddy's PBW criterion for associative algebras [START_REF] Stewart | Koszul resolutions[END_REF].

The overlapping polygraphic resolution and Koszulness

An 𝜔-polygraph 𝑋 is acyclic if, for every 𝑛 ⩾ 1, the quotient of the free shuffle 𝑛-operad 𝑋 Ш 𝑛 by the ideal generated by the cellular extension 𝑋 𝑛+1 is aspherical, that is all parallel 𝑛-cells are equal. We say that an acyclic 𝜔-polygraph 𝑋 is a shuffle polygraphic resolution of the shuffle operad it presents. Section 5 presents the main result of this article, Theorem 5.2.6, which extends a reduced convergent left-monomial shuffle 1-polygraph 𝑋 into a polygraphic resolution, denoted by O𝑣 (𝑋 ), of the presented shuffle operad. The generators of this polygraphic resolution correspond to higher-dimensional overlappings induced by the rewriting rules of 𝑋 , defined in § 5.2.1: an 𝑛-generator of O𝑣 (𝑋 ), called an 𝑛-overlapping, is a sequence of monomials, written

𝑢 0 ì 𝑣 1 ì 𝑣 2 • • • ì 𝑣 𝑛 ,
where, when seen as planar trees, each sequence of monomials ì 𝑣 𝑖 = (𝑣 𝑖,1 , . . . , 𝑣 𝑖,𝑘 ) is attached to the leaves of the (𝑖 -1)-overlapping 𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑖 -1 in a manner that adds exactly enough to apply a new rewriting rule. Explicitly, for low dimensions, the 0-overlappings correspond to the 0-generators 𝑋 0 , the 1-overlappings correspond to the sources of the rewriting rules of 𝑋 1 , and the 2-overlappings correspond to critical branchings of 𝑋 .

The acyclicity of the shuffle 𝜔-polygraph O𝑣 (𝑋 ) is proven by the construction of a homotopical contraction. Thus the shuffle polygraphic resolution O𝑣 (𝑋 ) provides an alternative construction to the differential-graded shuffle operads constructed by Dotsenko and Khoroshkin [START_REF] Dotsenko | Quillen homology for operads via Gröbner bases[END_REF]. Moreover, since associative algebras are particular cases of shuffle operads, the construction of O𝑣 (𝑋 ) is another way to obtain the polygraphic resolutions for associative algebras introduced in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF].

The Quillen homology of a symmetric operad can be computed from its associated shuffle operad. Indeed, the reduced bar complex of a symmetric operad 𝑃 is isomorphic, as a shuffle differential-graded cooperad, to the reduced bar complex of the associated shuffle operad 𝑃 𝑢 , that is, 𝐵(𝑃) 𝑢 ≃ 𝐵(𝑃 𝑢 ), [START_REF] Dotsenko | Quillen homology for operads via Gröbner bases[END_REF]Prop. 1.4]. In Section 5.3, we associate to an acyclic shuffle 𝜔-polygraph 𝑋 that presents a shuffle operad 𝑃 a 𝑃-bimodule resolution 𝑃 ⟨𝑋 ⟩ of the trivial 𝑃-bimodule Ω 𝑃 . Thus shuffle polygraphic resolutions provide a constructive way to compute the homology of symmetric operads. Proposition 5.3.10 proves that when there exists an increasing function 𝑤 : N → N \ {0} such that the 𝑛-generators of 𝑋 are concentrated in weight 𝑤 (𝑛), then the resolution 𝑃 ⟨𝑋 ⟩ is minimal. Finally, we define in Section 5.4 a criterion of Koszulness in terms of quadratic convergence: Theorem 5.4.2 states that shuffle operads presented by quadratic convergent 1-polygraphs are Koszul. This result generalizes those obtained by Dotsenko and Khoroshkin in [19] for shuffle operads with quadratic Gröbner bases defined with respect to a given monomial order. This new rewriting-based sufficient condition for Koszulness does not depend on a monomial order, which is required to define Gröbner bases.

Conventions and notations

Throughout this article k denotes a field of characteristic zero. All vector spaces are over this field k, and we denote by Vect the category of vector spaces and linear maps as morphisms. We denote by N the set of nonnegative integers. We denote by Ord the category of nonempty finite ordered sets, whose morphisms are order-preserving bijections. We denote by Fin the category of nonempty finite sets, whose morphisms are bijections.

Higher shuffle operads

In this section we introduce the notion of a higher shuffle operad. We first recall the structure of shuffle operads from [19] and we decompose the shuffle composition into elementary compositions. We then define the category of shuffle 𝜔-operads and characterize it as a certain subcategory of globular bimodules over shuffle operads.

Shuffle operads

In this preliminary subsection we recall from [19] the definitions on shuffle operads used in this article. We refer the reader to [START_REF] Loday | Algebraic operads[END_REF] or [START_REF] Bremner | Algebraic operads[END_REF] for a complete account on symmetric and shuffle operads.

2.1.1. Presheaves on finite sets. In general, a presheaf 𝑋 on Ord or Fin with values in a category C are determined by the family of objects (𝑋 (𝑘)) 𝑘 ⩾1 , where 𝑋 (𝑘) := 𝑋 ({1, . . . , 𝑘 }). We will adopt this notation for the following definitions.

An set indexed by the category Ord, or indexed set for short, is a presheaf on Ord with values in the category Set. We denote by Ind the category of indexed sets with natural transformations as morphisms.

A collection is a presheaf on Ord with values in the category Vect. We denote by Coll the category of collections and their natural transformations. A basis of 𝑉 is a indexed set 𝐵 = (𝐵(𝑘)) 𝑘 ⩾1 such that, for each 𝑘, 𝐵(𝑘) is a basis of the space 𝑉 (𝑘).

A symmetric collection is a presheaf on Fin with values in the category Vect. We denote by 𝔖Coll the category of symmetric collections and their natural transformations. The functor -𝑢 : Ord → Fin that forgets the order induces a functor

-𝑢 : 𝔖Coll → Coll. (2.1.2)
In addition, we denote by k⟨-⟩ : Ind → Coll the left adjoint functor of the forgetful functor Coll → Ind.

Operads ([19]

). The categories Coll and 𝔖Coll are monoidal with the following products:

i) the shuffle composition on Coll denoted by • Ш , and defined for 𝑉 ,𝑊 ∈ Coll by

(𝑉 • Ш 𝑊 ) (𝐼 ) := ∞ 𝑘=1 𝑉 (𝑘) ⊗ 𝑓 :𝐼 ↠{1,...,𝑘 } ( * ) 𝑊 (𝑓 -1 {1}) ⊗ • • • ⊗ 𝑊 (𝑓 -1 {𝑘 }) ,
where 𝐼 ∈ Ord 𝑜 and the sum ( * ) is taken on shuffle surjections, i.e., surjections 𝑓 : 𝐼 ↠ {1, . . . , 𝑘 } such that min 𝑓 -1 {1} < . . . < min 𝑓 -1 {𝑘 }.

ii) the symmetric composition on 𝔖Coll, denoted by • 𝔖 , is defined for 𝑉 ,𝑊 ∈ 𝔖Coll by

(𝑉 • 𝔖 𝑊 ) (𝐼 ) := ∞ 𝑘=1 𝑉 (𝑘) ⊗ k[𝔖 𝑘 ] 𝑓 :𝐼 ↠{1,...,𝑘 } 𝑊 (𝑓 -1 {1}) ⊗ • • • ⊗ 𝑊 (𝑓 -1 {𝑘 }) ,
where 𝐼 ∈ Fin 𝑜 , and the sum is taken on all surjections.

In both case, the unit is the collection I concentrated in arity 1 with

I(1) = k. A shuffle (resp. symmetric) operad is an internal monoid (𝑃, 𝜇 𝑃 , 𝜂 𝑃 ) in (Coll, • Ш , I) (resp. (𝔖Coll, • 𝔖 , I))
, where 𝜇 𝑃 is the multiplication morphism and 𝜂 𝑃 is the unit morphism. We denote respectively by 𝔖Op and ШOp the category of symmetric operads and shuffle operads and their morphisms.

The free operad functors - * Ш : Coll → ШOp and - * 𝔖 : 𝔖Coll → 𝔖Op are defined using the free monoid functor on left distributive categories as detailed in [START_REF] Baues | Cohomology of monoids in monoidal categories[END_REF]Appendix B]. For an indexed set 𝑋 , we denote by 𝑋 Ш the free shuffle operad on 𝑋 given by the composite of free functor

Ind k / / Coll - * Ш / / ШOp. (2.1.4)

Higher shuffle operads

Recall from [19], see also [START_REF] Bremner | Algebraic operads[END_REF], that the forgetful functor -𝑢 is monoidal in the sense that for all symmetric collections 𝑉 ,𝑊 , we have (𝑉 • 𝔖 𝑊 ) 𝑢 = 𝑉 𝑢 • Ш 𝑊 𝑢 in Coll, and in particular that it commutes with free operad functors - * 𝔖 and - * Ш , in the sense that for every symmetric collection 𝑉 , we have the isomorphism

(𝑉 * 𝔖 ) 𝑢 = (𝑉 𝑢 ) * Ш .
(2.1.5)

2.1.6. Shuffle composition on indexed sets. We define a monoidal shuffle composition on Ind, also denoted by × Ш , by setting, for indexed sets 𝑋, 𝑌

(𝑋 × Ш 𝑌 ) (𝐼 ) := ∞ 𝑘=1 𝑋 (𝑘) × 𝑓 :𝐼 ↠{1,...,𝑘 } ( * ) 𝑌 (𝑓 -1 {1}) × • • • × 𝑌 (𝑓 -1 {𝑘 })
where the coproduct ( * ) is taken on shuffle surjections. The composition × Ш has for unit the indexed set concentrated in arity 1, denoted by 1, and such that 1(1) is a singleton, whose only element is denoted by 𝜀. The functor k is compatible with product and coproduct, hence the following diagram commutes:

Ind × Ind × Ш k × k / / Coll × Coll • Ш Ind k / / Coll (2.1.7)
Note that the adjunction between the monoidal categories (Set, ×, { * }) and (Vect, ⊗, k) is compatible with the canonical isomorphisms of units, associativity, and distributivity, so the induced functors between (Ind, × Ш , I) and (Coll, • Ш , I) make a lax monoidal adjunction.

2.1.8. Tree monomials. The shuffle composition is monoidal, and we denote by ШTree the category of internal monoids in Ind with respect to this composition. The functor k preserves colimits as a left adjoint, and sends × Ш to • Ш as a consequence of commutativity of (2.1.7). Free internal monoids in Ind and Coll are constructed by colimits and shuffle composition, thus the linearization functor k induces a linearization functor ШTree → ШOp such that the following square commutes:

Ind - * Ш k / / Coll - * Ш ШTree k / / ШOp
For an indexed set 𝑋 , the elements of the free internal monoid 𝑋 * Ш in ШTree are called tree monomials on 𝑋 . We have 𝑋 * Ш = (𝑋 * Ш 𝑘 ) 𝑘 ⩾0 , and elements of 𝑋 * Ш 𝑘 are said to be of arity 𝑘. In particular the unit in 𝑋 * Ш corresponding to the indexed set 1 is called the trivial tree monomial. Elements of the free operad 𝑋 Ш are linear combination of tree monomials having a same given arity 𝑘, and called terms on 𝑋 of arity 𝑘.

2.1.9. Graphical representation of tree monomials. The elements of an indexed set can be represented graphically as (planar rooted) trees. For an indexed set 𝑋 and an ordered set 𝐼 = {𝑖 1 < 𝑖 2 < • • • < 𝑖 𝑘 }, an element 𝑥 ∈ 𝑋 (𝐼 ) is depicted by a corolla, that is, a tree with only one vertex:

𝑥 𝑖 1 𝑖 2 • • • 𝑖 𝑘 -1 𝑖 𝑘 .
For indexed sets 𝑋, 𝑌 , elements of (𝑋 × Ш 𝑌 ) (𝐼 ) have the form

𝑥 𝑦 1 min 𝑓 -1 {1} • • • max 𝑓 -1 {1} • • • 𝑦 𝑘 min 𝑓 -1 {𝑘 } • • • max 𝑓 -1 {𝑘 }
, where 𝑘 ⩾ 1, 𝑓 : 𝐼 ↠ {1, . . . , 𝑘 } is a shuffle surjection, 𝑥 ∈ 𝑋 (𝑘) and 𝑦 𝑖 ∈ 𝑌 (𝑓 -1 {𝑖}) for all 𝑖 ∈ {1, . . . , 𝑘 }.

In this way, a tree monomial 𝑢 on 𝑋 can be represented by a planar tree 𝑇 (𝑢), whose vertices are elements of 𝑋 , and its arity is the number of its leaves. More generally, for 𝑉 ,𝑊 two collections, 𝑉 •𝑊 has a basis of tree monomials.

The weight of a tree monomial 𝑢 on an indexed set 𝑋 is the number of vertices of 𝑇 (𝑢). A tree monomial 𝑣 is a (resp. rooted) submonomial of 𝑢 if 𝑇 (𝑣) is a (resp. rooted) subtree of 𝑇 (𝑢). If 𝑣 is a rooted submonomial of 𝑢, we write 𝑣 ⊆ 𝑢. When listing submonomials of a tree monomial 𝑢, we distinguish the different occurrences of a subtree of 𝑇 (𝑢): for instance, the tree monomial 𝑥 𝑥 

-1 {1} < • • • < min 𝑓 -1 {𝑘 }.
Denote by 𝑆 (𝑛 1 , . . . , 𝑛 𝑘 ) the set of shuffle surjections of type (𝑛 1 , . . . , 𝑛 𝑘 ).

Let 𝑋 be an indexed set. The inline notation for the indexed set of tree monomials 𝑋 * Ш is the term algebra in indexed sets given by the Backus-Naur form

𝑋 * Ш ::= 1 (𝑋 (𝑘) | 𝑓 𝑋 * Ш (𝑛 1 ) • • • 𝑋 * Ш (𝑛 𝑘 )),
where 1 is the indexed set defined in 2.1.6, and 𝑓 is a shuffle surjection of type (𝑛 1 , . . . , 𝑛 𝑘 ). When possible, we omit subscript 𝑓 , and we write

(𝑢 | ì 𝑣) := (𝑢 | 𝑣 1 • • • 𝑣 𝑘 ).
We will use also the notation ì 𝑣 for the list of tree monomials 𝑣 1 , . . . , 𝑣 𝑘 . Finally, note that for two indexed sets 𝑋, 𝑌 the indexed set 𝑋 × Ш 𝑌 can be written in an explicit way as, for 𝑛 ⩾ 1, 

(𝑋 × Ш 𝑌 ) (𝑛) =        (𝑥 | 𝑓 𝑦 1 • • • 𝑦 𝑘 ) 𝑛 1 , . . . , 𝑛 𝑘 ⩾ 1, 𝑛 1 + • • • + 𝑛 𝑘 = 𝑛, 𝑥 ∈ 𝑋 (𝑘), 𝑦 1 ∈ 𝑌 (𝑛 1 ), . . . , 𝑦 𝑘 ∈ 𝑌 (𝑛 𝑘 ), 𝑓 ∈ 𝑆 (𝑛 1 , . . . , 𝑛 𝑘 )        . 2.
𝑣 ′ 𝑓 -1 𝑓 ′ -𝑓 -1 • • • 𝑓 ′ + 𝑓 -1 • • • 𝑣 ′ 𝑓 + 1 𝑓 ′ -𝑓 + 1 • • • 𝑓 ′ + 𝑓 + 1 • • • 𝑣 𝑘 𝑣 ′ 𝑓 -𝑘 𝑓 ′ -𝑓 -𝑘 • • • 𝑓 ′ + 𝑓 -𝑘 • • • 𝑣 ′ 𝑓 + 𝑘 𝑓 ′ -𝑓 + 𝑘 • • • 𝑓 ′ + 𝑓 + 𝑘
For 𝑖 ∈ {1, . . . , 𝑘 }, the restriction of 𝑓 ′ to 𝑓 ′-1 {𝑓 -1 {𝑖}} is a shuffle surjection of domain 𝑓 -1 {𝑖}. We introduce the notation

(ì 𝑣 | 𝑓 ,𝑓 ′ ì 𝑣 ′ ) for the list of monomials {(𝑣 𝑖 | 𝑓 ′ |𝑓 ′-1 ( 𝑓 -1 {𝑖 }) 𝑣 ′ min 𝑓 -1 {𝑖 } • • • 𝑣 ′ max 𝑓 -1 {𝑖 } )} 1⩽𝑖 ⩽𝑘 . Then ((𝑢 | 𝑓 ì 𝑣) | 𝑓 ′ ì 𝑣 ′ ) = (𝑢 | 𝑓 𝑓 ′ (ì 𝑣 | 𝑓 ,𝑓 ′ ì 𝑣 ′ )),
where 𝑓 𝑓 ′ is the composition of shuffle surjections.

2.1.12. Bimodules and ideals. Recall that a 𝑃-bimodule over a shuffle operad 𝑃, called a linear module over 𝑃 in [7, Def. 2.13], is a collection 𝐴 equipped with two families of morphisms of collections

𝜆 : 𝑃 (𝑘) ⊗ 𝑃 (𝑓 -1 {1}) ⊗ • • • ⊗ 𝐴(𝑓 -1 {𝑖}) ⊗ • • • 𝑃 (𝑓 -1 {𝑘 }) → 𝐴(𝐼 ), 𝜌 : 𝐴(𝑘) ⊗ 𝑃 (𝑓 -1 {1}) ⊗ • • • ⊗ 𝑃 (𝑓 -1 {𝑘 }) → 𝐴(𝐼 ),
for all shuffling surjections 𝑓 : 𝐼 ↠ {1, . . . , 𝑘 }, defining a left crossed action and a right action respectively, satisfying compatibility axioms with each other, and associativity and unit axioms with the product of 𝑃. A morphism of 𝑃-modules is a morphism of collections compatible with the left and right actions. We denote by Bimod(𝑃) the category of 𝑃-bimodules and morphisms of 𝑃-bimodules, and by Bimod(ШOp) := 𝑃 ∈ШOp Bimod(𝑃) the category of pairs (𝑃, 𝐴) composed of an operad 𝑃 and a 𝑃bimodule 𝐴. We denote by L 𝑃 : Coll → Bimod(𝑃) the free bimodule functor defined in [7, Prop. 2.11], see also [START_REF] Markl | Models for operads[END_REF], and given for every 𝑉 ∈ Coll and 𝐼 ∈ Ord by

L 𝑃 (𝑉 )(𝐼 ) := 𝑘 ⩾1 𝑃 (𝑘) ⊗ 𝑓 :𝐼 ↠{1,...,𝑘 } 1⩽𝑖 ⩽𝑘 𝑃 (𝑓 -1 {1}) ⊗ • • • ⊗ (𝐴 • Ш 𝑃) (𝑓 -1 {𝑖}) ⊗ • • • ⊗ 𝑃 (𝑓 -1 {𝑘 })
For an indexed set 𝑋 , we denote by 𝑃 ⟨𝑋 ⟩ := L 𝑃 (k𝑋 )

the free 𝑃-bimodule on 𝑋 . An ideal of an operad 𝑃 is a 𝑃-bimodule I equipped with an inclusion of 𝑃-bimodules I ↩→ 𝑃.

Compositions in shuffle operads

2.1.13. Graphical description of bimodules. Let 𝑋 be an indexed set an 𝑃 a shuffle operad. The free 𝑃-bimodule 𝑃 ⟨𝑋 ⟩ is the collection generated by tree monomials of the form

𝑢 𝑣 1 • • • 𝑣 𝑖 -1 𝑥 𝑤 1 • • • 𝑤 𝑛 𝑣 𝑖+1 • • • 𝑣 𝑘 ,
where 𝑛, 𝑘 ⩾ 1, 𝑥 ∈ 𝑋 (𝑛), 𝑖 ∈ {1, . . . , 𝑘 }, 𝑢, 𝑣 1 , . . . , v𝑖 , . . . , 𝑣 𝑘 , 𝑤 1 , . . . , 𝑤 𝑛 ∈ 𝑃, and the inputs are omitted. We use the check notation v𝑖 to indicate that we omit 𝑣 𝑖 , as opposed to the usual hat notation v𝑖 , in order to avoid confusion with a notation in Section 5.

Compositions in shuffle operads

In this subsection, we decompose shuffle composition into partial compositions, and we introduce notations for composition and terms in an operad. Denote by Ш(𝑘, ℓ) the set of shuffle permutations of type (𝑘, ℓ). Given indexed sets 𝑋, 𝑌 , and 𝑥 ∈ 𝑋 (𝑘), 𝑦 ∈ 𝑌 (ℓ), for 𝑖 ∈ {1, . . . , 𝑘 } and 𝜏 ∈ Ш(ℓ -1, 𝑘 -𝑖), we define the elementary composition 𝑥 • 𝑖,𝜏 𝑦 as the following tree

𝑥 1 • • • 𝑖 -1 𝑦 𝑖 𝑖 + 𝜏 (1) • • • 𝑖 + 𝜏 (ℓ -1) 𝑖 + 𝜏 (ℓ ) • • • 𝑖 + 𝜏 (𝑘 + ℓ -1 -𝑖 )
Elementary compositions are extended to collections by linearity and bidistributivity. We denote by 𝑉 (𝑘) • 𝑖,𝜏 𝑊 (ℓ) the collection composed by elementary compositions of the form 𝑣 • 𝑖,𝜏 𝑤, for 𝑣 ∈ 𝑉 (𝑘) and 𝑤 ∈ 𝑊 (ℓ). Then the shuffle partial composition of collections 𝑉 ,𝑊 is defined by

(𝑉 ⊙ Ш 𝑊 ) (𝑛) := 𝑘,ℓ,𝑖 ⩾1 𝑘+ℓ -1=𝑛 𝜏 ∈Ш(ℓ -1,𝑘 -𝑖 ) 𝑉 (𝑘) • 𝑖,𝜏 𝑊 (ℓ).
2. Higher shuffle operads 2.2.2. Properties of partial compositions. Note that there are isomorphisms

(𝑉 ⊙ Ш 𝑊 )(𝑛) (i) ≃ ∞ 𝑘=1 𝑉 (𝑘) ⊗ 𝑖,ℓ ⩾1 𝑘+ℓ -1=𝑛 𝜏 ∈Ш(ℓ -1,𝑘 -𝑖 ) I({1}) ⊗ • • • ⊗ I({𝑖 -1}) ⊗ 𝑊 ({𝑖, 𝑖 + 𝜏 (1), . . . , 𝑖 + 𝜏 (ℓ -1)}) ⊗ I({𝑖 + 𝜏 (ℓ)}) ⊗ • • • ⊗ I({𝑖 + 𝜏 (𝑘 + ℓ -1 -𝑖)}) (ii) ≃ 𝑘,ℓ,𝑖 ⩾1 𝑘+ℓ -1=𝑛 𝜏 ∈Ш(ℓ -1,𝑘 -𝑖 ) 𝑉 (𝑘) ⊗ 𝑊 (ℓ).
The isomorphism (i) implies that there is an injection of collections

𝑉 ⊙ Ш 𝑊 ↩→ 𝑉 • Ш (I ⊕ 𝑊 ).
The isomorphism (ii) implies that partial composition a bidistributive bifunctor ⊙ Ш : Coll × Coll → Coll. The partial composition ⊙ Ш is not associative. However, if there is no possible confusion, we will use the left bracket rule, that is, 𝑈 ⊙ 𝑉 ⊙ 𝑊 := (𝑈 ⊙ 𝑉 ) ⊙ 𝑊 .

Decomposition of shuffle compositions.

Let 𝐴 be a collection equipped with a morphism 𝜂 𝐴 : I → 𝐴, that is, 𝜂 𝐴 is an object of I/Coll. We can express the shuffle composition 𝐴 • Ш 𝐴 in terms of partial compositions. There exists a natural transformation 𝜑 from the functor 𝐴 ↦ → 𝐴 ⊙ Ш 𝐴 ⊙ Ш 𝑝 to the functor 𝐴 ↦ → 𝐴 • Ш 𝐴 defined as follows:

𝜑 𝐴 : ∞ 𝑝=1 𝐴 ⊙ Ш 𝐴 ⊙ Ш 𝑝 → ∞ 𝑝=1 𝐴 • Ш (I ⊕ 𝐴) • Ш 𝑝 1• Ш (𝜂 𝐴 +1) • Ш 𝑝 --------------→ 𝐴 • Ш 𝐴.
In order to express 𝐴 • Ш 𝐴 in terms of partial compositions, it suffices to define a right inverse to 𝜑, that is, a natural transformation 𝜎 from the functor

𝐴 ↦ → 𝐴 • Ш 𝐴 to the functor 𝐴 ↦ → 𝐴 ⊙ Ш 𝐴 ⊙ Ш 𝑝 such that 𝜑 𝐴 𝜎 𝐴 = 𝑖𝑑 𝐴• Ш 𝐴 for all 𝐴.
Define the morphism

𝜎 𝐴 : 𝐴 • Ш 𝐴 → ∞ 𝑝=1 𝐴 ⊙ Ш 𝐴 ⊙ Ш 𝑝 ,
natural in 𝐴, as follows. An element 𝑎 of (𝐴 • Ш 𝐴) (𝑛) can be written

𝑎 = 𝑎 0 𝑎 1 min 𝑓 -1 {1} • • • max 𝑓 -1 {1} • • • 𝑎 𝑝 min 𝑓 -1 {𝑝 } • • • max 𝑓 -1 {𝑝 }
where 𝑓 : {1, . . . , 𝑛} ↠ {1, . . . , 𝑝} is a shuffle surjection. Set 𝜎 𝐴 (𝑎)

:= 𝑎 0 • 𝑝,𝜏 𝑝 𝑎 𝑝 • 𝑝 -1,𝜏 𝑝 -1 • • • • 1,𝜏 1 𝑎 1 ,
where

𝜏 𝑝 ∈ Ш |𝑓 -1 {𝑝}| -1, 0 = {𝑖𝑑 | 𝑓 -1 {𝑝 } | -1 }, 𝜏 𝑝 -1 ∈ Ш |𝑓 -1 {𝑝 -1}| -1, |𝑓 -1 {𝑝}| , . . . 𝜏 1 ∈ Ш |𝑓 -1 {1}| -1, |𝑓 -1 {2, . . . , 𝑝}| ,
are the appropriate shuffle permutations. We check that, for every morphism 𝑓 : 𝐴 → 𝐵 of collections, the square

𝐴 • Ш 𝐴 𝜎 𝐴 / / 𝑓 • Ш 𝑓 𝑝 ⩾0 𝐴 ⊙ Ш 𝐴 ⊙ Ш 𝑝 ∑︁ 𝑝 ⩾0 𝑓 ⊙ Ш 𝑓 ⊙ Ш 𝑝 𝐵 • Ш 𝐵 𝜎 𝐵 / / 𝑝 ⩾0 𝐵 ⊙ Ш 𝐵 ⊙ Ш 𝑝
commutes. This defines the natural transformation 𝜎, and we check that it is a right inverse to the natural transformation 𝜑.

Example.

Let 𝐴 be an object of I/Coll and

𝑎 = 𝑎 0 𝑎 1 1 3 𝑎 2 2 4
and element of 𝐴 • Ш 𝐴, where 𝑎 0 , 𝑎 1 , 𝑎 2 ∈ 𝐴(2). Then we have

𝜎 𝐴 (𝑎) = 𝑎 0 • 2,𝑖𝑑 1 𝑎 2 • 1,(1 2) 𝑎 1 and 𝜑 𝐴 𝜎 𝐴 (𝑎) = 𝑎 0 1 𝑎 1 1 3 𝑎 2 2 4 = 𝑎 0 𝑎 1 1 3 𝑎 2 2 4
.

Higher shuffle operads

In this subsection, we introduce the structure of (strict) shuffle 𝜔-operads.

2.3.1. Globular objects. We denote by RO the reflexive globe category, whose objects are natural numbers, denoted by 𝑛, for 𝑛 ∈ N, and morphisms are generated by

𝜎 𝑛 : 𝑛 → 𝑛 + 1, 𝜏 𝑛 : 𝑛 → 𝑛 + 1, 𝜄 𝑛+1 : 𝑛 + 1 → 𝑛,
for all 𝑛 in N, and submitted to the following globular and identities relations:

𝜎 𝑛+1 • 𝜎 𝑛 = 𝜏 𝑛+1 • 𝜎 𝑛 , 𝜎 𝑛+1 • 𝜏 𝑛 = 𝜏 𝑛+1 • 𝜏 𝑛 , 𝜄 𝑛 • 𝜎 𝑛 = 𝑖𝑑 𝑛 , 𝜄 𝑛 • 𝜏 𝑛 = 𝑖𝑑 𝑛 ,
for all 𝑛 in N. Omitting the identity maps 𝜄 𝑛 gives the definition of the globe category O. We denote by RO 𝑛 (resp. O 𝑛 ) the full subcategory of RO (resp. O) whose objects are 0, 1, . . ., 𝑛.

A reflexive globular object in a category C is a functor RO 𝑜𝑝 → C, whose restriction to the category RO 𝑜𝑝 𝑛 is called a reflexive 𝑛-globular object. Explicitly, a reflexive globular object is given by a sequence 𝐴 = (𝐴 𝑘 ) 𝑘 ∈N of objects of C, equipped with indexed morphisms

𝑠 = (𝑠 𝑘 : 𝐴 𝑘+1 → 𝐴 𝑘 ) 𝑘 ∈N , 𝑡 = (𝑡 𝑘 : 𝐴 𝑘+1 → 𝐴 𝑘 ) 𝑘 ∈N , 𝑖 = (𝑖 𝑘 : 𝐴 𝑘 -1 → 𝐴 𝑘 ) 𝑘 ∈N ,
of degree -1, -1 and 1 respectively, and satisfying the following globular and identities relations

𝑠 2 = 𝑠𝑡, 𝑡 2 = 𝑡𝑠, 𝑠𝑖 = 𝑖𝑑 𝐴 , 𝑡𝑖 = 𝑖𝑑 𝐴 . (2.3.2)
The elements of 𝐴 𝑘 are called 𝑘-cells of 𝐴. A morphism of reflexive globular objects is an indexed morphism of degree 0 that commutes with morphisms 𝑠, 𝑡 and 𝑖. We denote by RGlob(C) (resp. Glob(C)) the category of reflexive globular objects (resp. globular objects) in C and their morphisms. We denote by RGlob 𝑛 (C) (resp. Glob 𝑛 (C)) the full subcategory of RGlob(ШOp) of reflexive 𝑛-globular objects (resp. 𝑛-globular objects) in C. We will denote by

V 𝑛 (C) : Glob 𝑛+1 (C) → Glob 𝑛 (C)
the functor that forgets the (𝑛 + 1)-cells. For 𝐴 a globular object and ℓ ⩾ 𝑘 ⩾ 0, the (ℓ, 𝑘)-source and (ℓ, 𝑘)-target morphisms

𝑠 ℓ 𝑘 : 𝐴 ℓ → 𝐴 𝑘 ,
𝑡 ℓ 𝑘 : 𝐴 ℓ → 𝐴 𝑘 , are respectively defined as the following iterated composition of source and target morphisms:

𝑠 ℓ 𝑘 := 𝑠 𝑘 • . . . 𝑠 ℓ -2 • 𝑠 ℓ -1 , 𝑡 ℓ 𝑘 := 𝑡 𝑘 • . . . 𝑡 ℓ -2 • 𝑡 ℓ -1 . We denote by 𝑖 𝑘 ℓ : 𝐴 𝑘 → 𝐴 ℓ the iterated identity 𝑖 𝑘 𝑙 = 𝑖 ℓ • 𝑖 ℓ -1 . . . • 𝑖 𝑘+1 .
When there is no ambiguity, we will write 𝑠 𝑘 and 𝑡 𝑘 for source and target maps respectively, and we will omit 𝑖 𝑘 ℓ entirely, since 𝑖 𝑘 ℓ is injective by (2.3.2). For 𝑘 ⩾ 0, we denote by 𝐴 ★ 𝑘 𝐴 the following pullback of globular operads

𝐴 ★ 𝑘 𝐴 𝜋 1 / / 𝜋 2 𝐴 𝑠 𝑘 𝐴 𝑡 𝑘 / / 𝐴 𝑘
Let 𝐴 be a globular object of some category C. For 𝑛 ⩾ 1, two 𝑛-cells 𝑎, 𝑏 of 𝐴 are parallel if 𝑠 (𝑎) = 𝑠 (𝑏) and 𝑡 (𝑎) = 𝑡 (𝑏). An 𝑛-sphere of 𝐴 is a pair (𝑎, 𝑏) of parallel 𝑛-cells.

Higher categories for operads. Recall that, for

𝑛 ⩾ 0, an (internal strict) 𝑛-category in C is a i) reflexive 𝑛-globular object, that is a diagram in C of the form 𝐴 0 𝑖 1 / / 𝐴 1 𝑠 0 o o 𝑡 0 o o 𝑖 2 / / • • • 𝑠 1 o o 𝑡 1 o o 𝑖 𝑛-1 / / 𝐴 𝑛-1 𝑠 𝑛-2 o o 𝑡 𝑛-2 o o 𝑖 𝑛 / / 𝐴 𝑛 𝑠 𝑛-1 o o 𝑡 𝑛-1 o o
whose morphisms satisfy globular and identity relations (2.3.2),

Higher shuffle operads

ii) equipped with a structure of category in C on

𝐴 𝑘 𝐴 ℓ 𝑠 𝑘 o o 𝑡 𝑘 o o for all 𝑘 < ℓ, whose ★ 𝑘 -composition morphism of ℓ-cells is denoted by ★ ℓ 𝑘 : 𝐴 ℓ ★ 𝑘 𝐴 ℓ → 𝐴 ℓ , iii) such that the 2-globular object 𝐴 𝑗 𝐴 𝑘 𝑠 𝑗 o o 𝑡 𝑗 o o 𝐴 ℓ 𝑠 𝑘 o o 𝑡 𝑘 o o is a 2-category in C for all 𝑗 < 𝑘 < ℓ.
We denote by 𝑛Cat(C) the category of 𝑛-categories in C and their 𝑛-functors. The category 𝜔Cat(C)

of 𝜔-categories in C is the limit of 0Cat(C) ← 1Cat(C) ← • • • ← 𝑛Cat(C) ← • • •
where each arrow forgets the cells of highest dimension.

For 𝑛 ∈ N ∪ {𝜔 }, a shuffle (resp. symmetric) 𝑛-operad is an 𝑛-category in ШOp (resp. 𝔖Op). We denote by ШOp 𝑛 (resp. 𝔖Op 𝑛 ) the corresponding category with internal 𝑛-functors as morphisms. We denote by U Ш 𝑛 : ШOp 𝑛 → Glob 𝑛 (Ind) (resp. U 𝔖 𝑛 : 𝔖Op 𝑛 → Glob 𝑛 (𝔖Coll)) the forgetful functor that forgets the operadic structure.

Note that, in an 𝜔-shuffle operad 𝑃, the composition ★ 𝑘 ℓ : 𝑃 𝑘 ★ ℓ 𝑃 𝑘 → 𝑃 𝑘 is a morphism of shuffle operads. As a consequence, the composition satisfies the following exchange relation between

• Ш and ★ 𝑘 (𝑃 𝑘 ★ ℓ 𝑃 𝑘 ) • Ш (𝑃 𝑘 ★ ℓ 𝑃 𝑘 ) (𝜋 1 • Ш 𝜋 1 ) ★ ℓ (𝜋 2 • Ш 𝜋 2 ) / / 𝜇 𝑘 ((1 ★ ℓ 1) • Ш (1 ★ ℓ 1)) * * (𝑃 𝑘 • Ш 𝑃 𝑘 ) ★ ℓ (𝑃 𝑘 • Ш 𝑃 𝑘 ) 𝜇 𝑘 (1 • Ш 1) ★ ℓ 𝜇 𝑘 (1 • Ш 1) t t 𝑃 𝑛 (2.3.4)
As for associative 𝜔-algebras, [25, Prop. 1.2.3], the interaction between the categorical and linear structures gives useful expressions:

2.3.5. Lemma. Let 𝑃 be a shuffle (resp. symmetric) 𝜔-operad. i) For every 0 ⩽ 𝑘 < 𝑛 and ★ 𝑘 -composable pair (𝑎, 𝑏) of 𝑃 𝑛 , we have 𝑎 ★ 𝑘 𝑏 = 𝑎 -𝑡 𝑘 (𝑎) + 𝑏. ii) For all 𝑛 ⩾ 1, every 𝑛-cell 𝑎 of 𝑃 is invertible with inverse 𝑎 -:= 𝑠 𝑛-1 (𝑎) -𝑎 + 𝑡 𝑛-1 (𝑎).
We deduce the following proposition: 2.3.6. Proposition. The category ШOp 𝜔 (resp. 𝔖Op 𝜔 ) is isomorphic to the category Gpd 𝜔 (ШOp) (resp. Gpd 𝜔 (𝔖Op)) of internal 𝜔-groupoids in ШOp (resp. 𝔖Op).

Finally, we give some categorical properties of the categories of shuffle operads.

2.3.7. Proposition. The forgetful functor ШOp → Coll (resp. 𝔖Op → 𝔖Coll) reflects all limits, filtered colimits, and reflexive coequalizers.

Proof. The statement for the functor 𝔖Op → 𝔖Coll is proven in [START_REF] Benoit Fresse | Homotopy of operads and Grothendieck-Teichmüller groups[END_REF]Prop. 1.2.4], where the limits, filtered colimits, and reflexive coequalizers of symmetric operads are equipped with unique monoidal structures. In particular, it is shown that the monoidal product • 𝔖 in 𝔖Coll preserves all limits, filtered colimits and reflexive coequalizers. This comes from the fact that the tensor product of Vect preserves these limits and colimits. Given the similarities between the monoidal products • 𝔖 and • Ш , the same arguments apply to the monoidal structure of Coll, and so we conclude that the functor ШOp → Coll preserves limits, filtered colimits, and reflexive coequalizers. □ 2.3.8. Proposition. The category ШOp 𝜔 is locally finitely presentable. In particular, it is complete and cocomplete.

Proof. Let us first show that ШOp is locally finitely presentable by viewing it as the category of algebras over an accessible monad. Recall that there exists an adjunction Coll ⊣ ШOp where the left adjoint is -Ш : Coll → ШOp. Therefore, ШOp is the category of algebras of the monad of free shuffle operads

𝑇 : Coll → Coll.
By the Proposition 2.3.7, the forgetful functor ШOp → Coll preserves filtered colimits, i.e. it is finitary, making the monad 𝑇 finitary. Moreover, the category Vect of vector spaces is locally finitely presentable, and the category Ord is a small category, so Coll is also locally finitely presentable. Thus 𝑇 is an accessible monad on a locally finitely presentable category. Following [1, § 2.78] the category of 𝑇 -algebras ШOp is locally finitely presentable.

The category ШOp 𝜔 of 𝜔-categories internal in ШOp is the category of models of a finite limit sketch [START_REF] Ara | Polygraphs: from Rewriting to Higher Categories[END_REF], in the locally finitely presentable category ШOp. By [1, Prop. 1.53], we conclude that ШOp 𝜔 is also locally finitely presentable. □

Higher operads as globular bimodules

In Theorem 2.4.8, we show that the axioms of the definition of the category ШOp 𝜔 of shuffle 𝜔-operads are redundant by proving that it is isomorphic to a category with fewer axioms thanks to the linear exchange relation. Throughout this section, the compositions • and ⊙ designate • Ш and ⊙ Ш .

2.4.1. Partial multiplication. For (𝑃, 𝜇, 𝜂) a shuffle operad, denote by 𝜄 𝑃 the morphism

𝜄 𝑃 : 𝑃 ⊙ 𝑃 ↩→ 𝑃 • (I ⊕ 𝑃) 1•(𝜂+1) ------→ 𝑃 • 𝑃 .
We equip the operad 𝑃 with a morphism called partial multiplication

𝜇 ⊙ : 𝑃 ⊙ 𝑃 𝜄 𝑃 -→ 𝑃 • 𝑃 𝜇 - → 𝑃 .
As a consequence, we have the equality of morphisms

𝜇𝜑 𝑃 = ∑︁ 𝑝 (𝜇 ⊙ ) ⊙𝑝 : ∞ 𝑝=1 𝑃 ⊙ 𝑃 ⊙𝑝 → 𝑃 .
2.4.2. Linear exchange relation. Let (𝑃 𝑛 , 𝜇 𝑛 , 𝜂 𝑛 ) 𝑛⩾0 be an 𝜔-operad. By the exchange relation between compositions • and ★ 0 , we observe that, for every 𝑛 ⩾ 1,

𝜇 ⊙ 𝑛 = 𝜇 𝑛 ((1 ★ 0 𝑡 0 ) • (𝑠 0 ★ 0 1))𝜄 𝑃 𝑛 = (𝜇 𝑛 (1 • 𝑠 0 ) ★ 0 𝜇 𝑛 (𝑡 0 • 1))𝜄 𝑃 𝑛 (2.3.4) = (𝜇 𝑛 (1 • 𝑠 0 ) + 𝜇 𝑛 (𝑡 0 • 1) -𝜇 𝑛 (𝑡 0 • 𝑠 0 ))𝜄 𝑃 𝑛 (Lemma 2.3.5) = 𝜇 ⊙ 𝑛 (1 ⊙ 𝑠 0 ) + 𝜇 ⊙ 𝑛 (𝑡 0 ⊙ 1) -𝜇 ⊙ 𝑛 (𝑡 0 ⊙ 𝑠 0 ).
Similarly, we calculate

𝜇 ⊙ 𝑛 = 𝜇 ⊙ 𝑛 (𝑠 0 ⊙ 1) + 𝜇 ⊙ 𝑛 (1 ⊙ 𝑡 0 ) -𝜇 ⊙ 𝑛 (𝑠 0 ⊙ 𝑡 0 ).
Regarding 𝑃 𝑛 as a 𝑃 0 -bimodule, these equations still hold, although we need to introduce new notations for the partial left and right actions of 𝑃 0 on 𝑃 𝑛 . This motivates the following definitions. Let (𝑃, 𝜇, 𝜂) be a shuffle operad and (𝐴, 𝜆, 𝜌) be a 𝑃-bimodule such that (𝑃, 𝐴) is a reflexive 1-globular 𝑃-bimodule. More explicitly, there are morphisms 𝑠, 𝑡 : 𝐴 → 𝑃 and 𝑖 : 𝑃 → 𝐴. We equip 𝐴 with morphisms called partial actions

𝜆 ⊙ : 𝑃 ⊙ 𝐴 𝜑 -→ 𝑃 • (I ⊕ 𝐴) 1•(𝜂⊕1) ------→ 𝑃 • (𝑃 ⊕ 𝐴) 𝜆 - → 𝐴, 𝜌 ⊙ : 𝐴 ⊙ 𝑃 𝜑 -→ 𝐴 • (I ⊕ 𝑃) 1•(𝜂+1) ------→ 𝐴 • 𝑃 𝜌 - → 𝐴.
We also define the morphisms

𝜇 ↑ 𝐴 := 𝜌 ⊙ (1 ⊙ 𝑠) + 𝜆 ⊙ (𝑡 ⊙ 1) -𝑖𝜇 ⊙ (𝑡 ⊙ 𝑠), 𝜇 ↓ 𝐴 := 𝜆 ⊙ (𝑠 ⊙ 1) + 𝜌 ⊙ (1 ⊙ 𝑡) -𝑖𝜇 ⊙ (𝑠 ⊙ 𝑡)
and the multiplication

𝜇 𝐴 : 𝐴 • 𝐴 𝜎 𝐴 --→ 𝑝 𝐴 ⊙ 𝐴 ⊙𝑝 (𝜇 ↑ 𝐴 ) 𝑝 ------→ 𝐴.
We say that a reflexive 1-globular 𝑃-bimodule (𝑃, 𝐴) satisfies the linear exchange relation if the following relation holds:

𝜇 ↑ 𝐴 = 𝜇 ↓ 𝐴 . (2.4.3) 2.4.4. Interpretation of morphisms 𝝁 ↑ 𝑨 and 𝝁 ↓ 𝑨 . If (𝑃, 𝐴
) is a reflexive 1-globular 𝑃-bimodule, we can interpret the elements of 𝐴 as rewriting rules that relate elements of 𝑃: an element 𝑎 ∈ 𝐴 rewrites 𝑠 (𝑎) as 𝑡 (𝑎), which we denote by 𝑎 : 𝑠 (𝑎) → 𝑡 (𝑎). Via the injection 𝑖, an element 𝑥 of 𝑃 can also seen as a trivial rewriting rule 𝑖 (𝑥) : 𝑥 → 𝑥.

Let 𝑎, 𝑏 ∈ 𝐴. For every compatible elementary composition • 𝑖,𝜏 , we would like to interpret the composition 𝑎 • 𝑖,𝜏 𝑏 as a pair of orthogonal reductions:

𝑡 (𝑎) 𝑠 (𝑏) 𝑡 (𝑎) 𝑏 & & 𝑠 (𝑎) 𝑠 (𝑏) 𝑎 𝑠 (𝑏) 1 1 𝑠 (𝑎) 𝑏 -- 𝑡 (𝑎) 𝑡 (𝑏) 𝑠 (𝑎) 𝑡 (𝑏) 𝑎 𝑡 (𝑏) 8 
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where 𝑠 (𝑎)

𝑠 (𝑏)
is a graphical representation of 𝑠 (𝑎) • 𝑖,𝜏 𝑠 (𝑏), and so on. While 𝑎 • 𝑖,𝜏 𝑏 is not necessarily an element of 𝐴, we find that

𝜇 ↑ 𝐴 𝑎 𝑏 = 𝑎 𝑠 (𝑏) - 𝑡 (𝑎) 𝑠 (𝑏) + 𝑡 (𝑎) 𝑏 , 𝜇 ↓ 𝐴 𝑎 𝑏 = 𝑠 (𝑎) 𝑏 - 𝑠 (𝑎) 𝑡 (𝑏) + 𝑎 𝑡 (𝑏) .
We see that 𝜇 ↑ 𝐴 applies the rule 𝑎 first, and 𝑏 second, while 𝜇 ↓ 𝐴 does the opposite; this motivates the upwards and downwards arrow notations. Then

𝜇 𝐴 (𝑎) = 𝑎 0 𝑠 (𝑎 1 ) 𝑠 (𝑎 2 ) - 𝑡 (𝑎 0 ) 𝑠 (𝑎 1 ) 𝑠 (𝑎 2 ) + 𝑡 (𝑎 0 ) 𝑠 (𝑎 1 ) 𝑎 2 - 𝑡 (𝑎 0 ) 𝑠 (𝑎 1 ) 𝑡 (𝑎 2 ) + 𝑡 (𝑎 0 ) 𝑎 1 𝑡 (𝑎 2 ) .
2.4.6. Lemma. Let (𝐴, 𝜆, 𝜌) be a 𝑃-bimodule such that (𝑃, 𝐴) is a reflexive 1-globular 𝑃-bimodule satisfying the linear exchange relation. Then (𝐴, 𝜇 𝐴 , 𝑖𝜂) is an operad.

Proof. Write 𝜇 ⊙ 𝐴 := 𝜇 ↑ 𝐴 = 𝜇 ↓ 𝐴 . It suffices to check the associativity and unit axioms of internal monoidal objects. The unit axioms are clearly satisfied, by definition of 𝜎 𝐴 and by the unit axioms of 𝑃-bimodules.

To show the associativity axiom, we need to calculate and compare 𝜇 𝐴 (𝜇 𝐴 • 1) and 𝜇 𝐴 (1 • 𝜇 𝐴 ). The key calculation is the following, which generalizes the previous example: for all 𝑝 ⩾ 0 and 𝜏 ∈ 𝔖 𝑝 , we have the equality of morphisms

𝜇 ⊙ 𝐴 (1 ⊙𝑝 ) = 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 1 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝 - 𝑝 -1 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝 , (2.4.7) 
where

𝑓 𝜏 𝑖,𝑗 = 𝑡 if 𝜏 -1 ( 𝑗) < 𝑖, 𝑠 if 𝜏 -1 ( 𝑗) > 𝑖,
and -⊙represents 𝜆 ⊙ (-⊙ -), 𝜌 ⊙ (-⊙ -), or 𝜇 ⊙ (-⊙ -) depending on the types of arguments, always with bracketing to the left.

We show this equality by induction on 𝑝. For 𝑝 = 0, 1, the result is trivial. For 𝑝 = 2, for 𝜏 = 𝑖𝑑,

𝜇 ⊙ 𝐴 = 𝜇 ↑ 𝐴 = 𝜌 ⊙ (1 ⊙ 𝑠) + 𝜆 ⊙ (𝑡 ⊙ 1) -𝑖 𝑛 𝜇 ⊙ (𝑡 ⊙ 𝑠),
by definition, and for 𝜏 = (1 2),

𝜇 ⊙ 𝐴 = 𝜇 ↓ 𝐴 = 𝜌 ⊙ (1 ⊙ 𝑡) + 𝜆 ⊙ (𝑠 ⊙ 1) -𝑖 𝑛 𝜇 ⊙ (𝑠 ⊙ 𝑡)
by hypothesis on (𝑃, 𝐴).

Let 𝑝 ⩾ 2 and suppose that we have shown the equality for 𝑝. Let 𝜏 ∈ 𝔖 𝑝+1 , and denote 𝑖 0 = 𝜏 -1 (𝑝 + 1) and

𝜏 ′ = 𝜏 (𝑖 0 𝑝 + 1). If 𝑖 0 < 𝑝 + 1, then (𝜇 ⊙ 𝐴 ) 𝑝+1 (1 ⊙𝑝+1 ) = 𝜇 ⊙ 𝐴 ((𝜇 ⊙ 𝐴 ) 𝑝 (1 ⊙𝑝 ) ⊙ 1) = 𝜇 ⊙ 𝐴 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 - 𝑝 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 = 𝑖 0 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 + 𝑝 ∑︁ 𝑖=𝑖 0 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑠 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 + 𝑖 0 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑠 + 𝑝 ∑︁ 𝑖=𝑖 0 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑡 - 𝑖 0 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑠 - 𝑝 ∑︁ 𝑖=𝑖 0 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑠 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑡 - 𝑖 0 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 + 𝑝 ∑︁ 𝑖=𝑖 0 +1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑠 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 = 𝑓 𝜏 ′ 𝑖 0 ,1 ⊙ • • • ⊙ 𝑠 𝜏 ′ (𝑖 0 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖 0 ,𝑝 ⊙ 1 + 𝑝 ∑︁ 𝑖=1 𝑖≠𝑖 0 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑓 𝜏 𝑖,𝑝+1 + 𝑓 𝜏 ′ 𝑖 0 ,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 0 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖 0 ,𝑝 ⊙ 𝑡 - 𝑝 ∑︁ 𝑖=1 𝑖≠𝑖 0 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑓 𝜏 𝑖,𝑝+1 -𝑓 𝜏 ′ 𝑖 0 ,1 ⊙ • • • ⊙ 𝑠 𝜏 ′ (𝑖 0 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖 0 ,𝑝 ⊙ 𝑡 = 𝑝+1 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 1 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝+1 - 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝+1
.

If 𝑖 0 = 𝑝 + 1, then (𝜇 ⊙ 𝐴 ) 𝑝+1 (1 ⊙𝑝+1 ) = 𝜇 ⊙ 𝐴 ((𝜇 ⊙ 𝐴 ) 𝑝 (1 ⊙𝑝 ) ⊙ 1) = 𝜇 ⊙ 𝐴 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 - 𝑝 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 = 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 + 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 1 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑠 - 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 𝑠 - 𝑝 -1 ∑︁ 𝑖=1 𝑓 𝜏 ′ 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 ′ (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 ′ 𝑖,𝑝 ⊙ 1 = 𝑝+1 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 1 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝+1 - 𝑝 ∑︁ 𝑖=1 𝑓 𝜏 𝑖,1 ⊙ • • • ⊙ 𝑡 𝜏 (𝑖 ) ⊙ • • • ⊙ 𝑓 𝜏 𝑖,𝑝+1 .
This proves (2.4.7) for 𝑝+1. Next, let 𝑎 be an arbitrary tree monomial of

𝐴•𝐴•𝐴 ≃ (𝐴•𝐴)•𝐴 ≃ 𝐴•(𝐴•𝐴).
We write

𝑎 = ((𝑎 0 | 𝑎 1 • • • 𝑎 𝑘 0 ) | 𝑎 𝑘 0 +1 • • • 𝑎 𝑘 0 +𝑘 1 • • • 𝑎 𝑘 0 +•••+𝑘 𝑘 0 -1 +1 • • • 𝑎 𝑘 0 +•••+𝑘 𝑘 0 ) = (𝑎 0 | (𝑎 1 | 𝑎 𝑘 0 +1 • • • 𝑎 𝑘 0 +𝑘 1 ) • • • (𝑎 𝑘 0 | 𝑎 𝑘 0 +•••+𝑘 0 +•••𝑘 𝑘 0 -1 +1 • • • 𝑎 𝑘 0 +•••+𝑘 𝑘 0 )),
where 𝑘 0 is the arity of 𝑎 0 and, for 𝑖 ∈ {1, . . . , 𝑘 0 }, 𝑘 𝑖 is the arity of 𝑎 𝑖 . We can also understand 𝑎 via its planar tree 𝑇 (𝑎):

𝑎 0 𝑎 1 𝑎 𝑘 0 +1 • • • 𝑎 𝑘 0 +𝑘 1 • • • 𝑎 𝑘 0 𝑎 𝑘 0 +•••+𝑘 0 +•••𝑘 𝑘 0 -1 +1 • • • 𝑎 𝑘 0 +•••+𝑘 𝑘 0
For the rest of this proof, we write • for all elementary compositions • 𝑖,𝜏 . On the one hand, calculating

𝜇 𝐴 (𝜇 𝐴 •1)(𝑎) is equal to calculating (𝜇 ⊙ 𝐴 ) (𝑎 0 •𝑎 𝑘 0 • • • 𝑎 1 •𝑎 𝑘 0 +•••+𝑘 𝑘 0 • • • 𝑎 𝑘 0 +1
) as in the previous calculation, with 𝑝 = 𝑘 0 +• • •+𝑘 𝑘 0 and the identity permutation. On the other hand, calculating

𝜇 𝐴 (1•𝜇 𝐴 ) (𝑎) is equal to calculating (𝜇 ⊙ 𝐴 ) (𝑎 0 •𝑎 𝑘 0 • • • 𝑎 1 •𝑎 𝑘 0 +•••+𝑘 𝑘 0 • • • 𝑎 𝑘 0 +1 ) as in the previous calculation, with 𝑝 = 𝑘 0 +• • •+𝑘 𝑘 0 and the permutation [0, 𝑘 0 , 𝑘 0 + • • • + 𝑘 𝑘 0 , . . . , 𝑘 0 + • • • + 𝑘 𝑘 0 -1 + 1, . . . , 1, 𝑘 0 + 𝑘 1 , . . . , 𝑘 0 + 1],
where each integer 𝑖 represents the position of 𝑎 𝑖 in the argument of 𝜇 ⊙ 𝐴 . Thus, by the previous calculation, 𝜇 𝐴 (𝜇 𝐴 • 1) = 𝜇 𝐴 (1 • 𝜇 𝐴 ). We conclude that (𝐴, 𝜇 𝐴 , 𝑖𝜂) is an operad.

As an aside, calculating 𝜇 𝐴 (𝜇 𝐴 •1) corresponds to a breadth-first traversal of a tree, while calculating 𝜇 𝐴 ( Proof. We show that each category is a full subcategory of the other. (i ⊆ ii) Let 𝑃 = (𝑃 𝑛 , 𝜇 𝑛 , 𝜂 𝑛 ) 𝑛⩾0 be an 𝜔-operad. Forgetting the ★ 𝑘 -compositions and operadic multiplications 𝜇 𝑛 , 𝑃 is equipped with a reflexive globular 𝑃 0 -bimodule structure. By the calculations and discussion of 2.4.2, for all 𝑛 ⩾ 1, 𝑃 𝑛 seen as a 𝑃 0 -bimodule satisfies the linear exchange relation (2.4.3). Thus ШOp 𝜔 is a full subcategory of the second category.

(ii ⊆ i) Let (𝑃, 𝜇, 𝜂) be an operad and (𝐴 𝑛 , 𝜆 𝑛 , 𝜌 𝑛 ) 𝑛⩾0 a globular reflexive 𝑃-bimodule satisfying the linear exchange relation (2.4.3) and such that 𝐴 0 = 𝑃. We proceed in two steps: first we equip 𝐴 with a globular reflexive operad structure, then we equip it with a 𝜔-operad structure.

First, let 𝑛 ⩾ 0. Equip 𝐴 𝑛 with the partial multiplication 𝜇 ⊙ 𝑛 := 𝜇 ↑ 𝐴 𝑛 = 𝜇 ↓ 𝐴 𝑛 and then define the operadic multiplication

𝜇 𝑛 : 𝐴 𝑛 • 𝐴 𝑛 𝜎 𝐴𝑛 ---→ 𝑝 ⩾1 𝐴 𝑛 ⊙ 𝐴 ⊙𝑝 𝑛 (𝜇 ⊙ 𝑛 ) 𝑝 ------→ 𝐴 𝑛 .
The multiplication 𝜇 𝑛 satisfies the associativity and unit axioms by Lemma 2.4.6. Moreover, by construction, 𝜇 ⊙ 𝑛 satisfies the relations

𝜇 ⊙ 𝑛 = 𝜇 ⊙ 𝑛 (1 ⊙ 𝑠 0 ) + 𝜇 ⊙ 𝑛 (𝑡 0 ⊙ 1) -𝜇 ⊙ 𝑛 (𝑡 0 ⊙ 𝑠 0 ) = 𝜇 ⊙ 𝑛 (𝑠 0 ⊙ 1) + 𝜇 ⊙ 𝑛 (1 ⊙ 𝑡 0 ) -𝜇 ⊙ 𝑛 (𝑠 0 ⊙ 𝑡 0 ). (2.4.9)
This gives 𝐴 a globular reflexive operad structure. Next, for the 𝜔-operad structure on 𝐴, we define the ★ 𝑘 -compositions as follows: for all ★ 𝑘 -composable 𝑛-cells 𝑎, 𝑏, define

𝑎 ★ 𝑘 𝑏 := 𝑎 -𝑡 𝑘 (𝑎) + 𝑏.
Let 0 ⩽ 𝑘 < ℓ < 𝑛 be three integers. The target morphism 𝑡 ℓ : 𝐴 𝑛 → 𝐴 ℓ is linear, so it commutes with ★ 𝑘 . For all ★ ℓ -composable pairs (𝑎, 𝑎 ′ ) and (𝑏, 𝑏 ′ ) of 𝐴 𝑛 such that (𝑎, 𝑏) and (𝑎 ′ , 𝑏 ′ ) are ★ 𝑘 -composable, we calculate

(𝑎 ★ ℓ 𝑎 ′ ) ★ 𝑘 (𝑏 ★ ℓ 𝑏 ′ ) = (𝑎 -𝑡 ℓ (𝑎) + 𝑎 ′ ) ★ 𝑘 (𝑏 -𝑡 ℓ (𝑏) + 𝑏 ′ ) = 𝑎 ★ 𝑘 𝑏 -𝑡 ℓ (𝑎) ★ 𝑘 𝑡 ℓ (𝑏) + 𝑎 ′ ★ 𝑘 𝑏 ′ = 𝑎 ★ 𝑘 𝑏 -𝑡 ℓ (𝑎 ★ 𝑘 𝑏) + 𝑎 ′ ★ 𝑘 𝑏 ′ = (𝑎 ★ 𝑘 𝑏) ★ ℓ (𝑎 ′ ★ 𝑘 𝑏 ′ ).
Thus the ★ 𝑘 -compositions satisfy exchange relations. To show that 𝐴 is an 𝜔-operad, it suffices to show that the ★ 𝑘 -compositions are morphisms of operads. 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 is equipped with an operad structure given by the multiplication

(𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) • (𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) (𝜋 1 •𝜋 1 )★ 𝑘 (𝜋 2 •𝜋 2 ) --------------→ (𝐴 𝑛 • 𝐴 𝑛 ) ★ 𝑘 (𝐴 𝑛 • 𝐴 𝑛 ) 𝜇 𝑘 ★ 𝑘 𝜇 𝑘 ------→ 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ,
where 𝜋 1 , 𝜋 2 are the projections of the fiber product 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 . Therefore it suffices to check the exchange relation (2.3.4):

(𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) • (𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) (𝜋 1 • 𝜋 1 ) ★ 𝑘 (𝜋 2 • 𝜋 2 ) / / 𝜇 𝑛 ((1 ★ 𝑘 1) • (1 ★ 𝑘 1)) ) ) (𝐴 𝑛 • 𝐴 𝑛 ) ★ 𝑘 (𝐴 𝑛 • 𝐴 𝑛 ) 𝜇 𝑛 (1 • 1) ★ 𝑘 𝜇 𝑛 (1 • 1) u u 𝐴 𝑛 Writing 𝜇 𝑛 = 𝜇 𝑛 𝜑 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 𝜎 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 = ∑︁ 𝑝 (𝜇 ⊙ 𝑛 ) ⊙𝑝 𝜎 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ,
we get the diagram

(𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) • (𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) (𝜋 1 • 𝜋 1 ) ★ 𝑘 (𝜋 2 • 𝜋 2 ) / / 𝜎 𝐴 𝑛 ★ 𝑘 𝐴 𝑛 (𝐴 𝑛 • 𝐴 𝑛 ) ★ 𝑘 (𝐴 𝑛 • 𝐴 𝑛 ) 𝜎 𝐴 𝑛 ★ 𝑘 𝜎 𝐴 𝑛 (𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) ⊙ (𝐴 𝑛 ★ 𝑘 𝐴 𝑛 ) ⊙𝑝 (𝜋 1 ⊙ 𝜋 ⊙𝑝 1 ) ★ 𝑘 (𝜋 2 ⊙ 𝜋 ⊙𝑝 2 ) / / 𝜇 ⊙ 𝑛 ((1 ★ 𝑘 1) ⊙ (1 ★ 𝑘 1) ⊙𝑝 ) * * 𝐴 𝑛 ⊙ 𝐴 ⊙𝑝 𝑛 ★ 𝑘 𝐴 𝑛 ⊙ 𝐴 ⊙𝑝 𝑛 𝜇 ⊙ 𝑛 (1 ⊙ 1 ⊙𝑝 ) ★ 𝑘 𝜇 ⊙ 𝑛 (1 ⊙ 1 ⊙𝑝 ) t t 𝐴 𝑛
The upper square commutes by naturality of 𝜎. To show that the lower triangle commutes, it suffices to show that, for all ★ 𝑘 -composable pairs (𝑎, 𝑎 ′ ) and (𝑏, 𝑏 ′ ) of 𝐴 𝑛 and all elementary compositions • 𝑖,𝜏 such that 𝑎 • 𝑖,𝜏 𝑏 and 𝑎 ′ • 𝑖,𝜏 𝑏 ′ are well defined,

(𝑎 ★ 𝑘 𝑎 ′ ) • 𝑖,𝜏 (𝑏 ★ 𝑘 𝑏 ′ ) = (𝑎 • 𝑖,𝜏 𝑏) ★ 𝑘 (𝑎 ′ • 𝑖,𝜏 𝑏 ′ ).
Write • for • 𝑖,𝜏 . Let us begin with the case 𝑘 = 0. By definition of ★ 𝑘 -composition and bidistributivity of • 𝑖,𝜏 , we have

(𝑎 + 𝑎 ′ -𝑡 0 (𝑎)) • (𝑏 + 𝑏 ′ -𝑡 0 (𝑏)) = 𝑎 • 𝑏 + 𝑎 • 𝑏 ′ + 𝑎 ′ • 𝑏 + 𝑎 ′ • 𝑏 ′ -𝑡 0 (𝑎) • 𝑏 -𝑡 0 (𝑎) • 𝑏 ′ -𝑎 • 𝑡 0 (𝑏) -𝑎 ′ • 𝑡 0 (𝑏) + 𝑡 0 (𝑎) • 𝑡 0 (𝑏)
By applying (2.4.9) to 𝑎 • 𝑏 ′ and 𝑎 ′ • 𝑏, we get

𝑎 • 𝑏 ′ = 𝑡 0 (𝑎) • 𝑏 ′ + 𝑎 • 𝑠 0 (𝑏 ′ ) -𝑡 0 (𝑎) • 𝑠 0 (𝑏 ′ ), 𝑎 ′ • 𝑏 = 𝑠 0 (𝑎 ′ ) • 𝑏 + 𝑎 ′ • 𝑡 0 (𝑏) -𝑠 0 (𝑎 ′ ) • 𝑡 0 (𝑏).
Since 𝑡 0 (𝑎) = 𝑠 0 (𝑎 ′ ) and 𝑡 0 (𝑏) = 𝑠 0 (𝑏 ′ ), we conclude that

(𝑎 + 𝑎 ′ -𝑡 0 (𝑎)) • (𝑏 + 𝑏 ′ -𝑡 0 (𝑏)) = 𝑎 • 𝑏 + 𝑎 ′ • 𝑏 ′ -𝑡 0 (𝑎) • 𝑡 0 (𝑏) = (𝑎 • 𝑏) ★ 0 (𝑎 ′ • 𝑏).
Now, let 𝑘 ⩾ 1. In this case, 𝑛 ⩾ 2, so by globularity, 𝑡 0 (𝑎) = 𝑡 0 (𝑎 ′ ) and 𝑠 0 (𝑏) = 𝑠 0 (𝑏 ′ ). Write 𝑐 := 𝑡 0 (𝑎) = 𝑡 0 (𝑎 ′ ) and 𝑑 := 𝑠 0 (𝑏) = 𝑠 0 (𝑏 ′ ) . Using the exchange relations between ⊙ and ★ 0 , and between ★ 0 and ★ 𝑘 , we get

(𝑎 • 𝑏) ★ 𝑘 (𝑎 ′ • 𝑏 ′ ) = ((𝑎 ★ 0 𝑐) • (𝑑 ★ 0 𝑏)) ★ 𝑘 ((𝑎 ′ ★ 0 𝑐) • (𝑑 ★ 0 𝑏 ′ )) = ((𝑎 • 𝑑) ★ 0 (𝑐 • 𝑏)) ★ 𝑘 ((𝑎 ′ • 𝑑) ★ 0 (𝑐 • 𝑏 ′ )) = ((𝑎 • 𝑑) ★ 𝑘 (𝑎 ′ • 𝑑)) ★ 0 ((𝑐 • 𝑏) ★ 𝑘 (𝑐 • 𝑏 ′ )).
By definition of ★ 𝑘 and by bidistributivity of • 𝑖,𝜏 , we get

(𝑎 • 𝑑) ★ 𝑘 (𝑎 ′ • 𝑑) = 𝑎 • 𝑑 + 𝑎 ′ • 𝑑 -𝑡 𝑘 (𝑎) • 𝑑 = (𝑎 ★ 𝑘 𝑎 ′ ) • 𝑑, (𝑐 • 𝑏) ★ 𝑘 (𝑐 • 𝑏 ′ ) = 𝑐 • 𝑏 + 𝑐 • 𝑏 ′ -𝑐 • 𝑡 𝑘 (𝑏) = 𝑐 • (𝑏 ★ 𝑘 𝑏 ′ ). Thus (𝑎 • 𝑏) ★ 𝑘 (𝑎 ′ • 𝑏 ′ ) = ((𝑎 ★ 𝑘 𝑎 ′ ) • 𝑑) ★ 0 (𝑐 • (𝑏 ★ 𝑘 𝑏 ′ )) = (𝑎 ★ 𝑘 𝑎 ′ ) • (𝑏 ★ 𝑘 𝑏 ′ ).
Thus the exchange relation is satisfied, and we conclude that 𝐴 is an 𝜔-operad. □

Shuffle operadic polygraphs

In this section we introduce the notion of a shuffle polygraph that defines systems of generators and oriented relations for higher shuffle operads.

Shuffle polygraphs

The structure of polygraph was introduced independently by Street and Burroni as a system of generators for free higher categories [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF][START_REF] Street | Limits indexed by category-valued 2-functors[END_REF]. This subsection introduces a version of this structure for higher shuffle operads.

3.1.1. Cellular extensions. For 𝑛 ⩾ 0, a cellular extension of a shuffle 𝑛-operad 𝑃 is an indexed set 𝑋 equipped with two morphisms

𝑃 𝑛 𝑋 𝑠 𝑛 o o 𝑡 𝑛 o o
in Ind satisfying the globular relations 𝑠 𝑛-1 𝑠 𝑛 = 𝑠 𝑛-1 𝑡 𝑛 and 𝑡 𝑛-1 𝑠 𝑛 = 𝑡 𝑛-1 𝑡 𝑛 , for 𝑛 ⩾ 1, and whose elements are called (𝑛 +1)-generators. Note that every 𝑛-operad 𝑃 has two canonical cellular extensions: the empty one, and the one denoted by Sph(𝑃 𝑛 ) that consists of a (𝑛 + 1)-generator 𝑎 → 𝑏 for every 𝑛-sphere (𝑎, 𝑏) of 𝑃.

3.1.2. Extended higher operads. For 𝑛 ⩾ 0, the category of extended 𝑛-operads ШOp + 𝑛 is defined by the following pullback of forgetful functors

ШOp + 𝑛 / / Glob 𝑛+1 (Ind) V 𝑛 ШOp 𝑛 U Ш 𝑛 / / Glob 𝑛 (Ind)
where the functor U 𝑛 forgets the shuffle composition, and the functor V 𝑛 forgets the (𝑛 + 1)-cells. Explicitly, an extended shuffle 𝑛-operad is a pair (𝑃, 𝑋 ) where 𝑃 is an 𝑛-operad and 𝑋 a cellular extension of 𝑃 𝑛 . A morphism of extended 𝑛-operads (𝑃, 𝑋 ) → (𝑃 ′ , 𝑋 ′ ) is a morphism of shuffle 𝑛-operads 𝑓 : 𝑀 → 𝑀 ′ and a morphism 𝑔 : 𝑋 → 𝑋 ′ in Ind such that the two following square diagrams commute in Ind:

𝑃 𝑛 𝑓 𝑛 𝑋 𝑔 𝑠 𝑛 o o 𝑡 𝑛 o o 𝑃 ′ 𝑛 𝑋 ′ 𝑠 𝑛 o o 𝑡 𝑛 o o 3.1.3. Proposition.
Let 𝑃 be a shuffle (𝑛 -1)-operad and 𝑋 be a cellular extension of 𝑃. Let 𝑋 Ш denote the coequalizer of the two morphisms

(𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1 ) ⊙ (𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1 ) 𝜇 ↑ 𝑃 0 ⟨𝑋 ⟩⊕𝑃 𝑛-1 / / 𝜇 ↓ 𝑃 0 ⟨𝑋 ⟩⊕𝑃 𝑛-1 / / 𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1
in the category Bimod(𝑃), where the morphisms are defined relative to the pair (𝑃 0 , 𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1 ). Then (𝑃, 𝑋 Ш ) is the free shuffle 𝑛-operad on (𝑃, 𝑋 ).

Proof. We will progressively enrich the cellular extension 𝑋 with more and more structure in order to get a reflexive globular bimodule satisfying the linear exchange relation Finally, denote by RGlob ⊙ 𝑃 (Bimod(𝑃 0 )) the full subcategory of RGlob 𝑃 (Bimod(𝑃 0 )) whose objects satisfy the linear exchange relation (2.4.3).

Following Theorem 2.4.8, given an extended (𝑛 -1)-operad (𝑃, 𝑋 ), in order to construct the free 𝑛-operad, it suffices to construct the free object on (𝑃, 𝑋 ) ∈ Glob 𝑃 (Ind) in RGlob ⊙ 𝑃 (Bimod(𝑃 0 )). Therefore, it suffices to construct the sequence of free functors

Glob 𝑃 (Ind) → Glob 𝑃 (Bimod(𝑃 0 )) → RGlob 𝑃 (Bimod(𝑃 0 )) → RGlob ⊙ 𝑃 (Bimod(𝑃 0 )).

Shuffle polygraphs

-Let (𝑃, 𝑋 ) be and extended (𝑛 -1)-operad. The first free functor is induced by the free functors Ind → Coll → Bimod(𝑃 0 ), so it sends 𝑋 to 𝑃 0 ⟨𝑋 ⟩.

-Let (𝑃, 𝑋 ) be an object of Glob 𝑃 (Bimod(𝑃 0 )). Since 𝑃 is already a reflexive (𝑛 -1)-globular object, the second free functor is induced by the free functor Bimod(𝑃 0 ) → 𝑃 𝑛-1 /Bimod(𝑃 0 ), so it sends 𝑋 to 𝑋 ⊕ 𝑃 𝑛-1 .

-Let (𝑃, 𝑋 ) be an object of RGlob 𝑃 (Bimod(𝑃 0 )). The third free functor sends 𝑋 to the coequalizer of

𝑋 ⊙ 𝑋 𝜇 ↑ 𝑋 / / 𝜇 ↓ 𝑋 / / 𝑋
where the morphisms are defined relative to the pair (𝑃 0 , 𝑋 ).

By composing these functors, we get

𝑋 Ш := coeq 𝜇 ↑ 𝑃 0 ⟨𝑋 ⟩⊕𝑃 𝑛-1 , 𝜇 ↓ 𝑃 0 ⟨𝑋 ⟩⊕𝑃 𝑛-1 : (𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1 ) ⊙ (𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1 ) ⇒ 𝑃 0 ⟨𝑋 ⟩ ⊕ 𝑃 𝑛-1
and we conclude that (𝑃, 𝑋 Ш ) is the free 𝑛-operad on (𝑃, 𝑋 ). □ 3.1.4. Free shuffle 𝒏-operad. For 𝑛 ⩾ 1, the forgetful functor W Ш 𝑛 : ШOp 𝑛 → ШOp + 𝑛-1 that forgets the composition of 𝑛-cells admits a left adjoint

L Ш 𝑛 : ШOp + 𝑛-1 → ШOp 𝑛 (3.1.5)
that associates to an extended (𝑛 -1)-operad (𝑃, 𝑋 ) the free 𝑛-operad over (𝑃, 𝑋 ) given by L Ш 𝑛 (𝑃, 𝑋 ) = (𝑃, 𝑋 Ш ). In the sequel, the 𝑛-operad (𝑃, 𝑋 Ш ) will be denoted by 𝑃 [𝑋 ], and its 𝑘-source and 𝑘-target maps will be denoted by 𝑠 𝑘 and 𝑡 𝑘 respectively.

3.1.6. Shuffle polygraphs. We define the category ШPol 𝑛 of 𝑛-polygraphs and the free functor

F 𝑛 : ШPol 𝑛 → ШOp 𝑛 ,
by induction on 𝑛 ⩾ 0. For 𝑛 = 0, we define ШPol 0 as the category Ind. The free 0-monoid functor

F 0 : ШPol 0 → ШOp 0
is the composite of free functors (2.1.4). We suppose that for 𝑛 ⩾ 1 the category ШPol 𝑛-1 of (𝑛 -1)polygraphs is defined and that the free (𝑛 -1)-operad functor

F 𝑛-1 : ШPol 𝑛-1 → ШOp 𝑛-1
is constructed. The category ШPol 𝑛 of 𝑛-polygraphs is defined as the following pullback in Cat

ШPol 𝑛 U 𝑛-1 / / V 𝑛-1 ШOp + 𝑛-1 W Ш 𝑛 ШPol 𝑛-1 F 𝑛-1 / / ШOp 𝑛-1 (3.1.7)
where the vertical functor on the right forgets the cellular extension of an extended monoid. The free symmetric 𝑛-operad functor is defined as the composite

ШPol 𝑛 U 𝑛-1 / / ШOp + 𝑛-1 L Ш 𝑛 / / ШOp 𝑛 ,
where U 𝑛-1 is the functor defined by the pullback (3.1.7) and L Ш 𝑛 is the free functor defined in (3.1.5). The category ШPol 𝜔 of 𝜔-polygraphs and the free 𝜔-operad functor F 𝜔 : ШPol 𝜔 → ШOp 𝜔 are defined as the limit of the functors:

• • • → ШPol 𝑛 V 𝑛-1 -→ ШPol 𝑛-1 → • • • → ШPol 1 V 0 -→ ШPol 0 ,
in the category of categories, where the functors V 𝑛-1 are defined by (3.1.7).

In this way, an 𝑛-polygraph 𝑋 is defined inductively as a data (𝑋 0 , . . . , 𝑋 𝑛 ), where 𝑋 0 is an indexed set and for every 0 < 𝑘 < 𝑛, 𝑋 𝑘 is a cellular extension of the free (𝑘 -1)-operad generated by (𝑋 0 , . . . , 𝑋 𝑘 -1 ), denoted by

𝑋 Ш 𝑘 = 𝑋 Ш 0 [𝑋 1 ] • • • [𝑋 𝑘 ].
For 0 ⩽ 𝑝 < 𝑛, we will denote by 𝑋 ⩽𝑝 the underlying 𝑝-polygraph (𝑋 0 , . . . , 𝑋 𝑝 ). of pairwise distinct 𝑛-monomials 𝑎 1 , . . . , 𝑎 𝑝 and of an identity 𝑛-cell 1 𝑐 of 𝑋 Ш , and this decomposition is unique up to the linear exchange relation (2.4.3). The size of an 𝑛-cell 𝑎 of 𝑋 Ш is the minimal number of 𝑛-monomials of 𝑋 Ш required to write 𝑎 as in (3.1.9).

3.1.10. Graded shuffle polygraps. In order to define in Section 5 minimality and Koszulness properties with respect to a polygraphic resolution, we introduce the notion of a graded shuffle 𝜔-polygraph.

Just as we defined shuffle operads as internal monoids in the presheaf category Vect Ord 𝑜 in Section 2.1, we define graded shuffle operads as internal monoids in the presheaf category grVect Ord 𝑜 . For 𝑛 ∈ N ∪ {𝜔 }, a graded shuffle 𝑛-operad is an 𝑛-category in grШOp, and we denote by grШOp 𝑛 the corresponding category with internal 𝑛-functors as morphisms. In particular, the source, target and composition morphisms of graded shuffle 𝑛-operad are graded.

The category grШOp + 𝑛 of graded extended 𝑛-operads is defined similarly to ШOp + 𝑛 : its objects are pairs (𝑃, 𝑋 ), where 𝑃 is a graded 𝑛-operad, and 𝑋 is a graded cellular extension of 𝐴, meaning that 𝑋 = ⨿ 𝑖 ⩾0 𝑋 (𝑖 ) and that the source and target of each 𝑥 in 𝑋 (𝑖 ) are homogeneous of degree 𝑖. In that case, the free (𝑛 + 1)-operad 𝑃 [𝑋 ], defined as in the nongraded case, is also graded.

A graded 𝜔-polygraph is an 𝜔-polygraph 𝑋 such that each set 𝑋 𝑛 is graded, for 𝑛 ⩾ 0. This notion restricts to 𝑛-polygraphs, and a 1-polygraph 𝑋 is called quadratic if 𝑋 0 is concentrated in degree 1 and 𝑋 1 is concentrated in degree 2. We say that a graded 𝜔-polygraph 𝑋 is concentrated on the superdiagonal if each graded set 𝑋 𝑛 , for 𝑛 ⩾ 0, is concentrated in degree 𝑛 + 1. In that case, because the source and target maps are graded, for 𝑛 ⩾ 1, the source and target of every 𝑛-cell of 𝑋 Ш are homogeneous (𝑛 -1)-cells of 𝑋 Ш of degree 𝑛 + 1.

Shuffle polygraphic resolutions

In this subsection we introduce the notion of a polygraphic resolution for shuffle operads.

3.2.1. Presentation of a shuffle operad. The shuffle operad presented by a shuffle 1-polygraph 𝑋 is the coequalizer in the category ШOp of the following source and target morphisms, denoted by 𝑋 ,

𝑋 Ш 1 𝑠 0 / / 𝑡 0 / / 𝑋 Ш 0 𝜋 𝑋 / / 𝑋 . (3.2.2) 
Following Proposition (2.3.7), the category ШOp preserves reflexive coequalizers and so the construction is well defined. We say that a shuffle operad 𝑃 is presented by a polygraph 𝑋 , or that 𝑋 is a presentation of 𝑃, if 𝑃 is isomorphic to 𝑋 in the category ШOp. 3. Shuffle operadic polygraphs 3.2.5. Tietze equivalence of 𝝎-polygraphs. We define the notion of a weak-equivalence of 𝜔-operads as for 𝜔-categories, defined in [START_REF] Lafont | A folk model structure on omega-cat[END_REF]. For 𝑛 ⩾ 0, two 𝑛-cells 𝑎, 𝑏 of an 𝜔-operad 𝑃 are 𝜔-equivalent if there exists an (𝑛 + 1)-cell 𝑓 : 𝑎 → 𝑏 in 𝑃. In that case, we write 𝑎 ∼ 𝜔 𝑏. A morphism of 𝜔-operads 𝐹 : 𝑃 → 𝑄 is a weak equivalence if it satisfies the following properties: i) For every 0-cell 𝑎 of 𝑄, there exists a 0-cell 𝑎 in 𝑃 such that 𝐹 ( 𝑎) ∼ 𝜔 𝑎.

ii) For every pair of 0-cells 𝑎, 𝑏 of 𝑃 and every 1-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑄, there exists a 1-cell

𝑓 : 𝑎 → 𝑏 of 𝑃 such that 𝐹 ( 𝑓 ) ∼ 𝜔 𝑓 .
iii) For 𝑛 ⩾ 1 and every pair of parallel 𝑛-cells 𝑎, 𝑏 of 𝑃 and every (𝑛 + 1)-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑄, there exists an (𝑛 + 1)-cell 𝑓 : 𝑎 → 𝑏 of 𝑃 such that 𝐹 ( 𝑓 ) ∼ 𝜔 𝑓 .

We say that two shuffle 𝜔-polygraphs 𝑋 and 𝑌 are Tietze equivalent if the induced free 𝜔-operads 𝑋 Ш and 𝑌 Ш are weakly equivalent. The original notion of Tietze equivalence for 1-polygraphs is a particular case of this notion for 𝜔-polygraphs. Two 1-polygraphs 𝑋 and 𝑌 are Tietze equivalent if the presented shuffle operads 𝑋 and 𝑌 are isomorphic. In that case, extending 𝑋 and 𝑌 into 𝜔-polygraphs with identities in higher dimensions gives two Tietze equivalent 𝜔-polygraphs. Tietze equivalence also generalizes the notion of Tietze equivalence between (3, 1)-polygraphs introduced in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF].

3.2.6. Proposition. Let 𝑋 and 𝑌 be two acyclic 𝜔-polygraphs. Then the presented shuffle operads 𝑋 and 𝑌 are isomorphic if, and only if, the polygraphs 𝑋 and 𝑌 are Tietze equivalent.

Proof. (⇒) Denote by 𝜑 : 𝑋 → 𝑌 the isomorphism. We define a morphism of 𝜔-operads 𝐹 : 𝑋 Ш → 𝑌 Ш such that 𝜋 𝑌 𝐹 = 𝜑𝜋 𝑋 on 0-cells and show that it is a weak equivalence simultaneously. Since 𝑋 Ш is a free 𝜔-operad, it suffices to define 𝐹 on the 𝑛-generators of 𝑋 for all 𝑛 ⩾ 0. We proceed by induction on 𝑛 ⩾ 0.

For 𝑛 = 0, define linear maps 𝑖 𝑋 : 𝑋 → 𝑋 Ш and 𝑖 𝑌 : 𝑌 → 𝑌 Ш , which are sections of 𝜋 𝑋 and 𝜋 𝑌 , respectively. For 𝑥 ∈ 𝑋 0 , we set 𝐹 (𝑥 0 ) := 𝑖 𝑌 (𝜑 (𝜋 𝑋 (𝑥 0 ))), and we check that 𝜋 𝑌 𝐹 = 𝜑𝜋 𝑋 on 0-cells. Now, for a 0-cell 𝑎 of 𝑌 Ш , let â := 𝜑 -1 𝑖 𝑌 (𝑎) ∈ 𝑋 Ш . Then 𝜋 𝑌 (𝐹 ( â)) = 𝜋 𝑌 (𝑎), so 𝐹 ( â) ∼ 𝜔 𝑎.

For 𝑛 = 1, for 𝛼 : 𝑎 → 𝑏 a 1-generator of 𝑋 , 𝜋 𝑌 (𝐹 (𝑎)) = 𝜋 𝑌 (𝐹 (𝑏)), so there exists a 1-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) in 𝑌 Ш . We set 𝐹 (𝛼) := 𝑓 . Then, for every pair of 0-cells 𝑎, 𝑏 of 𝑋 Ш and every 1cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) of 𝑌 Ш , 𝜋 𝑌 (𝐹 (𝑎)) = 𝜋 𝑌 (𝐹 (𝑏)), which is equivalent to 𝜋 𝑋 (𝑎) = 𝜋 𝑋 (𝑏) via the isomorphism 𝜑. Therefore there exists f : 𝑎 → 𝑏 in 𝑋 Ш , and 𝐹 ( f

) : 𝐹 (𝑎) → 𝐹 (𝑏) is parallel to 𝑓 . Since 𝑌 is acyclic, 𝐹 ( f ) ∼ 𝜔 𝑓 .
Let 𝑛 ⩾ 1 and suppose that 𝐹 is defined on 𝑛-cells of 𝑋 Ш . For 𝛼 : 𝑎 → 𝑏 an (𝑛 + 1)-generator of 𝑋 , the 𝑛-cells 𝑎 and 𝑏 of 𝑋 Ш are parallel, so the 𝑛-cells 𝐹 (𝑎) and 𝐹 (𝑏) of 𝑌 Ш are parallel. By acyclicity of 𝑌 , there exists an (𝑛 + 1)-cell 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) in 𝑌 Ш , so we set 𝐹 (𝛼) := 𝑓 . Now, let 𝑎, 𝑏 be two parallel 𝑛-cells of 𝑋 Ш and 𝑓 : 𝐹 (𝑎) → 𝐹 (𝑏) an (𝑛 + 1)-cell of 𝑌 Ш . By acyclicity of 𝑋 , there exists an (𝑛 + 1)-cell f : 𝑎 → 𝑏, so 𝐹 ( f ) and 𝑓 are parallel in 𝑌 Ш , so by acyclicity of 𝑌 we have 𝐹 ( f ) ∼ 𝜔 𝑓 .

We conclude that 𝐹 : 𝑋 Ш → 𝑌 Ш is a weak equivalence, so 𝑋 and 𝑌 are Tietze equivalent.

(⇐) Let 𝐹 : 𝑋 Ш → 𝑌 Ш be a weak equivalence. By condition i), 𝜋 𝑌 𝐹 : 𝑋 Ш → 𝑌 is surjective. Moreover, if 𝑎 ∼ 𝜔 𝑏 in 𝑋 Ш , then 𝜋 𝑌 𝐹 (𝑎) = 𝜋 𝑌 𝐹 (𝑏), so 𝐹 induces a morphism of 𝜔-operads 𝐹 : 𝑋 → 𝑌 . By condition ii), 𝐹 is injective. Thus 𝐹 is an isomorphism between 𝑋 and 𝑌 . □ 4. Shuffle operadic rewriting 3.2.7. Reduced polygraphs. Let 𝑋 be a left-monomial 1-polygraph. Recall from [START_REF] Ara | Polygraphs: from Rewriting to Higher Categories[END_REF] that a 1-generator 𝛼 ∈ 𝑋 1 is right (resp. left) reduced if 𝑡 0 (𝛼) ∈ Red(𝑋 1 ) (resp. 𝑠 0 (𝛼) ∈ Red(𝑋 1 \ {𝛼 })). We say that 𝑋 is reduced when each of its 1-generators is left and right reduced. We prove that every (finite) convergent left-monomial 1-polygraph is Tietze-equivalent to a reduced (finite) convergent left-monomial 1-polygraph.

Shuffle operadic rewriting

The first part of this section presents the main rewriting properties of shuffle 1-polygraphs. We relate the notion of a convergent shuffle polygraph, whose 1-generators are oriented with respect to a given monomial order, with the notion of Gröbner bases introduced in [19], and with the notion of Poincaré-Birkhoff-Witt bases introduced in [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF]. Throughout this section, all operads and polygraphs are shuffle.

Rewriting in shuffle operads

We introduce a concept of rewriting in the context of shuffle operads. 4.1.2. One-hole contexts of indexed sets. A one-hole context of an indexed set 𝑋 0 is an element Γ of the free 𝑋 Ш 0 -bimodule 𝑋 Ш 0 ⟨□⟩. We say that Γ is of inner arity 𝑘 if it is an element of 𝑋 Ш 0 ⟨□(𝑘)⟩. Let 𝐴 be an 𝑋 Ш 0 -bimodule and 𝑎 ∈ 𝐴(𝑘). Identifying 𝐴(𝑘) with Hom Set (□(𝑘), 𝐴(𝑘)), 𝑎 induces a morphism

𝜑 𝑎 : 𝑋 Ш 0 ⟨□(𝑘)⟩ → 𝑋 Ш 0 ⟨𝐴(𝑘)⟩.
via the the functor 𝑋 Ш 0 ⟨𝜄 𝑘 ⟩ : Set → Bimod(𝑋 Ш 0 ). For Γ a one-hole context of 𝑋 * Ш 0 of inner arity 𝑘, we write Γ[𝑎] := 𝜑 𝑎 (Γ). Explicitly, Γ [𝑎] is a tree of the form

𝑢 𝑣 1 • • • 𝑎 𝑤 1 • • • 𝑤 𝑘 • • • 𝑣 𝑛 𝑖
where 𝑘, 𝑛 ⩾ 1, 𝑖 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝑋 Ш 0 (𝑛), 𝑣 1 , . . . , v𝑖 , . . . , 𝑣 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘 ∈ 𝑋 Ш 0 and □ 𝑘 appears in the 𝑖 th position. The notation v𝑖 means that we omit 𝑣 𝑖 . In this way, every one-hole context Γ on 𝑋 0 can be written

Γ := 𝑤 • 𝑖,𝜏 (□ 𝑘 | ì 𝑤) with 𝑤, ì 𝑤 ∈ 𝑋 Ш 0 .
In this work, we will only consider monomial one-hole contexts, that is when 𝑤, ì 𝑤 are monomials of 𝑋 * Ш 0 , so we will omit the word monomial.

4.1.3. Two-hole contexts of indexed sets. Let 𝑋 0 be an indexed set. There exists a bifunctor 𝐶 𝑋 0 2 : Ind × Ind → Ind which sends a pair of indexed sets 𝑌 , 𝑌 ′ to the indexed set of elements of (𝑋 0 ⊔ 𝑌 ⊔ 𝑌 ′ ) * Ш with one occurrence of both 𝑌 and 𝑌 ′ . A two-hole context of 𝑋 * Ш 0 is an element Γ of 𝐶 𝑋 0 2 (□, □). We say that Γ is of inner arities (𝑘, ℓ) if it is an element of 𝐶 𝑋 0 2 (□(𝑘), □(ℓ)). Let 𝑃 be an operad equipped with a morphism 𝜋 : 𝑋 Ш 0 → 𝑃, and 𝑎 ∈ 𝑃 (𝑘), 𝑎 ′ ∈ 𝑃 (ℓ). Identifying

𝑃 (𝑘) × 𝑃 (ℓ) ≃ Hom Set (□(𝑘), 𝑃 (𝑘)) × Hom Set (□(ℓ), 𝑃 (ℓ)) ≃ Hom Set×Set ((□(𝑘), □(ℓ)), (𝑃 (𝑘), 𝑃 (ℓ))),
the pair (𝑎, 𝑎 ′ ) induces a morphism

𝜑 𝑎,𝑎 ′ : 𝐶 𝑋 0 2 (□(𝑘), □(ℓ)) → 𝐶 𝑋 0 2 (𝑃 (𝑘), 𝑃 (ℓ))
via the bifunctor 𝐶 𝑋 0 2 (𝜄 𝑘 , 𝜄 ℓ ) : Set × Set → Ind. Moreover, 𝑓 induces a morphism 𝜋 * : 𝐶 𝑋 0 2 (𝑃 (𝑘), 𝑃 (ℓ)) → 𝑃. For Γ a two-hole context of 𝑋 * Ш 0 of inner arities (𝑘, ℓ), we write Γ(𝑎, 𝑎 ′ ) := 𝑖 * 𝜑 𝑎,𝑎 ′ (Γ). Explicitly, Γ(𝑎, 𝑎 ′ ) is a tree of one of the following two forms, where the application of 𝑖 is implicit:

i) 𝑢 𝑣 1 • • • 𝑎 𝑤 1 • • • 𝑤 𝑘 • • • 𝑎 ′ 𝑤 ′ 1 • • • 𝑤 ′ ℓ • • • 𝑣 𝑛 𝑖 𝑗
where 𝑛 ⩾ 2, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑢 ∈ 𝑋 Ш 0 (𝑛), and 𝑣 1 , . . . , v𝑖 , . . . , v 𝑗 , . . . , 𝑣 𝑛 , 𝑤 1 , . . . , 𝑤 𝑘 , 𝑤 ′ 1 , . . . , 

𝑤 ′ ℓ ∈ 𝑋 Ш 0 , ii) 𝑢 𝑣 1 • • • 𝑎 𝑥 1 • • • 𝑥 ℎ 𝑥 ′ 1 • • • 𝑎 ′ 𝑤 1 • • • 𝑤 ℓ • • • 𝑥 ′ 𝑚 • • • 𝑥 𝑘 • • • 𝑣 𝑛 𝑖 𝑗

Rewriting in shuffle operads

In this work, we will only consider monomial two-hole contexts, that is, when in i) and ii) the 𝑢, ì 𝑣, ì 𝑥, ì 𝑥 ′ , ì 𝑤, ì 𝑤 ′ are monomials of 𝑋 * Ш 0 .

4.1.4. Left-monomiality and homogeneity. A cellular extension 𝑋 1 of 𝑋 Ш 0 is left-monomial if, for every 1-generator 𝛼 in 𝑋 1 the source 𝑠 0 (𝛼) is a non-trivial 0-monomial, and 𝑠 0 (𝛼) ∉ Supp(𝑡 0 (𝛼)). A 1-polygraph is left-monomial if 𝑋 1 is so. We prove that every 1-polygraph is Tietze equivalent to a left-monomial one. For 𝑁 ⩾ 1, a cellular extension 𝑋 1 of 𝑋 Ш 0 is homogeneous if, for every 1-generator 𝛼 in 𝑋 1 the weight of 𝑠 0 (𝛼) and 𝑡 0 (𝛼) are equal to 𝑁 . A 1-polygraph is 𝑁 -homogeneous if 𝑋 1 is so. When 𝑁 = 2 we say quadratic for 𝑁 -homogeneous.

4.1.5. Rewriting step. A rewriting step of a left-monomial 1-polygraph 𝑋 is a 1-cell 𝑓 of 𝑋 Ш 1 of size 1 of the form 𝑓 = 𝜆𝑔 + 1 𝑐 ,
where 𝜆 ∈ k \ {0}, 𝑔 is a 1-monomial of 𝑋 Ш 1 , and 𝑐 is a 0-cell of 𝑋 Ш 0 such that the 0-monomial 𝑠 0 (𝑢) ∉ Supp(𝑐). A 1-cell of 𝑋 Ш 1 if positive if it is the ★ 0 -composition of rewriting steps. A 0-cell 𝑎 of 𝑋 Ш 0 is reduced if there is no rewriting step with source 𝑎. We denote by Red(𝑋 ) the indexed submodule of reduced 0-cells. The indexed set Red 𝑚 (𝑋 ) of reduced 0-monomials of 𝑋 Ш 0 forms a basis of Red(𝑋 ). A normal form of 𝑎 is a reduced 0-cell 𝑏 such that there is a positive 1-cell with source 𝑎 and target 𝑏.

4.1.6. Monomial orders and termination. An indexed poset (𝐴, ≺) is an indexed set 𝐴, such that each 𝐴(𝑘) is equipped with a partial order ≺ 𝑘 ; we will omit the index on ≺. An indexed poset (𝐴, ≺) is well-founded if each 𝐴(𝑘) is a well-founded poset.

Let 𝑋 0 be an indexed set. An order relation ≺ on the free monoid 𝑋 * Ш 0 of tree monomials is stable by product if, for all 𝑢, 𝑢 ′ ∈ 𝑋 * Ш 0 (𝑘), 𝑣, 𝑣 ′ ∈ 𝑋 * Ш 0 (ℓ), 𝑖 ∈ {1, . . . , 𝑘 }, and 𝜏 ∈ Ш(ℓ -1, 𝑘 -𝑖), 𝑢 ≺ 𝑢 ′ , 𝑣 ≺ 𝑣 ′ implies 𝑢 • 𝑖,𝜏 𝑣 ≺ 𝑢 ′ • 𝑖,𝜏 𝑣 ′ . A total order relation stable by product is called a monomial order on 𝑋 * Ш 0 . Note that this notion also appears in [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] and [19].

For 𝑌 a left-monomial cellular extension of 𝑋 Ш 0 , an order relation ≺ on 𝑋 * Ш 0 is compatible with 𝑌 if, for every 1-cell 𝛼 : 𝑢 → 𝑎 of 𝑌 and every monomial 𝑣 ∈ Supp(𝑎), 𝑣 ≺ 𝑢. The relation ≺ can be extended to the free shuffle operad 𝑋 Ш 0 as follows: for two 0-cells 𝑎, 𝑏 of 𝑋 Ш 0 , we have 𝑏 ≺ 𝑎 if the two following conditions are satisfied i) Supp(𝑎) \ Supp(𝑏) ≠ ∅, ii) for all 𝑣 ∈ Supp(𝑏) \ Supp(𝑎), there exists 𝑢 ∈ Supp(𝑎) \ Supp(𝑏) such that 𝑣 ≺ 𝑢.

For a left-monomial 1-polygraph 𝑋 , we denote by ≺ 𝑋 1 the smallest partial order relation on 𝑋 * Ш 0 stable by product and compatible with 𝑋 1 . A 1-polygraph 𝑋 is terminating if the relation ≺ 𝑋 1 is wellfounded. In that case, for every rewriting step 𝑓 of 𝑋 , we have 𝑡 0 (𝑓 ) ≺ 𝑋 1 𝑠 0 (𝑓 ), and thus there does not exist infinite sequence of rewriting steps of 𝑋 .

4.1.7. Path-lexicographic order on 1-monomials. Let (𝑋 0 , ≺) be a totally ordered indexed set, and ≺ 𝔖 a total order on permutations. Let us recall from [19,[START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF] the path-lexicographic monomial order on 𝑋 * Ш 0 . Given a 0-monomial 𝑢 of arity 𝑘, there exists a unique path from its root to each of its inputs. Write such a path as a word 𝑎 = 𝑥 1 . . . 𝑥 𝑛 in the alphabet 𝑋 0 made of labels of the vertices of the path. To the 0-monomial 𝑢 we associate the pair (𝐿, 𝑓 ) where 𝐿 is the sequence (𝑝 1 , . . . , 𝑝 𝑘 ) of path words from the root to the inputs of 𝑢, and 𝑓 is the permutation of the inputs of 𝑢. Then we define the path-lexicographic order induced by the orders ≺ and ≺ 𝔖 , denoted by ≺ 𝑝𝑙 , by setting

(𝐿, 𝑓 ) ≺ 𝑝𝑙 (𝐿 ′ , 𝑓 ′ ) if 𝐿 ≺ 𝑙𝑒𝑥 𝐿 ′ or 𝐿 = 𝐿 ′ and 𝑓 ≺ 𝔖 𝑓 ′ ,
where ≺ 𝑙𝑒𝑥 denotes the lexicographic order on words on 𝑋 0 induced by ≺. Now, let 𝑋 be a left-monomial 1-polygraph. Consider a total order ≺ on 𝑋 0 ⊔ 𝑋 1 , such that 𝛼 ≺ 𝑥, for every 𝑥 ∈ 𝑋 0 and 𝛼 ∈ 𝑋 1 , and ≺ 𝔖 a total order on permutations. We will denote by ≺ 𝑝𝑙 the induced path-lexicographic order on (𝑋 0 ⊔ 𝑋 1 ) * Ш , which induces a path-lexicographic order on 1-monomials. Proof. We have ≺ 𝑋 1 ⊆≺, so ≺ 𝑋 1 is well-founded, so 𝑋 is terminating. □ However, the converse implication is not true. In general, in order to prove termination when no monomial order is known, it is necessary to use a proof strategy appropriated to the set of rules. The following gives an illustration for one of the simplest strategies.

4.1.9. Proposition. A left-monomial 1-polygraph 𝑋 terminates if, and only if, there exists a well-founded indexed poset (𝑊 , <) and a morphism of indexed sets Φ :

𝑋 * Ш 0 → 𝑊 such that Φ(Γ [𝑣]) < Φ(Γ [𝑠 (𝛼)])
holds for every 1-generator 𝛼 ∈ 𝑋 1 , one-hole context Γ, and 𝑣 ∈ Supp(𝑡 (𝛼)).

Proof. Suppose that the polygraph 𝑋 terminates. Then 𝑋 * Ш 0 is equipped with a well-founded partial order ≺ 𝑋 1 , and We set Φ to be the identity morphism on 𝑋 * Ш 0 . Conversely, let ≺ be the partial order generated by 𝑣 ≺ 𝑢 if there exists a rewriting rule 𝛼 ∈ 𝑋 1 and a one-hole context Γ such that 𝑢 = Γ [𝑠 (𝛼)] and 𝑣 ∈ Supp(Γ [𝑡 (𝛼)]). The order ≺ is stable by product by considering

𝑢 • 𝑖,𝜏 𝑣 ≺ 𝑢 ′ • 𝑖,𝜏 𝑣 ≺ 𝑢 ′ • 𝑖,𝜏 𝑣 ′ ,
for all tree monomials 𝑢, 𝑣, 𝑢 ′ , 𝑣 ′ in 𝑋 * Ш 0 , and is compatible with 𝑋 1 by definition. Thus ≺ 𝑋 1 ⊆≺, and so the map Φ : (𝑋 * Ш 0 , ≺ 𝑋 1 ) → 𝑊 is a strictly monotone morphism of indexed posets. Since 𝑊 is well-founded, (𝑋 * Ш 0 , ≺ 𝑋 1 ) is as well, and so the 1-polygraph 𝑋 terminates. 

Then Φ(Γ[𝑠 (𝛼)]) > Φ(Γ [𝑣]

) for all contexts Γ of inner arity 4 and every 𝑣 ∈ Supp(𝑡 (𝛼)). Indeed, for every

Γ = 𝑤 • 𝑖,𝜏 (□ 4 | 𝑤 1 𝑤 2 𝑤 3 𝑤 4 ), we have Φ 𝑤 𝑥 𝑦 𝑤 1 𝑤 2 𝑧 𝑤 3 𝑤 4 - 𝑤 𝑥 𝑥 𝑤 1 𝑤 2 𝑥 𝑤 3 𝑤 4 = 𝑥 𝑦 𝑧 - 𝑥 𝑦 𝑧 𝑥 + 3 𝑥 𝑦 𝑧 - 𝑥 𝑥 𝑥 𝑦-𝑧 = (1 -1) + (3 -0) = 1, Φ 𝑤 𝑥 𝑦 𝑤 1 𝑤 2 𝑧 𝑤 3 𝑤 4 - 𝑤 𝑦 𝑦 𝑤 1 𝑤 2 𝑦 𝑤 3 𝑤 4 = 𝑥 𝑦 𝑧 - 𝑦 𝑦 𝑦 𝑥 + 3 𝑤 𝑥 𝑦 𝑧 - 𝑤 𝑦 𝑦 𝑦 𝑦-𝑧 = 1 + 3 𝑥 𝑦 𝑧 𝑦-𝑧 + 3|𝑤 | 𝑦-𝑧 -3|𝑤 • 𝑖,𝜏 𝑦| = 4 if |𝑤 • 𝑖,𝜏 𝑦| 𝑦-𝑧 = |𝑤 | 𝑦-𝑧 , 1 if |𝑤 • 𝑖,𝜏 𝑦| 𝑦-𝑧 = |𝑤 | 𝑦-𝑧 + 1, Φ 𝑤 𝑥 𝑦 𝑤 1 𝑤 2 𝑧 𝑤 3 𝑤 4 - 𝑤 𝑧 𝑧 𝑤 1 𝑤 2 𝑧 𝑤 3 𝑤 4 = 4 if |𝑤 • 𝑖,𝜏 𝑧| 𝑦-𝑧 = |𝑤 | 𝑦-𝑧 , 1 if |𝑤 • 𝑖,𝜏 𝑧| 𝑦-𝑧 = |𝑤 | 𝑦-𝑧 + 1.
Following Proposition 4.1.9 the polygraph 𝑋 terminates. Note that, there is no monomial order that orients this rule in this way. Indeed, every orientation compatible with a monomial order reduces first one of the term of right hand side.

Confluence of shuffle polygraphs

In this subsection we define and algebraically characterize the property of confluence of a shuffle polygraph. We prove the coherent critical branching theorem for shuffle polygraphs involving a restricted notion of critical branchings. The definitions and results of this section do not differ much from the case of associative algebras in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], and indeed associative algebras can be seen as operads concentrated in arity 1, but since the notion of contexts is not made explicit in previous works, we restate all of the definitions and results.

Branchings.

A branching of a left-monomial 1-polygraph 𝑋 is a pair (𝑓 , 𝑔) of positive 1-cells of 𝑋 Ш 1 where 𝑓 and 𝑔 have the same source 𝑠 0 (𝑓 ) = 𝑠 0 (𝑔), which we denote by 𝑠 0 (𝑓 , 𝑔). The branching (𝑓 , 𝑔) is said to be local if 𝑓 and 𝑔 are both rewriting steps.

Let 𝑋 be a 2-polygraph such that 𝑋 ⩽1 is left-monomial. A branching (𝑓 , 𝑔) of the 1-polygraph 𝑋 ⩽1 is 𝑋 2 -coherently confluent, or (𝑓 , 𝑔) is coherently confluent for short, if there exist positive 1-cells ℎ and 𝑘 of 𝑋 Ш 1 and a 2-cell 𝐹 of 𝑋 Ш 2 as in the following diagram

𝑡 0 (𝑓 ) ℎ & & 𝐹 Õ 𝑠 0 (𝑓 ) = 𝑠 0 (𝑔) 𝑓 1 1 𝑔 -- 𝑡 0 (ℎ) = 𝑡 0 (𝑘) 𝑡 0 (𝑔) 𝑘 8 8
If 𝑢 is a 0-cell of 𝑋 Ш 0 , the 2-polygraph 𝑋 is coherently confluent (resp. locally coherently confluent) at 𝑢 if every branching (resp. local branching) of 𝑋 of source 𝑢 is coherently confluent. The 2-polygraph 𝑋 is coherently confluent (resp. locally coherently confluent) if it is so at every 0-cell of 𝑋 Ш 0 , and that 𝑋 is coherently convergent if it is terminating and coherently confluent. A left-monomial 1-polygraph 𝑋 is confluent (resp. locally confluent) if the 2-polygraph (𝑋 0 , 𝑋 1 , Sph(𝑋 Ш 1 )) has the corresponding coherent property, and it is convergent if it is both terminating and confluent.

Classification of local branchings.

We distinguish the following four types of local branchings of a left-monomial 1-polygraph 𝑋 : i) aspherical branchings: (𝑓 , 𝑓 ), where 𝑓 is a rewriting step of 𝑋 , ii) additive branchings: (𝜆𝑓 + 𝜇1 𝑣 + 1 𝑐 , 𝜆1 𝑢 + 𝜇𝑔 + 1 𝑐 ), where 𝑓 : 𝑢 → 𝑎 and 𝑔 : 𝑣 → 𝑏 are 1-monomials of 𝑋 Ш 1 , 𝜆 and 𝜇 are nonzero scalars, 𝑐 is a 0-cell of 𝑋 Ш 0 , 𝑢 ≠ 𝑣, and 𝑢, 𝑣 ∉ Supp(𝑐). iii) multiplicative branchings:

(𝜆Γ [𝑓 , 1 𝑣 ] + 1 𝑐 , 𝜆Γ[1 𝑢 , 𝑔] + 1 𝑐 ),
where Γ is a two-hole context of 𝑋 * Ш 0 , 𝑓 : 𝑢 → 𝑎 and 𝑔 : 𝑣 → 𝑏 are 1-monomials of 𝑋 Ш 1 , 𝜆 is a nonzero scalar, 𝑐 is a 0-cell of 𝑋 Ш 0 , and Γ[𝑢, 𝑣] ∉ Supp(𝑐). iv) intersecting branchings: local branchings that are neither aspherical, additive, nor multiplicative.

We define a well-founded partial order ⊑ on branchings of 𝑋 as follows: for every one-hole context Γ of 𝑋 * Ш 0 and every 0-cell 𝑐 of 𝑋 Ш 0 , we set

(𝑓 , 𝑔) ⊑ (Γ[𝑓 ] + 1 𝑐 , Γ [𝑔] + 1 𝑐 ).
The critical branchings are the minimal intersecting branchings for this order. We denote the intersecting branchings by (Γ Let 𝑋 be a 2-polygraph such that 𝑋 ⩽1 is left-monomial, and 𝑢 be a 0-cell of 𝑋 Ш 1 . We say that 𝑋 is essentially coherently confluent at 𝑢 if every essential branching of 𝑋 of source 𝑢 is coherently confluent, and that 𝑋 is essentially coherently confluent if it is so at every 0-cell of

𝑋 Ш 0 . A left-monomial 1-polygraph 𝑋 is essentially confluent if the 2-polygraph (𝑋 0 , 𝑋 1 , Sph(𝑋 Ш 1 )
) is essentially coherently confluent.

As for polygraphs of associative algebras, we have: 

]).

Let 𝑋 be a 2-polygraph such that 𝑋 ⩽1 is left-monomial, and a 0-cell 𝑎 in 𝑋 Ш 0 such that 𝑋 is coherently confluent at 𝑏 for any

𝑏 ≺ 𝑋 1 𝑎. If 𝑓 is a 1-cell of 𝑋 Ш 1 that decomposes 𝑎 0 𝑓 1 -→ 𝑎 1 𝑓 2 -→ • • • 𝑓 𝑝 -→ 𝑎 𝑝 into 1-cells of size 1, with 𝑎 𝑖 ≺ 𝑋 1 𝑎
for all 𝑖 ∈ {1, . . . , 𝑝 -1}, then there exists a 0-cell 𝑎 ′ , 1-cells 𝑔, ℎ, and a

2-cell 𝐹 in 𝑋 Ш 2 such that 𝑎 𝑝 ℎ 𝐹 Õ 𝑎 0 𝑓 7 7 𝑔 3 3 𝑎 ′ When 𝑝 = 1, then 𝐹 is an identity 2-cell.
4.2.4. Theorem (Coherent essential branchings theorem). Let 𝑋 be a 2-polygraph such that 𝑋 ⩽1 is terminating and left-monomial. If 𝑋 is essentially coherently confluent, then it is coherently confluent.

Proof. The structure of the proof is the same as for the similar result for associative algebras given in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. The primary difference is that we prove that we can restrict the hypotheses to the critical branchings that are essential. Suppose that 𝑋 is an essentially coherently confluent 2-polygraph. We proceed by well-founded induction on the sources of the branchings of 𝑋 ⩽1 , with respect to the order ≺ 𝑋 1 , to prove that 𝑋 is coherently confluent at every 0-cell of 𝑋 Ш 0 . For each source, we first prove local coherent confluence and then deduce coherent confluence by Newman's lemma, exactly as for associative algebras in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Thm. 4.2.1].

A reduced 0-cell cannot be the source of a local branching, so 𝑋 is coherently confluent at reduced 0cells. Now, fix a nonreduced 0-cell 𝑎 0 of 𝑋 Ш 0 , and assume that 𝑋 is coherently confluent at every 𝑏 ≺ 𝑋 1 𝑎 0 . Then we proceed by case analysis on the type of the local branchings. If we show that critical branchings are coherently confluent, then the cases of aspherical, additive, multiplicative, and noncritical intersecting branchings are handled exactly as in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Thm. 4.2.1]. There remains to show the coherent confluence of critical branchings.

Let (Γ [𝛼], Δ[𝛽]) be a critical branching of source 𝑎 0 as in § 4.2.2. We proceed by induction on the size of the source of the branching and the number of 1-monomials

Λ[𝛾] of 𝑋 Ш 1 such that Γ [𝛼] ≺ 𝑝𝑙 Λ[𝛾] ≺ 𝑝𝑙 Δ[𝛽].
If the branching is essential, then it is coherently confluent by hypothesis. Otherwise, there exists a 1-monomial

Λ[𝛾] of 𝑋 Ш 0 0 Γ 1 [𝑏 0 ] Γ 1 Λ 0 [𝑡 (𝛾)] Γ 1 [𝑔 0 ] < < where (Γ 0 [𝛼], Λ 0 [𝛾]
) is a critical branching, and by induction on the size of its source, Γ 1 is a onehole context of 𝑋 * Ш 0 , and 𝑓 0 , 𝑔 0 are positive 1-cells of 𝑋 Ш 1 making this critical branching coherently confluent. In the critical case, the branching is either essential, or not. If it is essential, then it is coherently confluent by hypothesis. Otherwise, it is coherently confluent by induction hypothesis.

We proceed similarly for the branching (Λ[𝛾], Δ[𝛽]): in every case, we write

-the branching (Γ[𝛼], Λ[𝛾]) as (Γ 1 Γ 0 [𝛼], Γ 1 Λ 0 [𝛾]), with Γ 1 a one-hole context of 𝑋 * Ш 0 and (Γ 0 [𝛼], Λ 0 [𝛾]) a confluent branching, -the branching (Λ[𝛾], Δ[𝛽]) as (Δ 1 Λ ′
We then construct the following coherently confluent diagram

Γ 1 Γ 0 [𝑡 (𝛼)] Γ 1 [𝑓 0 ] -- 𝐹 Õ Γ 1 [𝑏 0 ] ℎ 1 ! ! 𝐻 Õ Γ [𝑠 (𝛼)] Γ[𝛼] 4 4 
Δ[𝛽] ) ) Λ[𝛾] / / 𝐺 Õ Λ[𝑡 (𝛾)] Γ 1 [𝑔 0 ] 6 6 Δ 1 [𝑓 ′ 0 ] ' ' 𝑐 Δ 1 Δ 0 [𝑡 (𝛽)] Δ 1 [𝑔 ′ 0 ] 1 1 Δ 1 [𝑏 ′ 0 ] ℎ ′ 1 = =
where the 2-cells 𝐹 and 𝐺 are defined by the aforementioned coherently confluent branchings and the 2-cell 𝐻 is given by induction hypothesis. □ 4.2.5. Operad presented by an ideal. Let 𝑋 0 be an indexed set and 𝐼 an ideal of the free shuffle operad 𝑋 Ш 0 . We equip the collection I ⊕ 𝐼 with a shuffle operad structure, with unit 𝜂 : I ↩→ I ⊕ 𝐼 and multiplication given by the following composition

𝜇 𝐼 : (I ⊕ 𝐼 ) • Ш (I ⊕ 𝐼 ) ≃ (I ⊕ 𝐼 ) ⊕ (𝐼 • Ш (I ⊕ 𝐼 )) → (I ⊕ 𝐼 ) ⊕ (𝐼 • Ш 𝑋 Ш 0 ) 1⊕𝜌 ---→ (I ⊕ 𝐼 ) ⊕ 𝐼 → I ⊕ 𝐼,
where 𝜌 is the right action of 𝐼 as an 𝑋 Ш 0 -bimodule. Denote by 𝑋 Ш 0 /𝐼 the coequalizer of the morphisms of shuffle operads

I ⊕ 𝐼 𝜂 ⊕ 1 / / 𝜂 ⊕ 0 / / 𝑋 Ш 0 in ШOp.
Note that the underlying collection of 𝑋 Ш 0 /𝐼 is the cokernel of the inclusion 𝐼 ↩→ 𝑋 Ш 0 in Coll. Let 𝑋 be a 1-polygraph. The boundary of a 1-generator 𝛼 in 𝑋 is the 1-cell 𝜕(𝛼) := 𝑠 0 (𝛼) -𝑡 0 (𝛼), and we set 𝜕(𝑋 1 ) := { 𝜕(𝛼) | 𝛼 ∈ 𝑋 1 }. We denote by 𝐼 (𝑋 ) the ideal of the free operad 𝑋 Ш 0 generated by the set of boundaries of the 1-generators of 𝑋 , that is the free 𝑋 Ш 0 -bimodule generated by 𝜕(𝑋 1 ). Explicitly, the ideal 𝐼 (𝑋 ) is made of all the linear combinations

𝑝 ∑︁ 𝑖=1 𝜆 𝑖 Γ 𝑖 [𝜕(𝛼 𝑖 )]
where 𝜆 𝑖 is a scalar and Γ 𝑖 is a one-hole context. Note that the operad 𝑋 presented by 𝑋 is isomorphic to 𝑋 Ш 0 /𝐼 (𝑋 ).

We also have the result corresponding to [25, Prop. 3.3.4]:

4.2.6. Proposition. For a terminating left-monomial 1-polygraph 𝑋 , the following assertions are equivalent :

4.3. Monomial-ordered shuffle polygraphs i) 𝑋 is confluent. ii) Red(𝑋 ) ∩ 𝐼 (𝑋 ) = 0.
iii) 𝑋 Ш 0 = Red(𝑋 ) ⊕ 𝐼 (𝑋 ).

Monomial-ordered shuffle polygraphs

In this subsection, we consider 1-polygraphs whose orientations of 1-generators are compatible with a fixed monomial order. We relate these polygraphs to the notion of Gröbner bases for operads introduced in [19]. From Theorem 4.2.4 we deduce a completion procedure for these polygraphs as in [19], but by resolving only essential branchings instead of all critical branchings.

4.3.1. Gröbner bases [19]. Let 𝑋 0 be an indexed set and ≼ be a monomial order on the free operad 𝑋 Ш 0 . If 𝑎 is a nonzero 0-cell of 𝑋 Ш 0 , the leading monomial of 𝑎 is the maximum element lm(𝑎) of Supp(𝑎) with respect to ≼, and 0 when Supp(𝑎) is empty. The leading coefficient of 𝑎 is the coefficient lc(𝑎) of lm(𝑎) in 𝑎, and the leading term of 𝑎 is the element lt(𝑎) := lc(𝑎) lm(𝑎) of 𝑋 Ш 0 . Observe that, for 𝑎, 𝑏 in 𝑋 Ш 0 , we have 𝑎 ≺ 𝑏 if, and only if, either lm(𝑎) ≺ lm(𝑏) or (lt(𝑎) = lt(𝑏) and 𝑎lt(𝑎) ≺ 𝑏lt(𝑏)). For 𝑌 an indexed subset of 𝑋 Ш 0 , we denote by lm(𝑌 ) the indexed set of leading monomials of elements of 𝑌 .

Let 𝐼 be an ideal of the free operad 𝑋 Ш 0 . A Gröbner basis for 𝐼 with respect to ≼ is an indexed subset G of 𝐼 such that the ideals of 𝑋 Ш 0 generated by lm(𝐼 ) and by lm(G) coincide. 4.3.2. Proposition. If 𝑋 is a convergent left-monomial 1-polygraph, and ≼ is a monomial order on 𝑋 Ш 0 that is compatible with 𝑋 1 , then the indexed set 𝜕(𝑋 1 ) forms a Gröbner basis of 𝐼 (𝑋 ).

Conversely, let 𝑋 0 be an indexed set, let ≼ be a monomial order on 𝑋 Ш 0 , let 𝐼 be an ideal of 𝑋 Ш 0 and G be a subset of 𝐼 . Define 𝑋 (G) as the 1-polygraph with 0-generators 𝑋 0 and a 1-generator

𝛼 𝑎 : lm(𝑎) → lm(𝑎) - 1 lc(𝑎) 𝑎 for each 𝑎 in G. If G is a Gröbner basis for 𝐼 , then 𝑋 (G) is a convergent left-monomial presentation of 𝑋 Ш 0 /𝐼 , such that 𝐼 (𝑋 (G)) = 𝐼 ,
and ≼ is compatible with 𝑋 (G) 1 . Proof. Suppose that 𝑋 is convergent. For every 1-generator 𝛼 of 𝑋 , 𝜕(𝛼) is in 𝐼 (𝑋 ). Since ≼ is compatible with 𝑋 1 , we have lm(𝜕(𝛼)) = 𝑠 (𝛼) for every 1-cell 𝛼 of 𝑋 . If 𝑎 is a nonzero 0-cell of 𝐼 (𝑋 ), then by Proposition 4.2.6, there exists a positive 1-cell 𝑎 → 0. By compatibility between 𝑋 1 and ≼, any rewriting rule that does not reduce the leading monomial lm(𝑎) will reduce 𝑎 into a 0-cell with the same leading monomial. Thus, in order to rewrite to 0, we must apply a rewriting rule to lm(𝑎) at some point, and so lm(𝑎) belongs to the ideal generated by the leading monomials of 𝜕𝑋 1 . Thus 𝜕(𝑋 1 ) is a Gröbner basis for (𝐼 (𝑋 ), ≼).

Conversely, assume that G is a Gröbner basis for (𝐼, ≼). The monomial order ≼ is compatible with 𝑋 (G) 1 , hence by Proposition 4.1.8, the polygraph 𝑋 (G) terminates. Moreover, we have 𝐼 (𝑋 (G)) = 𝐼 , so the algebra presented by 𝑋 (G) is indeed isomorphic to 𝑋 Ш 0 /𝐼 . Moreover, the reduced monomials of 𝑋 (G) Ш are the monomials of 𝑋 Ш 0 that cannot be decomposed as Γ [lm(𝑎)] with 𝑎 in G and Γ a onehole context of 𝑋 * Ш 0 . Thus, if a reduced 0-cell 𝑎 of 𝑋 Ш 0 is in 𝐼 , its leading monomial must be 0, because G is a Gröbner basis of (𝐼, ≼). By proposition 4.2.6, we get that the polygraph 𝑋 (G) is confluent. □ 4.3.3. Poincaré-Birkhoff-Witt bases [START_REF] Hoffbeck | A Poincaré-Birkhoff-Witt criterion for Koszul operads[END_REF]. Let 𝑃 be a operad, let 𝑋 0 be a generating indexed set of 𝑃, and let ≼ be a monomial order of 𝑋 Ш 0 . A Poincaré-Birkhoff-Witt (PBW ) basis for (𝑃, 𝑋 0 , ≼) is an indexed subset B of 𝑋 * Ш 0 such that: i) B is a linear basis of 𝑃, for 𝑢 ∈ 𝑋 * Ш 0 , we write [𝑢] B := 𝑖 𝜆 𝑖 𝑤 𝑖 its decomposition in 𝑃 on the basis B, ii) for all 𝑢, 𝑣 in B and all compatible elementary compositions

• 𝑖,𝜏 , either 𝑢 • 𝑖,𝜏 𝑣 belongs to B or 𝑢 • 𝑖,𝜏 𝑣 ≻ [𝑢 • 𝑖,𝜏 𝑣] B , iii) a tree monomial 𝑢 of 𝑋 * Ш 0 is in B if, and only if, for every decomposition 𝑢 = Γ(𝑥 • 𝑖,𝜏 𝑥 ′ ) of 𝑢 where 𝑥, 𝑥 ′ ∈ 𝑋 0 and Γ is a one-hole context of 𝑋 Ш 0 , 𝑥 • 𝑖,𝜏 𝑥 ′ ∈ B. 4.3.4. Proposition.
If 𝑋 is a convergent left-monomial quadratic presentation of an operad 𝑃, and ≼ is a monomial order on 𝑋 Ш 0 compatible with 𝑋 1 , then the indexed set Red m (𝑋 ) is a PBW basis for (𝑃, 𝑋 0 , ≼). Conversely, let 𝑃 be a quadratic operad, 𝑋 a generating indexed set of 𝑃, ≼ a monomial order on 𝑋 Ш 0 , and B a PBW basis of (𝐴, 𝑋 0 , ≼). Define 𝑋 (B) as the 1-polygraph with 0-genrators 𝑋 0 and with a 1-generator

𝑥 • 𝑖,𝜏 𝑥 ′ 𝛼 𝑥 • 𝑖,𝜏 𝑥 ′ ------→ [𝑥 • 𝑖,𝜏 𝑥 ′ ] B for all 𝑥, 𝑥 ′ in 𝑋 0 ∩ B such that 𝑥 • 𝑖,𝜏 𝑥 ′ ≠ [𝑥 • 𝑖,𝜏 𝑥 ′ ] B in 𝑋 Ш 0 . Then 𝑋 (B) is a quadratic convergent left-monomial presentation of 𝑃 such that Red m (𝑋 (B)) = B and ≼ is compatible with 𝑋 (B) 1 .
Proof. Suppose that 𝑋 is a quadratic convergent left-monomial presentation of an operad 𝑃. By proposition 4.2.6, we have the following exact sequence of collections:

0 → 𝐼 (𝑋 ) → 𝑋 Ш 0 → Red(𝑋 ) → 0.
Since 𝑃 is isomorphic to 𝑋 Ш 0 /𝐼 (𝑋 ) as an operad, it is also isomorphic to Red(𝑋 ) as a collection, and therefore Red m (𝑋 ) is a basis of 𝑃. The fact that ≼ is compatible with 𝑋 1 implies axiom (ii) of PBW bases. Axiom (iii) comes from the definition of a reduced monomial for a quadratic left-monomial 1-polygraph.

Conversely, assume that B is a PBW basis for (𝑃, 𝑋, ≼). By definition, 𝑋 (B) is quadratic and leftmonomial, and axiom (iii) of PBW bases implies Red m (𝑋 (B)) ∩ 𝐼 (𝑋 (B)) = 0. Termination of 𝑋 (B) is given by axiom (ii) of PBW bases because ≼ is well-founded. By proposition 4.2.6, it is sufficient to prove that Red(𝑋 (B)) ∩ 𝐼 (𝑋 (B)) = 0 to get confluence: on the one hand, a reduced 0-cell 𝑢 of Red(𝑋 (B)) is a linear combination of 0-cells of B, so that 𝑢 is its only normal form; and, on the other hand, if 𝑢 belongs to 𝐼 (𝑋 (B)), then 𝑢 admits 0 as a normal form. Finally, the operad presented by 𝑋 (B) is isomorphic to Red(𝑋 (B)), that is to kB, hence to 𝑃 by the previous exact sequence and because B is a linear basis of 𝑃. □ 4.3.5. Completion procedure. For a 2-polygraph 𝑋 where 𝑋 2 = Sph(𝑋 Ш 1 ), Theorem 4.2.4 leads to a completion procedure for 1-polygraphs that reaches a convergent polygraph by resolving essential branchings. Given a terminating 1-polygraph 𝑋 , and a monomial order ≺ on 𝑋 * Ш 0 compatible with 𝑋 1 , the procedure works as follows 5. Shuffle polygraphic resolutions from convergence (i) for every essential branching (𝑓 , 𝑔) of 𝑋 , the 0-cells 𝑡 0 (𝑓 ) and 𝑡 0 (𝑔) are reduced to some normal forms 𝑡 0 (𝑓 ) and 𝑡 0 (𝑔). If 𝑡 0 (𝑓 ) ≠ 𝑡 0 (𝑔):

𝑡 0 (𝑓 ) / / 𝑡 0 (𝑓 ) O O ℎ 𝑢 𝑓 / / 𝑔 / / 𝑡 0 (𝑔) / / 𝑡 0 (𝑔)
a 1-generator ℎ : lm(𝑎) → 𝑎lm(𝑎), where 𝑎 = 𝑡 0 (𝑓 ) -𝑡 0 (𝑔), is added to reach confluence of the branching ;

(ii) the addition of 1-generators in the step (i) can create new essential branchings, whose confluence must also be completed as in (i) ;

(iii) Repeat the previous steps until there are no non-confluent essential branchings.

As a consequence of Theorem 4.2.4, we have 4.3.6. Proposition. The procedure § 4.3.5 on a 1-polygraph 𝑋 produces a (possibly infinite) convergent polygraph that presents the operad 𝑋 .

An analogue completion procedure for non-symmetric operads has been described in detail with an explicit handling of the critical branchings in [37, Algorithm 2].

Shuffle polygraphic resolutions from convergence

In this section, unless otherwise specified, all operads and polygraphs are shuffle. We recall from [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] the characterization of the property of acyclicity for an 𝜔-polygraph through the existence of a homotopical contraction. Subsection 5.2, presents the main result of this article, Theorem 5.2.6, that extends a reduced convergent left-monomial 1-polygraph into a polygraphic resolution of the presented operad. In Subsection 5.3, given a polygraphic resolution of an operad, we construct a bimodule resolution for the operad. Finally, in Subsection 5.4 we prove a criterion of Koszulness in terms of quadratic convergence.

Polygraphic resolutions and contractions

In this first subsection, we extend to 𝜔-operads the notion of homotopy developed in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] for 𝜔-algebras, see also [START_REF] Ara | Le type d'homotopie de la ∞-catégorie associée à un complexe simplicial[END_REF] and [START_REF] Guiraud | Rewriting methods in higher algebra[END_REF]. Then we introduce the notion of a contraction of a polygraph, which allow us to characterize acyclic 𝜔-polygraphs.

5.1.1. Homotopies. Let 𝑃 and 𝑄 be 𝜔-operads and 𝐹, 𝐺 : 𝑃 → 𝑄 be morphisms of 𝜔-operads. A homotopy from 𝐹 to 𝐺 is a graded linear map 𝜂 : 𝑃 → 𝑄 of degree 1, i.e., 𝜂 sends 𝑛-cells to 𝑛 + 1-cells), such that, writing 𝜂 𝑎 for 𝜂 (𝑎), i) for every 𝑛 ⩾ 0, for every 𝑛-cell 𝑎 of 𝑃, (𝑎) (5.1.2)

𝑠 𝑛 (𝜂 𝑎 ) = 𝐹 (𝑎) ★ 0 𝜂 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑛-1 𝜂 𝑡 𝑛-1
𝑡 𝑛 (𝜂 𝑎 ) = 𝜂 𝑠 𝑛-1 (𝑎) ★ 𝑛-1 • • • ★ 1 𝜂 𝑠 0 (𝑎) ★ 0 𝐺 (𝑎), (5.1.3) 
ii) for all 0 ⩽ 𝑘 < 𝑛 and every ★ 𝑘 -composable pair (𝑎, 𝑏) of 𝑛-cells of 𝑃,

𝜂 𝑎★ 𝑘 𝑏 = 𝐹 (𝑠 𝑘+1 (𝑎)) ★ 0 𝜂 𝑡 0 (𝑏 ) ★ 1 • • • ★ 𝑘 -1 𝜂 𝑡 𝑘 -1 (𝑏 ) ★ 𝑘 𝜂 𝑏 ★ 𝑘+1 𝜂 𝑎 ★ 𝑘 𝜂 𝑠 𝑘 -1 (𝑎) ★ 𝑘 -1 • • • ★ 1 𝜂 𝑠 0 (𝑎) ★ 0 𝐺 (𝑡 𝑘 -1 (𝑏)),
iii) for all 𝑛 ⩾ 0 and every 𝑛-cell 𝑎 of 𝑃, 𝜂

1 𝑎 = 1 𝜂 𝑎 .
In order for this definition to be licit, we need to check that the ★ 𝑘 -compositions of (i) are well defined.

See [START_REF] Ara | Le type d'homotopie de la ∞-catégorie associée à un complexe simplicial[END_REF]Appendix B.8] or [25, § 5.1.1] for the verification. Note that the mappings 𝑎 ↦ → 𝑠 (𝜂 𝑎 ) and 𝑎 ↦ → 𝑡 (𝜂 𝑎 ) are operads morphisms because both are composites of operad morphisms. The globularity of 𝜂 𝑎 follows from F F 𝐺 (𝐴) 5.1.5. Unital sections and contractions. Let 𝑋 be a 𝜔-polygraph. A unital section of 𝑋 is a morphism of 𝜔-operads 𝜄 : 𝑋 → 𝑋 Ш , which is a section of the canonical projection 𝜋 : 𝑋 Ш ↠ 𝑋 , and such that 𝜄 1 = 1, where 1 ∈ k ⊆ 𝑋 Ш (1). The morphism 𝜄 assigns to every 0-cell 𝑎 of 𝑋 a representative 0-cell 𝜄 𝑎 in 𝑋 Ш , in such a way that is the identity on the unit k. Note that a unital section is not necessarily compatible with shuffle composition. For 𝑎 an 𝑛-cell of 𝑋 Ш , we will write 𝑎 for 𝜄𝜋 (𝑎). Note that 𝑎 = 1 𝑠 0 (𝑎) for 𝑛 ⩾ 1. Fix 𝜄 a unital section of 𝑋 . An 𝜄-contraction of 𝑋 is a homotopy 𝜎 : 𝑖𝑑 𝑋 Ш → 𝜄𝜋 such that 𝜎 𝑎 = 1 𝑎 for every 𝑛-cell 𝑎 of 𝑋 Ш that belongs to the image of 𝜄 or 𝜎. We say that 𝜎 is a right 𝜄-contraction if, for all 𝑛 ⩾ 0, 𝑛-cells 𝑓 , 𝑔 of 𝑋 Ш , and compatible elementary composition • 𝑖,𝜏 ,

𝑠𝑠 (𝜂 𝑎 ) = 𝑠 (𝐹 (𝑎)) ★ 0 𝜂 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑛-2 𝜂 𝑡 𝑛-2 (𝑎) = 𝑠 (𝜂 𝑠 (𝑎) ) = 𝑠𝑡 (𝜂 𝑎 ) and 𝑡𝑠 (𝜂 𝑎 ) = 𝑡 (𝜂 𝑡 (𝑎) ) = 𝜂 𝑠 𝑛-2 (𝑎) ★ 𝑛-2 • • • ★ 1 𝜂 𝑠 0 (𝑎) ★ 0 𝑡 (𝐺 (𝑎)) = 𝑡𝑡 (𝜂 𝑎 ).
𝜎 𝑓 • 𝑖,𝜏 𝑔 = (𝑠 0 (𝑓 ) • 𝑖,𝜏 𝜎 𝑔 ) ★ 0 𝜎 𝑓 • 𝑖,𝜏 𝑔 .
(5.1.6)

5.1.7. Lemma. Let 𝜎 be a 𝜄-contraction. For 𝑛 ⩾ 1 and every 𝑛-cell 𝑎 of 𝑋 Ш , 𝑠 𝑛 (𝜎 𝑎 ) = 𝑎 -𝑡 𝑛-1 (𝑎) + 𝜎 𝑡 𝑛-1 (𝑎) and 𝑡 𝑛 (𝜎 𝑎 ) = 𝜎 𝑠 𝑛-1 (𝑎) .

(5.1.8)

Note that for 𝑎 a 0-cell of 𝑋 Ш , 𝑠 0 (𝜎 𝑎 ) = 𝑎 and 𝑡 0 (𝜎 𝑎 ) = 𝑎.

Proof. Let us first prove

𝑎 ★ 0 𝜎 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑘 𝜎 𝑡 𝑘 (𝑎) = 𝑎 -𝑡 𝑘 (𝑎) + 𝜎 𝑡 𝑘 (𝑎)
by induction on 𝑘 ∈ {0, . . . , 𝑛 -1}. The result is clear for 𝑘 = 0. For 𝑘 ⩾ 1, we calculate

𝑎 ★ 0 𝜂 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑘 𝜎 𝑡 𝑘 (𝑎) = 𝑎 ★ 0 𝜎 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑘 -1 𝜎 𝑡 𝑘 -1 (𝑎) -𝑡 𝑘 (𝑎 ★ 0 𝜎 𝑡 0 (𝑎) ★ 1 • • • ★ 𝑘 -1 𝜎 𝑡 𝑘 -1 (𝑎) ) + 𝜎 𝑡 𝑘 (𝑎) = (𝑎 -𝑡 𝑘 -1 (𝑎) + 𝜎 𝑡 𝑘 -1 (𝑎) ) -𝑡 𝑘 (𝑎 -𝑡 𝑘 -1 (𝑎) + 𝜎 𝑡 𝑘 -1 (𝑎) ) + 𝜎 𝑡 𝑘 (𝑎)
= 𝑎 -𝑡 𝑘 (𝑎) + 𝜎 𝑡 𝑘 (𝑎) , the last equality coming from the fact that 𝑡 𝑘 𝑡 𝑘 -1 (𝑎) = 𝑡 𝑘 -1 (𝑎) and 𝑡 𝑘 (𝜎 𝑡 𝑘 -1 (𝑎) ) = 𝜎 𝑡 𝑘 -1 (𝑎) . Applying 𝑘 = 𝑛 -1 and (5.1.2) with 𝐹 = 𝑖𝑑 𝑋 Ш , we conclude that

𝑠 𝑛 (𝜎 𝑎 ) = 𝑎 -𝑡 𝑛-1 (𝑎) + 𝜎 𝑡 𝑛-1 (𝑎) .
For the second equation, we proceed similarly to show that, for all 𝑘 ∈ {0, . . . , 𝑛 -1},

𝜎 𝑠 𝑘 (𝑎) ★ 𝑘 • • • ★ 1 𝜎 𝑠 0 (𝑎) ★ 0 𝑎 = 𝑎 -𝑠 𝑘 ( 𝑎) + 𝜎 𝑠 𝑘 (𝑎) = 𝜎 𝑠 𝑘 (𝑎)
because 𝑎 = 1 𝑠 0 (𝑎) . Applying 𝑘 = 𝑛 -1 and (5.1.3) with 𝐺 = 𝜄𝜋, we conclude that 𝑡 𝑛 (𝜎 𝑎 ) = 𝜎 𝑠 0 (𝑎) . □ 5.1.9. Reduced and essential monomials. Let 𝜄 be an unital section of 𝑋 , and 𝜎 an 𝜄-contraction of an 𝜔-polygraph 𝑋 . A 0-monomial

𝑢 of 𝑋 Ш is 𝜄-reduced if 𝑢 = 𝑢. A non-𝜄-reduced 0-monomial 𝑢 of the free 𝜔-operad 𝑋 Ш is 𝜄-essential if 𝑢 = (𝑥 | ì 𝑣)
where 𝑥 is a 0-generator of 𝑋 and 𝑣 1 , . . . , 𝑣 𝑘 are 𝜄-reduced 0-monomials of 𝑋 Ш . When the underlying 1-polygraph 𝑋 ⩽1 is convergent, and the section 𝜄 sends a 0-monomial on its unique normal form with respect to 𝑋 1 , the 𝜄-reduced 0-monomials coincide with reduced ones.

For 𝑛 ⩾ 0, an 𝑛-monomial 𝑎 of 𝑋 Ш is 𝜎-reduced if it is an identity or in the image of 𝜎. If 𝜎 is a right 𝜄-contraction of 𝑋 and 𝑛 ⩾ 0, then a non-𝜎-reduced 𝑛-monomial 𝑎 of 𝑋 Ш is 𝜎-essential if 𝑎 = (𝛼 | ì 𝑣), where 𝛼 is a 𝑛-generator of 𝑋 and 𝑣 1 , . . . , 𝑣 𝑘 are 𝜄-reduced 0-monomials of the 𝜔-operad 𝑋 Ш . 

𝜎 𝑢 •𝑏 + 𝜎 𝑎 ′ •𝑣 -𝜎 𝑎 ′ •𝑏 = (𝑎 • 𝜎 𝑏 ) ★ 0 𝜎 𝑢 • 𝑏 + (𝑎 ′ • 𝜎 𝑣 ) ★ 0 𝜎 𝑎 ′ • 𝑣 -(𝑎 ′ • 𝜎 𝑏 ) ★ 0 𝜎 𝑎 ′ • 𝑏 = 𝑎 • 𝜎 𝑏 + 𝜎 𝑢 • 𝑏 -𝑎 • 𝑏 + 𝑎 ′ • 𝜎 𝑣 -𝑎 ′
• 𝜎 𝑏 , and on the other hand,

𝜎 𝑢 •𝑏 ′ + 𝜎 𝑎•𝑣 -𝜎𝑎 • 𝑏 ′ = (𝑎 • 𝜎 𝑏 ′ ) ★ 0 𝜎 𝑢 • 𝑏 ′ + (𝑎 • 𝜎 𝑣 ) ★ 0 𝜎 𝑎• 𝑣 -(𝑎 • 𝜎 𝑏 ′ ) ★ 0 𝜎 𝑎• 𝑏 ′ = 𝜎 𝑢 • 𝑏 ′ + 𝑎 • 𝜎 𝑣 -𝑎 • 𝑣 = 𝜎 𝑢 • 𝑏 + 𝑎 • 𝜎 𝑣 -𝑎 • 𝑏 Therefore it remains to prove 𝑎 • 𝜎 𝑏 + 𝑎 ′ • 𝜎 𝑣 = 𝑎 • 𝜎 𝑣 + 𝑎 ′ • 𝜎 𝑏 .
(5.1.12)

Since ★ 0 -composition in 𝑋 Ш is a morphism of 𝜔-operads, we have

𝑢 • 𝜎 𝑏 = 𝑢 • 𝑏 ★ 0 𝑎 ′ • 𝜎 𝑏 = 𝑎 • 𝜎 𝑏 ★ 0 𝑢 • 𝑏.
Using the linear expression of ★ 0 -composition, we get

𝑢 • 𝑏 + 𝑎 ′ • 𝜎 𝑏 -𝑎 ′ • 𝑏 = 𝑎 • 𝜎 𝑏 + 𝑢 • 𝑏 -𝑎 • 𝑏 Similarly, considering 𝑢 • 𝜎 𝑣 , we get 𝑢 • 𝑏 + 𝑎 ′ • 𝜎 𝑣 -𝑎 ′ • 𝑏 = 𝑎 • 𝜎 𝑣 + 𝑢 • 𝑏 -𝑎 • 𝑏.
Taking the difference of the two previous equations gives us (5.1.12). □ 5.1.13. Proposition. Let 𝑋 be an 𝜔-polygraph with a fixed unital section 𝜄. Then 𝑋 is a polygraphic resolution of the 𝜔-operad 𝑋 if, and only if, 𝑋 admits a right 𝜄-contraction. Conversely, let 𝜎 be a right 𝜄-contraction of the polygraph 𝑋 , and let 𝑎, 𝑏 be parallel 𝑛-cells of 𝑋 Ш for 𝑛 ⩾ 1. We have 𝑡 (𝜎 𝑎 ) = 𝜎 𝑠 (𝑎) = 𝜎 𝑠 (𝑏 ) = 𝑡 (𝜎 𝑏 ) by (5.1.8), so the (𝑛 + 1)-cell 𝜎 𝑎 ★ 𝑛 𝜎 - 𝑏 is well defined, with source 𝑠 (𝜎 𝑎 ) and target 𝑠 (𝜎 𝑏 ). Since 𝑡 𝑘 (𝑎) = 𝑡 𝑘 (𝑏) for 𝑘 ∈ {0, . . . , 𝑛 -1}, we find that

(𝜎 𝑎 ★ 𝑛 𝜎 - 𝑏 ) ★ 𝑛-1 𝜎 - 𝑡 𝑛-1 (𝑎) ★ 𝑛-2 • • • ★ 1 𝜎 - 𝑡 0 (𝑎)
is a well defined (𝑛+1)-cell of 𝑋 Ш of source 𝑎 and target 𝑏, thus proving that 𝑋 𝑛+1 is an acyclic extension of 𝑋 Ш 𝑛 . Thus 𝑋 is a polygraphic resolution of 𝑋 . □

Polygraphic resolution from a convergent presentation

This subsection contains the main result of this article. We show how to extend a reduced left-monomial convergent shuffle 1-polygraph into a shuffle polygraphic resolution of its presented operad. The 𝑛generators of the resolution correspond to certain overlappings of the 1-generators of the polygraph.

Higher-dimensional overlappings.

Let 𝑋 be a left-monomial 1-polygraph, and consider the path-lexicographic order ≺ 𝑝𝑙 on 1-monomials of 𝑋 defined in § 4.1.7. We define the family of indexed sets O𝑣 (𝑋 ) = (O𝑣 (𝑋 ) 𝑛 ) 𝑛⩾0 by induction on 𝑛 ⩾ 0. The elements of O𝑣 (𝑋 ) 𝑛 are called 𝑛-overlappings of 𝑋 , and for an 𝑛-overlapping 𝑢 𝑛 we will also define its source 𝑠 0 (𝑢 𝑛 ) and its set of branches 𝐵(𝑢 𝑛 ).

For 𝑛 = 0, define a 0-overlapping 𝑢 0 as a 0-generator in 𝑋 0 . Define its source as 𝑠 0 (𝑢 0 ) := 𝑢 0 and its set of branches as 𝐵(𝑢 0 ) := ∅. Now suppose that 𝑛-overlappings are defined for 𝑛 ⩾ 0. Let 𝑢 𝑛 be an 𝑛-overlapping and 𝐵(𝑢

𝑛 ) = {Γ 1 [𝛼 1 ] ≺ 𝑝𝑙 • • • ≺ 𝑝𝑙 Γ 𝑛 [𝛼 𝑛 ]
} its set of branches, where each Γ 𝑘 is a one-hole context and 𝛼 𝑘 is a 1generator in 𝑋 1 . Given 0-monomials ì 𝑣 𝑛+1 , we define

𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) :=        Γ [𝛼] Γ one-hole context, 𝛼 ∈ 𝑋 1 , Γ[𝑠 0 (𝛼)] = (𝑠 0 (𝑢 𝑛 ) | ì 𝑣 𝑛+1 ), Γ[𝛼] ≻ 𝑝𝑙 (Γ 𝑛 [𝛼 𝑛 ] | ì 𝑣 𝑛+1 )       
.

An (𝑛+1)-overlapping is a tuple (𝑢 𝑛 , ì 𝑣 𝑛+1 ), denoted by 𝑢 𝑛 ì 𝑣 𝑛+1 , where 𝑢 𝑛 is an 𝑛-overlapping, and ì 𝑣 𝑛+1 is a list of reduced 0-monomials such that, for any list of rooted submonomials ì 𝑤 𝑛+1 ⊊ ì 𝑣 𝑛+1 , #𝐸 (𝑢 𝑛 , ì 𝑤 𝑛+1 ) < #𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 ). We then define its source as 𝑠 0 (𝑢 𝑛 ì 𝑣 𝑛+1 ) := (𝑠 0 (𝑢 𝑛 ) | ì 𝑣 𝑛+1 ) and its set of branches as

𝐵(𝑢 𝑛 ì 𝑣 𝑛+1 ) := {(Γ 𝑘 [𝛼 𝑘 ] | ì 𝑣 𝑛+1 ) | 1 ⩽ 𝑘 ⩽ 𝑛} ∪ {max 𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 )}. 5.2.2.
Crowns. An (𝑛 + 1)-overlapping 𝑢 𝑛 ì 𝑣 𝑛+1 can be represented graphically as

𝑢 𝑛 𝑣 𝑛+1,1 • • • 𝑣 𝑛+1,𝑘 = Γ 𝑠 0 (𝛼)
where Γ[𝛼] is the maximal element of 𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 ). We call the list ì 𝑣 𝑛+1 of reduced 0-monomial a crown on 𝑢 𝑛 . Given an 𝑛-overlapping 𝑢 𝑛 and a list of 0-monomials ì 𝑣 𝑛+1 , we define . Since the 0-monomials ì 𝑣 1 are reduced and minimal, the context 𝐶 must be trivial. Thus O𝑣 (𝑋 ) 1 is in bijection with 𝑋 1 , and this bijection is given by taking the unique branch of the 1-overlapping. Next, a 2-overlapping 𝑢 0 ì 𝑣 1 ì 𝑣 2 corresponds to a pair of branches (Γ 1 [𝛼 1 ], Γ 2 [𝛼 2 ]) which form an critical branching in context. Since the crown ì 𝑣 2 must be minimal, this context is trivial. Thus O𝑣 (𝑋 ) 2 is in bijection with the set of critical branchings.

𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) := { ì 𝑤 𝑛+1 ⊆ ì 𝑣 𝑛+1 | 𝑢 𝑛 ì 𝑤 𝑛+1 ∈ O𝑣 (𝑋 ) 𝑛+1 }, that 
5.2.4. Overlappings as paths of crowns. Given a left-monomial 1-polygraph 𝑋 , the 𝑛-overlappings can be defined inductively as certain paths of length 𝑛 in the directed graph G(𝑋 ) defined as follows. Its vertices are the 0-monomials of 𝑋 * Ш 0 , and its edges are

𝑢 ì 𝑣 / / (𝑢 |ì 𝑣) ,
such that 𝑢 is the source of an overlapping and ì 𝑣 is a crown. Then the indexed set of 𝑛-overlappings of 𝑋 corresponds to a subset of paths of G(𝑋 ), starting in 𝑋 0 and of length 𝑛, where each step of the path corresponds to the addition of a crown. That is 

𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑛 corresponds to a path 𝑢 0 → (𝑢 0 | ì 𝑣 1 ) → • • • → (𝑢 0 | ì 𝑣 1 | • • • | ì 𝑣 𝑛 ).
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Every internal vertex of every tree monomial is 𝑥, so we omit them. ? ?

1 2 3 4 5 6 1 2 3 4 5 O O 1 2 3 4 5 1 2 3 4 h h `O O > > 7 7 
This drawing is not exhaustive, but presents some interesting phenomena. For example, due to our choice of order ≺ 𝑝𝑙 , the top left 4-overlapping can only be obtained in one way, by adding 𝛼, 𝛽, 𝛾, and 𝛿 in order. In addition, the top right monomial can be reached from 𝑠 0 (𝛼) by a path of length 2 or 3, and so corresponds to a 3-overlapping and a 4-overlapping, depending on if 𝛽 is present or not.

Theorem (Overlapping polygraphic resolution).

Let 𝑋 be a reduced, convergent, left-monomial 1-polygraph and 𝜄 the unital section sending every monomial to its reduced form. Then there exist a unique 𝜔-polygraph structure on O𝑣 (𝑋 ) and a unique right 𝜄-contraction 𝜎 of O𝑣 (𝑋 ) such that, for all 𝑛-overlappings 𝑢 𝑛 of O𝑣 (𝑋 ) and reduced 0-monomials ì

𝑣 𝑛+1 of 𝑋 * Ш 0 , 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) =          𝑢 𝑛 ì 𝑣 𝑛+1 if 𝑢 𝑛 ì 𝑣 𝑛+1 ∈ O𝑣 (𝑋 ) 𝑛+1 , an identity if 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) = ∅, 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1
) otherwise (tautological condition).

(5.2.7)

As a consequence, O𝑣 (𝑋 ) is a polygraphic resolution of the operad 𝑋 .

Proof. By induction on 𝑛 ⩾ 0, we simultaneously construct the source and target maps of the 𝜔polygraph structure on the (𝑛 + 1)-generators of O𝑣 (𝑋 ) and the right 𝜄-contraction 𝜎 : O𝑣 (𝑋 ) Ш 𝑛 → O𝑣 (𝑋 ) Ш 𝑛+1 . By Lemma 5.1.10, it suffices to define 𝜎 on the 𝜄-and 𝜎-essential 𝑛-monomials of the 𝜔-operad O𝑣 (𝑋 ) Ш .

Let 𝑛 = 0. The 𝜄-essential 0-monomials of O𝑣 (𝑋 ) Ш are the (𝑢 0 | ì 𝑣 1 ) where 𝑢 0 is a 0-generator of 𝑋 and the 𝑣 1,𝑖 are reduced 0-monomials of 𝑋 Ш 0 such that (𝑢 0 | ì 𝑣 1 ) is not reduced. By (5.1.8), it suffices to define 𝜎 

(𝑢 0 | ì Since 𝑋 is terminating, we define 𝜎 ( (𝑢 0 | ì 𝑤 1 ) | ì 𝑤 2 ) : ( (𝑢 0 | ì 𝑤 1 ) | ì 𝑤 2 ) → (𝑢 0 | ì 𝑤 1 | ì 𝑤 2 )
| ì 𝑣 𝑛+1 ) = (𝑢 𝑛 | ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 ). Then 𝐸 (𝑢 𝑛 ì 𝑤 𝑛+1 , ì 𝑤 𝑛+2 ) ⊆ {Γ ′ [𝛼 ′ ] ∈ 𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) | Γ ′ [𝛼 ′ ] ≻ 𝑝𝑙 Γ 𝑛+1 [𝛼 𝑛+1 ]} = ∅.
In addition, the monomials ì 𝑤 𝑛+2 are reduced, so this is exactly the condition of the second case, so we have the constraint that the source and target of the (not yet defined)

(𝑛 + 2)-cell 𝜎 (𝑢 𝑛 ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 ) are equal.
The rest of this case is rather technical, so we summarize our strategy here. We prove and use Lemma 5.2.8 in order to get an explicit expression of 𝜕𝜎 (𝑢 𝑛 ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 ), which must be equal to 0, as we have observed. This expression consists of many terms, including 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ), which is the term that we have to define. We then proceed by well-founded induction on the terms of 

∥ • • • ∥ì 𝑣 𝑘 ) the list of 𝑘-cells 𝜎 (𝜎 (• • • 𝜎 (𝜎 𝑘 (𝑣 0,𝑖 | ì 𝑣 𝑖 1 ) | ì 𝑣 𝑖 2 ) | • • • ì 𝑣 𝑖 𝑘 -1 ) | ì 𝑣 𝑖 𝑘 ). Note that, if 𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑘 is an 𝑘-overlapping, then 𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑘 = (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑘 ).
5.2.8. Lemma. For 𝑛 ⩾ 2 and ì 𝑣 0 , . . . , ì 𝑣 𝑛 0-monomials of 𝑋 Ш 0 , we have the equality of (𝑛 -1)-cells

𝜕(ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) = ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛-1 ) | ì 𝑣 𝑛 ) + 𝑛 ∑︁ 𝑘=1 (-1) 𝑘 (ì 𝑣 0 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘 | ì 𝑣 𝑛-𝑘+1 ) ∥ • • • ∥ì 𝑣 𝑛 ) + (-1) 𝑛+1 (ì 𝑣 0 | (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 )) + 1 𝑐 ,
where 𝜕 = 𝑠 -𝑡 and 𝑐 is some (𝑛 -2)-cell.

Proof. Proceed by induction on 𝑛 ⩾ 2. According to (5.1.8), for every 𝑛-cell 𝑎,

𝜕𝜎 (𝑎) = 𝑎 -𝜎 (𝜕𝑎) + 1 𝑐 ,
where 𝑐 = -𝑡 𝑛-1 (𝑎) is an (𝑛 -1)-cell. For 𝑛 = 2, applying this equality to (ì 𝑣 0 ∥ì 𝑣 1 ∥ì 𝑣 2 ) gives where 𝑐 is an 𝑛-cell. On the righthand side, the (𝑛 + 1)-cell

𝜕(ì 𝑣 0 ∥ì 𝑣 1 ∥ì 𝑣 2 ) = 𝜕𝜎 (𝜎 (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) = (𝜎 (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) -𝜎 (𝜕𝜎 (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) + 1 𝑐 = (𝜎 (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) + 𝜎 ( (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) -𝜎 (ì 𝑣 0 | ì 𝑣 1 | ì 𝑣 2 ) + 1 𝑐 = (𝜎 (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) + 𝜎 ( (ì 𝑣 0 | ì 𝑣 1 ) | ì 𝑣 2 ) -(ì 𝑣 0 | 𝜎 (ì 𝑣 1 | ì 𝑣 2 )) -𝜎 (ì 𝑣 0 | (ì 𝑣 1 | ì 𝑣 2 )) + 1 𝑐 ′ + 1 𝑐 = ((ì 𝑣 0 ∥ì 𝑣 1 ) | ì 𝑣 2 ) + (-1) 1 (ì 𝑣 0 ∥ (ì 𝑣 1 | ì 𝑣 2 )) + (-1) 2 ( (ì 𝑣 0 | ì 𝑣 1 ) ∥ì 𝑣 2 ) + (-1) 3 (ì 𝑣 0 | (ì 𝑣 1 ∥ì 𝑣 2 )) + 1 𝑐+𝑐 ′ . Let 𝑛 ⩾ 2.
(𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ( ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 )) = 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 )
appears. We want to define this (𝑛 + 1)-cell using the other (𝑛 + 1)-cells that appear, that is,

(𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥𝑤 𝑛+1 ), (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 ), (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘+2 | ì 𝑣 𝑛-𝑘+3 ) ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2
), 𝑘 ∈ {2, . . . , 𝑛 + 2}.

(5.2.9)

We define a well-founded order ≺ on (𝑛+1)-cells of the form (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ) by setting (𝑢

0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ) ≺ (𝑢 ′ 0 ∥ì 𝑣 ′ 1 ∥ • • • ∥ì 𝑣 ′ 𝑛 ) if i) 𝑇 (𝑢 0 | ì 𝑣 1 | • • • | ì 𝑣 𝑛 ) is a proper submonomial of 𝑇 (𝑢 ′ 0 | ì 𝑣 ′ 1 | • • • | ì 𝑣 ′ 𝑛 ), or ii) 𝑇 (𝑢 0 | ì 𝑣 1 | • • • | ì 𝑣 𝑛 ) = 𝑇 (𝑢 ′ 0 | ì 𝑣 ′ 1 | • • • | ì 𝑣 ′ 𝑛 )
and there exist 𝑖, 𝑗 such that 𝑢 0 = 𝑢 ′ 0 , ì 𝑣 1 = ì 𝑣 ′ 1 , . . . , ì 𝑣 𝑖 -1 = ì 𝑣 ′ 𝑖 -1 , 𝑣 𝑖,1 = 𝑣 ′ 𝑖,1 , . . . , 𝑣 𝑖,𝑗 -1 = 𝑣 ′ 𝑖,𝑗 -1 , and the weight of 𝑣 𝑖,𝑗 is less than that of 𝑣 ′ 𝑖,𝑗 , or iii) there exists a positive 1-cell 𝑓 : (𝑢 ′ 0 ∥ì 𝑣 ′ 1 ∥ • • • ∥ì 𝑣 ′ 𝑛 ) → 𝑏 of 𝑋 Ш such that (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ) ∈ Supp(𝑏). The relation ≺ is an order because the 1-polygraph 𝑋 is supposed reduced (so we cannot rewrite a 0-monomial into a larger 0-monomial). The relation ≺ is well-founded because every sequence ((𝑢 𝑖 0 ∥ì 𝑣 𝑖 1 ∥ • • • ∥ì 𝑣 𝑖 𝑛 )) 𝑖 ⩾0 that decreases for ≺ can be rearranged into the concatenation of a decreasing sequence for iii) followed by a decreasing sequence for the lexicographic order induced by i) and ii) (if we can rewrite a submonomial of a 0-monomial, then we can rewrite the 0-monomial following the same rule).

We initialize our well-founded induction on the (𝑛 + 1)-overlappings, since 𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑛+1 = (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛+1 ) is already defined. We then check that all of the (𝑛 + 1)-cells of (5. Then there exists a 𝜔-polygraph structure on O𝑣 (𝑋 ) making it a polygraphic resolution of 𝑋 .

Proof. By Theorem 4.2.4, the polygraph 𝑋 is convergent. Thus, following Theorem 5.2.6, O𝑣 (𝑋 ) is equipped with a 𝜔-polygraph structure and is a polygraphic resolution of 𝑋 . □ 5.2.11. Coherent presentations from convergence. In [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], Squier showed how to compute a coherent presentation of a monoid from a convergent one. This construction is described in the case of associative algebras in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Thm 4.3.2], and in the case of shuffle operads by using the following result. For a convergent left-monomial 1-polygraph 𝑋 , and a cellular extension 𝑌 of 𝑋 Ш 1 that contains a 2-generator 𝐴 𝑓 ,𝑔 of shape 

𝑑 𝑐 𝑘

A A with ℎ and 𝑘 positive 1-cells of 𝑋 Ш 1 , for every critical branching (𝑓 , 𝑔) of 𝑋 , then the 2-polygraph (𝑋, 𝑌 ) is acyclic. The 2-generator 𝐴 𝑓 ,𝑔 is called a generating confluence associated to the critical branching (𝑓 , 𝑔). Note that such a generating confluence depends on the choice of the positives cells ℎ and 𝑘 and the orientation of the 2-cell 𝐴 𝑓 ,𝑔 . The proof of this result is done in two steps. First, we show that the 2-polygraph (𝑋, 𝑌 ) is coherently confluent, then we prove acyclicity of the cellular extension 𝑌 , see [START_REF] Guiraud | Polygraphs of finite derivation type[END_REF]Thm. 4.3.2].

The proof of Theorem 5.2.6 makes explicit the generating confluences, which can be represented as follows:

( (𝑢 0 | ì 𝑣 1 ) | ì 𝑣 2 ) 𝜎 ( (𝑢 0 | ì 𝑣 1 ) | ì 𝑣 2 ) & & 𝑢 0 ì 𝑣 1 ì 𝑣 2 Õ (𝑢 0 | ì 𝑣 1 | ì 𝑣 2 ) (𝑢 0 ì 𝑣 1 | ì 𝑣 2 ) 4 4 
(𝑢 0 | 𝜎 ( ì 𝑣 1 | ì 𝑣 2 ) ) * * (𝑢 0 | ì 𝑣 1 | ì 𝑣 2 ) (𝑢 0 | (ì 𝑣 1 | ì 𝑣 2 )) 𝜎 (𝑢 0 | ( ì 𝑣 1 | ì 𝑣 2 ) ) 9 9 
( (𝑢 0 | ì 𝑣 1 ) | ì 𝑣 2 ) 𝜎 ( (𝑢 0 | ì 𝑣 1 ) | ì 𝑣 2 )
' ' ii) Following Proposition 3.2.6, if 𝑋 is an acyclic 𝜔-polygraph whose underlying 1-polygraph 𝑋 ⩽1 is left-monomial and convergent, then 𝑋 is Tietze equivalent to the 𝜔-polygraph O𝑣 (𝑋 ⩽1 ). In particular, for every operad 𝑃, the 𝜔-polygraphs Std(𝑃) and O𝑣 (Std(𝑃) ⩽1 ) are Tietze equivalent.

𝑢 0 ì 𝑣 1 ì 𝑣 2 Õ (𝑢 0 | ì 𝑣 1 | ì 𝑣 2 ) (𝑢 0 ì 𝑣 1 | ì 𝑣 2 )

Bimodule resolutions from polygraphic resolutions

In this subsection, we show how to deduce the homology of a shuffle operad with coefficients in bimodules from a shuffle polygraphic resolution of the operad. As a consequence of the globularity of the polygraph 𝑋 , for all 𝑛 ⩾ -1, we have 𝛿 𝑛+1 𝛿 𝑛 = 0 and thus 𝑃 ⟨𝑋 ⟩ forms a chain complex. Comparing the this rewriting rule with those of the previous example, we find that this rule creates a non-confluent critical pair. By Proposition 4.3.2, this also means that this presentation of 𝑃 does not admit a quadratic Gröbner basis. Instead, if we orient every relation from right to left, we get a shuffle 1-polygraph 𝑋 with 0generators 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑋 0 (2) and with twelve 1-generators. With arguments similar to previous example, we show that 𝑋 is terminating. Moreover, there are no critical branchings, so by Theorem 4.2.4 the 1-polygraph 𝑋 is confluent. In this way, 𝑋 is a convergent quadratic 1-polygraph, so by Theorem 5.4.2, the operad 𝑃 is Koszul.

2. 4 . 5 .

 45 Example. Let 𝑎 = 𝑎 0 𝑎 1 𝑎 2 be the element of 𝐴 • 𝐴 from Example 2.2.4 with inputs omitted.

  (2.4.3). First, let us define categories of "enriched cellular extensions" of 𝑃. Let D be a category such that 𝑃 is a reflexive (𝑛 -1)globular object of D. Define -Glob 𝑃 (D) the full subcategory of Glob 𝑛 (D) whose objects 𝑋 satisfy (𝑋 0 , . . . , 𝑋 𝑛-1 ) = 𝑃, and -RGlob 𝑃 (D) the full subcategory of RGlob 𝑛 (D) whose objects 𝑋 satisfy (𝑋 0 , . . . , 𝑋 𝑛-1 ) = 𝑃.

3. 1 . 8 .

 18 Higher-dimensional monomials. Let 𝑋 be an 𝜔-polygraph. Tree monomials in 𝑋 * Ш 0 are called 0-monomials of 𝑋 Ш , and they form a linear basis of the collection 𝑋 Ш 0 , which means that every 0-cell 𝑎 of 𝑋 Ш 0 can be uniquely written as a (possibly empty) linear combination 𝑎 = 𝑝 ∑︁ 𝑖=1 𝜆 𝑖 𝑢 𝑖 + 𝜆𝜀 of pairwise distinct 0-monomials 𝑢 1 , . . . , 𝑢 𝑝 of 𝑋 Ш 0 , with 𝜆 𝑖 ∈ k \ {0}, 𝜆 ∈ k, and 𝜀 denotes the trivial monomial. This expression is called the canonical decomposition of 𝑎, and we define the support of 𝑎 as the set Supp(𝑎) = 𝑢 1 , . . . , 𝑢 𝑝 . For 𝑛 ⩾ 1, if 𝛼 is an 𝑛-cell of 𝑋 , and ì 𝑣 is a list of 0-monomials, we will denote by (𝛼 | ì 𝑣) the 𝑛-cell of 𝑋 Ш with source (𝑠 (𝛼) | ì 𝑣) and target (𝑡 (𝛼) | ì 𝑣). An 𝑛-monomial of 𝑋 Ш is an 𝑛-cell of 𝑋 Ш of the form 𝑢 • 𝑖,𝜏 (𝛼 | ì 𝑣), where 𝛼 is an 𝑛-cell of 𝑋 , and 𝑢 and ì 𝑣 are monomials of 𝑋 Ш . By construction of the free 𝑛-operad over (𝑋 Ш 𝑛-1 , 𝑋 𝑛 ), and by freeness of 𝑋 Ш 𝑛-1 , every 𝑛-cell 𝑎 of 𝑋 Ш can be written as a linear combination 𝑎 = 𝑝 ∑︁ 𝑖=1 𝜆 𝑖 𝑎 𝑖 + 1 𝑐 (3.1.9)

3. 2 . 4 .

 24 Example: standard polygraphic resolution. Let 𝑃 be a shuffle operad, and 𝐵 a basis of 𝑃 seen as a collection. We then define the standard polygraphic resolution Std(𝑃) by induction as follows. For 𝑛 = 0, we define the indexed set Std(𝑃) 0 := 𝐵, and for 𝑢 ∈ 𝐵 we denote by [𝑢] the corresponding element in Std(𝑃) 0 . Any element 𝑎 = 𝑢 ∈𝐵 𝜆 𝑢 𝑢 of 𝑃 then corresponds to a linear combination of elements [𝑎] := 𝑢 ∈𝐵 𝜆 𝑢 [𝑢] in Std(𝑃) Ш 0 . Next, for 𝑛 = 1, we set Std(𝑃) 1 := { [𝑢] • 𝑖,𝜏 [𝑣] → [𝑢 • 𝑖,𝜏 𝑣] | 𝑢, 𝑣 ∈ 𝐵 }, so that the pair (𝐵, Std(𝑃) 1 ) forms a 1-polygraph that presents the shuffle operad 𝑃. Now, suppose that Std(𝑃) 𝑛 is defined for 𝑛 ⩾ 1. Then we set Std(𝑃) 𝑛+1 := Sph(Std(𝑃) Ш 𝑛 ). By construction, the 𝜔-polygraph Std(𝑃) is a polygraphic resolution of the shuffle operad 𝑃.

4. 1 . 1 .

 11 The terminal indexed set. Denote by □ the terminal object of Ind, that is, the indexed set that is a singleton □(𝑘) = {□ 𝑘 } for each arity 𝑘 ⩾ 1. Denote by 𝜄 𝑘 : Set → Ind the inclusion functor defined by 𝜄 𝑘 (𝑋 0 )(𝑘) = 𝑋 0 and 𝜄 𝑘 (𝑋 0 ) = ∅ for the other arities.

4. 1 . 8 .

 18 Proposition. Let 𝑋 be a left-monomial 1-polygraph. If 𝑋 * Ш 0 admits a well-founded monomial order ≺ compatible with 𝑋 1 , then 𝑋 is terminating.

□ 4 . 1 . 10 .For

 4110 Example. We consider the polygraph 𝑋 with three 0-generators 𝑥, 𝑦, 𝑧 and the following 1generator: 𝑢 ∈ 𝑋 * Ш 0 , we set Φ(𝑢) := |𝑢 | 𝑥 + 3|𝑢 | 𝑦-𝑧 , where |𝑢 | 𝑥 denotes the number of occurrences of 𝑥 in 𝑇 (𝑢) and |𝑢 | 𝑦-𝑧 the number of inner vertices of 𝑇 (𝑢) whose two children are, from left to right, 𝑦 and 𝑧.

  [𝛼] + 1 𝑐 , Δ[𝛽] + 1 𝑐 ), where 𝛼, 𝛽 are 1-generators of 𝑋 , Γ, Δ are one-hole contexts of 𝑋 * Ш 0 , and 𝑠 0 (Γ [𝛼]) = 𝑠 0 (Δ[𝛽]). An essential branching is a critical branching (Γ[𝛼], Δ[𝛽]) where Γ [𝛼] and Δ[𝛽] are consecutive 1-monomials for the path-lexicographic monomial order ≺ 𝑝𝑙 defined in § 4.1.7.

4. 2 . 3 .

 23 Lemma ([25, Lemmata 3.1.3 and 4.1.2.

5. 1 . 4 .

 14 Let us expand the homotopy 𝜂 in low dimension. It maps a 1-cell 𝑓 : 𝑎 → 𝑎 ′ of 𝑃 to a 2-cell 𝐹 (𝑎 ′ ) 𝜂 𝑎 ′ # # 𝜂 𝑓 Õ 𝐹 (𝑎) 𝐹 (𝑓 ) 2 2 𝜂 𝑎 , , 𝐺 (𝑎 ′ ) 𝐺 (𝑎) 𝐺 (𝑓 ) : : of 𝑄, and a 2-cell 𝐴 : 𝑓 ⇒ 𝑓 ′ : 𝑎 → 𝑎 ′ of 𝑃 to the following 3-cell of 𝑄 𝐹 (𝑎 ′ ) 𝜂 𝑎 ′ ( (

5. 1 .

 1 [START_REF] Bergman | The diamond lemma for ring theory[END_REF]. Lemma. Let 𝑋 be an 𝜔-polygraph and 𝜄 a unital section of 𝑋 . A right 𝜄-contraction 𝜎 of 𝑋 is uniquely and entirely determined by its values on the 𝜄-essential 0-monomials and, for 𝑛 ⩾ 1, on the 𝜎-essential 𝑛-monomials of 𝑋 Ш .where(𝛼 | ì 𝑣) is a shortcut for (𝛼 | 𝑣 1 • • • 𝑣 𝑘 ).Let us check that this definition is well-founded. The 𝜎 𝑣 𝑖 are defined by induction on the weight of the 𝑣 𝑖 , and𝜎 𝑢• 𝑖,𝜏 (𝛼 | ì 𝑣) = 𝜎 𝑢• 𝑖,𝜏 (𝑠 0 (𝛼 ) | ì𝑣) is defined by induction on 𝑛. It remains to check that 𝜎 (𝛼 | ì 𝑣) is defined. If (𝛼 | ì 𝑣) is 𝜎-essential, then it is defined by hypothesis. Otherwise, (𝛼 | ì 𝑣) is 𝜎-reduced, in which case (𝛼 | ì 𝑣) = 𝜎 𝑏 for some (𝑛 -1)-cell 𝑏 of 𝑋 Ш , which imposes 𝜎 (𝛼 | ì 𝑣) := 1 𝜎 𝑏 . Now it remains only to show (5.1.11) and then apply the first point. More explicitly, we need to show 𝜎 𝑢• 𝑖,𝜏 𝑠 0 (𝑣) + 𝜎 𝑡 0 (𝑢 )• 𝑖,𝜏 𝑣 -𝜎 𝑡 0 (𝑢 )• 𝑖,𝜏 𝑠 0 (𝑣) = 𝜎 𝑢• 𝑖,𝜏 𝑡 0 (𝑣) + 𝜎 𝑠 0 (𝑢 )• 𝑖,𝜏 𝑣 -𝜎 𝑠 0 (𝑢 )• 𝑖,𝜏 𝑡 0 (𝑣) for all 𝑢, 𝑣 two 𝑛-monomials of 𝑋 Ш and compatible elementary composition • 𝑖,𝜏 . Write 𝑎 = 𝑠 0 (𝑢), 𝑎 ′ = 𝑡 0 (𝑢), 𝑏 = 𝑠 0 (𝑣), 𝑏 ′ = 𝑡 0 (𝑣), and • = • 𝑖,𝜏 . On the one hand,

Proof.

  Suppose that 𝑋 is a polygraphic resolution of the operad 𝑋 , and define a right 𝜄-contraction 𝜎 of 𝑋 . Using Lemma 5.1.10, we shall define 𝜎 on 𝜄-and 𝜎-essential 𝑛-monomials of 𝑋 Ш by induction on𝑛 ⩾ 0. If (𝑥 | ì 𝑣) is an 𝜄-essential 0-monomial, then 𝜋 𝑋 (𝑥 | ì 𝑣) = 𝜋 𝑋 ( (𝑥 | ì 𝑣)) in 𝑋 ,hence there exists a 1-cell 𝜎 (𝑥 | ì 𝑣) : (𝑥 | ì 𝑣) → (𝑥 | ì 𝑣) in 𝑋 Ш . Now assume that 𝜎 is defined on the 𝑛-cells of 𝑋 Ш for 𝑛 ⩾ 0 and let (𝛼 | ì 𝑣) be a 𝜎-essential (𝑛 + 1)-monomial of 𝑋 Ш . The 𝑛-cells defining 𝑠 (𝜎 (𝛼 | ì 𝑣) ) and 𝑡 (𝜎 (𝛼 | ì 𝑣) ) as in (5.1.8) are parallel, so, by acyclicity of 𝑋 , there exists an (𝑛 + 2)-cell 𝜎 (𝛼 | ì 𝑣) with this source and target in 𝑋 Ш .

5. 2 . 5 .

 25 Examples. (i) Consider the following binary quadratic 1-polygraph 𝑋 := 𝑥 ∈ 𝑋 0 It has 15 critical branchings, which correspond to all possible critical branchings in the quadratic binary case. Let us draw the part of the directed graph G(𝑋 ) corresponding to O𝑣 (𝑋 )

(

  ii) Next, consider the following binary cubic 1-polygraph𝑋 := 𝑥 ∈ 𝑋 0 (2)and consider the path-lexicographic order ≺ 𝑝𝑙 on 1-monomials where 𝛼 ≺ 𝛽 ≺ 𝛾 ≺ 𝛿 (see § 4.1.7). Let us draw a part of the directed graph G(𝑋 ) around 𝑠 0 (𝛼):

(- 1 )(- 1 )𝑘=1(- 1 )(- 1 )

 1111 Recall that, for all (𝑛 -1)-cells 𝑢 and 0-cells ì 𝑣, 𝜎 (𝑢 | ì 𝑣) = (𝑠 0 (𝑢) | 𝜎 (ì 𝑣)) ★ 0 (𝑢 | ì 𝑣) = 𝜎 (𝑢 | ì 𝑣) + 1 𝑐with 𝑐 an (𝑛 -1)-cell. We calculate𝜕(ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛+1 ) = 𝜕𝜎 ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) = ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) -𝜎 (𝜕(ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) + 1 𝑐 = ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) -𝜎 ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛-1 ) | ì 𝑣 𝑛 | ì 𝑣 𝑛+1 ) -𝑘 𝜎 ((ì 𝑣 0 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘 | ì 𝑣 𝑛-𝑘+1 ) ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) -(-1) 𝑛+1 𝜎 (ì 𝑣 0 | (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) + 𝜎 (1 𝑐 ′ ) + 1 𝑐 = ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) -𝜎 ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛-1 ) | (ì 𝑣 𝑛 | ì 𝑣 𝑛+1 )) -1 𝑐 ′′ -𝑘 (ì 𝑣 0 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘 | ì 𝑣 𝑛-𝑘+1 ) ∥ • • • ∥ì 𝑣 𝑛+1 ) -(-1) 𝑛+1 (ì 𝑣 0 | 𝜎 ((ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 )) + 1 𝜎 (𝑐 ′ ) + 1 𝑐 = ((ì 𝑣 0 ∥ • • • ∥ì 𝑣 𝑛 ) | ì 𝑣 𝑛+1 ) + 𝑛+1 ∑︁ 𝑘 (ì 𝑣 0 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘+1 | ì 𝑣 𝑛-𝑘+2 ) ∥ • • • ∥ì 𝑣 𝑛+1 ) + (-1) 𝑛+2 (ì 𝑣 0 | (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛+1 )) + 1 𝑐+𝜎 (𝑐 ′ ) -𝑐 ′′ ,which concludes the induction step, and the proof of the lemma. □Writing 𝑢 𝑛 = 𝑢 0 ì 𝑣 1 • • • ì 𝑣 𝑛 , we apply the lemma to 𝜎 (𝑢 𝑛 ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 ) = (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 ) to get the equation of (𝑛 + 1)-cells 𝜕𝜎 (𝑢 𝑛 ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 ) = 0 = ((𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ) | ì 𝑤 𝑛+2 𝑘 (𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘+2 | ì 𝑣 𝑛-𝑘+3 ) ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 ) + (-1) 𝑛+3 (𝑢 0 | (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 )) + 1 𝑐 ,

  2.9) are smaller than 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) for the order ≺:(𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ) and (ì 𝑣 1 ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 ) satisfy i),and(𝑢 0 ∥ì 𝑣 1 ∥ • • • ∥ (ì 𝑣 𝑛-𝑘+2 | ì 𝑣 𝑛-𝑘+3 ) ∥ • • • ∥ì 𝑣 𝑛 ∥ ì 𝑤 𝑛+1 ∥ ì 𝑤 𝑛+2 ) satisfies ii) if (ì 𝑣 𝑛-𝑘+2 | ì 𝑣 𝑛-𝑘+3) is reduced, and iii) otherwise, by confluence of 𝑋 . Thus we can define 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) by well-founded induction. Finally, by Proposition 5.1.13, the 𝜔-polygraph O𝑣 (𝑋 ) is acyclic. Since 𝑋 is reduced, by the discussion of § 5.2.3, O𝑣 (𝑋 ) ⩽1 coincides with 𝑋 . Therefore O𝑣 (𝑋 ) is a polygraphic resolution of the operad 𝑋 . □ 5.2.10. Corollary. Let 𝑋 be an essentially confluent reduced, terminating, left-monomial 1-polygraph.

5. 3 . 1 .

 31 Construction of a chain complex. Let 𝑋 be a shuffle 𝜔-polygraph, and denote 𝑃 the shuffle operad presented by 𝑋 . Denote by 𝑢 the image of 𝑢 by the canonical projection 𝜋 𝑋 defined in (3.2.2). Consider the chain complex (𝑃 ⟨𝑋 ⟩ 𝑛 ) 𝑛⩾-1 in the category Bimod(𝑃) generated by 𝑋 , that is, for all 𝑛 ⩾ -1, 𝑃 ⟨𝑋 ⟩ 𝑛 := 𝑃 ⟨𝑋 𝑛 ⟩ is the free 𝑃-bimodule on 𝑋 𝑛 , where 𝑋 -1 is the unit indexed set 1 defined in § 2.1.6. The generators of 𝑃 ⟨𝑋 ⟩ 𝑛 , are denoted [𝑥] for 𝑥 in 𝑋 𝑛 . The boundary map 𝛿 𝑛 : 𝑃 ⟨𝑋 ⟩ 𝑛+1 → 𝑃 ⟨𝑋 ⟩ 𝑛 is defined as follows i) For 𝑥 ∈ 𝑋 0 (𝑘), we set𝛿 -1 ( [𝑥]) = (𝜀 | 𝑥) -𝑘 ∑︁ 𝑖=1 (𝑥 | 1 • • • 𝜀 𝑖 • • • 1). (5.3.2)ii) Consider the derivation [ ] : 𝑋 Ш 0 → 𝑃 ⟨𝑋 0 ⟩ defined by induction on the weight of monomials 𝑢 in 𝑋 Ш 0 , by setting [1] := 0, [𝑥] := 𝑥 and[𝑢 | ì 𝑣] := ( [𝑢] | 𝑣 1 • • • 𝑣 𝑘 ) + 𝑘 ∑︁ 𝑖=1 (𝑢 | 𝑣 1 • • • [𝑣 𝑖 ] • • • 𝑣 𝑘 ).We set 𝛿 0 the Fox differential defined for every 1-generator 𝛼 in 𝑋 1 by𝛿 0 ( [𝛼]) := [𝑠 0 (𝛼)] -[𝑡 0 (𝛼)].iii) For 𝑛 ⩾ 1, we define the map [ ] : 𝑋 Ш 𝑛 → 𝑃 ⟨𝑋 𝑛 ⟩ by setting, for𝑓 = 𝑝 ∑︁ 𝑖=1 𝜆 𝑖 Γ 𝑖 [𝛼 𝑖 ] + 1 𝑐an 𝑛-cell of 𝑋 Ш , where 𝛼 𝑖 ∈ 𝑋 𝑛 and Γ 𝑖 is a one-hole context of 𝑋 * Ш 0 ,[𝑓 ] = 𝑝 ∑︁ 𝑖=1 𝜆 𝑖 Γ 𝑖 [𝛼 𝑖 ] ,where Γ 𝑖 is the one-hole context of 𝑃 induced by the context Γ 𝑖 . Note that [𝑓 ] does not depend on the choice of decomposition, so [ ] is well defined. We set for every (𝑛 + 1)-generator 𝐴 in 𝑋 𝑛+1 𝛿 𝑛 ( [𝐴]) := [𝑠 𝑛 (𝐴)] -[𝑡 𝑛 (𝐴)].

5. 3 . 3 .𝑖=1(𝑢 | ( 1 |□

 331 Lemma. For every 0-monomial 𝑢 ∈ 𝑋 * Ш 0 (𝑘), we have𝛿 -1 ( [𝑢]) = (𝜀 | 𝑢) -𝑘 ∑︁ 𝑖=1 (𝑢 | 1 • • • 𝜀 𝑖 • • • 1).Proof. Proceed by induction on the depth of the 0-monomial 𝑢. The equality is true by definition for 𝑥 ∈ 𝑋 0 . For the induction step, consider(𝑢 | ì 𝑣) with 𝑢 ∈ 𝑋 ℓ 0 (𝑘), 𝑣 𝑖 ∈ 𝑋 ℓ 0 (ℓ 𝑖 ) for all 1 ⩽ 𝑖 ⩽ 𝑘 : 𝛿 -1 ([𝑢 | ì 𝑣]) = (𝛿 -1 ( [𝑢]) | 𝑣 1 • • • 𝑣 𝑘 ) + 𝑘 ∑︁ 𝑖=1 (𝑢 | 𝑣 1 • • • 𝛿 -1 ( [𝑣 𝑖 ]) • • • 𝑣 𝑘 ) = (𝜀 | 𝑢 | 𝑣 1 • • • 𝑣 𝑘 ) -𝑘 ∑︁ 𝑣 1 ) • • • (𝜀 | 𝑣 𝑖 ) • • • (1 | 𝑣 𝑘 )) + 𝑘 ∑︁ 𝑖=1 (𝑢 | 𝑣 1 • • • (𝜀 | 𝑣 𝑖 ) • • • 𝑣 𝑘 ) -𝑣 1 • • • (𝑣 𝑖 | 1 • • • 𝜀 𝑗 • • • 1) • • • 𝑣 𝑘 )If we orient the induced relations according to a monomial order, say an order where 𝑤 < 𝑥 < 𝑦 < 𝑧, then in particular we get the rewriting rule

  For 𝑛 1 , . . . , 𝑛 𝑘 ⩾ 1, a shuffle surjection of type (𝑛 1 , . . . , 𝑛 𝑘 ) is a surjection 𝑓 : {1, . . . , 𝑛 1 + • • • + 𝑛 𝑘 } ↠ {1, . . . , 𝑘 } such that, for all 𝑖 ∈ {1, . . . , 𝑘 }, |𝑓 -1 ({𝑖})| = 𝑛 𝑖 , and min 𝑓

	1	2	3	4
			𝑥	
	contains three distinct occurrences of the submonomial	1	𝑥	2 , one of which is rooted.
	2.1.10. Inline notation for tree monomials.		

  1.11. Explicit associativity of shuffle composition. Let 𝑢, ì 𝑣, ì 𝑣 ′ be monomials, and 𝑓 , 𝑓 ′ shuffle surjections such that the tree monomial ((𝑢 | 𝑓 ì 𝑣) | 𝑓 ′ ì 𝑣 ′ ) is well defined. Denoting the minimal and maximal elements of 𝑓 -1 {𝑖} by 𝑓 -𝑖 and 𝑓 + 𝑖 respectively for all 𝑖 ∈ {1, . . . , 𝑘 }, this monomial is represented graphically as

	𝑣 1
	𝑢

  1 • 𝜇 𝐴 ) corresponds to a depth-first traversal. □ 2.4.8. Theorem. The following categories are isomorphic: i) the category ШOp 𝜔 , ii) the full subcategory of RGlob(Bimod(ШOp)) whose objects are pairs (𝑃, 𝐴) where (𝑃, 𝜇, 𝜂) is a shuffle operad and 𝐴 = (𝐴 𝑛 , 𝜆 𝑛 , 𝜌 𝑛 ) 𝑛⩾0 is a reflexive globular 𝑃-bimodule such that 𝐴 0 = 𝑃 and (𝑃, 𝐴 𝑛 ) satisfies the linear exchange relation (2.4.3) for all 𝑛 ⩾ 1.

  is, the set of crowns ì 𝑤 𝑛+1 on 𝑢 𝑛 included in ì 𝑣 𝑛+1 . This set is equipped with the total order defined by ì𝑤 𝑛+1 ≺ ì 𝑤 ′ 𝑛+1 if max ≺ 𝑝𝑙 𝐵(𝑢 𝑛 ì 𝑤 𝑛+1 ) ≺ 𝑝𝑙 max ≺ 𝑝𝑙 𝐵(𝑢 𝑛 ì 𝑤 ′ 𝑛+1 ). Note that 𝐶 (𝑢 𝑛 , ì𝑣𝑛+1 ) is empty if, and only if, 𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) is empty. 5.2.3. Description in low dimensions. Let us look at the definitions of 𝑛-overlappings in low dimensions. A 1-overlapping 𝑢 0 ì 𝑣 1 is associated to a single branch Γ [𝛼]

  by well-founded induction on ≺ 𝑋 1 , so this definition is licit. Now let 𝑛 ⩾ 1. The essential 𝑛-cells of O𝑣 (𝑋 ) Ш are the (𝑢 𝑛 | ì 𝑣 𝑛+1 ) where 𝑢 𝑛 is an 𝑛-overlapping and the 𝑣 𝑛+1,𝑖 are reduced 0-monomials of 𝑋 Ш 0 such that (𝑢 𝑛 | ì 𝑣 𝑛+1 ) is not 𝜎-reduced. Denote the branches of 𝑢 𝑛 by (Γ 1 [𝛼 1 ], . . . , Γ 𝑛 [𝛼 𝑛 ]). We distinguish the three cases of (5.2.7). The induction step for the 𝜔-polygraph structure on O𝑣 (𝑋 ) is entirely contained within the first case. 𝑣 𝑛+1 ), which are indeed globular, and define 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) := 𝑢 𝑛 ì 𝑣 𝑛+1 . This gives us the polygraphic structure on the (𝑛 + 1)-overlappings.Second case. Next, suppose that 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) = ∅. Writing 𝑢 𝑛 = 𝑢 𝑛-1 ì𝑣 𝑛 , we make the following observations:the pair (𝑢 𝑛-1 , (ì 𝑣 𝑛 | ì 𝑣 𝑛+1 )) is not an 𝑛-overlapping.In particular, the third observation says that(𝑢 𝑛-1 | ì 𝑣 𝑛 | ì 𝑣 𝑛+1) is an essential (𝑛 -1)-monomial. Thus we are in the third case of the induction hypothesis. Following the calculations of the induction hypothesis in the third case below, let ì 𝑤 𝑛 be the maximal element of 𝐶 (𝑢 𝑛-1 , (ì𝑣 𝑛 | ì 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ),which contradicts the hypothesis that 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) is empty. Therefore ì 𝑣 𝑛 = ì 𝑤 𝑛 , and we conclude that the source and target of 𝜎 (𝑢 𝑛-1 ì 𝑣 𝑛 | ì 𝑣 𝑛+1 ) = 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) are equal, allowing us to define 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) as an identity. Third case. Otherwise, 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) is nonempty. Let ì 𝑤 𝑛+1 be its maximal element, Γ 𝑛+1 [𝛼 𝑛+1 ] the associated 1-monomial, and write (𝑢 𝑛

	𝑣 𝑛+1 )) and let ì 𝑤 𝑛+1 be
	0-monomials such that (𝑢 𝑛-1 | ì 𝑤 𝑛 | ì 𝑤 𝑛+1 ) = (𝑢 𝑛-1 | ì 𝑣 𝑛 | ì 𝑣 𝑛+1 ). Then, by induction, the source and
	target of 𝜎 (𝑢 𝑛-1 ì 𝑤 𝑛 | ì 𝑤 𝑛+1 ) are equal.
	Suppose by contradiction that ì 𝑣 𝑛 ≠ ì 𝑤 𝑛 . Let Γ ′ 𝑛 [𝛼 ′ 𝑛 ] be the last branch associated to ì 𝑤 𝑛 . Then there
	exists a (𝑛 + 1)-overlapping 𝑢 𝑛-1 ì 𝑣 𝑛 ì 𝑤 ′ 𝑛+1 ∈ O𝑣 (𝑋 ) 𝑛+1 , whose branches are
	{(Γ 1 [𝛼 1 ] | ì 𝑤 ′ 𝑛+1 ), . . . , (Γ 𝑛 [𝛼 𝑛 ] | ì 𝑤 ′ 𝑛+1 ), (Γ ′ 𝑛 [𝛼 ′ 𝑛 ] | ì 𝑣 ′ 𝑛 )}
	where ì 𝑣 ′ 𝑛 is the appropriate list of 0-monomials. Thus ì 𝑤 ′ 𝑛+1 ∈
	First case. First, suppose that 𝑢 𝑛 ì 𝑣 𝑛+1 is an (𝑛 + 1)-overlapping. Since condition (5.2.7) imposes
	𝑢 𝑛 ì 𝑣 -𝐶 (𝑢 𝑛-1 , (ì 𝑣 𝑛 | ì 𝑣 𝑛+1 )) is nonempty, since it includes ì 𝑣 𝑛 .

𝑛+1 = 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ), and (5.1.8) gives us the source and target of the (not yet defined) (𝑛 + 1)-cell 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ), we set

𝑠 𝑛 (𝑢 𝑛 ì 𝑣 𝑛+1 ) := (𝑢 𝑛 | ì 𝑣 𝑛+1 ) -(𝑡 𝑛-1 (𝑢 𝑛 ) | ì 𝑣 𝑛+1 ) + 𝜎 (𝑡 𝑛-1 (𝑢 𝑛 ) | ì 𝑣 𝑛+1 ), 𝑡 𝑛 (𝑢 𝑛 ì 𝑣 𝑛+1 ) := 𝜎 (𝑠 𝑛-1 (𝑢 𝑛 ) | ì -The 0-monomials of (ì 𝑣 𝑛 | ì 𝑣 𝑛+1 ) are reduced. Indeed, if not, then there would exist Γ 𝑛+1 [𝛼 𝑛+1 ] ≻ 𝑝𝑙 (Γ 𝑛 [𝛼 𝑛 ] | ì 𝑣 𝑛+1 ) in 𝐸 (𝑢 𝑛 , ì 𝑣 𝑛+1

), which contradicts the fact that 𝐶 (𝑢 𝑛 , ì 𝑣 𝑛+1 ) is empty.

  𝑖 is a well-defined list of 0-monomials of 𝑋 Ш where ì 𝑣 0 is the list of roots and, for ℓ ∈ {1, . . . , 𝑘 }, ì 𝑣 𝑖 ℓ is the sublist of ì 𝑣 ℓ of ancestor 𝑣 0,𝑖 . We denote this list by (ì𝑣 0 | • • • | ì 𝑣 𝑛 ).Similarly, we denote by (ì 𝑣 0 | ì 𝑣 1 ) the list of reduced 0-cells (𝑣 0,𝑖 | ì 𝑣 𝑖 1 ). Finally, we denote by (ì 𝑣 0

	𝜕𝜎 (𝑢 𝑛 ì 𝑤 𝑛+1 | ì 𝑤 𝑛+2 )
	to define 𝜎 (𝑢 𝑛 | ì 𝑣 𝑛+1 ) using the other terms.
	Let 𝑘 ⩾ 1 and ì 𝑣 0 , ì 𝑣 1 . . . , ì 𝑣 𝑘 0-cells of 𝑋 Ш such that {(𝑣 0,𝑖 | ì 𝑣 𝑖 1 | • • • | ì 𝑣 𝑖 𝑛 )}

  𝑣 2 is a 2-overlapping of 𝑋 . If (ì 𝑣 1 | ì 𝑣 2 ) is reducible, we have the left diagram. If (ì 𝑣 1 | ì 𝑣 2 ) is reduced, we take ì 𝑤 1 = max 𝐶 (𝑢 0 , (ì 𝑣 1 | ì 𝑣 2 )) and get the right diagram.5.2.12. Examples.i) The terminating reduced 1-polygraph 𝑋 defined in Example 4.1.10 does not have critical branchings. As a consequence, it is convergent and can be extended into a polygraphic resolution O𝑣 (𝑋 ), with O𝑣 (𝑋 ) 𝑛 empty for 𝑛 ⩾ 2.

	4 4	
		(𝑢 0 | ì 𝑣 1 | ì 𝑣 2 ) 8 8
	(𝑢 0 ì 𝑤 1 | ì 𝑤 2 ) * * ( (𝑢 0 | ì 𝑤 1 ) | ì 𝑤 2 )	𝜎 ( (𝑢 0 | ì 𝑤 1 ) | ì 𝑤 2 )
	where 𝑢 0 ì 𝑣 1 ì	

between Γ [𝛼] and Δ[𝛽]. We get two branchings (Γ [𝛼], Λ[𝛾]) and (Λ[𝛾], Δ[𝛽]).The branching (Γ [𝛼], Λ[𝛾]) is either multiplicative or intersecting. If it is multiplicative, then it is coherently confluent by the multiplicative case. Otherwise, it is either non-minimal with respect to the order ⊑ or a critical branching. In the non-minimal case, there exists a factorisationΓ 1 Γ 0 [𝑡 (𝛼)] Γ 1 [𝑓 0 ] " " 𝐹 Õ Γ 1 Γ 0 [𝑠 (𝛼)] = Γ 1 Λ 0 [𝑠 (𝛾)] Γ 1 Γ 0 [𝛼]. .Γ 1 Λ 0 [𝛾]

[𝛾], Δ

Δ 0 [𝛽]), with Δ 1 a one-hole context of 𝑋 * Ш 0 and (Λ ′ 0 [𝛾], Δ 0 [𝛽]) a confluent branching.

Proof. The proof follows the same arguments as in the case of associative algebras given in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Section 5.2], and it is divided in two steps: i) First, we prove that a homotopy 𝜂 : 𝐹 → 𝐺 between morphisms of 𝜔-operads 𝐹, 𝐺 : 𝑋 Ш → 𝑋 Ш is uniquely and entirely determined by its values on 𝑛-monomials for all 𝑛 ⩾ 0, provided it satisfies the following relation: ii) Next, we prove that the values of a right 𝜄-contraction on 𝑛-monomials are uniquely and entirely determined by the values on 𝜄-essential and 𝜎-essential monomials, and that the resulting values satisfy (5.1.11).

(i) Proceed by induction on 𝑛 ⩾ 0. For 𝑛 = 0, assume that 𝜂 𝑢 : 𝐹 (𝑢) → 𝐺 (𝑢) is a fixed 1-cell of 𝑋 Ш for every 0-monomial 𝑢 of 𝑋 Ш . Extend 𝜂 uniquely to every 0-cell 𝑎 of 𝑋 Ш by linearity. Now fix 𝑛 ⩾ 1 and assume that an (𝑛 + 1)-cell 𝜂 𝑢 of 𝑋 Ш has been chosen for every 𝑛-monomial 𝑢 of 𝑋 Ш , with source and target given by the definition of homotopies, such that (5.1.11) holds for 𝑛-monomials. By construction, the 𝑛-cells of 𝑋 Ш are linear combinations of 𝑛-monomials of 𝑋 Ш and of identities of (𝑛 -1)-cells of 𝑋 Ш up to the relation

.

Thus we can extend 𝜂 to all 𝑛-cells 𝑎 of 𝑋 Ш by choosing a decomposition of 𝑎 into a linear combination of 𝑛-monomials and an identity, and using (5.1.11) to ensure that the resulting cell does not depend on the choice of decomposition. We check that the source and target of the resulting (𝑛 + 1)-cell 𝜂 𝑎 match the definition of homotopies by linearity of 𝐹, 𝐺 and the ★ 𝑘 -compositions.

(ii) First, we construct 𝜎 as a graded linear map by induction on 𝑛. For 𝑛 = 0, if 𝑢 is a non-𝜄-essential monomial, then either 𝑢 = 𝑢, or 𝑢 = (𝑥 | ì 𝑣) where 𝑥 is a 0-cell of 𝑋 and some 𝑣 𝑖 is a non-𝜄-reduced monomial. In the former case, 𝜎 𝑢 = 1 𝑢 is forced because 𝑢 is 𝜄-reduced. In the latter case, take 𝑖 maximal.

• 𝑖,𝜏 𝑣 𝑖 for some shuffle permutation 𝜏, (5.1.6) imposes

. Then proceed by induction on the weight of the 𝑣 𝑖 to define 𝜎 𝑣 𝑖 from the values of 𝜎 on 𝜄-reduced monomials. Now let 𝑛 ⩾ 1. For every 𝑛-monomial Γ [𝛼], with 𝛼 a 𝑛-generator of 𝑋 and Γ a one-hole context of 𝑋 * Ш 0 , writing

and

the equation (5.1.6) imposes that we set

Trivial 𝑷 -bimodule. Define the trivial 𝑃-bimodule, denoted by Ω 𝑃 , as the free 𝑃-bimodule generated by the unit indexed set 1 quotiented by the relations

for every 𝑘 ⩾ 1 and 𝑢 ∈ 𝑃 (𝑘). Every element of the 𝑃-bimodule Ω 𝑃 can be written as a linear combination of monomials of the form 𝑢 • 𝑖 𝜀 where 𝑘 ⩾ 1, 𝑢 ∈ 𝑃 (𝑘), and 1 ⩽ 𝑖 ⩽ 𝑘.

5.3.6. Proposition. Let 𝑋 be an acyclic shuffle 𝜔-polygraph and 𝑃 the shuffle operad presented by 𝑋 .

Then the chain complex 𝑃 ⟨𝑋 ⟩ is a resolution of Ω 𝑃 in the category Bimod(𝑃).

Proof. Note that Ω 𝑃 is exactly the cokernel of 𝛿 -1 . Thus it suffices to show that the chain complex 𝑃 ⟨𝑋 ⟩ is exact.

Let us fix 𝜄 a unital section of 𝑋 . Following Proposition 5.1.13, the acyclicity of the polygraph 𝑋 implies that it admits a right 𝜄-contraction. Let 𝜎 be such a right 𝜄-contraction. We define the linear map 𝑖 0 :

for 𝑢, 𝑣 1 , . . . , v𝑖 , . . . , 𝑣 𝑛 , 𝑤 ∈ 𝑃, and, for 𝑛 ⩾ 1, the linear map

and 𝑢, 𝑣 1 , . . . , v𝑖 , . . . , 𝑣 𝑘 , 𝑤 1 , . . . , 𝑤 ℓ ∈ 𝑃. Note that the linear maps 𝑖 𝑛 are compatible with the left action of 𝑃. Hence, we prove that the maps 𝑖 𝑛 define a contracting homotopy of the complex 𝑃 ⟨𝑋 ⟩, by showing that the identity 𝑖 𝑛 𝛿 𝑛-1 + 𝛿 𝑛 𝑖 𝑛+1 = 𝑖𝑑 𝑃 ⟨𝑋 𝑛 ⟩ holds on generators of the 𝑃-bimodule 𝑃 ⟨𝑋 𝑛 ⟩ as follows.

For 𝑛 = 0, on the one hand, we have

On the other, we have

proving the equality 𝛿 0 𝑖 1 + 𝑖 0 𝛿 -1 = 𝑖𝑑 𝑃 ⟨𝑋 0 ⟩ . For 𝑛 ⩾ 1, by definition of the right 𝜄-contraction 𝜎, we show that, for every

Therefore, for every 𝑛-generator 𝐴 : 𝑎 → 𝑏 in 𝑋 𝑛 , we have

proving that 𝑖 𝑛 𝛿 𝑛-1 + 𝛿 𝑛 𝑖 𝑛+1 = 𝑖𝑑 𝑃 ⟨𝑋 𝑛 ⟩ . □ 5.3.7. Homology of shuffle operads. Recall that the Cartan-Eilenberg homology of a shuffle operad 𝑃 with coefficients in a 𝑃-bimodule 𝐴 is defined by

In addition, the Quillen homology of 𝑃 is defined with coefficients in Ab(ШOp/𝑃), the category of abelian groups internal to ШOp/𝑃 [START_REF] Quillen | On the (co-) homology of commutative rings[END_REF]. The category Ab(ШOp/𝑃) is equivalent to the category Bimod(𝑃) of 𝑃-bimodules [START_REF] Baues | Cohomology of monoids in monoidal categories[END_REF], and we define the Quillen homology of 𝑃 with coefficients in a 𝑃bimodule 𝐴 by setting

, where X is a simplicial cofibrant resolution of the operad 𝑃 in the category ШOp/𝑃, and Ab(-) : ШOp/𝑃 → Ab(ШOp/𝑃) ≈ Bimod(𝑃) is the abelianization functor. Following [START_REF] Barr | Cartan-Eilenberg cohomology and triples[END_REF]Thm. 4.1], see also [6, Thm. 6.2.1], these two homologies are isomorphic up to shift in degree:

•+1 (𝑃, 𝐴).

5.3.8. Finite homological type. From Theorem 5.2.6 we deduce a generalization of Squier's homological finiteness condition [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], for finite convergence in the case of operads. We say that a shuffle operad 𝑃 has finite homological type, 𝐹 𝑃 ∞ for short, if the 𝑃-bimodule Ω 𝑃 has a resolution in Bimod(𝑃) by finitely generated projective bimodules. If 𝑃 admits a finite convergent presentation 𝑋 , then by Theorem 5.2.6, the overlapping polygraphic resolution O𝑣 (𝑋 ) is finite and the complex 𝑃 ⟨O𝑣 (𝑋 )⟩ is a finitely generated free resolution of Ω 𝑃 . Thus, 𝑃 has homological type 𝐹 𝑃 ∞ .

Minimal resolutions.

A minimal bimodule resolution of an operad 𝑃 is a minimal free 𝑃bimodule resolution (𝐴 • , 𝛿) of its trivial 𝑃-bimodule Ω 𝑃 . The minimal condition means that the sequence (𝐴 • ⊗ 𝑃 k, 𝛿 ⊗ 𝑃 𝑖𝑑) has a null differential, where k denotes the 𝑃-bimodule concentrated in degree 0, whose left and right actions vanish.

5.3.10. Proposition. Let 𝑋 be an acyclic shuffle 𝜔-polygraph and 𝑤 : N → N \ {0} an increasing function such that 𝑋 𝑛 is concentrated in weight 𝑤 (𝑛). Then 𝑃 ⟨𝑋 ⟩ is a minimal 𝑃-bimodule resolution of the operad 𝑃 presented by 𝑋 .

Proof. The 1-generators of 𝑋 are of homogeneous weight, so 𝑃 is equipped with a weight grading. Given an 𝑛-generator 𝑢 𝑛 in 𝑋 𝑛 , we have

, where the 𝜆 𝑖 are scalars, the Γ 𝑖 are one-hole contexts of 𝑋 * Ш 0 , the 𝑢 𝑛-1,𝑖 are (𝑛 -1)-overlappings, and 𝑐 is an (𝑛 -2)-cell in 𝑋 Ш 𝑛-2 . The map 𝛿 𝑛-1 preserves weight, and since the (𝑛 -1)-overlappings 𝑢 𝑛-1,𝑖 are of strictly smaller weight than 𝑢 𝑛 , it follows that the Γ 𝑖 are nontrivial. As a consequence, tensoring over 𝑃 by k sends 𝛿 𝑛-1 (𝑢 𝑛 ) to 0, so 𝑃 ⟨𝑋 ⟩ is minimal. □ 5.4.3. Remark. If we consider a quadratic symmetric operad whose generators are all of arity one, using Theorem 5.4.2 we recover the similar result for quadratic associative algebras: every algebra having a quadratic convergent presentation is Koszul, as proved in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Prop. 7.2.2] by a polygraphic construction, see also [START_REF] Loday | Algebraic operads[END_REF]Sec. 4.3], and [START_REF] Berger | Confluence and Koszulity[END_REF] for a such a criterion with the rewriting rules ordered with respect to a monomial order.

5.4.4. Koszul associative algebra without monomial order. Let 𝐴 be the associative algebra presented by 𝑤, 𝑥, 𝑦, 𝑧 𝑤 2 = 𝑤𝑥, 𝑥 2 = 𝑦𝑥, 𝑦 2 = 𝑦𝑧, 𝑧 2 = 𝑤𝑧 . If we orient the relations according to a monomial order, say the order generated by 𝑤 < 𝑥 < 𝑦 < 𝑧, this gives a 1-polygraph with two critical branching that are non-confluent

Moreover, we show that any alphabetic order conduces to a similar situation of non-confluent critical branching. Instead, consider the following 1-polygraph:

The termination of 𝑋 is equivalent to the termination of the following 1-polygraph ⟨ 𝑤, 𝑥, 𝑦, 𝑧 | 𝑤𝑥 → 𝑤, 𝑦𝑥 → 𝑥, 𝑦𝑧 → 𝑦, 𝑤𝑧 → 𝑧 ⟩ , and this second 1-polygraph clearly terminates by considering the lengths of words, so 𝑋 terminates. Moreover, 𝑋 has no critical branchings, so it is confluent. Thus 𝑋 is a convergent quadratic 1-polygraph, so by [25, Prop. 7.2.2], thus the algebra 𝐴 is Koszul. 5.4.5. Koszul operad without monomial order. Following the previous example, let 𝑃 be the symmetric operad presented by 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑃 (2)