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Pauline Puteaux and William Puech
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Abstract—Digital data such as images must be secured during
transmission or cloud storage. Image encryption algorithms can
be a solution to this problem, but these approaches are very noise
sensitive. Because of the introduction of noise, the original image
cannot be recovered, even if we know the secret key. In this paper,
we propose a new noisy encrypted image correction algorithm
containing a convolutional neural network (CNN) training stage
and then, two main steps. After a direct decryption of a noisy
encrypted image, the first step is to identify and localize the
blocks that are probably incorrectly decrypted using a fine-tuned
CNN. The second step of our proposed approach is to analyze and
correct these blocks. Experimental results show that the proposed
method can be used to blindly correct noisy encrypted images,
while preserving the image structure and without increasing
the original data size with additional information, unlike error
correcting codes.

Index Terms—Multimedia security, image encryption, image
denoising, deep learning, convolutional neural network, signal
processing in the encrypted domain.

I. INTRODUCTION

During transmission or storage of encrypted images, it is
often necessary to analyze or process them, without knowing
the original content or the secret key used during the encryp-
tion phase [1]. When an encrypted image is corrupted during
its transmission, even if the secret key is known, it becomes
difficult to reconstruct the original image without errors.

Most of the previous methods propose to remove noise
in noisy encrypted images by using error correcting codes
(ECC) [2], [3]. ECC-based approaches consist of introducing
redundancy in digital data. Check bits, computed from data
using some algorithms, are added to the original bitstream.
At the recipient side, check bits are derived from received
data and compared with the received ones. If they are the
same, no error is found, however, if an error is detected, an
error correcting method needs to be applied. Error correction
can be carried out using automatic repeat request (ARQ) or
forward error correction (FEC). The ARQ technique consists
of repeating the request for retransmission of corrupted data
until the whole data is verified. The FEC approach is based on
encoding data using error correcting code before transmission.

Furthermore, some papers have focused on error correction
during the AES encryption algorithm, by parity determination
and modification during the input and output of each round [4],
[5]. Privacy-preserving error correction schemes have also
been proposed. Hu et al. suggested using a double cipher to
perform non-local means denoising [6]. SaghaianNejadEsfa-
hani et al. proposed to resort to secret sharing for wavelet
denoising [7]. Recently, Pedrouzo-Ulloa et al. presented an

error correction scheme based on 2-ring learning with errors,
for homomorphically denoising images in the encrypted do-
main [8].

Other methods consist of performing statistical analysis of
each block on the encrypted image during the decryption
process to determine if it is correctly decrypted or not.
Islam et al. explained how to correct noisy AES-encrypted
images by calculating three statistical measurements: global
variance method, mean local variance method and the sum
of the squared derivative method [9]. Puteaux and Puech
described an approach based on the local Shannon entropy
measurement suitable for pixel blocks of very small sizes [10].

Moreover, note that most of the methods do not allow us to
localize corrupted parts in the noisy encrypted image and do
not preserve the original image structure or size.

In this paper, we propose a new method for correcting
noisy encrypted using a block cipher images in order to first
identify and localize, and then analyze and correct corrupted
pixel blocks. Deep learning, in particular convolutional neural
network (CNN), is involved in our algorithm. Indeed, in
the last few years, deep learning architectures have obtained
a significant performance gain with respect to conventional
methods in many fields, such as multimedia security or clear
image denoising [11]. In our application case, we show that it
is actually possible to fine-tune a CNN to infer if a pixel block
is clear or not. With such classification, a probable incorrectly
decrypted block can be discriminated from a clear block of the
original image. Thus, using this model, we can first identify
and localize all probable incorrectly decrypted blocks after the
direct decryption of a noisy encrypted image and then, we can
perform the analysis and the correction of these blocks.

The rest of this paper is organized as follows. Section I
describes our proposed algorithm of noisy encrypted image
correction based on two main steps. Section III presents
experimental results and discussion and finally, this paper is
concluded in Section IV.

II. PROPOSED METHOD OF
NOISY ENCRYPTED IMAGE CORRECTION

Starting from an encrypted image using AES algorithm in
ECB mode, with blocks of 4×4 pixels, the encrypted image is
corrupted during transmission due to channel noise. Therefore,
during decryption, even with the key, it is not possible to cor-
rectly decrypt the noisy encrypted image directly. Indeed, all
of the encrypted blocks that are noisy cannot be decrypted at
all, this is because at least one bit has been flipped. In fact, it is
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Fig. 1. Overview of the proposed method.

very difficult to discriminate a correctly decrypted block from
an incorrectly decrypted one and, in particular, when the block
size is very small. In this paper, we propose a new method to
solve the problem of noisy encrypted image decryption. Our
algorithm is based in two main steps where deep learning,
in particular CNN, is involved. We first identify and localize
all the probable incorrectly decrypted pixel blocks, and then
we analyze and correct them. Indeed, from a fine-tuned, pre-
trained CNN, it is possible to learn if a block is clear or not. As
illustrated in Fig. 1, in order to specialize a CNN, each image
of a database of clear and encrypted (i.e. not clear) images is
used and split into blocks of 4×4 pixels to train and fine-tune
the CNN. Then we have a fine-tuned CNN (FT-CNN), which
is able to classify a block as being clear, with a probability
pclear(), or not clear, with a probability 1− pclear().

For the reconstruction of a noisy encrypted image, as illus-
trated in Fig. 1, from the directly decrypted image, based on
the FT-CNN, the identification and localization step consists of
separating the correctly decrypted blocks (pclear() = 1) from
the probable incorrectly decrypted blocks (pclear() 6= 1).

Algorithm 1: Identification and localization of blocks
that are probably incorrectly decrypted.

Data: Noisy encrypted blocks B, classifier FT-CNN.
Result: List L of blocks B of the noisy encrypted image which

have to be analyzed and corrected.
L← [ ];
foreach block B do

Bdec ← DAES(B);
pclear(Bdec)← p clear compute(Bdec, FT-CNN);
if pclear(Bdec) 6= 1 then

L.append(B);

return L;

Algorithm 1 presents with more details, the identification
and localization step in order to obtain the list L of probable
incorrectly decrypted blocks B. Unlike correctly decrypted
blocks, which can be directly used for the reconstruction of the
original image, the probable incorrectly decrypted blocks must
be analyzed so they can be corrected. Note that some blocks
in the list L have a probability pclear() = 0, which means

that we can assume that they are really incorrectly decrypted.
In this case, we are pretty sure that, in these blocks, at least
one bit has been flipped. But other blocks have a probability
0 < pclear() < 1, which means that these other blocks are
maybe in clear, but with a higher or lower probability and
therefore we must analyze and correct them too. For each
probable noisy encrypted block of the list L, since there is no
information about the location and the number of corrupted
bits, we have to test all the possible combinations. Without
any assumptions, computational complexity is too high and
performing a brute-force attack is not feasible, even for a
block B of size 4×4 pixels. This is why we propose to make
two assumptions about the noise: the bit error rate due to
noise is quite low; the noise is a white noise which uniformly
alters the encrypted image. Under these two hypotheses, we
can assume that one bit at most is flipped in each block
of 4 × 4 pixels of the encrypted image, which significantly
reduces the complexity of the problem. Indeed, there are
1+128 possible configurations for each block, corresponding
to the configuration of the original probable noisy encrypted
block, plus the 128 configurations obtained by flipping one bit
bi, (with 0 ≤ i < 128). Algorithm 2 describes the analysis
and correction process for each block. For each possible
configuration of the encrypted block, the block is decrypted
and used as input for the classifier FT-CNN, which returns a
probability pclear(). Among all the possible configurations, the
one that obtains the highest probability to be in clear pclear()max

is considered as the expected block of the original image.
This configuration is added to the reconstructed blocks of the
original image as illustrated in Fig. 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to fine-tune our CNN to decide if a block is clear or
not, from the BOWS-2 database [12] (grey-level images with a
size of 512×512 pixels) we randomly picked 100 images that
remain in clear and 100 images which have been encrypted
with AES-256 algorithm in ECB mode by blocks of 4 × 4
pixels by using a different secret key for each image. We then
obtain 1, 638, 400 blocks in clear and 1, 638, 400 encrypted
blocks for training.



Algorithm 2: Analysis and correction of a block that
is probably incorrectly decrypted.

Data: A block B of the list L, classifier (FT-CNN).
Result: Reconstructed block Bclear .
Bclear ← DAES(B);
pclear(Bclear)max ← p clear compute(Bclear, FT-CNN);
for i = 0 to 127 do

Bdeci ← DAES(Bb̄i
);

pclear(Bdeci )← p clear compute(Bdeci , FT-CNN);
if pclear(Bdeci ) > pclear(Bclear)max then

pclear(Bclear)max ← pclear(Bdeci );
Bclear ← Bdeci ;

return Bclear;

We used the Inception v3 model pre-trained on the Im-
ageNet database, which achieves effective results in natural
image classification tasks [13] and which is capable of extract-
ing natural image features. Therefore, the previously computed
weights of the CNN are kept fixed for our experiments and
only the fully connected part is fine-tuned, substituting the
last layer by a new randomly initialized softmax layer with
two classes Clear and Not clear. Moreover, we upsample
our images (4 × 4 pixels) to fit the required size of the
Inception v3 model (299 × 299 pixels) by using nearest-
neighbor interpolation in order to preserve block structure.
Furthermore, as Inception v3 is pre-trained on the ImageNet
database, the extracted features by the CNN are linked to
intrinsic properties of natural images, which are not included
in encrypted images. Indeed, the AES algorithm introduces
confusion and diffusion in encrypted blocks and, as a conse-
quence, there is no correlation between neighboring pixels and
no patterns can appear. Therefore, we assume that our model
can easily learn to discriminate the two classes Clear using
probability pclear() and Not clear using probability 1−pclear().

True
Predicted Clear Not clear

Clear 408, 562 1, 038
Not clear 213 409, 387

TABLE I
CONFUSION MATRIX, MEAN CLASSIFICATION FOR THE

CROSS-VALIDATION (IN NUMBER OF IMAGES).

In order to validate the learning capacity of the model, we
use a cross-validation. Our whole block database is divided
into four complementary batches of 819, 200 images (409, 600
clear blocks and 409, 600 encrypted blocks). Three of these
four batches are used for the the training step and the obtained
results are validated on the remaining batch. The confusion
matrix presented in Table I, which is an average of the
prediction results, shows that the prediction works very well
since more than 99.7% of the total number of blocks are
correctly predicted. After normalization, the very low variance
values, 1.17× 10−9 for the class Clear and 2.70× 10−7 for
the class Not clear, mean that our analysis is reproducible and
there is no over fitting.

From the original image Lena (512 × 512 pixels encoded
with 256 grey-levels) illustrated in Fig. 2.a, we apply an AES

(a) (b)

(c) (d)

Fig. 2. Illustration of the problem of noisy encrypted image decryption:
a) Original Lena image (512 × 512 pixels, 256 grey-levels), b) Encrypted
image, using the AES algorithm in ECB mode with blocks of 4 × 4 pixels
(PSNR with the original image = 8.56 dB), c) Noisy encrypted image, BER
= 2.6 × 10−3 (PSNR with the original image = 8.55 dB, PSNR with the
encrypted image = 33.91 dB), d) Directly decrypted image (PSNR with the
original image = 16.33 dB, 83.58% of correctly reconstructed blocks).

encryption in ECB mode with a block of 4×4 pixels to obtain
the encrypted image illustrated in Fig. 2.b. Note that there
is no information about the original image content (PSNR
of 8.56 dB). Fig. 2.c presents a noisy encrypted image of
Fig. 2.b achieved using noise with a BER = 2.6×10−3 which
means that on average one bit every three blocks is randomly
flipped. As framed in red, this represents 2, 691, i.e. 16.42% of
the total number of blocks in the image. Note that this BER
value is relatively high in comparison with real life values.
Indeed, depending on the transmission type, BER are between
10−12 for optical fiber and 10−4 for wireless transmission.
PSNR between the original image and the noisy encrypted
image remains low (8.55 dB) and PSNR of 33.91 dB between
the encrypted image and the noisy encrypted image indicates
that the noise power is not negligible. Fig. 2.d illustrates
that direct decryption without any analysis is not possible
(PSNR of 16.33 dB), even if the secret key is known. This
is due to the large number of noisy encrypted blocks which
are then incorrectly decrypted. Moreover, without analysis it
is not possible to localize incorrectly decrypted blocks and
to discriminate them from correctly decrypted blocks of the
original image.

Fig. 3 presents the results obtained using our proposed
method in two steps: identification and localization, and then
analysis and correction of probable incorrectly decrypted
blocks. As illustrated in Fig. 3.a, the identification step of
our proposed method consists of identifying and localizing the
probable incorrectly decrypted blocks. The directly decrypted



(a)

(b)

Fig. 3. Example of our method in two steps: a) Identification and localization
of all probably incorrectly decrypted blocks from the directly decrypted image
in Fig. 2.d, b) Analysis and correction of the noisy encrypted image in Fig. 2.c
using the proposed method (PSNR with the original image = 45.66 dB,
99.98% of correctly reconstructed blocks).

image (Fig. 2.d) is split into 16, 384 blocks of 4×4 pixels. All
the blocks which have a probability pclear() = 1 are considered
as clear blocks of the original image. Such blocks represent
82.68% of the total number of blocks and are shown in clear
in Fig. 3.a. We assume that all the other blocks are proba-
bly incorrectly decrypted due to the noise in the encrypted
image. In fact 15.71% of these blocks have a probability
pclear() = 0. This means that we can assume that these blocks
are really incorrectly decrypted and have to be corrected (in
yellow in Fig. 3.a). 1.61% of these blocks have a probability
0 < pclear() < 1, which means that we cannot directly decide
if they have been correctly decrypted or not. Therefore, we
also have to consider them as probably incorrectly decrypted
(in red in Fig. 3.a). To perform the correction of these two
kinds of blocks, from the noisy encrypted image in Fig. 2.c,
we generate, for each block, the 128 possible configurations by
flipping, one by one, a bit of the block and decrypting it. For
blocks with a probability 0 < pclear() < 1, we also consider
the initial configuration without modification. The associated
probability to be clear for each configuration is computed
using our classifier. The configuration that has the highest
probability to be clear is then considered as the expected block
of the original image represented in Fig. 2.a. After applying all
the steps of our proposed method on the entire image, we are
then able to reconstruct almost all the blocks of the original
image (99.98% of the total number of blocks). As illustrated
in Fig. 3.b, only three blocks remain incorrectly decrypted

(0.02%) and the PSNR between the original image and the
reconstructed image is high (45.66 dB).

Fig. 4 focuses on an area of the image where some errors
remain after applying our proposed method. Blocks in blue
are inferred as clear, and red frames highlight the location of
the remaining incorrectly decrypted blocks after applying our
proposed method. In Fig. 4.a, we can see that two of the incor-
rectly decrypted blocks in the reconstructed image (Fig. 3.b)
are still inferred as encrypted. Indeed, their probability to be
in clear is low (pclear() < 0.5). The third incorrectly decrypted
block is identified as clear. Indeed, in a few cases, encrypted
blocks are quite homogeneous and the prediction fails. Fig. 4.b
illustrates the same area of Fig. 4.a, but using the original
image (Fig. 2.a). In this case, the expected clear blocks which
cannot be reconstructed have a very low probability to be in
clear (pclear() < 0.2) and they are predicted as not clear. In
fact, these blocks correspond to highly textured blocks of the
original image and cannot be differentiated from incorrectly
decrypted blocks.

(a) (b)

Fig. 4. Associated probability to be in clear for each block of a part of the:
a) Reconstructed image using the proposed method (Fig. 3.b), b) Original
image in clear (Fig. 2.a).

Fig. 5 and Fig. 6 illustrate examples of clear and encrypted
blocks respectively. In Fig. 5 top row, we can see that
homogeneous blocks and blocks with a pattern are inferred as
Clear, with pclear() = 1. At the end of the identification and
localization step, they are considered as correctly decrypted
blocks of the original image. Moreover, as shown in Fig. 6
top row, if the pixel distribution in the block is uniform
and if pixel values are far from each others, blocks are
inferred as Not clear, with pclear() = 0. In this case, we
are pretty sure that these blocks are incorrectly decrypted
and need to be corrected. Middle and top rows of Fig. 5
and Fig. 6 refer to blocks with 0 < pclear() < 1. They are
then considered as probably badly decrypted and taken as
input of the analysis and correction step of our method. In
Fig. 5 middle row, we present blocks in clear which are finally
considered as expected blocks of the original image. This



means that pclear() is higher than the values associated to the
128 other possible block configurations. In Fig. 6 middle row,
we represent encrypted blocks whose pclear() is smaller than
the value associated to the expected block in clear. Blocks in
the middle of the two figures are then finally correctly inferred
during the analysis and correction step. In contrast, failed
cases are presented in the bottom rows. Even for the human
visual system, it is not easy to make the difference between
clear blocks and encrypted blocks, especially in the case of
highly textured clear blocks (Fig. 5 bottom row) and relatively
homogeneous encrypted blocks or encrypted blocks with a
pattern (Fig. 6 bottom row). Furthermore, note that we cannot
use a threshold to discriminate clear and encrypted blocks,
because some encrypted blocks have a higher probability to
be clear (pclear() values) than some clear blocks.

(a) pclear() = 1 (b) pclear() = 1 (c) pclear() = 1

(d) pclear() = 0.97 (e) pclear() = 0.92 (f) pclear() = 0.86

(g) pclear() = 0.14 (h) pclear() = 0.02 (i) pclear() = 0.01

Fig. 5. Examples of clear blocks: top row) Inferred as Clear after the
identification and localization step, middle row) With 0 < pclear() < 1,
and considered as expected blocks of the original image after the analysis
and correction step, bottom row) With 0 < pclear() < 1, and considered as
encrypted after the analysis and correction step.

In order to make a comparison with current state-of-the-art
methods, Fig. 7 illustrates results obtained from approaches
based on a local entropy analysis and which exploits the
property that if a block is clear then it has a lower Shannon
entropy value than an encrypted block. Fig. 7.a illustrates
a reconstructed image using a method of correction based
on the zero-order entropy without quantization. We can note
that there are a lot of blocks which are incorrectly decrypted
(3, 662, i.e. 22.35%) and the PSNR value with the original
image is low (14.89 dB). Fig. 7.b. is obtained using the best
parameters proposed in [10], which are distance map entropy
and a quantization on 8 grey-levels. With these optimal param-
eters, we can see that results are not as good as those obtained
with our new proposed method. Indeed, seven blocks (0.04%)

(a) pclear() = 0 (b) pclear() = 0 (c) pclear() = 0

(d) pclear() = 0.04 (e) pclear() = 0.15 (f) pclear() = 0.21

(g) pclear() = 0.84 (h) pclear() = 0.72 (i) pclear() = 0.55

Fig. 6. Examples of encrypted blocks: top row) Inferred as Not clear after
the identification and localization step, middle row) With 0 < pclear() < 1,
and considered as encrypted after the analysis and correction step, bottom
row) With 0 < pclear() < 1, and considered as the expected blocks of the
original image after the analysis and correction step.

remain incorrectly decrypted, which means four more than
with our proposed approach in this paper (PSNR = 41.84 dB).
However, we can note that there are two incorrectly decrypted
blocks with our proposed approach, Fig. 3.b, which are cor-
rectly decrypted using [10] as illustrated in Fig. 7.b. This
means that a combination of these two approaches could
improve the correction efficiency.

We also compared our proposed method with a stan-
dard error correcting approach based on Reed-Solomon (RS)
codes [3], as presented in Table II. Reed-Solomon codes
are denoted as RS(n,k) with symbols of m bits (for grey-
level images, m = 8 bits). The RS encoder takes as input
k symbols of m bits and adds parity symbols to build a
codeword of n symbols of m bits. During the decoding step,
up to t = n−k

2 erroneous symbols can be corrected, with no
information on error location. For a grey-level image with
a size of 512 × 512 pixels, in order to be able to correct
1 bit per block of 4 × 4 pixels, RS(255, 251) codes with
symbols of 8 bits are used. Indeed, with such parameters, up
to t = 2 bytes (16 bits) among 16 blocks of 4 × 4 pixels
(n = 251 ' 16 × (4 × 4)) can be corrected. In Table II,
by using RS codes, we can see that the format compliance
property is not achieved and this would increase the data size
by 1.56%. Conversely, our proposed error correction approach
keeps the data in the intended format and preserves the original
size, for the same amount of corrected bits per block.

Finally, the proposed approach has been applied on 100
images of 512 × 512 pixels, which means that 1, 638, 400
blocks of 4× 4 pixels have been analyzed. On average, more
than 99.95% of the blocks have been correctly reconstructed.



(a)

(b)

Fig. 7. Correction of the noisy encrypted image in Fig. 2.c using local
Shannon entropy measurement in blocks of 4 × 4 pixels: a) Reconstructed
image using zero-order entropy and without quantization, i.e. by considering
256 grey-levels (PSNR with the original image = 14.89 dB, 77.65% of
correctly reconstructed blocks), b) Reconstructed image using distance map
entropy and quantization, i.e. by considering 8 grey-levels [10] (PSNR with
the original image = 41.84 dB, 99.96% of correctly reconstructed blocks).

Approach Original data
size

Transmitted
data size

#corrected
bits/block

Format
compliant

RS(255,251) 257 kB 261 kB 1 No
Proposed 257 kB 257 kB 1 Yes

TABLE II
COMPARISON BETWEEN USAGE OF RS(255,251) ERROR CORRECTING

CODES AND PROPOSED METHOD OF NOISY ENCRYPTED IMAGE
CORRECTION.

Note that even if some blocks are incorrectly reconstructed,
image quality remains high compared to the original one, as
indicated by a PSNR > 40 dB).

IV. CONCLUSION

In this paper, we have shown that a fine-tuned CNN is
efficient to infer if a block of pixels is clear or not. However,
the simple use of a CNN is not sufficient to correct noisy
encrypted images. For this purpose, in our proposed approach,
we develop a new algorithm which is composed of two main
steps: corrupted pixel block identification and localization
first, then analysis and correction. In the first step of our
method, directly from a noisy decrypted image, one can make
the distinction between clear blocks and probable incorrectly
decrypted ones. At the end of this step, a location map of
probable incorrectly decrypted blocks can be obtained in an

automatic way, which is not possible with conventional meth-
ods using error correction codes (ECC). During the second
step of our approach, the configurations associated to each
probable incorrectly decrypted block are analyzed. Our fine-
tuned CNN computes, for each configuration, the probability
to be a clear block and the configuration which achieves
the highest score is considered as the expected block of the
original image. At the end of the process, almost all blocks
are correctly decrypted and the reconstructed image is very
similar to the original one, according to the obtained results in
terms of PSNR. Moreover, our proposed approach is format-
compliant and does not expand the original data size. With
traditional ECC, if we would like to preserve the original size
and to be format-compliant, then the quality of the final image
will decrease.

In future work, we will try to use neighboring blocks in
order to perform a better correction of the blocks with a low
probability to be clear at the end of the process. Moreover, we
are also interested in increasing the training database of the
fine-tuned CNN before the second step of our method, using
blocks which are identified as clear during the first step (light
learning). Indeed, we suppose that adding the reconstructed
blocks of the original image will help to improve the efficiency
of the prediction.
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