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Abstract

Let r > 1 be any non negative integer and let G = (V, E) be any undirected graph in
which a subset D C V of vertices are initially infected. We consider the process in which,
at every step, each non-infected vertex with at least r infected neighbours becomes infected
and an infected vertex never becomes non-infected. The problem consists in determining the
minimum size s,(G) of an initially infected vertices set D that eventually infects the whole
graph G. This problem is closely related to cellular automata, to percolation problems and
to the Game of Life studied by John Conway. Note that s;(G) = 1 for any connected graph
G. The case when G is the n x n grid, G, x5, and r = 2 is well known and appears in many
puzzle books, in particular due to the elegant proof that shows that so(Gpxn) = n for all
n € N. We study the cases of square grids, G, xn, and tori, T}, «p, when r € {3,4}. We show
that s3(Gpxn) = f%} for every n even and that f@] < 53(Grxn) < f@] +1
for any n odd. When n is odd, we show that both bounds are reached, namely s3(Gxyn) =
["2;72"1 if n =5 (mod 6) or n = 2P — 1 for any p € N*, and $3(Gnxn) = f’ﬂ%%] +1if
n € {9,13}. Finally, for all n € N, we give the exact expression of s4(Gpxn) and of s, (T xn)
when r € {3,4}.

1 Introduction

Originally developed by von Neumann after a suggestion of Ulam, cellular automata are a
dynamical system defined over graphs endowed with some homogeneous and local update rules.
The notion of bootstrap percolation is an example of a cellular automaton which has been
extensively investigated by mathematicians, physicists, computer scientists and sociologists,
among others. For further applications to several other areas, we refer the reader to the survey
article by Adler and Lev [ALO3], and the references therein.

Several variants of classical bootstrap percolation on graphs have been considered. The
particular model we are studying belongs to the class of r-neighbour bootstrap processes (r > 1).
It was first introduced by Chalupa, Leath, and Reich [CLR79] as a monotone version of the
Glauber dynamics in ferromagnetism.

Let » > 1 be a given integer and G a finite graph whose vertices (usually called sites in
the context of percolation) can be in one of two states: healthy or infected. An initial set of
infected nodes is given. At any step, any healthy vertex with at least r infected neighbours
becomes infected while infected vertices remain infected forever. The parameter r reflects at
which extent sites resist to the infection spread. Note that the term bootstrap percolation is



(ayn=3 (b)n=4 (¢)n=>5 (e)n="7 (f) n=238

Figure 1: Some instances of minimum lethal sets in G, x, when r = 3.

sometimes used with the implicit assumption that the initial set of vertices infected is random.
In this paper we consider the same model but use a deterministic initial set.

An initial set of infected vertices is called lethal if at the end of the process all the vertices
are infected. A problem widely considered in the literature consists in determining the minimum
size of a lethal set denote s,(G). (Knowing this value, for example, plays certain starting role in
the study of the probability for a random initial set to be lethal). Computing exactly s,(G) is
NP-hard and this hardness results hold even when r = 2 and G has maximal degree d, where d is
a constant not depending on the size of G (see [Che09]). The parameter s,(G) has been studied
for several families of graphs including trees [Riel2], d-dimensional grids [BB06, BP98, PS20],
hypercubes [BB06, MN18], expanders [COFKR14], random regular graphs [GS15].

In particular, the most known case is the square grids G, x, with r = 2 as it appears as a
popular puzzle regularly in newspapers and is referenced in puzzles books [Win03, Bol06, LL11].
According to [Win03], the problem appeared for the first time in the Soviet magazine Kvant
around 1986. The value so(Gpxn) = n can be proved with the elegant perimeter argument.
Our interest to the problem was revived, in fact, due to a problem proposed in the french
newspaper “Le Monde” (Problem 1141, entitled ”Le jeu de la viralité”, April 2020) in honor
to John Conway (who just passed away). This leads us to study the problem of determining
the value s3(Gpnxn) (see examples for small grids in Figure 1). To the best of our knowledge
this problem was considered first in [Pet97]. The result appears also in [BP98|. In [Pet97] it
is proven that [(n? +2n)/3] < s3(Gnxn) < (n* +4n)/3 + O(1). The lower bound uses also
the perimeter argument. In [Bol06] (Problem 65, pages 171-172) Bollobas gave the same lower
bound for n odd but a slightly better one for n even. He also proves that for n = 2 (mod 6)
the lower bound is attained and in that case s3(Gnxn) = (n? + 2n + 4)/3 (see Figure 1(f) for
n = 8). However, as far as we know, no further progress has been done on the exact value of
53(Gnxn). The problem for square tori was considered in [Bol06, Win03, Pet97] but only for
r=2.

Other related problems have been considered in the literature like finding the size of a largest
inclusion-minimal lethal set [Mor09, Riel0]. The speed of convergence was also considered in
the square grid (see [BP13, BP15]).

Our contributions. In this paper, we study the contamination process in square grids Gy xn
and square tori Ty, «p. In Section 2, we formally define the problem and recall some known results
about s3(Gpxn) that we use throughout the paper. Furthermore, we give the exact expressions
of $4(Gnxn) and s4(Txn) for every n € N*. Our main result is the following theorem that deals
with an almost tight bound of s3(Gpxn)-

Theorem 1 Let n € N*. Let LB, = f’ﬂ%%} if n is odd and LBy, = [%] if n is even.

o 33(Gpxn) = LBy, if n is even or if n =5 mod 6 or if n = 2P — 1;



o LB, < s3(Gpxn) < LB, +1 ifn is odd;
o 55(Gnxn) = LBn + 1 ifn € {9,13}.

Section 3 is devoted to the proof of the first two items of Theorem 1. In Section 4, we prove the
last item of Theorem 1. Then, Section 5 is devoted to settle the problem when r = 3 in tori:

2
Theorem 2 For every n > 3, s3(Tpxn) = [252].
We conclude in Section 6 by describing several open questions.
2 Preliminaries

2.1 Notations and Problem statement

Let G = (V,E) be a graph. For a vertex v € V, N(v) = {u € V | {u,v} € E} is the
neighbourhood of v and d(v) = |N(v)| is the degree of v.

The 2-dimensional (square) grid graph with n rows and n columns is denoted by G xp. Its
vertex set is defined by V(Gnxm) = {(4,7) | 1 < i < n,1 < j < n}. Two vertices (4,7) and
(', 4") are adjacent if and only if |i — /| + [j — j/| = 1. If 1 < 4,5 < n, vertex (i,j) has degree 4.
The corners are the vertices with degree at most 2, that is, the vertices (1,1), (1,n), (n,1) and
(n,m). The border B is the set of vertices with degree at most 3.

For n > 3, let also T, x, be the torus with vertex-set {(i,j) | i € Z,, and j € Z,}, where Z,
denotes the set of integers modulo n denoted 0,1,...,n — 1. Vertex (i, ) is adjacent to the 4
vertices (1 —1,7), (1 +1,7) (i, — 1) and (4,5 + 1).

Given a graph G and a natural number » € N*, we consider the following deterministic
process (known as r-neighbour bootstrap percolation) that models the spread of an infection in
G. Let Dg = D be a subset of initially infected vertices and for each step ¢t > 1, let

D;=Dy 1 U{veV:|Nw)NDi_q| >r}.

For a set D C V(G), let (D) = [J;2, D: be the closure of D, i.e., the set of eventually infected
vertices in the process that was started from D. A configuration is a pair (G, D) that consists
of a graph G together with the subset D of its vertices that are initially infected. Abusing the
notation, we call the size of the configuration as the size |D| of the set D.

Any set D C V is said lethal if (D) = V. Similarly, a configuration (G, D) is lethal if D
is a lethal set. Let s,(G) be the minimum size of a lethal set in G. Since (V) =V, s,(G) is
always well defined. A lethal set (resp. a lethal configuration) is optimal if it is of size s,(G).
Note that s1(G) = 1 for every connected graph G. The main goal of this paper is to investigate
$3(Gpxn) and s3(Tyxn), i-e., focusing on square grids and tori for » = 3. Let us first deal with
the cases r € {2,4}.

2.2 Cases r € {2,4}

For completeness, we first precisely recall the known results when r = 2 and give exact results
in the case when r = 4.

The following result for » = 2 can be considered as folklore and appeared in many books with
puzzles [Bol06, LL11, Win03]. In any grid, the lower-bound is proved using an elegant perimeter
argument and an optimal lethal set is obtained by taking the n vertices of the diagonal.

Theorem 3 ([Bol06, LL11, Win03]) Let n > 1, then s2(Gpxn) = n.

The result for the torus can be found in [Bol06, Win03].



Theorem 4 (Problem 66, page 173 in [Bol06]) Let n > 1, then so(Tpxn) =n — 1.

The case r = 4 was considered in [BP98] where it is only stated that s4(Gpxn) ~ n?/2. However,
this case is easy to solve exactly. Let a(G) be the maximum size of an independent set in any
graph G.

Proposition 5 For every n > 3, we have
TL2 n—
o 54(Grxn) = 4(n = 1) + [V(Gln-2)x(n-2)| = ACn-g)x(n-2)) = [*H5"].
o $4(Thxn) = |V (Tuxn)| — a(Thxn) = nLnTHJ

Proof. Let D be any lethal set of G« or T;,xn. For purpose of contradiction, let us assume
that there exist u,v € V'\ D that are adjacent. Then u should be infected before v otherwise it
has at most 3 already infected neighbours, but v should also be infected before u a contradiction
Hence, V' \ D must be an independent set.

In the case of a torus, any set D such that V'\ D is an independent set is a lethal set. Indeed
any vertex of V' '\ D has its 4 neighbours infected. Therefore, any optimal lethal set D is such
that V' \ D is a minimum independent set of the torus.

In the case of a grid, any lethal set must furthermore contain all vertices of the border (since
they all have degree at most 3). Finally, every set D containing all vertices of the border and
such that V' \ D is an independent set is clearly a lethal set (since all vertices of V' \ D do not
belong to the border and so have degree 4 in D). Note that, in this case, V'\ D is an independent
set of the subgrid G,_2)x(n-2)-

Finally, note that a(Gpxn) = [%2] and o(Txn) = n[252] (folklore). [ |

2.3 Known results for r = 3 that are used throughout this paper

The following lower bound has been proved in [Bol06] using the perimeter argument and noting
that there are four pairs of adjacent infected vertices in B. In particular, the notation LB,
defined below will be used throughout the paper.

Theorem 6 (Problem 65, pages 171-172 in [Bol06]) Let n € N*. [t holds that:

PHT%—‘ if n is odd,
SB(Gan) > LB, =

n242n+4 . :
[f if n is even.

This allows to prove the following corollary that we extensively use later.

Corollary 7 Letn € N.

2n + 3 whenn=0,4 (mod 6)
2n + 4 whenn =2 (mod 6)
2n + 6 whenn =5 (mod 6)
2n + 7 whenn =1,3 (mod 6)
LBy — LB, = 4n + 16.

LB — LB, =

In [Bol06], Bollobés proved that the lower bound LB, is indeed reached in the case n = 2
(mod 6) (see Figure 1(f) for n = 8). We rephrase his result as follows by specifying an extra
property (useful later) of some optimal lethal sets.



Figure 2: Illustration of Proposition 9. The vertices are depicted as small squares (with most
vertices inside Gy,x, as well as their status omitted). Initially infected (resp., not infected)
vertices of D’ are red (resp., white). Orange vertices are the ones that are initially infected in
D but not in D’.

Theorem 8 ([Bol06]) Let n = 2 (mod 6), then s3(Gpxn) = LB, = %. Furthermore,
there exists an optimal lethal set of Gpxy containing the vertices (n —1,1), (n,1), (n,2), (1,n —
1), (n,1) and (2,n).

3 Various constructions and optimal results

In this section, we present several ways to use (lethal or not) configurations for smaller grids
in order to obtain new lethal configurations for larger grids. Each of the different tools that we
propose allow us to prove Theorem 1 (but its last item that is proved in next Section).

3.1 From n even to n + 3 odd and optimality for n =5 (mod 6)

Proposition 9 Let n be even. If D is a lethal set in Gpxyn containing the vertices (n —
1,1),(n,2),(1,n — 1) and (2,n), then there exists a lethal configuration (G (43)x (nt3), D') with
size |D'| = |D| + 2n + 4.

Proof. From the configuration (Grxn, D), let (G (43)x(n43), D) be the configuration defined
as follows. The restriction of D" to the subgrid Gy, x, consisting of the first (topmost) n rows
and first (leftmost) n columns of Gy, 43)x(n43) Will be the set D minus the vertices (1,n) and
(n,1) (which belong to D since D is a lethal set in G, x, and they are corners). Moreover, D’
contains the following infected vertices: (1,n+1) and (n+1, 1), plus the vertices (n+2,2j+2)
for every 0 < j <mn/2 and (n+3,25+1) for every 0 < j < n/2+ 1. Symmetrically, D’ contains
the vertices (2j+2,n+2) for every 0 < j <n/2—1and (2j+1,n+3) for every 0 < j <n/2. See
Figure 2 for an illustration. Hence, we have 2n + 6 infected vertices in the last (bottommost) 3
rows and last (rightmost) 3 columns. Overall, |D'| = |D| + 2n + 4.

Now let us prove that D’ is a lethal set. The vertices (1,n) and (n, 1) will become infected
at the first step because they have 3 infected neighbours initially. Therefore, every vertex of
the subgrid G, «, will become infected (as D is a lethal set). At the first step, all the vertices
of rows and columns n + 2 and n + 3 are also infected plus the vertices (n+ 1,2) and (2,n+ 1).
From these last two vertices the infection propagates along row n + 1 and column n + 1, until
it reaches the vertex (n+ 1,n+ 1). [ |

By Corollary 7, we get:



Figure 3: Illustration of Proposition 12. The vertices are depicted as small squares (with most
vertices inside Gy, as well as their status omitted). Initially infected (resp., not infected)
vertices of D" are red (resp., white). Orange vertices are the ones that are initially infected in
D but not in D”.

Corollary 10 Let D be a lethal set for Gpxy such that {(n—1,1),(n,2),(1,n—1),(2,n)} C D.
If n =0 or 4 (mod 6), then s3(G(ni3)x(nt3)) — LBnys < |D| — LB, + 1. If n =2 (mod 6),
then 33(G(n+3)><(n+3)) — LBn+3 < |D’ — LBn.

Theorem 11 Let n =5 (mod 6). Then, s3(Gpxn) = LB, = %

Proof. By Theorem 8, since n — 3 = 2 (mod 6), s3(G(,—3)x(n—3)) = LBn-3. Moreover,
there exists an optimal lethal configuration of G(;,_3)x(n—3) containing the vertices in {(n —
1,1),(n,2),(1,n —1),(2,n)}. The result follows from the Corollary 10. [ |

3.2 From n even to n+ 6 (even) and optimality for every n even

Proposition 12 Letn be even. If D is a lethal set in Gpxyn such that {(1,n—1),(2,n),(2,2), (n—
1,1),(n,2),} € D, then there exists a lethal configuration (G ny6)x(n+6), D") with size |D"| =
|D| 4+ 4n + 16 and such that {(1,n+5),(2,n +6),(2,2),(n+5,1),(n+6,2)} C D".

Proof. From the configuration (Gpxn, D), we first construct the configuration (G, 43)x (n+3), D')
as in Proposition 9 and then the configuration (G (,+6)x(n+6); D") as follows. The restriction

of D" to the subgrid G,+3xn+3 consisting of the first (topmost) n + 3 rows and first (leftmost)

n+ 3 columns of G (;,4.6)x (n+6) Will be the set D’ minus the vertex (n+3,3). Then, D" contains

the following vertices: (n + 4,2) and (n + 4,4), (n + 5,1) plus the vertices (n + 5,25 + 1) for

every 2 < j <n/2+ 2 (note that (n + 5,3) is not infected) and the vertices (n + 6,25 + 2) for

every 0 < j <n/2+ 2. In addition, D" contains the vertices (2j + 1,n +5) and (25 + 2,n + 6)

for every 0 < j < n/2+ 1. Finally, D” contains the two corners (n + 6,1) and (1,n + 6). See

Figures 3 for an illustration. Overall, |D”| = |D'| 4+ 2n + 12 = D + 4n + 16.

Now let us prove that D" is a lethal set. The vertices (1,n) and (n,1) will become infected
at the first step because they have 3 infected neighbours initially. Then, every vertex of the
subgrid G,,x, will become infected (as D is a lethal set). At the first step, all the vertices of
columns n+2,n+3,n+5 and n+6 become infected and all the vertices of rows n+2,n+3,n+5
and n + 6 except (n +2,3),(n+3,3),(n+5,3),(n +6,3). Vertices (n + 1,2), (2,n+ 1) and
(n+4,5) are also infected at step 1. From the vertex (2,7m + 1) the infection propagates along
column n + 1 until it reaches the vertex (n+ 1,7+ 1) and then along row n + 1 until it reaches
vertex (n+1,4). Then vertices (n+2,3), (n+3,3), (n+4,3), (n+5, 3), (n+6, 3) become infected.
From the vertex (n + 4,5) the infection propagates along row n + 4 until it reaches the vertex
(n+4,n+4) and then along column n + 4 until it reaches vertex (1,n +4). See an example in
Figure 4. |



(a) Infection process at ¢ = 0.

—

b) Infection process at t = 1.

Figure 4: Construction for n = 30. Here we start from the optimal grid Gexe (depicted by a
blue frame) obtained from the grid G343 (Theorem 21) and apply the construction recursively.
In the left part, initially infected (resp., not infected) vertices are red (resp., white). In the
right part, vertices infected at step 1 are in orange and those not infected at the end of step
1 are in white. To get optimal lethal sets for the grids with n even we should also have the
corners infected and to get almost optimal for the grids with n odd we should also have the
vertex (n,3) infected.

Remark: We can do the proof by deleting from D’ instead of vertex (n + 3,3) any vertex
(n+3,2j0+ 1) with 1 < jo <n/2. Then D" should contain in row n + 4 the infected vertices:
(n +4,250) and (n + 4,2jyp + 2) and in row n + 5 all the vertices (n + 5,25 + 1) for every
0 < j <n/2+2 except vertex (n+5,2j9+1). That might be useful to diminish the propagation
time.

Theorem 13 Let n be even. Then, s3(Gnxn) = LB,. Moreover, there exists an optimal lethal
set which contains the vertex (2,2).

Proof. The theorem is true for n = 2,4, 6, in which cases, optimal grids can be constructed
directly (for n = 4 and 6, see Figure 1). Then, the theorem follows by induction on n (even)
using Proposition 12 and Corollary 7. ]

Theorem 14 Let n =1 or 3 (mod 6). Then, s3(Gpxn) < LB, + 1. Moreover, there exists a
lethal set of size LB, + 1 which contains the vertezx (2,2).

Proof. The theorem follows from Theorem 13 and Corollary 10. |

3.3 From n to 2n + 1 and optimality for n =27 — 1

We give now another tool which, while rather simple, allows us to identify a new class of grids
(namely, n = 2P — 1) with odd side where the lower bound is tight.

For any configuration (Gpxn, D), let (G(ant1)x@2n+1), D) = H(Grnxn, D) be the configura-
tion defined as follows. The restriction of D’ to each of the four connected components obtained
from G (95,4 1)x(2n+1) by removing its central row and central column (i.e., the (n + 1)*" row and
(n + 1) column) is equal to D. Finally, D’ also contains the vertex (n 4 1,n + 1). See Fig. 5
for an illustration.



2n+l

Figure 5: Illustration of the configuration H(Gpxn, D).

Lemma 15 If (Gyxn, D) is a lethal configuration, then H(Gpxn, D) is a lethal configuration.

Proof. Since D is a lethal set for Gy,xn, each of the component of G(2,,4.1)x(2n+1) Obtained by
removing the central row and the central column will be infected independently. Finally, the
central row and central column will be infected using the fact that every other vertex and the
central one (n 4+ 1,n + 1) are infected. [ |

Definition 16 Let Hy be the configuration that consists of the grid Gix1 whose single vertex
is infected. For every p > 1, let H, = H(Hp—1).

Proposition 17 For every p > 1, H, is an optimal lethal configuration for the grid Gar_1x2r_1
with %vertz’ces initially infected.

Proof. Since H; is clearly lethal, by induction on p and Lemma 15, then H,, is lethal for all p.
Let D, be the lethal set of Hy, then |Dy| = 4|D,_1|+1 and as | D1|=1, we get D, = 1. Finally,

n(n+2) _ 4P—1
nnt2) _ -1 g

the optimality comes from Theorem 6 that states that for n =27 — 1, LB, = 3

Theorem 18 For every p € N*, let n =2P — 1. Then, s3(Gpxn) = LB, = %

4 The lower bound is not always tight

In the case when n is odd such that n = 1,3 (mod 6) and n # 2P — 1, it remains to decide
whether s3(Gpxn) equals LB, or LB,, + 1. The first two values which are undetermined yet are
n =9 and n = 13. For these values, we prove that the lower bound is not tight using a Linear
Program. Finally, for n = 9, we also give a long combinatorial proof.

4.1 Useful properties of lethal sets

First, let us present some useful properties that must be satisfied by any lethal set (or more
precisely by the complement of any lethal set) of a grid.

Property 19 FEwvery lethal set in Gy« contains every corner.

Proof. Let u be a corner of G« and let D be a lethal set. Since u has degree at most 2 and
requires at least 3 neighbours to be infected, then u € D. |

The next property states that, for every two adjacent vertices on the border, at least one must
be initially infected in order to eventually infect the whole grid.



Property 20 Let u,v be two adjacent vertices in B of Gpxm. Let D be a lethal set. Then
Dn{u,v} #0.

Proof. Let D be a lethal set of G,,x.,. For purpose of contradiction, let us assume that there
are two adjacent vertices u and v of the border (so they have degree at most 3) that are not in
D. Then, the first vertex to be contaminated in {u,v} would have at most two contaminated
neighbours before being infected, a contradiction. |

Property 21 Let D be a lethal set of the grid Gpxm. Let H =V \ D. Then, H induces an
acyclic subgraph whose every connected component has at most one vertex on the border.

Proof. For purpose of contradiction, let us first assume that H induces a subgraph containing
a cycle C and let u be the first (according to <p) vertex of C' contaminated by D. Then, when
u becomes infected, it has at most two infected neighbours, a contradiction.

Similarly, if H induces a subgraph that contains a path P (with at least two vertices) whose
ends are in the border, then the first vertex to be infected in P would have at most 2 already
infected neighbours, a contradiction. |

4.2 Linear Program

We present a Mixed-Integer Linear Program (MILP) for computing s,(G) in any graph G. As
initially described in section 2, we consider a step of the contamination process. That is, at
every step, all non-infected vertices with at least r infected neighbours become infected. The
question addressed in this section is as follows:

Instance : A graph G = (V, E), non-negative integers r and 7.

Question : What is the minimum number s? (G) of initially infected vertices

such that the whole graph is contaminated in at most 1" steps?
Note that, for every k € N: s,(G) < k if and only if s\’ *(G) < k.

We formulate the problem as the MILP below, which computes an optimal solution for
sI'(@). The main variables are the binary variables ¢, for v € V and t € {1,..., T}, defined as
follows: ¢, = 1 if the vertex v is infected after the tth step of the contamination process and 0
otherwise.

We describe hereafter the different constraints (1-6) of the MILP, starting by the objective
function:

1) Minimize the number of initially infected vertices.

(1)
(2) After T steps, all the vertices are infected.
(3) The r-neighbour contamination process.
(4)

4) Every vertex with a degree strictly smaller than r must be initially infected (case for instance
of the corners of a grid Gy, x, when r = 3 (Property 19)).

(5) If two adjacent vertices have degree r, then at least one must be initially infected (case for
instance of two adjacent vertices of the border of a grid Gy, x, when r = 3, (Property 20)).

(6) If D is a lethal set and v € D such that [N(v) N D| > r, then D\ {v} is a lethal set.



Minimize )~ ¢y 0 (1)

veV
Subject to Z cor = |V| (2)
veV
1
Cot S Copott+ - > cuwi YweV,te{l,. . T} (3)
weN (v)
coo =1 Yo e V,d(v) <r (4)
Cu,0 + Cvo 2 1 Y{u,v} € E,d(u) = d(v) =r (5)
oot Y Cwo <7 Vv e V,d(v) > r, VS C N(v),|S| =r (6)
weS
cot €4{0,1} VoeVite{l,..,T} (7)

We note that the above cuts were not sufficient to make the MILP terminate (in sufficiently
reasonable time) for G = Gy, except for some small values of n. Therefore, to speedup the
search, we propose further optimization cuts which hold under certain conditions on G.

Further cuts if » > 3 and G has maximum degree 4.
Let » > 3. By Property 21, if D is a lethal set, then H = V' \ D is acyclic. We introduce the
next constraints (8-13) to express this property.

First, we consider the binary variables y, for e = {u,v} € E, defined as follows: y, = 1 if

and only if ¢, 0 = 0 and ¢, 0 = 0 (i.e., y. = 1 if and only if e is an edge of a connected component
of H).

Ye+Cuo+cro>1 Ve={uv}€E (8)
2Ye + Cuo+ oo <2 Ve={uv}€E (9)
ye €{0,1} Ve={u,v} €F (10)

Then, to ensure that H is acyclic, we leverage upon an efficient formulation usually used to
design a Linear Program for computing the Maximum Average Degree of a graph in polynomial
time. To this end, we consider the non-negative variables z. , and z,, for every e = {v,w} € E.
Intuitively, each edge induced by H distributes a potential of one from each of its end-vertices,
and H is acyclic if and only if no vertex receives at least one of potential.

Zew+ Zew =Ye Ve={u,v} €FE (11)

Y zep<l VEV (12)
e'={w,v}
weN (v)

Zews Zew > 0 Ve={u,v} €F (13)

Further cuts if r > 3 and G = G«

Let r > 3. By Property 21, if D is a lethal set, then H = V' \ D contains no path (of length
at least 2) with both its ends in some side of the border (possibly both distinct ends in the same
side). We introduce the next constraints (18-20) to express this property.

Let the parts of the border on the top, right, bottom and left of the grid G,,x, be denoted by
the side N, E,S and W, respectively. We aim at describing constraints which ensure that there
is no path (of length at least two) from a side = to a side y in H, for every z,y € {N,&,S,W}.
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Let us first assume that x # y. Let G*™ be obtained from G, x, by adding two vertices x
and y to it such that x (resp., y) is adjacent to all vertices in the = (resp., y) side of Gy, (here,
we abuse notations by identifying the side x (resp., y) of G, x, and the vertex z (resp., y) of
G™Y).

For every edge e € E(G®Y), we consider the binary variables y¢ Y, defined as follows: ye¥ = v,
if e € E(Gnxn), ye! =1—cyp if e = {z,v} (or e = {y,v}) when v is not a common vertex
of z and y sides, and ygjm} + yf‘g’v} = 1 if v is a common corner of x and y sides. Now, for
every vertex v in G%, we consider the non-negative real variables py” satisfying the constraints
(14-16) (following the classical Linear Program for edge-cut).

py’ =0and p¥ =1 (14)
P - <1-y® V(o) € B(G™) (15)
P - < 1—y® V(o) € B(G™) (16)

If = y (i.e., both sides are the same side), let G* be obtained from G, «, by adding two
vertices z and y, each of them being adjacent to all vertices of the same side x = y of Gpxn.-
For every edge e € E(G™), we consider the binary variables y.? defined as follows: ye¥ = y, if
e € E(Gpxn), and yfg,v} —i—yf;’m} = 1—c¢, for every v in the z = y side of G, xy,. The remaining

part is similar to what is described above.

Further optimizations. We also provided the MILP with lower and upper bounds on the
expected solution. That is, we add constraints of the following form LB < ) i coo < UB
for some given integers LB and UB. We note that the main purpose of the previous MILP is
to determine whether the lower bound LB, is tight for the cases not covered by Theorem 1.
Therefore, we added some specific constraints which reflect the properties of lethal sets of size
LB,,. For instance, when n = 1 or 3 (mod 6), every such lethal set D does not contain two
adjacent vertices. In addition, a vertex in V' \ D cannot be surrounded by four vertices in D
(Property 23). In some cases, we also imposed some further restrictions (such as, in the case
when n is odd, that the vertices in the border of the grids are precisely characterized if we
expect a lethal set of size LB,,) or explicitly implemented branch and bound algorithms where
we specified the values of some vertices.

Overall, the MILP (these LPs) allowed us to obtain best known solutions for every n up to 20
(but 19) even when combinatorial proofs were not known to do so. So far, the case n = 19 is the
largest size that still resists to the MILP as it provided a solution with L Big-+1 vertices initially
contaminated, but was not able to terminate when requiring a solution with L Bjg vertices. This
is in contrast with the case when n = 13, where the MILP terminates certifying that there are
no solutions using LBi3 vertices initially contaminated. Our experiments based on the MILP
allowed us as such to show that s3(Gpxn) = LB, + 1 for n € {9,13} (Proposition 22); but the
MILP does not terminate for n = 19.

Proposition 22 s3(Gpxn) = LB, + 1 if n € {9,13}.

Proof. The upper bounds comes Theorem 14. The fact that this is optimal results from the
execution of the LP described in this section and that certified that no solutions with LB,
vertices exist. |

4.3 Combinatorial proof for n =9

We now provide below an ad-hoc combinatorial proof that s3(Ggx9) = LBg + 1; but it seems
quite tedious to generalize this proof already for n = 13. We first state a proposition which
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gives more properties of the vertices of D and V' \ D when n =1 or 3 (mod 6) .

Property 23 Letn =1 or 3 (mod 6) and let D be a lethal set of size LB,, = (n®>+42n)/3; then
a) there are no two adjacent vertices in D, and
b) a vertex in V' \ D cannot have 4 neighbours in D.

Proof. We rephrase the elegant perimeter’s argument used to prove Theorem 6 with a more
careful analysis. Each vertex has a perimeter 4 and so the initial perimeter of a lethal set is
at most 4|D|. But, if two vertices of D are adjacent, their perimeter is 6 and not 8 and so
the initial perimeter is at most 4|D| — 2. In the process of infection each time a new vertex
is infected the perimeter decreases by at least 2 and the final perimeter is 4n. So we get
4|D| —2—2(n?* = |D|) > 4n or |D| > (n® +2n+1)/3 > LB, and that proves property a). If a
vertex in V' \ D has 4 neighbours in D, then when this vertex is infected the perimeter decreases
by 4 and not 2. So in that case we get 4|D|—2(n?—|D|)—2 > 4n or |D| > (n>+2n+1)/3 > LB,
and that proves property b). |

Proposition 24 We have s3(Ggxg) = LBy + 1 = 34.

Proof. The upper bounds come from Theorem 14. To prove the proposition, by Theorem 6,
it is sufficient to show that there is no lethal set for Ggyg with 33 vertices.

Hence, for purpose of contradiction, let us assume that there exists a lethal set D of size 33
in the grid Ggxg. The basic idea of the proof is mainly to use Properties 20, 21 and 23 in order
to progressively show that some vertices are forced to belong to D (vertices in red in Figure 6)
or to V'\ D (vertices in yellow in Figure 6). There are few cases to be considered.

By Property 20 and 23, DN B = {(1,1),(1,3),(1,5),(1,7),(1,9), (3,9),(5,9), (7,9),(9,9),
(9,7),(9,5),(9,3),(9,1),(7,1),(5,1),(3,1)}. Then by Property 23, (2,3), (2,5),(2,7),(3,8),(5,8),
(7,8),(8,7),(8,5),(8,3),(7,2), (5,2),(3,2) are not in D. Then, Property 21 implies that (2,2) €
D (otherwise there will the path (1,2),(2,2),(2,1)); similarly (2,8),(8,2),(8,8) € D. So far,
we may assume that D contains the vertices described in red and does not contain the ones in
yellow as shown in Figure 6(a).

Let us now prove two claims very useful for the proof.

Claim 25 At least one vertex in each of the pairs {(2,4),(2,6)} {(4,2),(6,2)}, {(4,8),(6,8)}
and {(8,4),(8,6)} belongs to D.

Proof of Claim. Suppose it is not true and that for example {2,4), and (2,6)} are in V' \ D.
Then there will be the path (1,4),(2,4),(2,5), (2,6), (1,6) contradicting Property 21. o

Claim 26 For each pair {(2,4),(4,2)} {(6,2),(8,4)},{(2,6),(4,8)} and {(6,8),(8,6)}, the two
vertices of this pair have the same status (either both in D or both V' \ D).

Proof of Claim. For purpose of contradiction, let us assume by symmetry that (2,4) € D
and (4,2) ¢ D (see Figure 6(b)). By Property 23b), vertex (3,3) ¢ D (otherwise the vertex
(3,2) which belongs to V' \ D will have 4 neighbours in D. Then, Property 21 implies that
vertex (4,3) € D (otherwise V \ D would contain a 4-cycle). Moreover, by Claim 25, as
(4,2) ¢ D, then (6,2) € D. Now, by Property 23a, vertices (3,4),(4,4),(5,3) and (6,3)
are not in D. Then, Property 21 implies (5,4) € D (since otherwise we will have in V' \ D
the 8-cycle (3,2),(3,3),(3,4),(4,4),(5,4),(5,3),(5,2),(4,2)). Then, by Property 23a), we have
(5,5),(6,4) ¢ D. Then, by Property 23b) (7,3) ¢ D (since otherwise (7,2) would be a vertex
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in V' \ D with four neighbours in D). Finally, Property 21 implies (7,4) € D (otherwise V' \ D
contains the 4-cycle ((7,4),(7,3),(6,3),(6,4))) and (8,4) € D otherwise V' \ D contains a path
from (4,1) to (9,4). But then, there are two adjacent vertices in D namely (7,4) and (8,4),
contradicting Property 23a) (see Figure 6(b)). o

Now, let us come back to the partial configuration described in Figure 6(a). Recall that,
red vertices are known to belong to D and yellow vertices does not belong to D.

By Claim 25, at least one vertex in each of the pairs {(2,4), (2,6)} {(4,2), (6,2)}, {(4,8),(6,8)}
and {(8,4), (8,6)} belongs to D. We consider two cases

e Case 1: all vertices (2,4),(2,6),(4,2),(6,2),(4,8),(6,8),(8,4), (8,6) belong to D (see Fig-
ure 6(c)).

By Property 23a), this implies that vertices (3, 4), (3,6), (4,7),(6,7),(7,6),(7,4), (6,3), (4, 3)
are not in D. Then, vertices (3,3),(3,5)(3,7),(7,3),(7,5)(7,7) are not in D by Prop-
erty 23b). But, then there exists a 16-cycle (3, 3), (3,4), (3,5),(3,6), (3,7), (4,7),(5,7),(6,7),
(7,7),(7,6),(7,5),(7,4),(7,3),(6,3), (5,3), (4, 3).

e case 2: In at least one of the pairs {(2,4), (2,6)} {(4,2), (6,2)}, {(4,8),(6,8)} {(8,4),(8,6)}

one vertex belongs to D and the other not. By symmetry suppose (2,4) € D and
(2,6) ¢ D.
By Claim 26, as (2,4) € D, then (4,2) € D. By Property 23a) (3,4) ¢ D and (4,3) ¢ D.
By Claim 26, as (2,6) ¢ D, then (4,8) ¢ D. Hence, by Claim 25, (6,8) € D and again
by Claim 26, (8,6) € D. Moreover, by Property 23a) (6,7) and (7,6) are not in D. Now,
Property 21 implies (3,7) € D, since otherwise there would be a path from (1,6) to (4,9)
in V'\ D. Then, Property 23a) implies that (3,6) and (4,7) ¢ D. Then, by Property 21,
(4,6) € D again to avoid a path from (1,6) to (4,9) in V' \ D and then, by Property 23a)
(4,5) and (5,6) ¢ D. Then, vertices (3,5) and (5,7) need to be in D to avoid 4-cycle in
V\ D. See Figure 6(d) for the configuration reached so far. There are two subcases to be
considered.

— Case (6,2) E D (see Figure 6(e)). By Claim 26, (8,4) € D and so by Property 23a),
(6,3) and (7,4) ¢ D. Then, Property 23b), (7,3) ¢ D (otherwise (8,3) would
have 4 nelghbours in D). Then (6,4) must be in D to avoid a 4-cycle in V' \ D
and so, by Property 23a), (5,4),(6,5) ¢ D to avoid adjacent vertices in D. At
this point, D already contains 31 vertices. Then to avoid 4-cycles in V' \ D either
(4,4) € D or both (3,3) and (5,3) € D; similarly either (6,6) € D or both (5,5) and
(7,5) € D. Therefore, to get |D = 33| we need to have (4,4) € D and (6,6) € D
and the other vertices (5,3),5,5),7,5) ¢ D. But, then there is a 8-cycle in V'\ D
((5,3),(5,4),(5,5),(6,5),(7,5),(7,4),(7,3), (6,3)), a contradiction.

— Case (6,2) ¢ D (See Figure 6(f)). By Claim 26, (8,4) ¢ D. Hence (7,3) € D to avoid
a path from (6,1) to (9,4) in V' \ D. Then, by Property 23a), (6,3) and (7,4) ¢ D.
Hence, (5,3),(7,5) € D to avoid 4-cycles in V' \ D, and (6,4) € D to avoid a path
from (6,1) to (9,4) in V' \ D. Moreover, by Property 23a), (5,4) and (6,5) ¢ D
to avoid adjacent vertices in D. There are already 32 vertices in D and the single
remaining (undetermined yet) vertex of D is not sufficient to break all 4-cycles in
V'\ D, a contradiction.
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(b) Impossibility : (c) Case 1:

(2,4)in D, (4,2) (2,4),(2,6),(4,2),(6,2),

notin D (4,8),(6,8), (8,4) and
(8,6)inD

(d) Case 2;
(2,4)and (4,2)inD
(2,6) and (4,8) notin D

(e), first subcase of (f), second subcase of
Case 2; Case 2;
(6,2) and (8,4) in D (6,2) and (8,4) notin D

Figure 6: Illustrations of Proposition 24 (n = 9). Red vertices are the one that are assumed
to belong to the lethal set D of size 33, yellow vertices are assumed to belong to V' \ D and
white vertices are undetermined yet. Vertices (squares) surrounded by blue or green correspond
to the hypotheses done in the different cases of the proof (green corresponds to the subcases).
Figure (a) is a configuration that is certain if |D| = 33. Figure (b) is the configuration obtained
if (2,4) € D and (4,2) ¢ D and leads to a contradiction (Claim 26). Figure (f) corresponds
to the first case and leads to a contradiction. Figure (¢) corresponds to the proof of the claim.
Figure (d) corresponds to the second case. Figure (e) (resp., (f)) to the subcase (6,2) € D
(resp. (6,2) ¢ D) leading to a contradiction in both subcases.

5 Tori

In this section, we focus on the square tori. We determine the exact value of s3(7},x,) for every
n > 3, as given in Theorem 2.

We note that Property 21 proved for the grids holds for any graph and thus, in particular
for tori.
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Figure 7: Illustration of Theorem 29 and Theorem 30 for the torus Tj,x,. The vertices are
depicted as small squares. Red squares are those of a lethal set D of G(,,_1)x(n—1). Orange
squares are deleted from D and not infected in the torus. Blue vertices are extra infected
vertices in the torus. In Figure 7(b) (resp. 7(d)), we start from the optimal grid Gaxa (resp.
Gexe) and apply recursively the construction of proposition 12 (resp. plus proposition 9).

Property 27 Let D be a lethal set of the torus Typxn. Let H =V \ D. Then, H induces an
acyclic subgraph.

Proposition 28 Any lethal set I of Ty,xn has size at least [%1 where ¢ > 1 is the number
of connected components of V '\ I.

Therefore, s3(Tynxn) > LBT,, = |'n2?:l-1‘|.

Proof. Let I be any lethal set and let H = V \ I. Note that |[H| = n? — |I|. Let m;g be the
number of edges between a vertex in I and a vertex in H and let my be the number of edges
linking two vertices of H.

By Property 27, H must induce a forest since I is a lethal set. Hence, mpy < |H| — ¢ where
¢ is the number of connected components induced by H. Moreover, since all vertices have
degree 4, then mry < 4|I|. Similarly, mrg = 4|H| — 2my.

Hence, 2|H| + 2¢ < 4|H| — 2my = mry < 4|I|. Finally, n? — |I| + ¢ < 2|I|. [ |

Theorem 29 Ifn is odd, then s3(Tpxn) = LBT,.

Proof. As n is odd, n — 1 is even. By Theorem 13, there exists a lethal configuration
(G(n=1)x(n—1), D) of size L B,,_1 and such that {(1,n—1),(1,n), (2,n),(2,2), (n—1,1),(n,1),(n,2)} C
D. We build a lethal configuration (T},x,, D’) as follows.

e Let n =3 (mod 6). The restriction of D’ to the subgrid G (n—1)x(n—1) consisting of the last
(bottommost) n — 1 rows and last (rightmost) n — 1 columns of G (,,_1)x(n—1) Will be the
set D minus the corners (1,n). Moreover, D’ contains the vertex (0,0) (see Figure 7(a)).

So, |D'| = |D|. We have |D| = LB, = @420t _ w43 _ ppy,

e Let n = 1,5 (mod 6). The restriction of D’ to the subgrid G(,,_1)x(n—1) consisting of the
last (bottommost) n — 1 rows and last (rightmost) n — 1 columns of G ,_1)x(n—1) Will
be the set D minus the four vertices (1,n),(n,1),(1,1) and (2,2). Moreover, D" contains
the three vertices (0,1),(1,0) and (2,1) (see Figure 7(b)). So, |D'| = |D| — 1. We have

|D‘ _ Lanl _ (n71)2+§(n71)+6 — n2;_5. SO, ’D/| _ % — LBTn

It is easy to check that D’ is lethal in both cases. |

Theorem 30 If n is even, then s3(Tyxn) = LBT,.
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Proof.

e Let n =0 (mod 6). Son—1=5 (mod 6). By Theorem 14, there exists a lethal set D in the
grid G(;,—1)x(n—1) Of size LB, 1. We construct a lethal configuration (7}, xn, D’) as follows.
The restriction of D’ to the subgrid G (n—1)x (n—1) consisting of the last (bottommost) n—1
rows and last (rightmost) n — 1 columns of G ,,_1)x(n—1) Will be the set D. Moreover, D’
contains the vertex (0,0). (see Figure 7(c)). So, |D'| = |D|+ 1. We have |D| = LB,_; =
(=22 el _ n? g, | p/| = n2E8 = BT,

e Let n = 2,4 (mod 6). Son —1= 1,3 (mod 6). By Theorem 14, there exists a lethal
set D in the grid G(,,—1)x(n—1) Of size LB,_1 + 1. We construct a lethal configuration
(Thxn, D) as follows.The restriction of D’ to the subgrid G (n—1)x(n—1) consisting of the
last (bottommost) n—1 rows and last (rightmost) n—1 columns of G'(;,—1)x (n—1) Will be the
set D minus the vertex (2,2). Moreover, D' contains the vertex (0,0) (see Figure 7(d)).
So, |D'| = |D|. We have |D| = LB, _; +1 = =202l 4 g _ %2 g | pr| = n32
LBT,.

It is easy to check that D’ is lethal in both cases. |

6 Further Work

The first open problem would be to completely settle the question of determining s3(Gpxn)
(either LBy, or LBy1) for any undetermined n, i.e., for every odd n > 13 such that n # 5
(mod 6) and n # 2P — 1. Note that the first undetermined value is n = 19 for which our Linear
Program did not terminate. We can show that our results can be extended to rectangular grids
and tori. Therefore, the next graph class to be considered would be d-dimensional grids for
d > 2. Last but not least, it would be interesting to investigate further the question of the
speed of the infection, i.e., determining optimal (in terms of size) lethal sets that infect the
whole graph as fast (resp., as slow) as possible.
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