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ABSTRACT 

Biochemical studies have established the presence of a NO pathway in the heart, including 

sources of NO and various effectors. Several cardiac ion channels have been shown to be 

modified by NO, such as L-type Ca2+, ATP-sensitive K+, and pacemaker f-channels.  Some of 

these effects are mediated by cGMP, through the activity of three main proteins: the cGMP-

dependent protein kinase (PKG), the cGMP-stimulated phosphodiesterase (PDE2) and the 

cGMP-inhibited PDE (PDE3). Other effects appear independent of cGMP, as for instance the 

NO modulation of the ryanodine receptor-Ca2+ channel. In the case of the cardiac L-type Ca2+ 

channel current (ICa,L), both cGMP-dependent and cGMP-independent effects have been 

reported, with important tissue and species specificity. For instance, in rabbit sinoatrial 

myocytes, NO inhibits the -adrenergic stimulation of ICa,L through activation of PDE2. In cat 

and human atrial myocytes, NO potentiates the cAMP-dependent stimulation of ICa,L through 

inhibition of PDE3. In rabbit atrial myocytes, NO enhances ICa,L in a cAMP-independent 

manner through the activation of PKG. In ventricular myocytes, NO exerts opposite effects on 

ICa,L: an inhibition mediated by PKG in mammalian myocytes but by PDE2 in frog myocytes; 

a stimulation attributed to PDE3 inhibition in frog ventricular myocytes but to a direct effect 

of NO in ferret ventricular myocytes. Finally, NO can also regulate cardiac ion channels by a 

direct action on G-proteins and adenylyl cyclase.  

 

Key words: cGMP – nitric oxide - cardiac tissue – ion channels – cAMP – cyclic nucleotide 

phosphodiesterases – cGMP-dependent protein kinase – L-type calcium current 
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INTRODUCTION 

The cyclic nucleotides cAMP and cGMP participate in the main regulations of cardiac 

function. They act as second messengers for sympathetic and parasympathetic systems, nitric 

oxide (NO) and natriuretic peptides. Noradrenaline released from sympathetic nerve terminals 

binds to -adrenergic receptors (β-ARs) coupled to Gs which activate cAMP synthesis by 

adenylyl cyclases. Classically, cardiac effects of cAMP are attributed to phosphorylation by 

cAMP-dependent protein kinase (PKA) of several proteins critically involved in excitation-

contraction coupling, including the L-type Ca2+ channels (which underlies the L-type Ca2+ 

current, ICa,L), phospholamban, ryanodine receptor and several contractile proteins 

(Rapundalo 1998; Bers 2002). PKA also activates the cAMP response element-binding 

protein (CREB) family of transcription factors (Muller et al. 2001). Other cAMP targets in the 

heart include the exchange protein directly activated by cAMP (Epac) and f-channels (Abi-

Gerges et al. 2000; Sartiani et al. 2002; Robinson and Siegelbaum 2003). Acute increase in 

cAMP has chronotropic, inotropic and lusitropic effects, which are counteracted by 

acetylcholine (ACh) released from sympathetic nerves. ACh binds to muscarinic M2 

receptors which inhibit cAMP synthesis through pertussis toxin sensitive Gi proteins (Méry et 

al. 1997; Harvey and Belevych 2003). While an acute stimulation of the cAMP pathway is 

beneficial for the heart, a sustained activation, as occurs for instance in transgenic mice with 

cardiac overexpression of β1-ARs (Engelhardt et al. 1999) or Gs (Iwase et al. 1996) leads to 

hypertrophic growth, ventricular dysfunction and, ultimately, to heart failure (Port and 

Bristow 2001). A similar situation is found in different forms of human chronic heart failure, 

which are all associated with elevated catecholamines (Swynghedauw 2004). 
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cGMP is often represented as the mirror of cAMP. In the short term, cGMP opposes the 

positive effects of cAMP on cardiac function (Fischmeister and Méry 1996), and is sometimes 

considered as the second messenger involved in parasympathetic regulation of the heart 

(Massion et al. 2003). Intracardiac cGMP production is due to two different forms of guanylyl 

cyclases (GC): the soluble GC (sGC), which is activated by NO, and the particulate GC 

(pGC), which is activated by natriuretic peptides (NPs) ANP, BNP and CNP. NO is produced 

by cardiac myocytes and endothelial cells nearby, and two NO-synthases (NOS), endothelial 

(eNOS) and neuronal (nNOS), coexist in cardiac myocytes (Massion et al. 2003; Damy et al. 

2004). A third, inducible form (iNOS) is expressed in pathological conditions such as septic 

shock (Abi-Gerges et al. 1999) or heart failure (Massion et al. 2003; Paulus and Bronzwaer 

2004). Upon NO or NP action, cGMP accumulates and interacts with several targets, such as 

cGMP-dependent protein kinase (PKG) and phosphodiesterases (PDEs), which attenuate the 

β-adrenergic response (Lohmann et al. 1991; Fischmeister and Méry 1996). In transgenic 

mice with cardiac overexpression of eNOS or iNOS there is no cardiac abnormality except for 

the loss of -adrenergic responsiveness (Massion et al. 2003; Paulus and Bronzwaer 2004; 

Champion et al. 2003; Ziolo et al. 2001). As seen with β-blockers, such a mechanism may 

prove to be protective in heart failure, and could account for the anti-hypertrophic effect of 

chronic cGMP pathway stimulation by NO (Kempf and Wollert 2004) or NPs (Tokudome et 

al. 2004). 

During the last decade, we have studied cyclic nucleotide signalling in healthy and diseased 

adult cardiac myocytes. With a physiologist approach, we favoured functional rather than 

biochemical approaches. This is why we generally chose to work on intact, differentiated 

cardiac myocytes, isolated from small adult animals (frog, rat, mice) or from human atrial 

appendage. On these myocytes, we apply the patch clamp technique to record ionic currents, 

and in particular ICa,L which serves as a marker of cAMP and cGMP changes, as well as 
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associated PKA and PKG activities in response to diverse stimuli. We developed original 

methods to study the spatio-temporal organisation (compartmentation) of cyclic nucleotide 

signalling pathways, and showed that cyclic nucleotide PDEs play a key role in defining this 

compartmentation. 

 

cAMP and -adrenergic regulation of cardiac function 

Two types of -AR (β1-AR and β2-AR) participate in the sympathetic stimulation of cardiac 

function (Xiao et al. 2004). We showed that both β1-AR (Hartzell et al. 1991; Hartzell and 

Fischmeister 1992) and β2-AR (Skeberdis et al. 1997a; 1997b) activated ICa,L through cAMP 

elevation and PKA phosphorylation. We currently study ICa,L regulation by 3-AR, which are 

expressed in the human heart (Moniotte et al. 2001), and have a negative inotropic effect in 

the ventricle (Gauthier et al. 1996) involving activation of eNOS (Gauthier et al. 1998). We 

found that β3-AR activate ICa,L in human atrial tissue (Skeberdis et al. 1999; Gendviliene et al. 

2002), indicating tissue specificity in the downstream signalling of this receptor. Other types 

of receptors also activate ICa,L through an elevation in cAMP, for instance 5-HT4 (Blondel et 

al. 1997; Vandecasteele et al. 1998) and glucagon (Méry et al. 1990) receptors.  

 

Opposite effects of cAMP and cGMP on cardiac ionic channels 

In 1986, we showed for the first time that intracellular cGMP counteracted the effects of 

cAMP on ICa,L, and suggested that cGMP action involved PDE2 (Hartzell and Fischmeister 

1986). This early hypothesis was confirmed much later, ought to the characterisation of 

EHNA as a selective PDE2 inhibitor (Méry et al. 1995). However, differences exist among 

species. In guinea pig (Levi et al. 1989) and rat (Méry et al. 1991), PKG accounts for the 

inhibitory effect of cGMP on ICa,L, while PDE2 dominates in frog. In human, low 

concentrations of cGMP stimulate ICa,L through PDE3 inhibition, and high concentrations 
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inhibit this current by stimulation of PDE2 (Vandecasteele et al. 2001). This versatility of 

cGMP actions on cardiac function was largely confirmed in subsequent studies, in particular 

in those using KO or transgenic mice for genes of the cGMP pathway (Wegener et al. 2002). 

ICa,L inhibition by cGMP participates to the anti-hypertrophic action of cGMP (Fiedler et al. 

2002). However, in one animal species (rabbit), the results clearly differ. Indeed, PKG exerts 

stimulatory effects on rabbit cardiac ICa,L, both in atrial (Wang et al. 2000) and ventricular 

myocytes (Han et al. 1993; 1998; Kumar et al. 1997), although the latter may be restricted to 

the newborn stage (Kumar et al. 1997; 1999).  

 

Does cGMP mediate the effects of NO in cardiac myocytes?  

In 1993, we showed for the first time that -AR stimulation of ICa,L is antagonized by a NO-

donor (Méry et al. 1993). We established that this effect is mediated by an elevation of cGMP 

(Abi-Gerges et al. 1997), which stimulates PDE2 in frog (Méry et al. 1995; Dittrich et al. 

2001) and PKG in rat (Abi-Gerges et al. 2001). Surprisingly, while PKG stimulation by 

cGMP can inhibit ICa,L directly by phosphorylation of the channel main subunit (Méry et al. 

1991; Jiang et al. 2000), PKG activation triggered by NO is mediated by a pertussis-sensitive 

Gi proteins, thus inhibiting adenylyl cyclase activity (Abi-Gerges et al. 2001). The functional 

consequence of the inhibitory effect of cGMP on ICa,L is the negative inotropic effect of NO 

(Chesnais et al. 1999a). In human atrial tissue, NO, like cGMP (Vandecasteele et al. 2001), 

exerts a dual action on ICa,L, due to the opposite action of cGMP on PDE2 and PDE3 (Kirstein 

et al. 1995). But NO has also cGMP-independent effects (Fischmeister and Méry 1996). For 

instance we found that very low doses of NO activate Gs, stimulating adenylyl cyclase and 

ICa,L, and Gi, hence stimulating the muscarinic K+ channels (Abi-Gerges et al. 2002). NO may 

also bind superoxide anions to form peroxynitrite, which exerts specific effects on cardiac 
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ICa,L (Campbell et al. 1996; Malan et al. 2003) and contraction (Ronson et al. 1999; Chesnais 

et al. 1999b). 

 

NO and cGMP effects on other cardiac channels 

Although much effort has been devoted to examine the effect of NO and cGMP on cardiac 

Ca2+ channels, other cardiac ion channels have also been shown to be regulated by this 

pathway. For instance, in rabbit ventricular myocytes, the ATP-sensitive K+ channel current 

IK(ATP) is activated by NO donors, and this involves both activation of PKG  (Han et al. 2002) 

and cGMP-independent effects (Sasaki et al. 2000). The hyperpolarization-activated 

pacemaker current If is also activated by NO and cGMP in guinea pig sinoatrial myocytes due 

to cGMP-inhibition of PDE3, but this effect is transient due to a subsequent cGMP-activation 

of PDE2 (Herring et al. 2001). In human atrial myocytes, If is enhanced by the atrial 

natriuretic peptide ANP, and this effect likely involves cGMP-inhibition of PDE3 (Lonardo et 

al. 2004). Finally, Ahmmed et al. (2001) found that NO reduces the voltage-dependent fast 

Na+ current in guinea pig and mouse ventricular myocytes, through a mechanism involving 

activation of both PKG and PKA. 

 

Does cGMP mediates the effects of acetylcholine in cardiac myocytes?  

In the early 70’s, the observation that cGMP increases upon parasympathetic stimulation, 

together with its negative inotropic properties led many scientists to hypothesise that cGMP 

was responsible for the cardiac effects of ACh (Goldberg et al. 1975). However in the mid-

80’s, the study of the muscarinic regulation on isolated cells showed that ACh blocks β-AR 

stimulation of ICa,L but not a direct stimulation by cAMP (Fischmeister and Hartzell 1986; 

Hescheler et al. 1986), demonstrating that the effect of ACh was due exclusively to adenylyl 

cyclase inhibition (Harvey and Belevych 2003). The discovery of NO in the beginning of the 
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90’s and of the multiple sources of NO in the heart has renewed interest for the participation 

of NO/cGMP in the parasympathetic regulation of the heart. This brought contradictory 

results however (Méry et al. 1997; Harvey and Belevych 2003; Massion et al. 2003; Herring 

et al. 2002). Our contribution to this debate has been to test the effects of NOS inhibitors on 

ACh regulation of ICa,L (Méry et al. 1996; Vandecasteele et al. 1998), and to examine 

muscarinic regulation of ICa,L and cardiac force in a eNOS-deficient mouse strain 

(Vandecasteele et al. 1999). We found that without eNOS, muscarinic regulation is not 

modified, in frog, mouse or man. 

 

Cyclic nucleotide phosphodiesterases 

Our interest for PDE comes from the fact that cGMP can abolish all cardiac effect of cAMP 

by activating its hydrolysis (Hartzell and Fischmeister 1986). Since the beginning of the 90’s, 

more than ten PDE families are known (Rybalkin et al. 2003; Maurice et al. 2003), often with 

several genes in the family and several splice variants for each gene. In the cardiac myocyte, 4 

PDE families have been identified (Maurice et al. 2003): PDE1 (Ca2+/calmodulin-activated); 

PDE2 (cGMP-activated); PDE3 (cGMP-inhibited); and PDE4. PDE1, 2 and 3 hydrolyse both 

cAMP and cGMP; PDE4 hydrolyses exclusively cAMP. PDE1 and 2 display a low affinity 

for both substrates, while PDE3 and 4 have a high affinity. Some evidence exists suggesting 

that the cGMP-specific PDE5, which is the target of sildenafil (Viagra) might be also 

present in cardiac myocytes (Maurice et al. 2003; Reffelmann and Kloner 2003; Takimoto et 

al. 2005a; 2005b). Using family-specific PDE inhibitors, we showed that PDE3 and PDE4 

modulate β-AR stimulation of ICa,L in frog cardiomyocytes (Fischmeister and Hartzell 1990; 

1991) as well as in rats (Verde et al. 1999). In frog, PDE2 is recruited only upon cGMP 

elevation (Méry et al. 1995), but in human atrial cells, PDE2 regulates ICa,L even in basal 

conditions (Rivet-Bastide et al. 1997), as does PDE3 (Kirstein et al. 1995). Some 
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heterogeneous expression or distribution of the different PDE isoforms may account for their 

variable contribution to cardiac function between species and tissues (Hove-Madsen et al. 

1996). 

 

Subcellular compartmentation of cAMP and cGMP  

The first evidences for a compartmentation of the cAMP pathway were obtained in the 70’s, 

in studies showing important differences between -AR and PGE1 stimulations on cardiac 

cAMP level in subcellular fractions, and phosphorylation and/or activation of various PKA 

targets (Keely 1977; Brunton et al. 1979). But it was only recently that cyclic nucleotide 

compartmentation in the heart was recognised, owing to the discovery of PKA anchoring 

proteins (AKAP) (Michel and Scott 2002) and macro-molecular complexes (Marx et al. 

2002), and to the development of fluorescent probes allowing to visualize the changes in 

cAMP (Adams et al. 1991; Zaccolo et al. 2000; Nikolaev et al. 2004) and cGMP (Honda et 

al. 2001) concentrations in intact cells.  

In 1996, we developed a double-barrelled micro-perfusion technique that allowed to apply an 

activator of the cAMP pathway on one side of the cell, and monitor its effect on the other side 

(Jurevičius and Fischmeister 1996). Using the Ca2+ current as a marker of cAMP/PKA inside 

the cell, we demonstrated that in frog ventricular myocytes cAMP generated by a -AR 

stimulation did not diffuse freely inside the cell, but remained confined on the side of the cell 

where it was produced. This cAMP compartmentation involves PDE activity, mainly type 3 

and 4 isoforms (Jurevičius  et al. 2003), since when these PDEs are inhibited, cAMP freely 

diffuses in the cytoplasm. A compartmentation would also participate in cGMP effects. 

Indeed, we showed that application of a NO-donor on one side of a cardiac cell very 

efficiently blocks -AR stimulation of ICa,L on the exposed part, but has very little effect on 

the other part, indicating that diffusion of cGMP signals is also limited (Dittrich et al. 2001). 
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In order to visualise changes in cAMP concentration, we developed two types of strategies: i) 

the fluorescent probe FlCRhR developed by Adams et al. (1991) was introduced inside a 

myocyte while measuring ICa,L simultaneously (Goaillard et al. 2001); and ii) a channel that is 

directly opened by cAMP beneath the membrane (Rich et al. 2000) was expressed in cardiac 

myocytes by adenoviral transfer. This channel is formed by the  subunit of the rat olfactory 

(CNGA2), that belongs to the CNG channel family (Cyclic Nucleotide Gated Channels. Since 

the wild type CNGA2 has a higher affinity for cGMP than for cAMP, we used mutant forms, 

more sensitive to cAMP. With this approach we showed that cAMP generated by -AR is 

compartmented in rat ventricular myocytes, due to strong PDE3 and PDE4 activities (Rochais 

et al. 2004). The role of PDE4 in this compartmentation was just confirmed by an 

independent study (Mongillo et al. 2004). We show in addition that PDE activation is under 

the control of PKA since PKA inhibition reveals global cAMP signals upon -AR stimulation 

(Rochais et al. 2004). 

 

cAMP pathway in hypertrophy and heart failure 

The molecular components of the cAMP pathway are critically modified in all forms of heart 

failure (Port and Bristow 2001; Lohse et al. 2003; Movsesian 2004). Increased levels of 

catecholamines in hypertrophy and heart failure lead to a loss of -AR is observed, principally 

of 1-AR, an increased expression of ARK responsible for -AR desensitisation, an increase 

in Gi proteins (El-Armouche et al. 2003), a decreased adenylyl cyclase activity, and a globally 

decreased cAMP level. One of the consequence is a diminished phosphorylation of PKA 

targets, in particular phospholamban (PLB), phosphatase 1 inhibitor (I-1) (El-Armouche et al. 

2004) and contractile proteins (Van der Velden et al. 2003), leading to a diminished 

efficiency in Ca2+ cycling (Hasenfuss and Pieske 2002) and to the collapse of the contractile 

response to a -AR stimulation. Other alterations concern cAMP control of gene expression, 
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with a desensitisation of CRE (cAMP Responsive Element) transcriptional activity (Muller et 

al. 2001). In contrast, the ryanodine receptor (RyR2) is hyperphosphorylated by PKA in heart 

failure (Marx et al. 2000), indicating a profound perturbation of cAMP targeting in the 

diseased cell. 

In a similar manner, chronic exposure to β1-AR agonists in cellular or animal models, the 

cardiac overexpression of β1-AR (Engelhardt et al. 1999), Gs proteins (Iwase et al. 1996), or 

PKA (Antos et al. 2001), all lead to hypertrophy, apoptosis, and heart failure, through 

intracellular Ca2+ elevation and activation of calcineurin/NFAT (Saito et al. 2002). But, while 

chronic activation of the cAMP pathway participates to its own collapse, any elevation of 

cAMP does not automatically cause deleterious effects. For instance, transgenic mice over-

expressing β2-AR in the heart (Milano et al. 1994), AC6 (Roth et al. 1999) or AC8 (Lipskaia 

et al. 2000; Georget et al. 2002; 2003) do not show early signs of hypertrophy or heart failure. 

As stated by a recent editorial (Bers and Ziolo 2001) “When is cAMP not cAMP?” We 

believe that cAMP compartmentation is a key actor and determines the quality of the 

response.  

 

NO/cGMP pathway in hypertrophy and heart failure 

In hypertrophy and heart failure, the heart produces and secretes important quantities of ANP, 

BNP and CNP (Abassi et al. 2004), and BNP is being used as a diagnosis marker of heart 

failure (Tabbibizar and Maisel 2002). NO production is also increases in the failing heart, in 

part due to iNOS (Massion et al. 2003; Paulus and Bronzwaer 2004) and nNOS expression 

(Damy et al. 2004). A large body of evidence indicates that NP (Tokudome et al. 2004; 

Rosenkranz et al. 2003) and NO (Kempf and Wollert 2004) exert a direct anti-hypertrophic 

effect in cardiac myocytes. Increased NP and NO production is likely to represent a protective 

mechanism, independently of their peripheral actions. These effects of NP and NO are 
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mediated by cGMP, which would inhibit the calcineurin/NFAT pathway via a PKG-mediated 

inhibition of ICa,L (Méry et al. 1991; Fiedler et al. 2002). But PKG could also act at the 

transcriptional level independently of NFAT, on other transcription factors such as SRF, 

ATF-1, CREB, etc. (Pilz and Casteel 2003), as well as on mitochondrial biogenesis (Nisoli et 

al. 2003). 

 

Conclusion 

In 1975, Goldberg and colleagues introduced the Yin-Yang hypothesis based on their 

observations that cAMP and cGMP exerted opposite actions on cardiac function. Thirty years 

later, our understanding of how these two cyclic nucleotides mediate their cardiac actions has 

greatly progressed, but the Yin-Yang hypothesis remains essentially valid. Today, we know 

that the NO/cGMP pathway not only antagonizes the cAMP pathway under acute conditions, 

but most importantly also in the chronic setting, with cAMP activating and cGMP inhibiting 

the hypertrophic program. Both cyclic nucleotides appear to be compartmentalized and it is 

likely that their relative concentrations in different subcellular compartments will determine 

the overall response of the heart to hormones, neurotransmitters and NO. Since cAMP 

signalling is altered in hypertrophy and heart failure, it is likely that cGMP signalling will be 

too. A major challenge will be to understand the remodelling of cAMP/cGMP signalling and 

its subcellular compartmentation during hypertrophy, and how this contributes to the 

development of heart failure. 
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