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Abstract

Since the seminal work of Venkatakrishnan et al. [83] in 2013, Plug & Play (PnP) methods
have become ubiquitous in Bayesian imaging. These methods derive Minimum Mean Square
Error (MMSE) or Maximum A Posteriori (MAP) estimators for inverse problems in imaging
by combining an explicit likelihood function with a prior that is implicitly defined by an
image denoising algorithm. The PnP algorithms proposed in the literature mainly differ in
the iterative schemes they use for optimisation or for sampling. In the case of optimisation
schemes, some recent works guarantee the convergence to a fixed point, albeit not necessarily
a MAP estimate. In the case of sampling schemes, to the best of our knowledge, there is no
known proof of convergence. There also remain important open questions regarding whether
the underlying Bayesian models and estimators are well defined, well-posed, and have the
basic regularity properties required to support these numerical schemes. To address these
limitations, this paper develops theory, methods, and provably convergent algorithms for
performing Bayesian inference with PnP priors. We introduce two algorithms: 1) PnP-
ULA (Plug & Play Unadjusted Langevin Algorithm) for Monte Carlo sampling and MMSE
inference; and 2) PnP-SGD (Plug & Play Stochastic Gradient Descent) for MAP inference.
Using recent results on the quantitative convergence of Markov chains, we establish detailed
convergence guarantees for these two algorithms under realistic assumptions on the denoising
operators used, with special attention to denoisers based on deep neural networks. We also
show that these algorithms approximately target a decision-theoretically optimal Bayesian
model that is well-posed. The proposed algorithms are demonstrated on several canonical
problems such as image deblurring, inpainting, and denoising, where they are used for point
estimation as well as for uncertainty visualisation and quantification.

1 Introduction
1.1 Bayesian inference in imaging inverse problems
Most inverse problems in imaging aim at reconstructing an unknown image x ∈ Rd from a
degraded observation y ∈ Y (a given measurable vector space) under some assumptions on their
mathematical relationship. For example, many works consider observation models of the form
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y = A(x)+n, where A : Rd → Y is a degradation operator modelling deterministic instrumental
aspects of the observation process, and n is an unknown (stochastic) noise term taking values
in Y. The operator A can be known or not, and is usually assumed to be linear (e.g., A can
represent blur, missing pixels, a projection, etc.).

Most of the time, the estimation of x from y is ill-posed or ill-conditioned1 and additional as-
sumptions on the unknown x are required in order to deliver meaningful estimates. The Bayesian
statistical paradigm provides a natural framework to regularise such estimation problems so as
to deliver accurate and well-posed solutions. Accordingly, the relationship between x and y is
described by a statistical model with likelihood function p(y|x), and the knowledge about x is
encoded by the marginal or prior distribution for x, typically specified via a density function
p(x) or by its potential U(x) = − log p(x). Similarly, in some cases the likelihood p(y|x) is spec-
ified via the potential F (x, y) = − log p(y|x). Unless explicitly stated otherwise, we henceforth
assume that Y = Rm for some m ∈ N and that all densities are defined w.r.t. to the appropriate
Lebesgue measure.

The likelihood and prior define the joint distribution with density p(x, y) = p(y|x)p(x), from
which we derive the posterior distribution with density p(x|y) where for any x ∈ Rd, y ∈ Rm

p(x|y) = p(y|x)p(x)/
∫

Rd p(y|x̃)p(x̃)dx̃ , (1)

which underpins all inference about x given the observation y. Most imaging methods derive
Minimum Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimators

x̂map = arg maxx∈Rd p(x|y)=arg minx∈Rd {F (x, y) + U(x)} , (2)
x̂mmse = arg minu∈Rd E[‖x− u‖2|y] = E[x|y] =

∫
Rd x̃p(x̃|y)dx̃ . (3)

Bayesian models are conceptually tractable, modular, and involve terms with clearly defined
roles. These terms can be simple to ease computations, or highly sophisticated in order to
accurately describe the observation processes as well as the available prior knowledge [73, 4].
Bayesian methods can naturally address problems involving partially unknown models (e.g.,
blind, semi-blind and unsupervised problems), and provide a range of decision-theoretic strategies
to calibrate models, diagnose model misspecification, and compare alternative models. Bayesian
decision theory also allows quantifying the uncertainty in the delivered solutions in order to
inform decision-making in a rigorous and principled manner [69, 10].

The quality of the inference about x given y depends on how accurately the specified prior
represents the true marginal distribution for x. Most works in the Bayesian imaging literature
consider relatively simple priors promoting sparsity in transformed domains or piece-wise regu-
larity (e.g., involving the `1 norm or the total-variation pseudo-norm [73, 25, 59, 65]), Markov
random fields [1], or learning-based priors like patch-based Gaussian or Gaussian mixture mod-
els [96, 92, 2, 82, 48]. Special attention is given in the literature to models that have specific
factorisation structures or that are log-concave, as this enables the use of Bayesian computation
algorithms that scale efficiently to high-dimensions and which have detailed convergence guar-
antees. For example, proximal splitting convex optimisation algorithms compute x̂map and basic
forms of uncertainty quantification [69], whereas proximal Markov chain Monte Carlo stochastic
algorithms draw samples from p(x|y) in order to compute x̂mmse and perform uncertainty quan-
tification analyses as well as other advanced inferences such as automatic model calibration and
model misspecification diagnosis [65, 38].

1That is, either the estimation problem does not admit a unique solution, or there exists a unique solution but
it is not Lipschitz continuous w.r.t. to perturbations in the data y.
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1.2 Bayesian computation in imaging inverse problems
There is a vast literature on Bayesian computation methodology for models related to imaging
sciences (see, e.g., [66]). Here, we briefly summarise efficient high-dimensional Bayesian compu-
tation strategies derived from the Langevin stochastic differential equation (SDE)

dXt = ∇ log p(Xt|y) +
√

2dBt

= ∇ log p(y|Xt) +∇ log p(Xt) +
√

2dBt ,
(4)

where (Bt)t>0 is a d-dimensional Brownian motion. When p(x|y) is proper and smooth, with
x 7→ ∇ log p(x|y) Lipschitz continuous2, then, for any initial condition X0 ∈ Rd, the SDE (4) has a
unique strong solution (Xt)t>0 that admits the posterior of interest p(x|y) as unique stationary
density [71]. In addition, for any initial condition X0 ∈ Rd the distribution of Xt converges
towards the posterior distribution in total variation. Although solving (4) in continuous time is
generally not possible, we can use discrete time approximations of (4) to generate samples that
are approximately distributed according to p(x|y). A natural choice is the Unadjusted Langevin
algorithm (ULA) Markov chain (Xk)k>0 obtained from an Euler-Maruyama discretisation of (4),
given by X0 ∈ Rd and the following recursion for all k ∈ N

Xk+1 = Xk + δk∇ log p(y|Xk) + δk∇ log p(Xk) +
√

2δkZk+1 , (5)

where {Zk : k ∈ N} is a family of i.i.d Gaussian random variables with zero mean and iden-
tity covariance matrix and (δk)k∈N is a sequence of positive step-sizes which controls a trade-off
between asymptotic accuracy and convergence speed [30, 37]. The approximation error involved
in discretising (4) can be asymptotically removed at the expense of additional computation by
combining (5) with a Metropolis-Hastings correction step, leading to the so-called Metropolis-
adjusted Langevin Algorithm (MALA) [71]. There are approximations of (4) with better con-
vergence properties than ULA (see, e.g., [67]), as well as other dynamics to construct efficient
Monte Carlo algorithms [43, 28]. Nevertheless, ULA remains a highly useful Bayesian computa-
tion methodology that is straightforward to apply, robust to high dimensionality, and thoroughly
theoretically understood.

Similarly, when p(x|y) is proper and differentiable, with x 7→ ∇ log p(x|y) Lipschitz continu-
ous, it is possible to use first-order optimisation methods to compute maximisers of p(x|y), i.e.
MAP estimators. A natural choice in this context is the gradient algorithm given by X0 ∈ Rd

and the following recursion for all k ∈ N

Xk+1 = Xk + δk∇ log p(y|Xk) + δk∇ log p(Xk) ,

which converges to critical points of p(x|y) under mild assumptions on the sequence of step-sizes
(δk)k∈N [64]. Alternatively, the stochastic gradient descent (SGD) variant

Xk+1 = Xk + δk∇ log p(y|Xk) + δk∇ log p(Xk) + δkZk+1 ,

where {Zk : k ∈ N} is a family of i.i.d Gaussian random variables with zero mean and identity
covariance matrix, is more robust to local minima and saddle points and hence more suitable
when x 7→ p(x|y) is not log-concave on Rd [21, 18]. Again, there are other optimisation schemes
related to (4) with better convergence properties than SGD (see, e.g., [64] in the convex case),
as well as other dynamics to construct efficient optimisation algorithms [53, 97]. Nevertheless,
similarly to ULA, SGD is straightforward to apply, robust, and has a detailed convergence theory,
making it a valuable algorithm in the imaging scientist’s toolbox.

2That is, there exists L > 0 such that for any x1, x2 ∈ Rd, ‖∇ log p(x1|y)−∇ log p(x2|y)‖ 6 L‖x1 − x2‖
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1.3 Machine learning and Plug & Play approaches in imaging inverse
problems

In an apparently different direction, machine learning approaches have recently gained a con-
siderable importance in the field of imaging inverse problems, particularly strategies based on
deep neural networks. Indeed, neural networks can be trained as regressors to learn the function
y 7→ x̂mmse empirically from a huge dataset of examples {x′i, y′i}Ni=1, where N ∈ N is the size
of the training dataset. Many recent works on the topic report unprecedented accuracy. This
training can be agnostic [35, 93, 95, 41, 75, 40] or exploit the knowledge of A in the network
architecture via unrolled optimization techniques [45, 27, 34, 42]. However, solutions encoded by
end-to-end neural networks are mostly problem specific and not easily adapted to reflect changes
in the problem (e.g., in instrumental settings). There also exists concerns regarding the stability
of such approaches for general reconstruction problem [6, 5].

A natural strategy to reconcile the strengths of the Bayesian paradigm and neural networks
is provided by Plug & Play approaches. These data-driven regularisation approaches learn an
implicit representation of the prior density p(x) (or its potential U(x) = − log p(x)) while keeping
an explicit likelihood density, which is usually assumed to be known and calibrated. More
precisely, using a denoising algorithm Dε, most often implemented by a previously trained neural
network, Plug & Play approaches seek to derive an approximation of the gradient ∇U (called the
score) [11, 12] or of the proximal operator proxU [60, 94, 26, 50, 74], which is then used within an
iterative minimisation scheme to approximate x̂MAP. While these approaches have shown some
remarkable empirical performance, they rely on hybrid algorithms that are poorly understood
and that in some cases fail to converge. Indeed, their convergence properties remain an important
open question, especially when Dε is implemented as a neural network. This question has been
recently studied in the literature but only partly answered [74, 90, 79]. Similar Plug & Play
iterative schemes have been proposed to approximately draw samples from p(x|y) in order to
approximate x̂mmse [3, 47, 49], although again with no theoretical guarantees on the delivered
solutions.

1.4 Contributions summary
One of the aims of this paper is to gain significant insights into Bayesian inference with Plug
& Play priors by formalising them in the Bayesian statistical framework and exploring some
open questions on the topic. In addition to aspects regarding the convergence of these schemes,
we raise crucial inference questions. For example, it is not clear what constraints should be
imposed on Dε so that it leads to a Bayesian model whose posterior pε(x|y) is proper and admits
a density w.r.t. to an appropriate Lebesgue measure (this is essential for the definition of x̂MAP
and to study its properties). Similarly, we wonder under what conditions on Dε the posterior
pε(x|y) is well-posed (i.e., Lipschitz continuous w.r.t y for a suitable metric) [55]. We also raise
questions about the existence and the accurate estimation of x̂mmse and other moments of x|y.
There also remain questions regarding the frequentist properties of Bayesian models with Plug &
Play priors, as well as about basic properties of the marginal likelihood p(y) =

∫
p(y|x̃)p(x̃)dx̃,

which plays a central role in model calibration and model selection tasks [84]. Lastly, a mature
literature on Plug & Play Bayesian methodology should also address the diagnoses of model
misspecification directly from y. This arises, for example, when Dε is learnt from training data
that is not representative of x, leading to a posterior p(x|y) with poor accuracy properties.

In this paper, we provide a novel and unified framework of theory, methods, and algorithms
for Bayesian analysis and computation with models involving Plug & Play priors. We establish
detailed convergence guarantees based on [16] for the following Bayesian computation algorithms:
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• PnP-SGD, for approximately computing x̂MAP using SGD;

• PnP-ULA, for approximately sampling from the posterior p(x|y) using ULA.

These two algorithms share a similar form and satisfy the following recursion: for any k ∈ N

Xk+1 = Xk − δk∇F (Xk, y)− (δk/ε)(Xk −Dε(Xk)) +
{
δkZk+1 (PnP-SGD)√

2δkZk+1 (PnP-ULA)
,

where {Zk : k ∈ N} is a family of independent Gaussian random variables with zero mean
and identity covariance matrix, Dε : Rd → Rd is a denoiser operator and (δk)k∈N is a sequence
of step-sizes. Convergence guarantees are provided for both algorithms, under clear assump-
tions on the denoiser Dε that are realistic for several well-known denoisers, in particular some
neural network-based denoisers. Our results show that these algorithms approximately target
a decision-theoretically optimal Bayesian model that is well defined, well-posed, and sufficiently
regular to allow efficient Bayesian computation by optimisation and Langevin sampling. We
explicitly characterise the estimation bias introduced by using tractable denoising operators (as
opposed to the intractable oracle Bayesian model), as well as the bias arising from the use of
discrete approximations and a finite number of iterations. In addition, we provide experimental
implementations of PnP-ULA and PnP-SGD for a specific neural network denoiser [74] shown to
satisfy our convergence guarantees. These are demonstrated on several canonical inverse prob-
lems such as denoising, deblurring or inpainting, and compared with the state-of-the-art method
PnP-ADMM [74].

The paper is organized as follows. In Section 2, we summarise previous works on Plug & Play
approaches for MAP estimation and MMSE estimation via posterior sampling. Section 3 then
presents our framework for studying Bayesian inference methods with Plug & Play priors as well
as the algorithms PnP-ULA and PnP-SGD. Section 4 demonstrates the proposed methodology
on several canonical imaging inverse problems. This is then followed by a detailed theoretical
analysis and convergence proofs in Section 5. In Section 6, we conclude and discuss perspectives
for future work.

2 A survey of Plug & Play methods in imaging
In the context of imaging inverse problems, Plug & Play methods aim at using a carefully chosen
denoiser Dε : Rd → Rd to implicit define an image prior. This is achieved by relating Dε to
a gradient or proximal operator associated with the prior density. In what follows, we describe
how these approaches have been widely used to derive MAP estimators (Section 2.1), or less
frequently for posterior sampling and computation of MMSE estimators (Section 2.2). In our
discussion, we pay particular attention to questions related to algorithmic convergence, as this
has been the main focus of the literature. However, as mentioned previously, there remain many
other fundamental open questions. For example, questions related to the correct definition of the
Bayesian models involved, the existence of the estimators under consideration and the impact of
model misspecification in Plug & Play models and their diagnosis.

2.1 Plug & Play MAP estimators
Plug & Play approaches seeking to derive a MAP estimator for the problem (2) can be divided
in two families, depending on whether Dε is itself a MAP estimator or an MMSE estimator3 for

3Notice that although it is conceptually helpful to distinguish these two cases (in order to make a historical
and practical survey of the subject), there are clear theoretical connections between the two approaches. Indeed,
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an image denoising problem.

Plug & Play MAP estimators using proximal splitting If the denoiser Dε is a MAP esti-
mator, there exists a prior potential U such that for each image x ∈ Rd, Dε(x) = arg minx̃∈Rd{ 1

2‖x−
x̃‖2 + εU(x̃)} = proxεU (x). Any optimization scheme making use of a proximal descent on the
prior can then be used to solve (2) via Dε. For instance, the half-quadratic splitting (HQS)
algorithm solves a series of simpler problems

(x̂map,ε, ẑmap,ε) = arg minx,z∈Rd Eε(x, z) , where Eε(x, z) = F (x, y) + ‖x− z‖2/(2ε) + U(z) ,

and each subproblem is solved by an alternate minimization scheme,

xk+1 = arg minxEε(x, zk) = proxεF (·,y)(zk) , (6)
zk+1 = arg minz Eε(xk+1, z) = proxεU (xk+1) = Dε(xk+1) . (7)

When U is convex, such splitting schemes and many variants (including HQS, primal-dual meth-
ods, FBS or ISTA, ADMM, etc.) are well understood and proved to converge to the global
optimum [20]. They have also been successfully used for non-convex U like patch-based Gaus-
sian mixture models (GMM) as pioneered for external learning by Zoran & Weiss in [96]. The use
of splitting schemes with non-convex GMM priors was later refined with convergence guarantees
for scene-adapted learning [81].

Following the seminal work [83], this kind of splitting schemes have become popular in cases
where U is unknown, but a denoiser Dε is available and assumed to be a good approximation
of proxεU . As popular and useful these methods have become, their convergence properties are
largely unknown: it remains difficult to show that they converge to the MAP estimator, or even
a critical point of (2). Indeed, for most denoisers Dε, there is no guarantee that there exists a
potential U such that Dε = proxεU . In [77], Sreehari et al. establish some sufficient conditions
for this to happen: Dε must be differentiable, and its Jacobian JDε should be symmetric with
eigenvalues within the [0, 1] interval (which ensures non expansiveness). These assumptions hold
for transform-domain thresholding denoisers and for variants of Non Local means [22] where
symmetry is explicitly enforced [77]. However, the two assumptions are unfortunately false for
most popular denoisers, including Non Local Means [22], BM3D [29], Non Local Bayes [56] and
neural networks based denoisers like DnCNN [93], as observed in [68].

More recently Ryu et al. [74] proposed a convergence proof of the Plug & Play Alternating
Direction Method of Multipliers (ADMM) and Forward Backward Splitting (FBS) schemes, based
on an alternative assumption on the denoiser Dε, trained to ensure that its residual operator
Dε − Id is L-Lipschitz, with a Lipschitz constant L which depends both on the data fitting term
and the denoiser. With this assumption they show convergence to a fixed point, but since there
is still no guarantee that the denoiser Dε is the proximal operator of a potential U , we cannot
be sure whether this fixed point is a MAP estimator for some prior or not. In addition the proof
requires F to be strongly convex (which excludes all cases where A is not full rank and de facto
excludes some of the applications considered in [74]) and it imposes quite restrictive assumptions
on the regularization parameter. More recently, Sun et al [79] reformulated the Plug & Play
ADMM algorithm with different convergence conditions, notably without the assumption that
F is strongly convex, but with more restrictive conditions on the denoiser Dε

4. As mentioned
under regularity conditions on the Bayesian model involved, MAP denoisers can be expressed as MMSE denoisers
under an alternative (albeit often unknown) Bayesian model [46]. However this equivalence can not always be
exploited in practice and has been mostly ignored in the literature on Plug & Play methods until very recently
with the work of Xu et al. [90] to be presented later.

4In [79], the residual Id−Dε is assumed to be firmly non expansive, which is equivalent to say that Dε is firmly
non expansive, see [8, Proposition 4.4].
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previously, the convergence of the algorithms is only the first of many important questions that
need to be addressed.

Plug & Play MAP estimators using gradient descent Second, assume that Dε is a
MMSE estimator, i.e. Dε(xε) = E[x|xε], where x ∼ p and xε ∼ N (x, ε Id) conditionally to x.
In this case, Tweedie’s identity [39] establishes the following link between Dε and pε = p ∗Gε, a
smoothed version of the prior by a Gaussian kernel Gε with variance ε, for any x ∈ Rd

∇Uε(x) = −∇ log pε(x) = (x−Dε(x))/ε , (8)

where Uε = − log(pε). This relation can be used in any gradient descent scheme involving ∇Uε
and it is at the core of the two algorithms PnP-SGD and PnP-ULA presented in this paper.

A similar relation is derived by Romano et al. in [72] where they present the Regularization
by Denosing (RED) method. Instead of using Tweedie’s identity, the RED method solves equa-
tion (2) via gradient descent with explicit regularization Uε(x) = (1/2)〈x, x−Dε(x)〉. As shown
in [68], under the assumptions that Dε is locally homogeneous and has symmetric Jacobian, this
implies that for any x ∈ Rd, ∇Uε(x) = x−Dε(x), which is (up to a scaling factor 1/ε) the same
expression as Tweedie’s identity in equation (8). Unfortunately, as pointed out before, these
assumptions on Dε are not satisfied by most commonly used denoisers, and the convergence of
the RED algorithms for these denoisers remains unproven.

Following on from this, Xu et al. [90] very recently proposed a convergence study for a Plug &
Play ISTA (Iterated Soft Thresholding Algorithm) scheme, which alternates proximal descents on
F with gradient descents on Uε. They derive convergence guarantees under very mild conditions
on both the denoiser and the data fitting term. However, Xu et al. [90] assumes that Dε is an
exact MMSE denoiser, so their theoretical results do not carry to denoisers learned from training
data and implemented by neural networks.

The PnP-SGD optimisation algorithm that will be presented in this paper is close to the
ones presented in [72], and is shown to converge under much milder conditions than previously
assumed, and in particular when Dε is not an exact MAP or MMSE denoiser. Importantly, our
convergence proof is valid for the neural network denoiser used in [74] (a variant of DnCNN [93]
with a contractive residual) and for the native Non Local Means [23].

2.2 Plug & Play posterior sampling and MMSE estimators
The idea of using Plug & Play priors to draw samples from the posterior distribution p(x|y)
has also been explored in the imaging literature [47, 49, 52]. Both of these approaches start
from a Langevin algorithm to draw samples from the posterior distribution. Drawing on several
ideas developed in [3], the authors of [47] use a Taylor expansion of Dε (chosen as a denoising
autoencoder) and approximate ∇U(x) by (x − Dε(x))/ε for small values of ε in the Langevin
scheme, while the more recent [49] uses Tweedie’s identity more directly (8) and also within
a Langevin scheme. The sampling algorithms studied therein are illustrated with several linear
inverse problems, but without any convergence or accuracy guarantees.

The availability of clear convergence guarantees for sampling algorithms is arguably even more
important than for optimisation schemes, as the former can suffer from a range of convergence
issues that are not always easy to detect. For example, Langevin algorithms can admit the
correct target measure but fail to converge with exponential rate [71] or deliver solutions with
an unacceptably large bias. Clear convergence results are also essential for setting algorithm
parameters, as well as for using the algorithms within more complex numerical schemes (e.g. in
the contex of hierarchical or empirical Bayesian models [84, 31]).

7



To the best of our knowledge, the PnP-ULA scheme presented in this paper is the first prov-
ably convergent Monte Carlo sampling algorithm for implicit Plug & Play priors in imaging. This
algorithm and the associated convergence results set the grounds for more advanced sampling
methods with superior convergence properties (e.g., [67]).

3 Bayesian inference with Plug & Play priors: theory meth-
ods and algorithms

3.1 Bayesian modelling and analysis with Plug & Play priors
In this section we formalise a Bayesian framework for Plug & Play priors and analyse some of their
main properties. As explained previously, we are interested in the estimation of the unknown
image x from an observation y when the problem is ill-conditioned or ill-posed, resulting in
significant uncertainty about the value of x. Adopting a Bayesian approach, we seek to use prior
knowledge about x to reduce the uncertainty and render the estimation problem well-posed.
This prior knowledge is specified by the marginal distribution for x, which is combined with the
likelihood function to derive the posterior distribution for x|y.

In this paper, we analyse Plug & Play Bayesian models for x|y through the prism of M-
complete Bayesian modelling [9]. Accordingly, there exists a true -albeit unknown and intractable-
marginal distribution for x and posterior distribution for x|y. Basing inferences on these true
marginal and posterior distributions is theoretically optimal both in terms of point estimation
and in term of delivering Bayesian probabilities that are valid from a frequentist viewpoint. We
henceforth use µ to denote this optimal prior distribution for x on (Rd,B(Rd)), and when µ
admits a density w.r.t. the Lebesgue measure on Rd, we denote this density by p?. In the latter
case, the posterior distribution for x|y associated with the marginal µ also admits a density that
is given for any x ∈ Rd and y ∈ Rm by

p?(x|y) = p(y|x)p?(x)/
∫

Rd p(y|x̃)p?(x̃)dx̃ . (9)

Unlike most Bayesian imaging approaches that operate implicitly in an M-closed manner and
treat their postulated Bayesian models as true models (see [9] for more details), we regard p? (or
more precisely µ) as a fundamental property of the unknown x, and other models as operational
approximations specified by the practitioner (either analytically, algorithmically, or from data).
This distinction will be useful for using the oracle (9) as a reference for tractable Bayesian models
and algorithms.

In this conceptual construction, the marginal µ naturally depends on the imaging application
considered and could be the distribution of natural images of the size and resolution of x, or that
of a class of images related to a specific application. Also, in problems where there is training
data {x′i}Ni=1 available, we regard {x′i}Ni=1 as samples from µ. Lastly, we note that the posterior
for x|y remains well defined when µ does not admit a density; this is important to provide
robustness to situations where p? is nearly degenerate or improper. For clarity, our presentation
assumes that p? exists, although this is not strictly required 5.

Notice that because µ is unknown, p?(x|y) might not verify the basic desiderata for efficient
Bayesian computation: i.e., p?(x|y) need not be proper and differentiable, with ∇ log p?(x|y)
Lipschitz continuous. In order to guarantee that gradient based algorithms such as ULA and
SGD are well posed, we introduce a regularised approximation µε obtained via the convolution
of µ with a Gaussian smoothing kernel with bandwidth ε > 0. By construction, µε has a smooth

5Operating without densities requires measure disintegration concepts that are technical [76].
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proper density pε given for any x ∈ Rd and ε > 0 by

p?ε(x) = (2πε)−d/2
∫

Rd exp [−‖x− x̃‖22/(2ε)]p?(x̃)dx̃ .

Henceforth, we also assume that the likelihood satisfies the following standard conditions:

H1. For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)) and there exists Ly > 0
such that ∇ log(p(y|·)) is Ly Lipschitz continuous.

Equipped with the approximation p?ε and H1, we use Bayes’ theorem to involve the likelihood
p(y|x) and derive the posterior density p?ε(x|y), given for any ε > 0 and x ∈ Rd by

p?ε(x|y) = p(y|x)p?ε(x)/
∫

Rd p(y|x̃)p?ε(x̃)dx̃ . (10)

This regularised oracle model will enable defining well-posed gradient-based algorithms, which
will serve as basis or reference for Plug & Play based ULA and SGD algorithms.

Proposition 1 below establishes that the regularised prior p?ε(x) and posterior p?ε(x|y) are
proper and smooth, and that they can be made arbitrarily close to the unregularised oracle
models p?(x) and p?(x|y) by reducing ε, with the approximation error vanishing as ε → 0. For
any f : Rd → R measurable such that

∫
Rd |f(x̃)|dx̃ < +∞ we denote ‖f‖1 =

∫
Rd |f(x̃)|dx̃.

Proposition 1. Assume H1. Then, for any ε > 0 and y ∈ Rm, the following hold:

(a) p?ε and p?ε(·|y) are proper.

(b) For any k ∈ N, p?ε ∈ Ck(Rd). In addition, if p(y|·) ∈ Ck(Rd) then p?ε(·|y) ∈ Ck(Rd,R).

(c) Let k ∈ N. If
∫

Rd ‖x̃‖k p?(x)dx̃ < +∞ then
∫

Rd ‖x̃‖k p?ε(x̃|y)dx̃ < +∞.

(d) limε→0 ‖p?ε(·|y)− p?(·|y)‖1 = 0.

(e) In addition, if there exist κ, β > 0 such that for any x ∈ Rd, ‖p? − p?(· − x)‖1 6 ‖x‖β,
then there exists C > 0 such that ‖p?ε(·|y)− p?(·|y)‖1 6 Cεβ/2.

Proof. The proof of Proposition 1-(a)-(b)-(c) are straightforward using the dominated conver-
gence theorem. Finally, Proposition 1-(d)-(e) is an application of Proposition 20.

With the smoothness conditions required for gradient algorithms in mind, we note that under
H1 and p(y|·) ∈ C1(Rd), x 7→ ∇ log p?ε(x|y) is well-defined and continuous. However, ∇ log p?ε(x|y)
might not be Lipschitz continuous, as this requires an additional regularity condition on µ. To
analyse this important Lipschitz condition, as well as to set the grounds for Plug & Play methods
that define priors implicitly through a denoising algorithms, we introduce the oracle MMSE
denoiser D?

ε defined for any x ∈ Rd and ε > 0 by

D?
ε(x) = (2πε)−d/2

∫
Rd x̃ exp [−‖x− x̃‖2/(2ε)]p?(x̃)dx̃ .

Under the assumption that the expected mean square error (MSE) is finite, D?
ε is the MMSE

estimator to recover an image x ∼ µ from a noisy observation xε ∼ N (x, ε Id) [70]. From
Tweedie’s identity [39], the gradient x 7→ ∇ log p?ε(x) is related to D?

ε for any x ∈ Rd by

ε∇ log p?ε(x) = D?
ε(x)− x ,

and hence x 7→ ∇ log p?ε(x|y) is Lipschitz continuous if and only if D?
ε has this property. We

argue that this is a natural assumption on D?
ε , as it is essentially equivalent to assuming that
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the denoising problem underpinning D?
ε is well-posed (recall that an inverse problem is said to

be well posed if its solution is unique and Lipschitz continuous w.r.t to the observation [78]).
Proposition 2 states that the Lipschitz continuity of x 7→ ∇ log p?ε(x) is equivalent to assuming

that the expected MSE involved in using D?
ε to estimate x from xε ∼ N (x, ε Id), where x has

marginal µ, is finite and uniformly upper bounded for all xε ∈ Rd.

Proposition 2. Assume H1. Let ε > 0. ∇ log p?ε is Lipschitz continuous if and only if there
exists C > 0 such that for any xε ∈ Rd∫

Rd ‖x−D?
ε(xε)‖2 gε(x|xε)dx 6 C , (11)

where gε(·|xε) is the density of the conditional distribution of the unknown image x ∈ Rd with
marginal distribution µ, given a noisy observation xε ∼ N (x, ε Id).

Proof. The proof is postponed to Lemma 27.

These results can be generalised to hold under the weaker assumption that the expected MSE
for D?

ε is finite but not uniformly bounded, as in this case x 7→ ∇ log p?ε(x|y) is locally instead
of globally Lipschitz continuous (we postpone this technical extension to future work). The
pathological case where D?

ε does not have a finite MSE arises when µ is such that the denoising
problem does not admit a Bayesian estimator w.r.t. to the MSE loss. In this case, Tweedie’s
identity does not hold either. It is not clear at this point what kind of theoretical guarantees
Plug & Play strategies can offer for such severely ill-posed problems.

Before concluding this section, we study whether the oracle p?(x|y) is well posed in the sense
of Hadamard, i.e., if p?(x|y) changes continuously w.r.t. y under a suitable probability metric
(see [55]). We answer positively to this question in Proposition 3 which states that, under mild
assumptions on the likelihood, p?(x|y) is locally Lipschitz continuous w.r.t. y for an appropriate
metric. This stability result implies, for example, that the MMSE estimator derived from p?(x|y)
is locally Lipschitz continuous w.r.t. y, and hence stable w.r.t. small perturbations of y. Note
that a similar property holds for the regularised posterior p?ε(x|y). In particular, Proposition 3
holds for Gaussian likelihoods (see Section 5 for details).

Proposition 3. Assume that there exist Φ1 : Rd → [0,+∞) and Φ2 : Rm → [0,+∞) such that
for any x ∈ Rd and y1, y2 ∈ Rm

‖log(p(y1|x))− log(p(y2|x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ , (12)

and for any c > 0,
∫

Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p?(x)dx̃ < +∞. Then y 7→ p?(·|y) is locally
Lipschitz w.r.t ‖ · ‖1, i.e. , for any compact set K there exists CK > 0 such that for any y1, y2 ∈ K
, ‖p?(·|y1)− p?(·|y2)‖1 6 CK ‖y1 − y2‖.

Proof. The proof is a straightforward application of Proposition 9.

To conclude, starting from the decision-theoretically optimal model p?(x|y), we have con-
structed a regularised approximation p?ε(x|y) that is proper and smooth by construction. Under
mild assumptions on p(y|x), the approximation p?ε(x|y) is well posed in the sense of Hadamard
and can be made arbitrarily close to the oracle p?(x|y) by controlling ε. Moreover, we established
that x 7→ ∇ log p?ε(x) is Lipschitz continuous when the problem of Gaussian image denoising for
µ under the MSE loss is well posed. This allows analysing gradient-based algorithms for perform-
ing Bayesian computation for p?ε(x|y), which will play a central role in our subsequent analysis
of Plug & Play schemes that mimic these idealised algorithms.
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3.2 Bayesian computation with Plug & Play priors: oracle algorithms
We are now ready to analyse ULA and SGD for the regularised oracle p?ε(x|y) and set the
grounds for deriving Plug & Play schemes based on a generic denoiser Dε. With the guarantees of
Proposition 1 and Proposition 2 in mind, we use Tweedie’s identity to express SGD for computing
maximisers of p?ε(x|y) as the following recursion: given X0 ∈ Rd and for any k ∈ N,

Xk+1 = (1− δk/ε)Xk + δk∇ log p(y|Xk) + (δk/ε)D?
ε(Xk) + 2δkZk+1 . (13)

where we recall that {Zk : k ∈ N} are i.i.d standard Gaussian random variables on Rd. Propo-
sition 4 below states that all the sequences generated by (13) that stay within a compact set
converge to a critical point of p?ε(x|y) almost surely (the compactness conditions is standard to
establish convergence results for stochastic optimisation algorithms [33, 32, 61]).
Proposition 4. Assume H 1 and that x 7→ ∇ log p?ε(x|y) is locally Lipschitz continuous. In
addition, assume that limk→+∞ δk = 0,

∑
k∈N δk = +∞ and

∑
k∈N δ

2
k < +∞. Let

Aε = {ω ∈ Ω : there exists k0 ∈ N, K ⊂ Rd compact such that for any k > k0, Xk(ω) ∈ K} ,

where (Ω,F ,P) is the probability space on which (Xk)k∈N is defined. Then, for any ω ∈ Aε

lim sup
k→+∞

d(Xk(ω),Sε,) = 0 , with Sε =
{
x ∈ Rd : ∇ log p?ε(x|y) = 0

}
.

Proof. The proof is similar to the one of Proposition 22 upon setting Dε ← D?
ε and using [80,

Theorem 2.1-(a)] instead of [80, Theorem 2.1-(c)].

Similarly, ULA applied to p?ε(x|y) is given by the following recursion: for any k ∈ N

Xk+1 = (1− δk/ε)Xk + δk∇ log p(y|Xk) + (δk/ε)D?
ε(Xk) +

√
2δkZk+1 , (14)

Under standard assumptions on the sequence of step-sizes (δk)k∈N, the sequence generated
by (14) is a Markov chain which admits an invariant probability distribution whose density is
provably close to p?ε(x|y). However, to guarantee geometrically fast convergence to p?ε(x|y) -a
basic property for efficient Bayesian computation- it is also necessary to control the behaviour
of the tails of p?ε(x|y). We consider two alternatives to guarantee geometric convergence with
markedly different bias-variance trade-offs: one with excellent accuracy guarantees but that
requires using small step-sizes (δk)k∈N and hence has a higher computational cost, and another
one that allows taking larger step-sizes (δk)k∈N to improve convergence speed at the expense of
weaker guarantees in terms of estimation bias.

For the first method, in the spirit of the Moreau-Yosida regularised ULA, we introduce a minor
modification to (14) so that the conditions for geometrically fast convergence are automatically
verified, at the expense of some small estimation bias [30, 37]. More precisely, we target the
modified posterior density p?ε,C where for any x ∈ Rd we have

p?ε,C(x|y) ∝ pε(x|y) exp[−d2(x,C)/λ] ,

where C ⊂ Rd is some large compact convex set that controls the far tail behaviour of p?ε,C(x|y),
d(·,C) is the Euclidean distance to C, and λ > 0 is a tail regularisation parameter that we set so
that p?ε,C(x|y) satisfies a curvature condition as ‖x‖ → ∞ (see Section 5 for details). This leads
to the following Markov chain to sample approximately from p?ε(x|y) (and from p?(x|y) when the
latter exists):

Xk+1 =(1− δk/ε)Xk + δk∇ log p(y|Xk) + (δk/ε)D?
ε(Xk)

+ (δk/λ)(ΠC(Xk)−Xk) +
√

2δkZk+1 .
(15)
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Proposition 5 below provides detailed non-asymptotic convergence bounds on the estimation
error involved in using (15) for Bayesian computation w.r.t. p?ε(x|y) and p?(x|y). The bounds
for computation w.r.t. p?ε(x|y) include three terms related to the size of C, the sequence of step-
sizes (δk)k∈N (assumed here to be constant δk = δ for any k ∈ N for presentation clarity) , and
the number of iterations n. The bound w.r.t. p?(x|y) includes an additional term related to the
smoothing effect of ε > 0.

Proposition 5. Assume H1, that
∫

Rd ‖x̃‖4 p?(x̃)dx̃ < +∞ and that (11) is satisfied. Then the
following hold:

(a) There exists ε0 > 0 such that for any ε ∈ (0, ε0] there exist λ0, δ̄, C1 > 0 such that
for any C convex compact with B(0, RC) ⊂ C, RC > 0 there exists C2 > 0 such that for any
h : Rd → R with supx∈Rd{|h(x)| (1 + ‖x‖2)−1 6 1}, n ∈ N∗, λ ∈ (0, λ0] and δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)p?ε(x̃|y)dx̃
∣∣∣∣∣

6
{
C1R

−1
C + C2(δ1/2 + (nδ)−1)

}
(1 + E[‖X0‖4]) .

(b) In addition, if the conditions of Proposition 1-(e) are satisfied, then there exist ε0, C0 > 0
such that for any ε ∈ (0, ε0] there exist λ0, δ̄, C1 > 0 such that for any C convex compact with
B(0, RC) ⊂ C, RC > 0 there exists C2 > 0 such that for any h : Rd → R with supx∈Rd{|h(x)| (1 +
‖x‖2)−1} 6 1, n ∈ N∗, λ ∈ (0, λ0] and δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)p?(x̃|y)dx̃
∣∣∣∣∣

6
{
C0ε

β/4 + C1R
−1
C + C2(δ1/2 + (nδ)−1)

}
(1 + E[‖X0‖4]) .

Proof. The proof follows from Proposition 16 and Proposition 21 with Dε ← D?
ε .

An alternative strategy (which we Projected PnP-ULA, i.e. PPnP-ULA) for ensuring nu-
merical stability and fast convergence to the invariant measure is to modify ULA to include a
hard projection onto C, i.e. (Xk)k∈N is defined byX0 ∈ C and the following recursion for any
k ∈ N

Xk+1 = ΠC

[
(1− δk/ε)Xk + δk∇ log p(y|Xk) + (δk/ε)D?

ε(Xk) +
√

2δkZk+1

]
, (16)

where we notice that, by construction, the chain cannot exit C because of the action of the
projection operator ΠC. This guarantees geometrically fast convergence to the chain’s invariant
measure without imposing any restrictions on the step-sizes (δk)k∈N, at the expense of bias from
truncating the support of p?ε(x|y). However, we cannot explicitly control the bias associated
with using (16), unless we impose strict restrictions on (δk)k∈N, in which case Proposition 18
regarding the bias of (16) holds. Despite weaker accuracy guarantees, (16) is interesting be-
cause it allows taking larger step-sizes to improve convergence speed without risking numerical
instability. Conversely, (15) can become explosive if the step-sizes are too large.

To summarise, the ULA and SGD algorithms defined by (13), (15) and (16) are well defined
and have clear theoretical convergence guarantees, but they cannot be implemented in practice
as they require evaluating D?

ε(x). Nevertheless, they provide a powerful and natural strategy for
analysing Plug & Play SGD and ULA schemes that can be viewed as approximations of (13),
(15) and (16).
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3.3 Bayesian computation with Plug & Play priors: tractable algo-
rithms

We are now ready to study the PnP-ULA, Projected PnP-ULA (PPnP-ULA), and PnP-SGD
Plug & Play schemes described in Algorithms 1, 2 and 3, obtained by replacing D?

ε in (15), (16)
and (13) with a generic denoiser Dε. We pay special attention to state-of-the-art image denoisers
implemented by neural networks, which are usually explicitly trained to achieve optimal MSE
performance and hence to approximate D?

ε . For generality, we allow the use of a regularisation
parameter α > 0 to control amount of regularity enforced by the prior (in our experiments we
set α = 1). For presentation clarity, in this section we present simplified convergence results for
1, 2 and 3 by assuming α = 1 and constant a step-size δk = δ for any k ∈ N. These results are
presented in full generality in Section 5.

Algorithm 1 PnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact
Ensure: 2λ(2Ly + αL/ε) 6 1 and δ < (1/3)(Ly + 1/λ+ αL/ε)−1

Initialization: Set X0 = y and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = Xk + δ∇ log(p(y|Xk)) + (αδ/ε)(Dε(Xk)−Xk)− (δ/λ)(ΠC(Xk)−Xk) +

√
2δZk+1

end for
return {Xk : k ∈ {0, . . . , N + 1}}

Algorithm 2 PPnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact

Initialization: Set X0 = y and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = ΠC

(
Xk + δ∇ log(p(y|Xk)) + (αδ/ε)(Dε(Xk)−Xk) +

√
2δZk+1

)
end for
return {Xk : k ∈ {0, . . . , N + 1}}

Proposition 6 provides convergence guarantees for PnP-ULA in Algorithm 1 under the as-
sumption that Dε is Lipschitz continuous, and explicitly characterises the additional bias that
using Dε instead of D?

ε introduces in the resulting Monte Carlo estimates. Similarly Proposi-
tion 7 provides convergence guarantees for PPnP-ULA in Algorithm 2. Finally, Proposition 8
provides convergence guarantees for PnP-SGD in Algorithm 3. The assumption that Dε is Lip-
schitz continuous is verified, for example, by the neural network denoiser [74] that controls the
Lipschitz constant of the residual (Id−Dε) during the training process, and which we use in the
experiments of Section 4.

Proposition 6. Assume the same conditions as Proposition 5. In addition, assume that there
exist ε0 > 0, L > 0, and a function M : R+ → R+ such that for any ε ∈ (0, ε0], x1, x2 ∈ Rd and
x ∈ B(0, R) we have

‖Dε(x1)−Dε(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 M(R) .

Then the following hold:
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Algorithm 3 PnP-SGD
Require: n, nburnin ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact

Initialization: Set X0 = x̃ and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
if k 6 nburnin then
Xk+1 = Xk + δ0∇ log(p(y|Xk)) + (δ0α/ε)(Dε(Xk)−Xk) + δ0Zk+1

end if
if k > nburnin then
Xk+1 = Xk + δk∇ log(p(y|Xk)) + (δkα/ε)(Dε(Xk)−Xk) + δ0Zk+1
δk+1 = δ0(k + 1− nburnin)−0.8

end if
end for
return {Xk : k ∈ {0, . . . , N + 1}}

(a) There exists ε0 > 0 such that for any ε ∈ (0, ε0] there exist λ0, δ̄, C1 > 0 such that
for any C convex compact with B(0, RC) ⊂ C, RC > 0 there exists C2 > 0 such that for any
h : Rd → R with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, λ ∈ (0, λ0] and δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)p?ε(x̃|y)dx̃
∣∣∣∣∣

6

{
C1R

−1
C + C2(δ1/2 + inf

R>0
{M(R) + exp[−R]}+ (nδ)−1)

}
(1 + E[‖X0‖4]) .

(b) In addition, if the conditions of Proposition 1-(e) are satisfied, then there exist ε0, C0 > 0
such that for any ε ∈ (0, ε0] there exist λ0, δ̄, C1 > 0 such that for for any C convex compact with
B(0, RC) ⊂ C, RC > 0 there exists C2 > 0 such that for any h : Rd → R with supx∈Rd{|h(x)| (1 +
‖x‖2)−1} 6 1, n ∈ N∗, λ ∈ (0, λ0] and δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)p?(x̃|y)dx̃
∣∣∣∣∣

6

{
C0ε

β/4 + C1R
−1
C + C2(δ1/2 + inf

R>0
{M(R) + exp[−R]}+ (nδ)−1)

}
(1 + E[‖X0‖]4) .

Proof. The result is an application of Proposition 16 and Proposition 21. Explicit bounds on the
parameters δ̄ and λ0 are provided in Proposition 21, see also Algorithm 1.

Proposition 7. Assume the same conditions as Proposition 6. Then, for any ε ∈ (0, ε0], δ > 0
and C convex and compact with 0 ∈ C, there exists a probability measure πC

ε,δ, ÃC > 0 and
ρ̃C ∈ [0, 1) such that for any n ∈ N∥∥L(Xn)− πC

ε,δ

∥∥
TV 6 ÃCρ

nδ
C ,

where L(Xn) is the distribution of Xn given by PPnP-ULA and ‖·‖TV is the total variation
norm.

Proof. The proof is a straightforward application of Proposition 17.
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Proposition 8. Assume the same conditions as Proposition 6. In addition, assume that x 7→
log(p(y|x)) is real-analytic and that limk→+∞ δk = 0,

∑
k∈N δk = +∞ and

∑
k∈N δ

2
k < +∞. Let

R > 0, K ⊂ B(0, R) be a compact set, X0 ∈ Rd and Aε,K ∈ F given by

Aε,K = {ω ∈ Ω : there exists k0 ∈ N such that for any k > k0, Xk(ω) ∈ K.} .

Then there exist Cε,K > 0 and rε,K ∈ (0, 1) such that lim supk→+∞ d(Xk(ω),Sε,K) 6 Cε,KMrε,K
R for

any ω ∈ Aε,K, with Sε,K = {x ∈ K : ∇ log p?ε(x|y) = 0}.

Proof. The result is a straightforward application of Proposition 22.

Lastly, it is worth mentioning that Algorithm 1, Algorithm 2 and Algorithm 3 can be straight-
forwardly modified to incorporate additional regularisation terms. More precisely, one could con-
sider a prior defined as the (normalised) product of a Plug & Play term and an explicit analytical
term. In that case, one should simply modify the recursion defining the Markov chain by adding
the gradient associated with the analytical term. In a manner akin to [38], analytical terms that
are not smooth are involved via their proximal operator.

The following section demonstrates the proposed PnP-ULA, PPnPULA and PnP-SGD method-
ology on three canonical imaging inverse problems, namely image deblurring, inpainting, and
denoising. Before concluding this section, it is worth emphasising that, in addition to being
important in their own right, Algorithm 1, Algorithm 2 and Algorithm 3 and the associated
theoretical results set the grounds for analysing more advanced stochastic simulation and op-
timisation schemes for performing Bayesian inference with Plug & Play priors, in particular
accelerated optimisation and sampling algorithms [67]. This is an important perspective for
future work.

4 Experimental study
This section illustrates the behavior of PnP-ULA, PPnP-ULA and PnP-SGD for several inverse
problems. We start with two classical imaging problems: deblurring and inpainting. For these
two problems, we first compare the pointwise estimators (MMSE and MAP) provided by these
algorithms, along with the MAP estimator provided by the recent PnP-ADMM method [74].
Following on from this, we show how to analyse the convergence of the PnP-ULA algorithm, and
conclude the experiments with an uncertainty visualisation analysis. This is then followed by an
illustration of uncertainty quantification in a medical imaging problem.

In each of these experiments the observation model takes the form

y = Ax+ n , (17)

where x ∈ Rd is the unknown original image, y ∈ Rd the observed image, n is a realization of a
Gaussian i.i.d. centered noise with variance σ2 Id, and A is a linear operator corresponding to the
considered degradation. The log-likelihood for this case writes log p(y|x) = −‖Ax − y‖2/(2σ2).
For all algorithms, the denoising operator Dε is chosen as the pretrained denoising neural network
introduced in [74], since it satisfies that (Dε − Id) is L-Lipschitz with L < 1.

4.1 Implementation guidelines and parameter setting
In the following, we provide some simple and robust rules in order to set the parameters of
the different algorithms, in particular the discretization step-size δ and the tail regularization
parameter λ for PnP-ULA.
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Step-size δ The parameter δ controls the asymptotic accuracy of PnP-ULA and PPnP-ULA,
as well as the speed of convergence to stationarity. This leads to the following bias-variance
trade-off. For large values of δ, the Markov chain has low auto-correlation and converges quickly
to its stationary regime. Consequently, the Monte Carlo estimates computed from the chain
exhibit low asymptotic variance, at the expense of some asymptotic bias. On the contrary, small
values of delta δ produce a Markov chain that explores the parameter space less efficiently, but
more accurately. As a result, the asymptotic bias is smaller, but the variance is larger. In
the context of inverse problems that are high-dimensional and ill-posed, properly exploring the
solution space can take a large number of iterations. For this reason, we recommend using large
values of δ, at the expense of some bias. In addition, in PnP-ULA, δ is also subject to a numerical
stability constraint related to the inverse of the Lipschitz constant of ∇ log pε(x|y); namely, we
require δ < (1/3)(αL/ε + Ly + 1/λ)−1 where L and Ly are respectively the Lipschitz constant
of the denoiser residual (Dε − Id) and the Lipschitz constant of the log-likelihood gradient. In
our experiments, L = 1 and Ly = ‖A∗A‖/σ2, so we choose δ just below the upper bound
1/3(α/ε+ ‖A∗A‖/σ2 + 1/λ)−1, where A∗ is the adjoint of A. For PPnP-ULA, we recommend
setting δ < (αL/ε+ Ly)−1 to prevent excessive bias.

Parameter λ The parameter λ controls the tail behaviour of the target density. As previously
explained, it must be set so that the tails of the target density decay sufficient fast to ensure
convergence at a geometric rate, a key property for guaranteeing that the Monte Carlo estimates
computed from the chain are consistent and subject to a Central Limit Theorem with the stan-
dard O(

√
k) rate. More precisely, we require λ ∈ (0, 1/2(αL/ε + 2Ly)). Within this admissible

range, if λ is too small this limits the maximal δ and leads to a slow Markov chain. For this
reason, we recommend setting λ as large as possible below (2αL/ε+ 4Ly)−1. By choosing λ and
δ in this manner, both Proposition 6 and Proposition 8 hold.

Other parameters The compact set C is defined as C = [−1, 2]d, even if in practice no samples
went outside of C in all our experiments, which suggests that the tail decay conditions hold
without explicitely enforcing them. In all our experiments, we set the regularisation parameter
α to its default value 1, and set the noise level of the denoiser Dε to ε = (5/255)2. The only
exception is the denoiser used in PnP-ADMM for the inpainting experiments, trained at a noise
level of (40/255)2 to improve the performance. All algorithms are implemented using Python
and the PyTorch library. Our experiments are run on an Intel Xeon CPU E5-2609 server with a
Nvidia Titan XP graphic card.

4.2 Deblurring and inpainting: pointwise estimation
In this section, we address two inverse problems of the form (17): deblurring, where A is a 9× 9
box blur operator, and inpainting, where the matrix A is diagonal, composed of 0 (for missing
values) and 1. For the inpainting experiments, we focus on a case where 80% of the pixels are
hidden. In all experiments, we add a Gaussian noise with variance σ2 = (1/255)2. Figure 1
shows the three original 256 × 256 images used in these experiments. Among them, the Traffic
image is of particular interest since it consists of a mix of piecewise-constant areas and complex
textures. Figure 2 shows the corresponding blurry images and Figure 3 shows the images to
inpaint.

Because we will provide later in this section a complete and thorough convergence study
of PnP-ULA, we run the algorithm for 25 × 106 iterations (65 hours) and 2.5 × 106 burn-in
iterations, although the simple MMSE estimator can be obtained much faster in practice, as we
will see later. After this burn-in period, we consider a thinned version of the Markov chain by
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(a) Simpson (b) Cameraman (c) Traffic

Figure 1: Original images used for the deblurring and inpainting experiments.

(a) Blurry Simpson,
(PSNR=22.44).

(b) Blurry Cameraman,
(PSNR=20.30).

(c) Blurry Traffic,
(PSNR=20.34).

Figure 2: Images of Figure 1, blurred using a 9 × 9-box-filter operator and corrupted by an
additive Gaussian white noise with standard deviation σ = 1/255.

storing a sample every 2500 iterations, and the MMSE is obtained here as the average of these
samples, both for the deblurring and inpainting experiments. For simplicity, the algorithm is
always initialized with the degraded observation y. The PnP-SGD algorithm is initialized with
the solution provided by PnP-ADMM and run for 104 iterations with 5× 103 burn-in iterations
(2 minutes). We emphasize the fact that PnP-ADMM does not minimize the same objective
function as PnP-SGD. As a result, there is no reason that the fixed point provided by PnP-
ADMM and the PnP-SGD stationary point are the same. We compare these results with the
solution provided by the PnP-ADMM algorithm, initialized with the degraded observation y,
running during 103 iterations for deblurring and 104 iterations for inpainting.

Results Figure 4 and Figure 5 show the deblurring and inpainting results obtained by three
algorithms: the MMSE for PnP-ULA and the MAP for PnP-SGD and PnP-ADMM. We also
provide on the same figures the Peak Signal-To Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM) [87, 88] for all these experiments. From a quantitative viewpoint, the MMSE
computed by PnP-ULA achieves the best SSIM results for all images and the best PSNR for
five out of six experiments, while the MAP estimator computed by PnP-SGD usually shows
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(a) Simpson image with 80% miss-
ing pixels (PSNR=7.45).

(b) Cameraman with 80% missing
pixels (PSNR=6.67).

(c) Traffic with 80% missing pixels
(PSNR=8.35).

Figure 3: Images of Figure 1, with 80% missing pixels and corrupted by an additive Gaussian
white noise with standard deviation σ = 1/255.

the lowest performance of the three algorithms. Interestingly, a careful visual inspection of the
deblurring and inpainting results shows that the estimators computed by the three algorithms
are quite different (see also Figure 6 and Figure 7). For the deblurring experiment, the results
of PnP-SGD are not as sharp as the ones of the two other estimators, while the PnP-ADMM
results seem to contain more details but exhibit a grid pattern artefact on all images. The
MMSE computed by PnP-ULA seems to provide the best visual results, both sharp and without
important visual defects. For the inpainting experiments, PnP-ULA and PnP-ADMM provide
quite close visual results, although PnP-ADMM struggles to restore some specific regions (like
the license plate in the Traffic image).

Observe that the inferior results of PnP-SGD and PnP-ADMM may be due to several factors
and, on their own, do not imply that that the MMSE estimator is more accurate than the MAP
estimator in these cases. Unlike PnP-ULA, PnP-SGD and PnP-ADMM are actually more prone
to algorithmic failures: (i) they may get stuck in a sub-optimal critical point of the posterior
(PnP-SGD) or at a fixed point that is not even a critical point (PnP-ADMM); (ii) convergence
of PnP-ADMM is not guaranteed since A is not full-rank, so the data fitting term is not strongly
convex; (iii) for the MAP estimator, the optimal regularization parameter α often differs from
the canonical choice α = 1 used here.

Faster MMSE estimation As suggested above, computing MMSE estimators does not ne-
cessitate millions of iterations of PnP-ULA. For the deblurring experiment, it is possible to use
PPnP-ULA to obtain similar MMSE results in a only a few minutes. In this case, we remove
the burn-in phase, use no thinning, and set δ to a value that is 24 times larger than the one
specified for PnP-ULA in the previous section. To be more specific, for the Simpsons image,
15 000 iterations of PPnP-ULA (2 minutes) are enough to attain a SSIM of 0.94 and PSNR
of 34.06. The convergence of the algorithm is ensured by the projection step. Convergence is
slower for the inpainting experiments because in this case the likelihood has severe identifiability
issues. For that problem, MMSE results as the one presented before for PnP-ULA necessitate
approximately 105 PPnP-ULA iterations (15 minutes).

We emphasise at this point that we recommend to always use PPnP-ULA to warm-start
PnP-ULA. Here we used PnP-ULA with X0 = y and a long number of burn-in iterations only
to illustrate the robustness of PnP-ULA to a poor initialisation, as well as to simplify the pre-
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PSNR=34.24, SSIM= 0.94 PSNR=32.56, SSIM=0.92 PSNR=32.48, SSIM=0.93

PSNR=30.37, SSIM=0.93 PSNR=29.47, SSIM=0.91 PSNR=30.81, SSIM=0.89

PSNR=29.86, SSIM=0.89 PSNR=28.13, SSIM=0.84 PSNR=29.44, SSIM=0.87
PnP-ULA PnP-SGD PnP-ADMM

Figure 4: Deblurring of the images presented in Figure 2, using (left to right) PnP-ULA, PnP-
SGD with α = 1 and PnP-ADMM with the default parameters.

sentation of the experiments.

4.3 Deblurring and inpainting: convergence analysis for PnP-ULA
When using a sampling algorithm such as PnP-ULA, it is essential to check that the state space
is correctly explored. We provide in Figure 8 and Figure 9 two convergence diagnostics for the
deblurring and inpainting experiments of the previous section. These results are obtained for the
Simpson image, but similar results were obtained for the two other images.

For each figure, on the left, we show the evolution of the Euclidean distance between the
final MMSE estimate and the current stored sample (after the burn-in period, and hence in
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PSNR=31.51, SSIM= 0.94 PSNR=29.91, SSIM=0.91 PSNR=30.06, SSIM=0.92

PSNR=25.77, SSIM=0.90 PSNR=24.94, SSIM=0.88 PSNR=24.80, SSIM=0.90

PSNR=27.02, SSIM=0.85 PSNR=25.63, SSIM=0.81 PSNR=26.46, SSIM=0.84
PnP-ULA PnP-SGD PnP-ADMM

Figure 5: Inpainting of the images presented in Figure 3 using (left to right) PnP-ULA, PnP-
SGD with α = 1 and PnP-ADMM with the default parameters. PnP-ULA achieves better results
when compared with the PnP-SGD and PnP-ADMM methods.

what considered to be a stationary regime). The fluctuations around the posterior mean and the
absence of structure in these plots are a first indication that the chain has a low auto-correlation
and adequately explores the solution space. On the right, we show the sample auto-correlation
functions (ACFs) for the chains generated by PnP-ULA. These ACF plots measure how fast
samples become uncorrelated, once the chain is in stationary regime. A fast decay of the auto-
correlation is associated with a short mixing-time of the Markov chain, which in turn implies
accurate Monte Carlo estimates. On the contrary a slow decay of the auto-correlation indicates
that the Markov chain is moving slowly, which leads to Monte Carlo estimates with high variance.
Because computing and visualising a multivariate ACF is difficult, here we show the ACF of the
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(a) Original image. (b) PnP-SGD. (c) PnP-ADMM.

Figure 6: Comparison of the PnP-SGD and the PnP-ADMM solutions for the deblurring problem
on the Cameraman image in Figure 1b.

(a) Original image. (b) PnP-ULA. (c) PnP-ADMM.

Figure 7: Comparison of the PnP-ULA and the PnP-ADMM solutions for the deblurring problem
on the Simpson image in Figure 1a. Edges are sharper in the image obtained with PnP-ULA
compared to the one obtained with PnP-ADMM.

chain along the slowest and the fastest one-dimensional sub-spaces in the Fourier domain6. In the
deblurring case, these plots suggest that to achieve independence, samples needs to be separated
by approximately 7.5×104 iterations. As for the inpainting experiment, in the slowest direction,
this requires in the order of 2.5× 105 iterations. This is due to the fact that likelihood function
for the inpainting problem has severe identifiability issues, which in turn leads to a posterior
distribution that is highly anisotropic and more difficult to explore as a result. To guarantee
reliable Monte Carlo estimates, the total number of iterations should be significantly larger than
the number of iterations required to produce two independent samples.

4.4 Deblurring and inpainting: uncertainty visualisation study
One of the benefits of sampling from the posterior distribution with PnP-ULA is that we can
probe the uncertainty in the delivered solutions. In the following, we present an uncertainty

6The slowest direction corresponds to the Fourier coefficient with the highest variance along the samples.
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(a) Evolution of the L2 distance between the fi-
nal MMSE estimate and the current sample.

(b) ACF.

Figure 8: Quantitative analysis of the convergence of the PnP-ULA algorithm for the deblurring
of the Simpson image (Figure 1a). After the burn-in iterations, the mean-square distance between
the samples of the PnP-ULA Markov chains and the posterior mean fluctuates without exhibiting
a pattern. From the ACF plots (Figure 8b), we derive that the Markov chain iterates become
uncorrelated for a time-shift of 7.5× 104 iterations.

(a) Evolution of the Euclidean distance between
the final MMSE estimate and the current sam-
ple.

(b) ACF.

Figure 9: Quantitative analysis of the convergence of the PnP-ULA algorithm for the inpainting
problem and Simpson image. On the left, the absence if pattern in the Euclidean distance
between the final MMSE estimate and the current sample suggests that we properly explore
the space. On the right, the ACF plot tells us that the Markov chain samples are still not
independent after 2.5× 105 iterations.

visualisation analysis that is useful for displaying the uncertainty related to image structures
of different sizes and located in different regions of the image (see [24] for more details). The
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analysis proceeds as follows. First, Figure 10 and Figure 11 show the marginal posterior standard
deviation associated with each image pixel, as computed by PnP-ULA for three images and for
the deblurring and inpainting problems, respectively. As could be expected, we observe that
highly uncertain pixels are concentrated around the edges of the reconstructed images, but also
on textured areas, although the uncertainty remains low on observed pixels for the inpainting
problem. Notice that the dynamic range of the pixel standard deviation is larger for the inpainting
problem than for the deblurring problem, which might suggests (again) that the problem has a
higher level of intrinsic uncertainty.

(a) Standard deviation Simpson. (b) Standard deviation Cameraman. (c) Standard deviation Traffic.

Figure 10: Standard deviation for the deblurring problem. On simple images such as Simpson
(see Figure 1a), most of the uncertainty is located around the edges.

(a) Standard deviation Simpson. (b) Standard deviation Cameraman. (c) Standard deviation Traffic.

Figure 11: Standard deviation for the inpainting problem.

Following on from this, to explore the uncertainty for structures that are larger than one
pixel, Figure 12 and Figure 13 report the marginal standard deviation associated with higher
scales. More precisely, for different values of the scale i, we downsample the stored samples by a
factor 2i before computing the standard deviation. This downsampling step permits to quantify
the uncertainty of larger or lower-frequency structures, such as the bottom of the glass in the
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deblurring experiment in Figure 4. At each scale, we see that the uncertainty of the estimate is
much more localized for the inpainting problem (resulting in higher uncertainty values in some
specific regions) and more spread out for deblurring, certainly because of the different nature of
the linear degradation A.

(a) Scale 1. (b) Scale 2. (c) Scale 3. (d) Scale 4.

Figure 12: Marginal posterior standard deviation of the Simpson image for the deblurring prob-
lem at different scales. The scale i corresponds to a downsampling by a factor 2i of the original
image size.

(a) Scale 1. (b) Scale 2. (c) Scale 3. (d) Scale 4.

Figure 13: Marginal posterior standard deviation of the Simpson image for the inpainting prob-
lem at different scales. The scale i corresponds to a downsampling by a factor 2i of the original
sample size.

4.5 Uncertainty quantification in medical imaging
We conclude our numerical experiments with an illustration of uncertainty quantification for a
medical imaging problem. For the sake of simplicity, we focus on a simple denoising problem
(A = Id), with a Gaussian i.i.d centered noise of standard deviation σ = 25/255. Figure 14
shows the original image x on the left and the corrupted version y on the right. The image x is
an axial computed tomography (CT) slice from the Deep Lesion dataset [91]. This CT slice is
particularly interesting, because it contains an annotated lesion. Our goal is twofold: we want to
perform pointwise denoising estimation, as well as to quantify the uncertainty on the estimation
of the lesion’s size.

For this experiment, PnP-ULA is initialized with the noisy observation y and run during
5 × 106 iterations with 5 × 104 burn-in iterations. Samples of the burn-in period are discarded
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and we only consider a thinned Markov chain of samples stored every 500 iterations. The
regularisation parameter α is set to its default value 1.

(a) Original image. (b) Noisy observation (PSNR = 20.17).

Figure 14: Original CT slice and its noisy observation obtained by adding a Gaussian white noise
with standard deviation σ = 25/255. The yellow square corresponds to the lesion annotation
provided by [91].

Figure 15a shows the MMSE solution computed by PnP-ULA. Visually, this restoration seems
accurate, and this is confirmed by the PSNR score. Figure 15b shows the marginal posterior
standard deviation for the image pixels. Edges are the main source of uncertainty. As we can
see, the outline of the lesion is a region of high uncertainty, which motivates the following simple
uncertainty study on the lesion’s size. To this aim, we define as a region of interest the yellow
square annotated in the slice. Then, for each sample, we perform a simple segmentation of the
lesion by using a thresholding technique, and estimate the lesion’s size by counting the number
of pixels in the segmented region (of course, more sophisticated segmentation techniques could
be used too). Figure 16 shows the histogram of the estimated lesion sizes, as well as the true
size and lower and upper limits of a 95% credible interval. We observe that the uncertainty is
of the order of 10%. This type of analysis would be useful, for example, in situations where it
is necessary to use a series of images acquired on different dates to monitor the evolution of the
size of the lesion.

5 Theoretical analysis
In this section, we provide a theoretical study of the long-time behavior of PnP-ULA Algorithm 1
and PnP-SGD Algorithm 3, as well as quantitative bounds on the approximation of the posterior
(10) introduced in Section 3. Let qy : Rd → (0,+∞) be the likelihood function, i.e. p(·|x) ∝ qy,

(a) MMSE estimate (PSNR = 29.12). (b) Standard deviation.

Figure 15: MMSE and standard deviation estimates for the denoising problem.
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Figure 16: Histogram of the estimated lesion’s size in the samples generated by PnP-ULA. The
red lines correspond to the 2nd and 98th percentiles, the green line to the number of pixels in the
lesion associated with the true image x and the orange line to the number of pixels constituting
the lesion in the MMSE estimate.

and µ the prior distribution with density p with respect to the Lebesgue measure. For any ε > 0
we recall that pε is given by the Gaussian smoothing of p with level ε, for any x ∈ Rd by

pε(x) = (2πε)−d/2
∫

Rd

exp[−‖x− x̃‖2 /(2ε)] p(x̃)dx̃ .

Note that even in the case where µ does not admit a density with respect to the Lebesgue
measure, pε is well-defined upon setting for any x ∈ Rd

pε(x) = (2πε)−d/2
∫

Rd

exp[−‖x− x̃‖2 /(2ε)]dµ(x̃) .

One typical example of likelihood function that we consider in our numerical illustration, see
Section 4, is qy(x) = exp[−‖Ax− y‖2 /(2σ2)] for any x ∈ Rd with σ > 0 and A ∈ Rm×d. Before
turning to the analysis of the convergence of the introduced algorithms we state the following
proposition which ensures the regularity of the posterior model w.r.t to the observation y.

Proposition 9. Assume that there exist Φ1 : Rd → [0,+∞) and Φ2 : Rm → [0,+∞) such that
for any x ∈ Rd and y1, y2 ∈ Rm

‖log(qy1(x))− log(qy2(x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ , (18)

and for any c > 0,
∫

Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p(x)dx < +∞. Then y 7→ πy is locally Lipschitz
w.r.t the total variation ‖·‖TV, where for any x ∈ Rd, y ∈ Rm we have

(dπy/dLeb)(x) = qy(x)p(x)
/∫

Rd

qy(x̃)p(x̃)dx̃ . (19)

Proof. The proof is postponed to Appendix B.

We highlight that Proposition 9 also holds if we replace p in (19) by pε for any ε > 0. Note
that (18) is satisfied in the case where qy(x) = exp[−‖Ax− y‖2 /(2σ2)] with Φ1(x) = 2‖Ax‖/σ2

and Φ2(y) = ‖y‖/σ2.
We consider the following assumption on qy and the prior p for some hyperparameter α > 0

and an observation y ∈ Rm.
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H2. The following hold:

(a)
∫

Rd qy(x̃)pα(x̃)dx̃ < +∞ and for any ε > 0,
∫

Rd qy(x̃)pαε (x̃)dx̃ < +∞.

(b)
∫

Rd ‖x̃‖2p(x)dx < +∞.

Note that if α = 1, H2-(a) hold under H1, see Proposition 1. Under H2-(a), define π the
target probability distribution for any x ∈ Rd by

(dπ/dLeb)(x) = qy(x)pα(x)
/∫

Rd

qy(x̃)pα(x̃)dx̃ . (20)

Note that for ease of notation, we do not explicitly highlight the dependency of the posterior
distribution π with respect to the hyperparameter α > 0, since it is fixed in the rest of this
section. We also consider the family of probability distributions {πε : ε > 0} given for any ε > 0
and x ∈ Rd by

(dπε/dLeb)(x) = qy(x)pαε (x)
/∫

Rd

qy(x̃)pαε (x̃)dx̃ , (21)

We divide our study into three parts. We first establish non-asymptotic bounds between
the iterates of PnP-ULA and πε with respect to the total variation distance for any ε > 0, in
Section 5.2. Second, we show the quantitative convergence of (πε)ε>0 towards π with respect to
the same metric as ε→ 0 in Section 5.3. Finally, in Section 5.4 the case of PnP-SGD is considered
under the same set of assumptions as PnP-ULA. Before stating our results, additional notation
is in order.

5.1 Notation
Denote by B(Rd) the Borel σ-field of Rd, and for f : Rd → R measurable, ‖f‖∞ = supx∈Rd |f(x)|.
For µ a probability measure on (Rd,B(Rd)) and f a µ-integrable function, denote by µ(f) the
integral of f w.r.t. µ. For f : Rd → R measurable, the V -norm of f is given by ‖f‖V =
supx∈Rd |f(x)|/V (x). Let ξ be a finite signed measure on (Rd,B(Rd)). The V -total variation
distance of ξ is defined as

‖ξ‖V = sup‖f‖V 61
∣∣∫

Rd f(x)dξ(x)
∣∣ .

If V = 1, then ‖·‖V is the total variation denoted by ‖·‖TV. Let U be an open set of Rd. For
any pair of measurable spaces (X,X ) and (Y,Y), measurable function f : (X,X ) → (Y,Y)
and measure µ on (X,X ) we denote by f#µ the pushforward measure of µ on (Y,Y) given for
any A ∈ Y by f#µ(A) = µ(f−1(A)). We denote P(Rd) the set of probability measures over
(Rd,B(Rd)) and for any m ∈ N, Pm(Rd) = {ν ∈P(Rd) :

∫
Rd ‖x̃‖mdx̃ < +∞}.

We denote by Ck(U,Rm) the set of Rm-valued k-differentiable functions, respectively the set
of compactly supported Rm-valued and k-differentiable functions. Let f : U → R, we denote by
∇f , the gradient of f if it exists. f is said to me m-convex with m > 0 if for all x, y ∈ Rd and
t ∈ [0, 1],

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y)− mt(1− t) ‖x− y‖2 /2 .

For any a ∈ Rd and R > 0, denote B(a,R) the open ball centered at a with radius R. Let (X,X )
and (Y,Y) be two measurable spaces. A Markov kernel P is a mapping K : X×Y → [0, 1] such
that for any x ∈ X, P(x, ·) is a probability measure and for any A ∈ Y, P(·,A) is measurable.
For any probability measure µ on (X,X ) and measurable function f : Y → R+ we denote
µP =

∫
X P(x, ·)dµ(x) and Pf =

∫
Y f(y)P(·,dy). In what follows the Dirac mass at x ∈ Rd is
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denoted by δx. For any x ∈ Rd, we denote τx : Rd → Rd the translation operator given for any
x̃ ∈ Rd by τx(x̃) = x̃ − x. The complement of a set A ⊂ Rd, is denoted by Ac. All densities are
w.r.t. the Lebesgue measure unless stated otherwise.

Finally, for any compact set C ⊂ Rd we consider KC = {K : K is compact and K ⊂ C}.
(KC,dC) is a metric space where the Hausdorff distance dC is given for any K1,K2 ∈ KC by

dC(K1,K2) = inf{ε > 0 : K1 ⊂ K2 + B(0, ε) ,K2 ⊂ K1 + B(0, ε)} , (22)

where for any pair of sets A,B ⊂ Rd we have A + B = {x+ y : x ∈ A, y ∈ B}.

5.2 Convergence of PnP-ULA
In this section, we fix ε > 0 and derive quantitative bounds between the iterates of PnP-ULA
and πε with respect to the total variation. To address this issue, we first show that PnP-ULA is
geometrically ergodic and establish non-asymptotic bounds between the corresponding Markov
kernel and its invariant distribution. Second, we analyse the distance between this stationary
distribution and πε for the same metric. In Section 5.2.1, we derive our convergence results in the
case where log(qy) is differentiable with Lipschitz gradient and strongly concave. In Section 5.2.2,
we extend our results to the case where log(qy) has only Lipschitz gradient and satisfies a one-
sided Lipschitz condition. Finally in Section 5.2.3 we deal with the case of PPnP-ULA.

For any ε > 0 we define gε : Rd × Rd → [0,+∞) for any x1, x2 ∈ Rd by

gε(x1|x2) = p(x1) exp[−‖x2 − x1‖2 /(2ε)]
/∫

Rd

p(x̃) exp[−‖x2 − x̃‖2 /(2ε)]dx̃ . (23)

Note that g(·|Xε) is the density with respect to the Lebesgue measure of the distribution of X
given Xε, where X is sampled according to the prior distribution µ and Xε = X + ε1/2Z where
Z is a Gaussian random variable with zero mean and identity covariance matrix.

Throughout, this section, we consider the following assumption on the family of denoising
operators {Dε : ε > 0} which will ensure that PnP-ULA approximately targets πε. The
same assumption will be considered when studying PnP-SGD to approximate the maximum a
posteriori estimator associated with πε.
H3 (R). There exist ε0 > 0, MR > 0 and L > 0 such that for any ε ∈ (0, ε0], x1, x2 ∈ Rd and
x ∈ B(0, R) we have

‖(Id−Dε)(x1)− (Id−Dε)(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 MR , (24)

where
D?
ε(x1) =

∫
Rd

x̃ gε(x̃|x1)dx̃ . (25)

The first condition in (24) regarding the smoothness property of the denoiser can be explicitly
verified for a certain class of neural networks by adding a spectral regularization term for each
layer of the neural network, see [74, 63].

Regarding the second condition in (24), small values of MR > 0 for any R > 0 can be
empirically enforced as follows. Consider a neural network fw : Rd → Rd, parameterized by its
weights and bias gathered in w ∈ W where W is some measurable space. For any ε > 0, let
`ε : W → [0,+∞) given for any w ∈ W by `ε(w) =

∫
Rd×Rd ‖x − fw(xε)‖2pε(xε)gε(x|xε)dxεdx.

Note that such a loss is considered in the Noise2Noise network introduced in [57].
We have that for any w ∈ W, `ε(w) >

∫
Rd×Rd ‖x − D?

ε(xε)‖2pε(xε)gε(x|xε)dxdxε = `?ε,
since for any xε ∈ Rd, D?

ε(xε) =
∫

Rd x̃ gε(x̃|xε)dx̃, see (25). Consider w? ∈ W obtained after
numerically minimizing `ε and satisfying `ε(w?) 6 `?ε + η with η > 0. In this case, the following
result ensures that (24) is satisfied with MR of order η1/(2d+2) for any R > 0 and letting Dε = fw? .
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Proposition 10. Assume that for any w ∈ W∫
Rd

(‖x‖2 + ‖fw(xε)‖2)pε(xε)gε(x|xε)dxdxε < +∞ . (26)

Let R, η > 0 and w? ∈ W such that `ε(w?) 6 `?ε + η. In addition, assume that

sup
x1,x2∈B(0,2R)

{
‖x2 − x1‖−1 (‖fw?(x2)− fw?(x1)‖+ ‖D?

ε(x2)−D?
ε(x1)‖)

}
< +∞ ,

where D?
ε is given in (25). Then there exists CR, η̄R > 0 such that if η ∈ (0, η̄R] then for any

x̃ ∈ B(0, R), ‖fw?(x̃)−D?
ε(x̃)‖ 6 CRη

1/(2d+2).

Proof. The proof is postponed to Appendix C.1.

Note that (26) is satisfied if for any w ∈ W, supx∈Rd ‖fw(x)‖(1+‖x‖)−1 < +∞ and H2 hold.
The second condition in (24) can also be enforced using universal properties of neurals net-

work. Indeed, if there exists M̃R > 0 such that we have infw∈W supx∈B(0,R) M̃−1
R ‖fw(x)−D?

ε(x)‖} 6
1 then the second condition in (24) holds upon letting Dε = fw? for an appropriate choice of
weights w? ∈ W. This last inequality can be established using universal approximation theorems
such as the one given [7, Section 4.7].

We recall that PnP-ULA is given by the following recursion: for any k ∈ N

Xk+1 = Xk + δbε(Xk) +
√

2δZk+1 , (27)
bε(x) = ∇ log(qy(x)) + αPε(x) + proxλ(ιC)(x) , Pε(x) = (Dε(x)− x)/ε ,

where δ > 0 is a step-size, α, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ Rd is a closed
convex set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and
identity covariance matrix and proxλ(ιC) the proximal operator of ιC with step-size λ, see [8,
Definition 12.23], where ιC is the convex indicator of C defined for x ∈ Rd by ιC = +∞ if x /∈ C
and 0 if x ∈ C. Note that for any x ∈ Rd we have proxλ(ιC)(x) = (x − ΠC(x))/λ, where ΠC is
the projection onto C.

In what follows, for any δ > 0 and C ⊂ Rd closed and convex, we denote by Rε,δ : Rd ×
B(Rd) → [0, 1] the Markov kernel associated with the recursion (39) and given for any x ∈ Rd

and A ∈ B(Rd) by

Rε,δ(x,A) = (2π)−d/2
∫

Rd

1A(x+ δbε(x) +
√

2δz) exp[−‖z‖2 /2]dz . (28)

Note that for ease of notation, we do not explicitly highlight the dependency of Rε,δ and bε with
respect to the hyperparameter α, λ > 0 and C.

5.2.1 Strongly log-concave case

First, we consider the case where x 7→ log(qy) is strongly log-concave. In this setting, we set
C = Rd in (39) and (28). We recall that in our image processing applications, we have that for
any x ∈ Rd, qy(x) = exp[−‖Ax− y‖2 /(2σ2)] and that qy is strongly log-concave if and only if
A is invertible. This is the case for denoising tasks where A = Id and for deblurring tasks with
convolution kernels which have full Fourier support.

We start with the following result which ensures that the Markov chain (39) is geometrically
ergodic under H3 for the Wasserstein metric W1 and in V -norm for V : Rd → [1,+∞) given
for any x ∈ Rd by

V (x) = 1 + ‖x‖2 . (29)
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Proposition 11. Assume H1, H2 and H3(R) for some R > 0. Let α > 0 and ε ∈ (0, ε0]. If
there exists m > 0 such that log(qy) is m-concave with m > 2αL/ε then there exist A1 > 0 and
ρ1 ∈ [0, 1) such that for any δ ∈ (0, δ̄], x1, x2 ∈ Rd and k ∈ N we have∥∥δx1Rk

ε,δ − δx2Rk
ε,δ

∥∥
V
6 A1ρ

kδ
1 (V 2(x1) + V 2(x2)) ,

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1ρ
kδ
1 ‖x1 − x2‖ ,

where V is given in (29) and δ̄ = m(Ly + αL/ε)−2/2.

Proof. The proof is postponed to Appendix C.2.

The constants A1 and ρ1 do not depend on the dimension d but only on the parameters
m, L, Ly, α, ε. Note that a similar result can be established for Wp for any p ∈ N∗ instead of W1.
Under the conditions of Proposition 11 we have for any ν1, ν2 ∈P1(Rd)

∥∥ν1Rk
ε,δ − ν2Rk

ε,δ

∥∥
V
6 A1ρ

kδ
1

(∫
Rd

V 2(x̃)dν1(x̃) +
∫

Rd

V 2(x̃)dν2(x̃)
)
, (30)

W1(ν1Rk
ε,δ, ν2Rk

ε,δ) 6 A1ρ
kδ
1

(∫
Rd

‖x̃‖ dν1(x̃) +
∫

Rd

‖x̃‖ dν2(x̃)
)
.

First, (P1(Rd),W1) is a complete metric space [85, Theorem 6.18]. Second, for any δ ∈ (0, δ̄],
there exists m ∈ N∗ such that fm is contractive with f : P1(Rd) → P1(Rd) given for any
ν ∈P1(Rd) by f(ν) = νRε,δ using Proposition 11. Therefore we can apply the Picard fixed point
theorem and we obtain that Rε,δ admits an invariant probability measure πε,δ ∈P1(Rd).

Therefore, since πε,δ is an invariant probability measure for Rε,δ and πε,δ ∈ P1(Rd), using
(30), we have for any ν ∈P1(Rd)

∥∥νRk
ε,δ − πε,δ

∥∥
V
6 A1ρ

kδ
1

(∫
Rd

V 2(x̃)dν(x̃) +
∫

Rd

V 2(x̃)dπε,δ(x̃)
)
,

W1(νRk
ε,δ, πε,δ) 6 A1ρ

kδ
1

(∫
Rd

‖x̃‖ dν(x̃) +
∫

Rd

‖x̃‖ dπε,δ(x̃)
)
.

Combining this result with the fact that for any t > 0, (1 − e−t)−1 6 1 + t−1, we get that for
any n ∈ N∗ and h : Rd → R measurable such that supx∈Rd{(1 + ‖x‖2)−1 |h(x)|} < +∞∣∣∣∣∣n−1

n∑
k=1

E[h(Xk)]− πε,δ[h]
∣∣∣∣∣ 6 A1(δ̄ + log−1(1/ρ1))

(
V 2(x) +

∫
Rd

V 2(x̃)dπε,δ(x̃)
)/

(nδ) ,

where (Xk)k∈N is the Markov chain given by (39) with starting point X0 = x.
The following assumption is necessary to ensure that x 7→ log(pε(x)) has Lipschitz gradients,

see Proposition 2.

H4. For any ε > 0, there exists Kε > 0 such that for any x ∈ Rd,∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃′|x)dx̃′
∥∥∥∥2
gε(x̃|x)dx̃ 6 Kε ,

with gε given in (23).

30



We emphasize that H 4 is not needed to establish the convergence of the Markov chain.
However, we impose it in order to compare the stationary distribution of PnP-ULA with the
target distribution πε. Depending on the prior distribution density p, H4 may be checked by
hand. Finally, note that H4 can be extended to cover the case where the prior distribution µ
does not admit a density with respect to the Lebesgue measure.

In the following proposition, we show that we can control the distance between πε,δ and πε
based on the previous observations.

Proposition 12. Assume H1, H2, H3(R) for some R > 0 and H4. Moreover, let α > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0 such

that log(qy) is m-concave with m > (2α/ε) max(L, 1 + Kε/ε) and δ̄ = m(Ly + αL/ε)−2/2, then for
any δ ∈ (0, δ̄], Rε,δ admits an invariant probability measure πε,δ and there exists B1 > 0 such
that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B1(δ1/2 + MR + exp[−R]) , (31)
where V is given in (29) and B1 does not depend on R.

Proof. The proof is postponed to Appendix C.3.

The bound appearing in (31) depends on an extra hyperparameter R > 0 which may be
optimized if H3(R) holds for any R > 0 and {MR : R > 0} can be expressed in a closed form. In
particular if there exists M ∈ (0, 1) such that for any R > 0, MR = M×R then there exists B1 > 0
such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ1/2 + M log(1/M)) ,

by setting R = log(1/M). Similarly if there exists M > 0 such that for any R > 0, MR = M then
there exists B1 > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ1/2 + M) ,

by letting R→ +∞.
We now combine Proposition 11 and Proposition 12 in order to control the bias of the Monte

Carlo estimator obtained using PnP-ULA.

Proposition 13. Assume H1, H2, H3(R) for some R > 0 and H4. Moreover, let α > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0 such

that log(qy) is m-concave with m > (2α/ε) max(L, 1 + Kε/ε) and δ̄ = m(Ly +αL/ε)−2/2, then there
exists C1,ε > 0 such that for any h : Rd → R measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1,
n ∈ N∗, δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)dπε(x̃)
∣∣∣∣∣ 6 C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) .

Proof. The proof is straightforward upon combining Proposition 11 and Proposition 12.

In particular, applying Proposition 13 to the family {hi}di=1 where for any i ∈ {1, . . . , d},
hi(x) = xi we get that∥∥∥∥∥n−1

n∑
k=1

E [Xk]−
∫

Rd

x̃dπε(x̃)
∥∥∥∥∥ 6 C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) ,

and n−1∑n
k=1Xk is an approximation of the MMSE given by

∫
Rd x̃dπε(x̃).
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5.2.2 General case

We now consider the general case where log(qy) is no longer m-concave but satisfies a more general
one-sided Lipschitz condition, i.e. we consider the following condition.

H5. There exists m ∈ R such that for any x1, x2 ∈ Rd we have

〈∇ log(qy)(x2)−∇ log(qy)(x1), x2 − x1〉 6 −m ‖x2 − x1‖2 .

Note that if H5 is satisfied with m > 0 then log(qy) is m-concave. Assume H1 then H5 holds
for m = −Ly. However, it is possible that m > −Ly which leads to better convergence rates for
PnP-ULA. As a result even when H1 holds we still consider H5. In order to deal with H5 we
no longer consider C = Rd in (39) and (28), but instead C ⊂ Rd is now some convex compact set
fixed by the user.

In our image processing applications, we recall that for any x ∈ Rd we have, qy(x) =
exp[−‖Ax− y‖2 /(2σ2)]. If A is not invertible then log(qy) is not m-concave with m > 0. This
is the case, in our deblurring experiment if the convolution kernel does not have full support
in the Fourier domain. In our inpainting application A = diag(a), where a ∈ {0, 1}d, and for
any i ∈ {1, . . . , d}, a(i) = 0 if and only if the i-th pixel is not visible (note that here we have
considered a flattened version of the image). As a result, A is not invertible even if only one
pixel is hidden. Note that in these cases, H5 holds with m = 0 since qy is log-concave.

In what follows, we prove similar results to Section 5.2.1 in this general setting. We start by
stating the counterpart of Proposition 11.

Proposition 14. Assume H1, H2, H3(R) for some R > 0 and H5. Let α, λ > 0, ε ∈ (0, ε0]
such that 2λ(Ly +αL/ε−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly +αL/ε+1/λ)−1. Then for any C ⊂ Rd

convex and compact with 0 ∈ C, there exist A1,C > 0 and ρ1,C ∈ [0, 1) such that for any δ ∈ (0, δ̄],
x1, x2 ∈ Rd and k ∈ N we have∥∥δx1Rk

ε,δ − δx2Rk
ε,δ

∥∥
V
6 A1,Cρ

kδ
1,C(V 2(x1) + V 2(x2)) ,

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1,Cρ
kδ
1,C ‖x1 − x2‖ ,

where V is given in (29).

Proof. The proof is postponed to Appendix C.2.

The discussion following Proposition 11 is still valid in this case. In particular, Proposition 14
implies that Rε,δ admits an invariant probability measure πε,δ. In the following proposition, we
control the distance in V -norm between πε,δ and πε. This result is the counterpart of Proposi-
tion 12. Note that contrary to Proposition 12, we must take into account another source of error
stemming from the fact that we have to incorporate the additional term x 7→ proxλ(ιC) into (39)
which ensures the geometric ergodicity of PnP-ULA in this general setting.

Proposition 15. Assume H 1, H 2, H 3(R) for some R > 0, H 4 and H 5. Moreover, let
α > 0, ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. Let λ > 0 such that 2λ(Ly +

(α/ε) max(L, 1+Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly+αL/ε+1/λ)−1. Then for any δ ∈ (0, δ̄]
and C convex and compact with 0 ∈ C, Rε,δ admits an invariant probability measure πε,δ. In
addition, there exists B0 > 0 such that for any C convex compact with B(0, RC) ⊂ C and RC > 0,
there exists B1,C > 0 such that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B0R
−1
C +B1,C(δ1/2 + MR + exp[−R]) ,

where V is given in (29).
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Proof. The proof is postponed to Appendix C.3.

We now combine Proposition 14 and Proposition 15 in order to control the bias of the Monte
Carlo estimator obtained using PnP-ULA. Note that the following proposition is the counterpart
of Proposition 13.
Proposition 16. Assume H2, H3(R) for some R > 0, H4 and H5. Moreover, let α > 0, ε ∈
(0, ε0] and assume that

∫
Rd(1+‖x̃‖4)pαε (x̃)dx̃ < +∞. Let λ > 0 such that 2λ(Ly+(α/ε) max(L, 1+

Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + αL/ε+ 1/λ)−1. Then there exists C1,ε > 0 such that
for for any C convex compact with B(0, RC) ⊂ C and RC > 0 there exists C2,ε such that for any
h : Rd → R measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)dπε(x̃)
∣∣∣∣∣

6
{
C1,εR

−1
C + C2,ε,C(δ1/2 + MR + exp[−R] + (nδ)−1)

}
(1 + ‖x‖4) .

Proof. The proof is straightforward combining Proposition 14 and Proposition 15.

5.2.3 Convergence guarantees for PPnP-ULA

In our experiments Section 4 we notice that the bound on the step-size δ̄ = (1/3)(Ly + αL/ε +
1/λ)−1 is conservative. Indeed, the MMSE obtained with PnP-ULA with δ 6 δ̄ and δ = 8δ̄
are similar. (however instability is reached for 15δ̄). This suggests that our convergence results
could be tightened and that PnP-ULA is stable for larger step-sizes. In addition, in practice
we observe that the projection constraint is never activated. More precisely, let (Xn)n∈N be
given by PnP-ULA. In all of our experiments

∑N
k=1 1C(Xk)/N >. In this section, we propose an

alternative projected algorithm which is equal to PnP-ULA up to the first exit time T = inf{n ∈
N : Xn /∈ C}. We call this algorithm Projected Plug & Play Unadjusted Langevin Algorithm
(PPnP-ULA). It is given by the following recursion: X0 ∈ C and for any k ∈ N

Xk+1 = ΠC(Xk + δbε(Xk) +
√

2δZk+1) , (32)
bε(x) = ∇ log(qy(x)) + αPε(x) , Pε(x) = (Dε(x)− x)/ε ,

where δ > 0 is a step-size, α, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ Rd is a closed
convex set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and
identity covariance matrix and where ΠC is the projection onto C. In what follows, for any δ > 0
and C ⊂ Rd closed and convex, we denote by Qε,δ : Rd × B(Rd) → [0, 1] the Markov kernel
associated with the recursion (32) and given for any x ∈ Rd and A ∈ B(Rd) by

Qε,δ(x,A) = (2π)−d/2
∫

Rd

1Π−1
C (A)(x+ δbε(x) +

√
2δz) exp[−‖z‖2 /2]dz .

Note that for ease of notation, we do not explicitly highlight the dependency of Qε,δ and bε with
respect to the hyperparameter α, λ > 0 and C.

First, we have the following result which ensures that PPnP-ULA is geometrically ergodic
for all step-sizes.
Proposition 17. Assume H1, H2, H3(R) for some R > 0. Let α, λ, ε, δ̄ > 0. Then for any
C ⊂ Rd convex and compact with 0 ∈ C, there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that for any
δ ∈ (0, δ̄], x1, x2 ∈ C and k ∈ N we have

‖δx1Qk
ε,δ − δx2Qk

ε,δ‖TV 6 ÃCρ̃
kδ
C .
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Proof. The proof is postponed toAppendix C.4.

In particular Qε,δ admits an invariant probability measure πC
ε,δ. The next proposition ensures

that for small enough step-size δ the invariant measures of PnP-ULA and PPnP-ULA are close
if the compact convex set C has a large diameter.

Proposition 18. Assume H1, H2, H3(R) for some R > 0 and H5. In addition, assume that
there exists m̃, c > 0 such that for C = Rd and for any ε > 0 and x ∈ Rd, 〈bε(x), x〉 6 −m̃ ‖x‖2 +c.
Let α, λ > 0, ε ∈ (0, ε0] such that 2λ(Ly + αL/ε −min(m, 0)) 6 1. Then there exist Ā > 0 and
η, δ̄ > 0 such that for any C ⊂ Rd convex and compact with 0 ∈ C and B(0, RC/2) ⊂ C ⊂ B(0, RC)
and δ ∈ (0, δ̄] we have

‖πε,δ − πC
ε,δ‖TV 6 Ā exp[−ηRC] ,

where πε,δ is the invariant measure of Rε,δ and πC
ε,δ is the invariant measure of Qε,δ.

Proof. The proof is postponed to Appendix C.5.

5.3 Posterior approximation
We consider the following general regularity assumption.

H6 (α). There exist κ > 0, β > 0 and q : Rd → (0,+∞) such that
∫

Rd q(x̃)dx̃ = 1, ‖q‖∞ < +∞
and for almost every x ∈ Rd,

∫
Rd |p(x̃)− p(x− x̃)| qmin(1−1/α,0)(x̃)dx̃ 6 eκ(1+‖x‖2) ‖x‖β.

In the case where α > 1, H6(α) is equivalent to the following assumption: there exist κ > 0
and β > 0 such that for almost every x ∈ Rd, ‖µ− (τx)#µ‖TV 6 eκ(1+‖x‖2) ‖x‖β, where we
recall that µ is the probability distribution with density with respect to the Lebesgue measure
proportional to p and that for any x̃ ∈ Rd, τx(x̃) = x̃ − x. Note that since p ∈ L1(Rd) we have
limx→0 ‖µ− (τx)#µ‖TV = 0. In H6(α) for α < 1 we assume more regularity for x 7→ (τx)#µ in
total variation in order to obtain explicit bounds between πε and π.

In the following proposition we provide easy-to-check conditions on the density of the prior
distribution µ so that H6(α) holds.

Proposition 19. Assume that there exists U : Rd → R such that for any x ∈ Rd, p(x) =
e−U(x)/

∫
Rd e−U(x̃)dx̃. Assume that U is γ-Hölder, i.e. there exists Cγ > 0 such that for any

x1, x2 ∈ Rd, i.e. ‖U(x1)− U(x2)‖ 6 Cγ ‖x1 − x2‖γ . Then H6(α) is satisfied for α > 1. In
addition, assume that γ 6 2 and that there exist c1, $ > 0 and c2 ∈ R such that for any x ∈ Rd,
U(x) > c1 ‖x‖$ + c2 then H6(α) holds for any α > 0.

Proof. The proof is postponed to Appendix D.1.

Under H6(α) we establish the following result which ensures that πε is close to π in total
variation for small values of ε.

Proposition 20. Assume H1 then the following hold:

(a) If α = 1, then limε→0 ‖πε − π‖TV = 0 .

(b) Assume that ‖p‖∞ < +∞ then for any α > 1, limε→0 ‖πε − π‖TV = 0.

(c) Assume that ‖p‖∞ < +∞ and H6(α) then there exist ε1 > 0 and A0 > 0 such that for
any ε ∈ (0, ε1] we have ‖πε − π‖TV 6 A0ε

β min(α,1)/2.

Proof. The proof is postponed to Appendix D.2.
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Note that a related result in the case where p(x) = e−U(x)/
∫

Rd e−U(x̃)dx̃ with U Lipschitz
continuous and α = 1 can be found in [86, Corollary 1] with explicit dependency with respect
to the dimension d. However, note that Proposition 20 differs from [86, Corollary 1] since
the Gaussian smoothing approximation is applied to the prior distribution and the estimate is
given on the posterior distribution in Proposition 20, whereas in [86, Corollary 1] the Gaussian
smoothing approximation is applied to the posterior distribution and the estimate is given on
the posterior distribution as well.

The following proposition is an extension of Proposition 13 and Proposition 16. The main
difference is that the approximation is expressed with respect to the true posterior π and not πε
for some value ε > 0. Let ε1 > 0 be given by Proposition 20.

Proposition 21. Assume H1, H2, H3, H4 and H5. Let α > 0 and assume that for any
ε ∈ (0,min(ε0, ε1)],

∫
Rd(1 + ‖x̃‖4)(pαε + pα)(x̃)dx̃ < +∞ and H6(α). Then there exists C0 > 0

such that for any ε > 0 and λ > 0 such that 2λ(Ly + (α/ε) max(L, 1 + Kε/ε)−min(m, 0)) 6 1 and
δ̄ = (1/3)(Ly + αL/ε + 1/λ)−1, there exists C1,ε > 0 such that for any C convex compact with
B(0, RC) ⊂ C and RC > 0, there exists C2,ε,C > 0 such that for any h : Rd → R measurable with
supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)dπ(x̃)
∣∣∣∣∣

6
{
C0ε

β min(α,1)/4 + C1,εR
−1
C + C2,ε,C(δ1/2 + MR + exp[−R] + (nδ)−1)

}
(1 + ‖x‖4) .

In addition, if there exists m > 0 such that log(qy) is m-concave with m > 2(α/ε) max(L, 1 + Kε/ε)
and δ̄ = m(Ly + αL/ε)−2/2, then there exists C1,ε > 0 such that for any h : Rd → R measurable
with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫

Rd

h(x̃)dπ(x̃)
∣∣∣∣∣

6 C0ε
β min(α,1)/4 + C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) .

Proof. In the general case where log(qy) is not assumed to be m-concave with m > 0, the proof is
completed upon combining Proposition 16, Proposition 20 and the fact that for any probability
distribution ν1, ν2, ‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V 2] + ν2[V 2])1/2. The proof is similar in the
case where log(qy) is m-concave upon replacing Proposition 16 by Proposition 13.

5.4 Convergence of PnP-SGD
We now turn to the proof of convergence of PnP-SGD. We recall that PnP-SGD is given by the
following recursion: X0 ∈ Rd and for any k ∈ N

Xk+1 = Xk + δk(bε(Xk) + Zk+1) ,
bε(x) = ∇ log(qy(x)) + α(Dε(x)− x)/ε ,

where (δk)k∈N ∈ (R+)N is a family of step-sizes, α, ε > 0 are hyperparameters of the algorithm
and {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and identity co-
variance matrix. We recall that the sequences (Xk)k∈N and (Zk)k∈N are defined on an underlying
probability space (Ω,F ,P).
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Note that contrary to (39), we do not consider an additive term of the form x 7→ (x−ΠC(x))/λ
which ensures the stability of the numerical scheme. As a result, our asymptotic estimates are
only valid for sequences which remain in a compact set K, which is a classical assumption in
stochastic approximation [80, 33, 32, 61]. Under tighter conditions on x 7→ log((dπε/dLeb)(x))
this limitation can be circumvented using the global asymptotic results of [80, Theorem A1.1].
We leave this analysis for future work.

In what follows, we show that the asymptotic bias of PnP-SGD is controlled by {MR : R > 0}
using recent

Proposition 22. Let α, ε > 0. Assume H1, H3, that log(qy) is real-analytic and that limk→+∞ δk =
0,
∑
k∈N δk = +∞ and

∑
k∈N δ

2
k < +∞. Let R > 0, K ⊂ B(0, R) be a compact set, X0 ∈ Rd and

Aε,K ∈ F given by

Aε,K = {ω ∈ Ω : there exists k0 ∈ N such that for any k > k0, Xk(ω) ∈ K.} .

Then there exist Cε,K > 0 and rε,K ∈ (0, 1) such that lim supk→+∞ d(Xk(ω),Sε,K) 6 Cε,KMrε,K
R

for any ω ∈ Aε,K, with Sε,K = {x ∈ K : ∇ log(dπε/dLeb)(x) = 0}, where (dπε/dLeb) is given in
(21).

Proof. The proof is postponed to Appendix E.1.

Finally we analyse the behavior of the sets (Sε,K)ε>0 in the case where ε→ 0. More precisely,
we show that each cluster point (in the sense of the Hausdorff distance) of the sequences of sets
(Sεn,K)n∈N with limn→+∞ εn = 0 is contained in the set of stationary points of log(dπ/dLeb).

Denote E the set of sequences (εn)n∈N such that for any n ∈ N, εn > 0 and limn→+∞ εn = 0.
For any sequence e = (εn)n∈N ∈ E denote Te,K the set of cluster points of (Sεn,K)n∈N with respect
to the Haussdorff distance on K, dK defined in (22). We also define TK =

⋃
e∈E Te,K, i.e. the

collection of the cluster points for sequences (εn)n∈N such that limn→+∞ εn = 0. Finally, we
define S?K =

⋃
S∈TK

S the union of all the cluster points.
In what follows, we show that S?K is a subset of the stationary points of log(dπ/dLeb).

Proposition 23. Assume H1, H3 and that there exists U : Rd → R+ such that for any x ∈ Rd,
p(x) = e−U(x)/

∫
Rd e−U(x̃)dx̃. Assume that U ∈ C1(Rd,R) and that there exists N > 0 such that

for any x1, x2 ∈ Rd

|U(x1)− U(x2)| 6 N ‖x1 − x2‖ , ‖∇U(x1)−∇U(x2)‖ 6 N ‖x1 − x2‖ .

Then for any compact set K, S?K ⊂ SK with SK = {x ∈ K : ∇ log(dπ/dLeb)(x) = 0} with
(dπ/dLeb) given in (20).

Proof. The proof is postponed to Appendix E.2.

6 Conclusion
This paper presented theory, methods, and computation algorithms for performing Bayesian
inference with Plug & Play priors. This mathematical and computational framework is rooted in
the Bayesian M-complete paradigm and adopts the view that Plug & Play models approximate
a regularised oracle model. We established clear conditions ensuring that the involved models
and quantities of interest are well defined and well posed. Following on from this, we studied
three Bayesian computation algorithms related to biased approximations of a Langevin diffusion
process, for which we provide detailed convergence guarantees under easily verifiable and realistic
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conditions. For example, our theory does not require the denoising algorithms representing the
prior to be gradient or proximal operators. We also studied the estimation error involved in
using these algorithms and models instead of the oracle model, which is decision-theoretically
optimal but intractable. To the best of our knowledge, this is the first Bayesian Plug & Play
framework with this level of insight and guarantees on the delivered solutions. We illustrated the
proposed framework with three Bayesian image restoration experiments - deblurring, inpainting,
and denoising - where we computed point estimates as well as uncertainty visualisation and
quantification analyses.

In future work, we would like to continue our theoretical and empirical investigation of
Bayesian Plug & Play models, methods and algorithms. From a modelling viewpoint, it would
be interesting to consider other neural network based priors such as the generative ones used in
[14] or the autoencoder-based priors in [44], as well as to generalise the Gaussian smoothing to
other smoothings and investigate their properties in the context of Bayesian inverse problems.
With regards to Bayesian analysis, it would be important to investigate the frequentist accuracy
of Plug & Play models, as well as the adoption of robust Bayesian techniques in order to perform
inference directly w.r.t. to the oracle model [89]. From a Bayesian computation viewpoint, a
priority is to develop accelerated computation algorithms similar to [67]. Lastly, with regards to
experimental work, we intend to study the application of this framework to uncertainty quan-
tification problems, e.g., in the context of medical imaging.
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A Organization of the appendix
In this appendix we gather the proofs of the main document. We first derive technical results in
Appendix B. Proofs of Section 5.2 are presented in Appendix C. Proofs of Section 5.3 are given
in Appendix D. Finally, the proofs of Section 5.4 can be found in Appendix E.

B Technical results
In this section, we gather technical results which will be used throughout our analysis. Let
b ∈ C(Rd,Rd) such that for any x ∈ Rd, the following Stochastic Differential Equation admits a
unique strong solution

dXt = b(Xt)dt+
√

2dBt , (33)
where (Bt)t>0 is a d-dimensional Brownian motion and X0 = x. In this case, (33) defines a
Markov semi-group (Pt)t>0 for any x ∈ Rd and A ∈ B(Rd) by Pt(x,A) = P(Xt ∈ A) where
(Xt)t>0 is the solution of (33) with X0 = x. Consider now the generator of (Pt)t>0, defined for
any f ∈ C2(Rd,R) by

Af = 〈∇f, b(x)〉+ ∆f .
We say that a Markov semi-group (Pt)t>0 on Rd × B(Rd) with extended infinitesimal generator
(A,D(A)) (see e.g. [62] for the definition of (A,D(A))) satisfies a continuous drift condition
Dc(W, ζ, β) if there exist ζ > 0, β > 0 and a measurable function W : Rd → [1,+∞) with
W ∈ D(A) such that for all x ∈ Rd

AW (x) 6 −ζW (x) + β .

Similarly, we consider the Markov chain (Xk)k∈N given by the following recursion for any
k ∈ N and x ∈ Rd

Xk+1 = Xk + γb(Xk) +
√

2γZk ,
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with X0 = x, γ > 0 and {Zk : k ∈ N} a family of i.i.d Gaussian random variables with zero mean
and identity covariance matrix. We define its associated Markov kernel Rγ : Rd ×B(Rd)→ [0, 1]
as follows for any x ∈ Rd and A ∈ B(Rd)

Rγ(x,A) =
∫

Rd

1A(x+ γb(x) +
√

2γz) exp[−‖z‖2 /2]dz .

We say that Rγ satisfies a discrete drift condition Dd(W,λ, c) if there exist λ ∈ [0, 1), c > 0 and
a measurable function W : Rd → [1,+∞) such that for all x ∈ Rd

RγW (x) 6 λW (x) + c .

The following two lemmas are classical, see for instance [17, Lemma 18, Lemma 19]. We
recall these results and their proofs for the sake of completeness.

Lemma 24. Assume that there exist L, c > 0 and m > 0 such that for any x1, x2 ∈ Rd we have

〈b(x1), x1〉 6 −m ‖x1‖2 + c , ‖b(x1)− b(x2)‖ 6 L ‖x1 − x2‖ . (34)

Let γ̄ = m/L2. Then the following results hold:

(a) For any $ ∈ N∗ there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄], Rγ

satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = 1 + ‖x‖2$.

(b) For any $ > 0, there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄], Rγ

satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = exp[$
√

1 + ‖x‖2].

Proof. We divide the proof into two parts.

(a) Let $ ∈ N∗ and γ ∈ (0, γ̄] with γ̄ = m/(4L2). Let Tγ(x) = x − γb(x). In the sequel, for
any k ∈ {1, . . . , $}, c, c̃k > 0 and λ, λ̃k ∈ [0, 1) are constants independent of γ which may take
different values at each appearance. Let ε ∈ (0, 1/2). Using (34), the fact that for any a, b > 0,
(a+b)2 6 (1+ε)a2 +(1+ε−1)b2 and the fact that for any a, b > 0 we have (a+b)1/2 6 a1/2 +b1/2,
we get that for any x ∈ Rd with ‖x‖ > (2c/(εm))1/2

‖Tγ(x)‖ =
(
‖x‖2 + 2γ〈b(x), x〉+ γ2 ‖b(x)‖2

)1/2
(35)

6
(

(1− 2γm + (1 + ε)γ2L2) ‖x‖2 + 2γc + (1 + ε−1)γ2 ‖b(0)‖2
)1/2

6
(

(1− γm + (1 + ε)γ2L2) ‖x‖2 + (1 + ε−1)γ2 ‖b(0)‖2
)1/2

6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ (1 + ε−1/2)γ ‖b(0)‖ .

Note that (2 − ε)m − (1 + ε)L2γ̄ < 0 since ε ∈ (0, 1/2) and γ̄ = m/L2. On the other hand using
(34) and the fact that for any a, b > 0 with a > b and ea− eb 6 ea(a− b), we have for any x ∈ Rd

with ‖x‖ 6 (2c/(εm))1/2

‖Tγ(x)‖ 6 (1 + γL) ‖x‖+ γ ‖b(0)‖
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖

+ (2c/(εm))1/2 {exp[γL]− exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2]
}

+ γ ‖b(0)‖
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ γ(2c/(εm))1/2 exp[γ̄L](L + 2m) + γ ‖b(0)‖ .

(36)
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Combining (35) and (36), there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄] and x ∈ Rd,

‖Tγ(x)‖ 6 λγ ‖x‖+ γc . (37)

Note that using (37), for any k ∈ {1, . . . , 2$} there exist λ̃k ∈ (0, 1) and c̃k > 0 such that

‖Tγ(x)‖k 6 {λ̃γk ‖x‖+ γc̃k}k (38)
6 λ̃γkk ‖x‖

k + γ2k max(c̃k, 1)k max(γ̄, 1)k−1{1 + ‖x‖k−1}

6 λ̃γk ‖x‖
k + c̃kγ{1 + ‖x‖k−1} 6 (1 + ‖x‖k)(1 + c̃kγ) .

Therefore, combining (38) and the Cauchy-Schwarz inequality we obtain that for any γ ∈ (0, γ̄]
and x ∈ Rd∫

Rd

(1 + ‖y‖2$)Rγ(x, dy) = 1 + E[(‖Tγ(x)‖2 + 2
√

2γ〈Tγ(x), Z〉+ 2γ ‖Z‖2)$]

= 1 +
$∑
k=0

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k) 2(3k−`)/2γ(k+`)/2E[〈Tγ(x), Z〉k−` ‖Z‖2`]

6 1 + ‖Tγ(x)‖2$

+ 23$/2
$∑
k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k)

γ(k+`)/2E[〈Tγ(x), Z〉k−` ‖Z‖2`]1{(1,0)}c(k, `)

6 1 + ‖Tγ(x)‖2$

+ γ23$/2
$∑
k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2$−k−` γ̄(k+`)/2−1E[‖Z‖k+`]1{(1,0)}c(k, `)

6 1 + λ̃γ2$ ‖x‖
2$ + c̃2$γ{1 + ‖x‖2$−1}

+ γ23$/222$ max(γ̄, 1)2$ sup
k∈{1,...,$}

{(1 + c̃kγ̄)E[‖Z‖k]}(1 + ‖x‖2$−1)

6 1 + λγ ‖x‖2$ + γc(1 + ‖x‖2$−1)
6 λγ/2(1 + ‖x‖2$) + γc(1 + ‖x‖2$−1) + λγ(1 + ‖x‖2$)− λγ/2(1 + ‖x‖2$) .

Using that λγ−λγ/2 6 − log(1/λ)γλγ/2/2, we get that for any γ ∈ (0, γ̄], Rγ satisfies Dd(W,λγ , cγ).
We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0 satisfies Dc(W, ζ, β). First, for
any x ∈ Rd we have

∇W (x) = 2$ ‖x‖2($−1)
x , ∆W (x) = 2$(2$ − 1) ‖x‖2($−1)

Combining this result, the Cauchy-Schwarz inequality and (34), we obtain that for any x ∈ Rd

AW (x) = 〈∇W (x), b(x)〉+ ∆W (x)

6 −2m$ ‖x‖2$ + 2$c ‖x‖2$−1 + 2$(2$ − 1) ‖x‖2($−1)

6 −m$ ‖x‖2$ + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}

6 −m$W (x) + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}+ m$ .

Hence letting ζ = m$ and β = supx∈Rd{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}+ m$, we obtain
that (Pt)t>0 satisfies Dc(W, ζ, β).
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(b) First, we show that for any γ ∈ (0, γ̄], Rγ satisfies Dd(Φ, λγ , c), where Φ(x) = (1+‖x‖2)1/2 =
W

1/2
2 (x) and W2(x) = 1 + ‖x‖2. Using the first part of the proof, there exist λ0 ∈ [0, 1) and

c0 > 0 such that for any γ ∈ (0, γ̄] with γ̄ = m/(4L2) we have that Rγ satisfies Dd(W2, λ
γ
0 , c0γ).

Using Jensen’s inequality we obtain that for any γ ∈ (0, γ̄] and x ∈ Rd with ‖x‖ > R and
R = max(1, ((2c0λ−γ̄0 )/ log(1/λ0))1/2) we have

RγΦ(x) 6 (RγW2(x))1/2 6 exp[(γ/2){log(λ0) + λ−γ̄0 c0R
−2}]Φ(x) 6 λ

γ/4
0 Φ(x) .

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for any
x ∈ Rd with ‖x‖ 6 R

RγΦ(x) 6 (RγW2(x))1/2 6 exp[(γ/2){log(λ0) + λ−γ̄0 c0}]Φ(x)
6 exp[(γ/2){log(λ0) + λ−γ̄0 c0R

−2}]Φ(x)
+ λ−γ̄0 c0(1−R−2) exp[(γ/2){log(λ0) + λ−γ̄0 c0R

−2}]Φ(R) .

Hence, there exist λ1 ∈ [0, 1) and c1 > 0 such that for any γ ∈ (0, γ̄] we have that Rγ satisfies
Dd($Φ, λγ1 , c1γ). Now let W (x) = exp[Φ(x)]. Using the logarithmic Sobolev inequality [19,
Theorem 5.5] we get for any γ ∈ (0, γ̄] and x ∈ Rd with ‖x‖ > R and R = 1+($2+c1)−1 log(1/λ1)

RγW (x) 6 exp[Rγ$Φ(x) + γ$2] 6 exp[−(1− λγ1)Φ(x) + γ($2 + c1)]W (x)
6 exp[−γ log(1/λ1)R+ γ($2 + c1)]W (x) 6 λγ1W (x) .

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for any
x ∈ Rd with ‖x‖ 6 R

RγW (x) 6 exp[Rγ$Φ(x) + γ] 6 exp[γ($2 + c1)]W (x)
6 λγ1W (x) + γ exp[γ̄($2 + c1)]((1 + c1) + log(1/λ1))W (R) .

Therefore, there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄] we have that Rγ satisfies
Dd(W,λγ , cγ). We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0 satisfies
Dc(W, ζ, β). First, for any x ∈ Rd we have

∇W (x) = $xΦ−1(x)W (x) , ∆W (x) = {$Φ−1(x)(1− ‖x‖2 /Φ2(x)) +$2 ‖x‖2 /Φ2(x)}W (x) .

Therefore using (34) we obtain that for any x ∈ Rd with ‖x‖ >
√

2(1 + (c+ 1 +$)/m)

AW (x) 6 $(−mΦ−1(x) ‖x‖2 + c+ 1 +$)W (x) 6 −(m/2)W (x) ,

which concludes the proof.

Lemma 25. Assume that there exist λ ∈ (0, 1], c, β > 0, ζ, γ̄ > 0 such that for any γ ∈ (0, γ̄],
Rγ satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β). Then, there exists C > 0 such that
for any x ∈ Rd, t > 0 and k ∈ N∗ we have

Rk
γW (x) + PtW (x) 6 CW (x) .

Proof. There exists Cc > 0 such that for any x ∈ Rd and t > 0, PtW (x) 6 CcW (x) using [15,
Lemma 25-(b)]. Using that for any t > 0, (1 − e−t)−1 6 1 + 1/t we get that for any γ ∈ (0, γ̄],
x ∈ Rd and k ∈ N∗

Rk
γW (x) 6W (x) + cγ

∑
k∈N

λkγ 6 (1 + c(γ̄ + log(1/λ)))W (x) ,

which concludes the proof upon letting C = Cc + 1 + c(γ̄ + log(1/λ).
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We conclude this section with the proof of Proposition 9.

Proof. Let y1, y2 ∈ K with K a compact set. Let y0 ∈ K and DK be the diameter of K. Using
Lemma 29 we get that

‖πy1 − πy2‖TV 6 2cy1

∫
Rd

|qy1(x)− qy2(x)| p(x)dx ,

with cy1 =
∫

Rd qy1(x)p(x)dx. Combining this result with the fact that for any a, b ∈ R we have∣∣ea − eb
∣∣ 6 |a− b|max(ea, eb) we get that

‖πy1 − πy2‖TV 6 2cy1

∫
Rd

|qy1(x)− qy2(x)| p(x)dx

6 2cy1

∫
Rd

(Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖

× exp[(2Φ1(x) + Φ2(y1) + Φ2(y0) + Φ2(y2))DK]p(x)dx
6 2cy1(Φ2(y1) + Φ2(y2)) exp[Φ2(y1) + Φ2(y0) + Φ2(y2)]

×
∫

Rd

(1 + Φ1(x)) exp[2DKΦ1(x)]p(x)dx× ‖y1 − y2‖ ,

which concludes the proof.

C Proofs of Section 5.2
We recall that the Markov chain (Xk)k∈N is given by

Xk+1 = Xk + δbε(Xk) +
√

2δZk+1 , (39)
bε(x) = ∇ log(qy(x)) + α(Dε(x)− x)/ε+ (x−ΠC(x))/λ ,

where δ > 0 is a step-size, α, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ Rd is a closed
convex set with 0 ∈ C, ΠC is the projection on C and {Zk : k ∈ N} a family of i.i.d. Gaussian
random variables with zero mean and identity covariance matrix.

C.1 Proof of Proposition 10
Let R > 0. Let X and Z be random variables with distribution µ and zero mean Gaussian with
identity covariance matrix. Let Xε = X + ε1/2Z. We recall that the distributions of X and Xε

have density with respect to the Lebesgue measure given by p and pε respectively. In addition,
the conditional density of X given Xε is given by gε. By definition D?

ε(Xε) = E[X|Xε] and
therefore we have

`ε(w?) = E
[
‖X − fw?(Xε)‖2

]
= E

[
‖X −D?

ε(Xε)‖2
]

+ 2E [〈X −D?
ε(Xε), D?

ε(Xε)− fw?(Xε)〉] + E
[
‖fw?(Xε)−D?

ε(Xε)‖2
]

= E
[
‖X −D?

ε(Xε)‖2
]

+ E
[
‖fw?(Xε)−D?

ε(Xε)‖2
]

= `?ε + E
[
‖fw?(Xε)−D?

ε(Xε)‖2
]
.

Combining this result, the condition that `ε(w?) 6 `?ε +η and the Cauchy-Schwarz inequality we
get that

E[‖fw?(Xε)−D?
ε(Xε)‖] 6

√
η . (40)
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Since fw? and D?
ε are locally Lipschitz, there exists CR > 0 such that for any x1, x2 ∈ B(0, 2R)

we have
|‖fw?(x2)−D?

ε(x2)‖ − ‖fw?(x1)−D?
ε(x1)‖| 6 CR ‖x2 − x1‖ . (41)

Assume that supx̃∈B(0,R) ‖fw?(x̃)−D?
ε(x̃)‖ > η$ with $ = (2d+ 2)−1 and denote xR ∈ B(0, R)

such that we have supx̃∈B(0,R) ‖fw?(x̃)−D?
ε(x)‖ = ‖fw?(xR)−D?

ε(xR)‖. Using (41) we have

E[‖fw?(Xε)−D?
ε(Xε)‖] >

∫
B(0,2R)∩B(xR,C

−1
R
η$)
‖fw?(x̃)−D?

ε(x̃)‖pε(x̃)dx̃

> (‖fw?(xR)−D?
ε(xR)‖ − η$)

∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃ .

Combining this result and (40) we obtain that

‖fw?(xR)−D?
ε(xR)‖ 6 η1/2

(∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃
)−1

+ η$ ,

Setting MR = η1/2(
∫

B(0,2R)∩B(xR,C
−1
R
η$) pε(x̃)dx̃)−1 + η$ concludes the first part of the proof.

Denote vd the volume of the unit d-dimensional ball. We have that Leb(B(xR, C−1
R η$)) =

C−dR η$dvd. Using the Fubini theorem, the Lebesgue differentiation theorem [13, Theorem
5.6.2], the dominated convergence theorem and the fact that for η ∈ (0, (CRR)1/$], B(0, 2R) ∩
B(xR, C−1

R η$) = B(xR, C−1
R η$) we get that

lim
η→0

Leb(B(xR, C−1
R η$))−1

∫
Rd

1B(xR,C
−1
R
η$)∩B(xR,C

−1
R
η$)(x)pε(x)dx

= lim
η→0

∫
Rd

|B(xR, C−1
R η$)|−1(2πε)−d/2

∫
Rd

1B(xR,C
−1
R
η$)(x) exp[−‖x− x̃‖2/(2ε)]p(x̃)dxdx̃

=
∫

Rd

(2πε)−d/2 exp[−‖xR − x̃‖2/(2ε)]p(x̃)dxdx̃ = pε(xR) > 0 .

Using this result we have,

lim sup
η→0

η−$MR = 1 + lim sup
η→0

η1/2−$(d+1)η$d

(∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃
)−1

= 1 + CdRvdp
−1
ε (xR) < +∞ ,

which concludes the proof.

C.2 Proof of Proposition 11, Proposition 14
We divide this section into two parts. First, we prove the general case where log(qy) is not
assumed to be strongly concave but only satisfying a one-sided Lipschitz condition, i.e. Propo-
sition 14. Then we turn to the proof of Proposition 11.

(a) Let λ > 0 such that 2λ(Ly + αL/ε) 6 1 and δ̄ = (1/3)(Ly + αL/ε + 1/λ)−1. Let C be a
compact convex set with 0 ∈ C. Using H3, (39) and that Id−ΠC is non-expansive we have for
any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ .

49



Denote RC = sup{‖x1 − x2‖ : x1, x2 ∈ C}. Using (39), the Cauchy-Schwarz inequality and that
2λ(αL/ε− m) 6 1 we have for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 (−m + αL/ε) ‖x1 − x2‖2 − ‖x1 − x2‖2 /λ+RC ‖x1 − x2‖ /λ

6 −‖x1 − x2‖2 /(2λ) +RC ‖x1 − x2‖ /λ .

Hence, for any x1, x2 ∈ Rd with ‖x1 − x2‖ > 4RC we obtain that 〈bε(x1) − bε(x2), x1 − x2〉 6
−‖x1 − x2‖2/(4λ). We also have that for any x ∈ Rd

〈bε(x), x〉 6 −‖x‖2 /(4λ) + sup
x̃∈Rd

{
(RC/λ+ ‖b(0)‖) ‖x̃‖ − ‖x̃‖2 /(4λ)

}
.

We conclude the proof of Proposition 14 upon using Lemma 24, Lemma 25, [15, Corollary 2]
with γ̄ ← (4λ)−1(Ly+αL/ε+1/λ)−2 > δ̄ and the fact that for any probability distribution ν1, ν2,

‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V 2] + ν2[V 2])1/2 . (42)

(b) Using that log(qy) is m-concave with 2αL/(mε) 6 1, we obtain that for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 −m ‖x1 − x2‖2 /2 ,
‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ .

This concludes the proof of Proposition 11 upon using [15, Corollary 2] with γ̄ ← m(Ly +
αL/ε)−2 > δ̄ and (42).

C.3 Proof of Proposition 12, Proposition 15
Before proving Proposition 12 and Proposition 15, we show the following lemma which is a
straightforward consequence of Girsanov’s theorem [58, Theorem 7.7]. A similar version of this
lemma can be found in the proof of [37, Proposition 2].

Lemma 26. Let T > 0, b1, b2 : [0,+∞) × Rd → Rd measurable such that for any i ∈ {1, 2}
and x ∈ Rd, dX(i)

t = bi(t,X(i)
t )dt +

√
2dBt admits a unique strong solution with X(i)

0 = x

with Markov semigroup (P(i)
t )t>0 and where (Bt)t>0 is a d-dimensional Brownian motion. In

addition, assume that for any x ∈ Rd and P(
∫ T

0 {‖bi(t,X
(i)
t )‖2 + ‖bi(t,Bt)‖2}dt < +∞) = 1. Let

V : Rd → [0,+∞) measurable, then for any x ∈ Rd we have∥∥∥δxP(1)
T − δxP(2)

T

∥∥∥
V

6
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2

(∫ T

0
E
[
‖b1(t,X(1)

t )− b2(t,X(1)
t )‖2

]
dt
)1/2

.

Proof. Let T > 0 and x ∈ Rd. For any i ∈ {1, 2}, denote µx(i) the distribution of (X(i)
t )t∈[0,T ]

on the Wiener space (C([0, T ] ,R),B(C([0, T ] ,R))) with X(i)
0 = x. Similarly denote µxB the

distribution of (Bt)t∈[0,T ] witgh B0 = x. Using the generalized Pinsker inequality [37, Lemma
24] and the transfer theorem [54, Theorem 4.1] we get that∥∥∥δxP(1)

T − δxP(2)
T

∥∥∥
V
6
√

2
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2

KL1/2(µ(1)|µ(2)) .
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Since for any i ∈ {1, 2} we have P(
∫ T

0 {‖bi(X
(i)
t )‖2 + ‖bi(Bt)‖2}dt < +∞) = 1, we can apply

Girsanov’s theorem [58, Theorem 7.7] and µB-almost surely for any w ∈ C([0, T ] ,R) we get

(dµx(1)/dµxB)((wt)t∈[0,T ]) = exp
[

(1/2)
∫ T

0
〈b1(wt),dwt〉 − (1/4)

∫ T

0
‖b1(wt)‖2 dt

]
,

(dµxB/dµx(2))((wt)t∈[0,T ]) = exp
[
−(1/2)

∫ T

0
〈b2(wt),dwt〉+ (1/4)

∫ T

0
‖b2(wt)‖2 dt

]
.

Hence, we obtain that

KL(µx(1)|µ
x
(2)) = E

[
log((dµx(1)/dµx(2))(X

(1)
t ))

]
= (1/4)

∫ T

0
E

[∥∥∥b1(X(1)
t )− b2(X(2)

t )
∥∥∥2
]

dt ,

which concludes the proof.

In the following lemma, we show that under H4, ∇ log(pε) is Lipschitz continuous.

Lemma 27. Assume H4. Then for any x1, x2 ∈ Rd we have

‖∇ log(pε(x1))−∇ log(pε(x2))‖ 6 (1 + Kε/ε) ‖x1 − x2‖ /ε .

Reciprocally, if there x 7→ ∇ log(pε(x)) is Lipschitz-continuous then H4.

Proof. Let ε > 0. We recall that for any x ∈ Rd we have

pε(x) =
∫

Rd

exp[−‖x− x̃‖2 /(2ε)]p(x̃)dx̃ .

Using the dominated convergence theorem we obtain that log(pε) ∈ C∞(Rd,R). In particular we
have for any x ∈ Rd

∇2 log(pε(x)) = −ε−1 Id +ε−2
∫

Rd

(x− x̃)⊗2gε(x̃|x)dx̃− ε−2
(∫

Rd

(x− x̃)gε(x̃|x)dx̃
)⊗2

(43)

= −ε−1 Id +ε−2
∫

Rd

(
x̃−

∫
Rd

x̃′gε(x̃′|x)dx̃′
)⊗2

gε(x̃|x)dx̃

Therefore, using H4 we obtain that for any x ∈ Rd we have

‖∇2 log(pε(x))‖2 6 ε−1 + ε−2Kε ,

which concludes the first part of the proof. Reciprocally, since x 7→ ∇ log(pε(x)) is Lipschitz-
continuous with constant K > 0 we get that for any basis vector (ei)i∈{1,...,d} we have that
e>i ∇2 log(pε(x))ei 6 K. Combining this result with (43), we get that

ε−2
∫

Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃′|x)dx̃′
∥∥∥∥2
gε(x̃|x)dx̃ 6 Kd+ ε−1d ,

which concludes the proof.

In what follows we prove Proposition 15. The proof of Proposition 12 is similar and left to
the reader.
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Proof of Proposition 15. Let λ > 0 such that 2λ(Ly + αL/ε− m) 6 1 and δ̄ = (1/3)(Ly + αL/ε+
1/λ)−1. We divide the proof into two parts. First, we show that for any C convex compact with
0 ∈ C there exists B1,C > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − π̃ε‖V 6 B1,C(δ1/2 + MR + exp[−R]) ,

with π̃ε given by
(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]qy(x)pαε (x) ,

Second, we show that there exists B0 > 0 such that for any C convex compact with 0 ∈ C

‖πε − π̃ε‖V 6 B0 diam−1/4(C) ,

which concludes the proof upon using the triangle inequality.

(a) Let C convex compact with 0 ∈ C. We introduce (X̄t)t>0 solution of the following Stochastic
Differential Equation (SDE): X̄0 = X0 and

dX̄t = b̄ε(X̄t)dt+
√

2dBt , (44)
b̄ε(x) = ∇ log(qy(x)) + α∇ log(pε(x)) + proxλ(ιC)(x) ,

with (Bt)t>0 a d-dimensional Brownian motion. b̄ε is Lipschitz continuous using Lemma 27, hence
this SDE admits a unique strong solution for any initial condition X0 with E[‖X0‖2] < +∞, see
[51, Chapter 5, Theorem 2.9]. We denote by (Pt,ε)t>0 the semigroup associated with the strong
solutions of (44). Similarly to the proof of Proposition 11, replacing [15, Corollary 2] by [15,
Corollary 22], there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that that for any x1, x2 ∈ Rd and t > 0

‖δx1Pt,ε − δx2Pt,ε‖V 6 ÃCρ̃
t
C(V 2(x1) + V 2(x2)) , (45)

W1(δx1Pt,ε, δx2Pt,ε) 6 ÃCρ̃
t
C ‖x1 − x2‖ .

Combining (45), Proposition 11, the fact that (P1(Rd),W1) is a complete metric space and the
Picard fixed point theorem we obtain that for any δ ∈ (0, δ̄] there exist πε,δ, π̃ε ∈ P1(Rd) such
that πε,δRε,δ,C = πε,δ and for any t > 0, π̃εPt,ε = π̃ε. Note that by [71, Theorem 2.1] we have
for any x ∈ Rd

(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]qy(x)pαε (x) ,

since proxλ(ιC) = ∇d2(·,C)/(2λ). Let f : Rd → R measurable and such that for any x ∈ Rd,
|f(x)| 6 V (x). Let m ∈ N∗ such that m > δ̄−1, x ∈ Rd and k ∈ N we have

∥∥∥δxRkm
ε,1/m[f ]− δxPkmkm,ε[f ]

∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=0

δxRjm
ε,1/m(Rm

ε,1/m − P1,ε)Pk−j−1,ε[f ]

∥∥∥∥∥∥ (46)

Using (45), Lemma 24 and Lemma 25 there exists Ba > 0 such that for any x ∈ Rd and k ∈ N
we have

‖δxPk,ε,C[f ]− π̃ε[f ]‖ 6 Baρ̃
k
CV

2(x) . (47)

Let T = 1, b1(t, (wt)t∈[0,T ]) =
∑m−1
j=0 1[j/m,(j+1)/m)(t)bε(wjδ) and b2(t, (wt)t∈[0,T ] = b̄ε(wt). Let

X(1)
t and X(2)

t the unique strong solution of dXt = b(t, (Xt)t∈[0,1]) +
√

2Bt with X0 = x with
x ∈ Rd and b = b1, respectively b = b2. Note that (X(2)

t )t>0 = (X̄t)t>0 and (X(1)
k/m) = (Xk)k∈N.
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For any i ∈ {1, 2}, denote P(i)
t the Markov semigroup associated with X(i)

t . For any x ∈ Rd we
have ∥∥∥δxRm

ε,1/m,C − δxP1,ε,C

∥∥∥
TV

=
∥∥∥δxP(1)

1 − δxP(2)
1

∥∥∥
TV

. (48)

Using H3(R) and the fact that for any a, b > 0, (a + b)2 6 2(a2 + b2), we have for any t ∈
[j/m, (j + 1)/m), j ∈ {0, . . . ,m− 1} and (wt)t∈[0,1] ∈ C([0, 1] ,Rd)∥∥b1(t, (wt)t∈[0,1])− b2(t, (wt)t∈[0,1])

∥∥2 =
∥∥bε(wj/m)− b̄ε(wt)

∥∥2

6 2
∥∥bε(wj/m)− bε(wt)

∥∥2 + 2
∥∥b̄ε(wt)− bε(wt)∥∥2

6 2L2
b

∥∥wj/m − wt∥∥2 + 4α2M2
R/ε

2 + 4α21B(0,R)c(‖wt‖)/ε2 , (49)

where Lb is the Lipschitz constant associated with bε. In addition using Itô’s isometry we have
for any t ∈ [j/m, (j + 1)/m)

E[‖X(1)
t −X(1)

j/m‖
2] = 2E[‖

∫ t
j/m

dBt‖2] 6 2dδ . (50)

Finally, using Lemma 24, Lemma 25, the logarithmic Sobolev inequality [19, Theorem 5.5], the
Cauchy-Schwarz inequality and the Markov inequality, there exists B̃b > 0 such that for any
t > 0 and x ∈ Rd

P(‖X(1)
t ‖ > R) 6 exp[−2R]E

[
exp[2‖X(1)

t ‖
]

6 exp[−2R]E1/2
[
exp

[
4
√

2‖
∫ t
`t/m

dBt‖
]]

E1/2 [exp[4‖X`t‖]

6 B̃b exp[−2R] exp[2Φ(x)] ,

where `t = btmc and Φ(x) =
√

1 + ‖x‖2. Combining this result, (49), (48), (50) and Lemma 26,
we obtain that there exists Bb > 0 such that for any x ∈ Rd and R > 0∥∥∥δxRm

1/m,C − δxP1,C

∥∥∥
V
6 2Bb(

√
δ + MR + exp[−R])(1 + ‖x‖4) exp[Φ(x)]

6 48Bb(
√
δ + MR + exp[−R]) exp[2Φ(x)] ,

Combining this result and (47) we obtain that for any k ∈ N, j ∈ {0, . . . , k − 1}, x ∈ Rd and
R > 0 we have∣∣∣(δxRm

1/m,C − δxP1,C)Pk−j−1,C[f ]
∣∣∣ 6 BaBb(

√
δ + MR + exp[−R])ρ̃k−j−1

C exp[2Φ(x)] .

Using this result, Lemma 24, Lemma 25 and (46) we obtain that there exists Bc > 0 such that
for any m ∈ N∗ with m−1 > δ̄∥∥πε,1/m,C − π̃ε∥∥V 6 lim sup

k→+∞

∥∥∥δ0Rkm
ε,1/m,C − δ0Pkmkm,ε,C

∥∥∥
V
6 Bc(

√
δ + MR + exp[−R]) .

The proof in the general case where δ ∈ (0, δ̄] is similar and we obtain that there exists Bc > 0
such that for any δ ∈ (0, δ̄]

‖πε,δ − π̃ε‖V 6 Bc(
√
δ + MR + exp[−R]) .
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(b) For any C compact convex with 0 ∈ C we define π̃ε and ρε,C such that for any x ∈ Rd

ρε,C(x) = exp[−d2(x,C)/(2λ)]qy(x)pαε (x) , (dπ̃ε/dLeb)(x) = ρε,C(x)
/∫

Rd

ρε,C(x̃)dx̃ .

Similarly, define ρε and πε such that for any x ∈ Rd

ρε(x) = qy(x)pαε (x) , (dπε/dLeb)(x) = ρε(x)
/∫

Rd

ρε(x̃)dx̃ .

Since for any x ∈ Rd, ρε,C(x) 6 ρε(x) we get
∫

Rd ρε,C(x̃)dx̃ 6
∫

Rd ρε(x̃)dx̃. Hence we obtain using
the Cauchy-Schwarz inequality and the Markov inequality

KL(πε|πC) 6
∫

Rd

log(ρε(x̃)/ρε,C(x̃))dπε(x̃)

6
∫

Cc
‖x̃‖2 dπε(x̃) 6 P1/2 (X /∈ C) E1/2[‖X‖4] 6 E[‖X‖4]R−2

C .

with X a random variable with distribution πε. We conclude using the generalized Pinsker
inequality [37, Lemma 24].

C.4 Proof of Proposition 17
Let α, λ, ε, δ̄ > 0, δ ∈ (0, δ̄] and C ⊂ Rd convex and compact with 0 ∈ C. For any x1, x2 ∈ Rd we
have

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ .

Denote (Xn, Yn)n∈N the Markov chain obtained using the coupling described in [15, Section 3]
with initial condition (x1, x2) ∈ C. Using [15, Corollary 7-(b)] we get that for any ` ∈ N

E
[
1∆c

Rd
(X(`+1)d1/δe, Y(`+1)d1/δe)

]
6 (1− β)E

[
1∆c

Rd
(X`d1/δe, Y`d1/δe)

]
, (51)

where ∆Rd = {(x, x) : x ∈ Rd} and β ∈ (0, 1) with

β = 2Φ{−(1 + δ̄)(1 + Ly + (αL/ε))diam(C)} ,

where Φ is the cumulative distribution function of the univariate Gaussian distribution with zero
mean and unit variance. In addition, using that the coupling is absorbing, we have that for any
k ∈ N,

E
[
1∆c

Rd
(Xk, Yk)

]
6 E

[
1∆c

Rd
(Xbk/d1/δecd1/δe, Ybk/d1/δecd1/δe)

]
,

Combining this result and (51), we get that for any k ∈ N∥∥δx1Qk
ε,δ − δx2Qk

ε,δ

∥∥
TV 6 E

[
1∆c

Rd
(Xk, Yk)

]
6 (1− β)bk/d1/δec .

Using that bk/d1/δec > kδ/(1 + δ)− 1 concludes the proof upon letting ρ̃C = (1− β)1/(1+δ̄) and
ÃC = (1− β)−1.
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C.5 Proof of Proposition 18
Let α, λ > 0, ε ∈ (0, ε0] such that 2λ(Ly+αL/ε−min(m, 0)) 6 1 and δ̄1 = (1/3)(Ly+αL/ε+1/λ)−1.
Recall that for any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ .

Using this result, the fact that for any x ∈ Rd, 〈bε(x), x〉 6 −m̃ ‖x‖2 + c and [36, Theorem 19.4.1]
there exist δ̄2 > 0, B̃ > 0 and ρ̃ ∈ (0, 1] such that for any δ ∈ (0, δ̄2], x ∈ Rd and k ∈ N∥∥δxRk

ε,δ − πε,δ
∥∥
V

+
∥∥δxQk

ε,δ − πC
ε,δ

∥∥
V
6 B̃ρ̃kδV (x) ,

with B̃ and ρ̃ which do not depend on R. In addition, using Lemma 24, for any k ∈ N and
δ ∈ (0, δ̄2] we have

Rk
ε,δV (x) 6 λ̃kδV (x) + c̃δ ,

with λ̃ ∈ [0, 1) and c̃ > 0 which do not depend on R > 0. For any δ ∈ (0, δ̄2] we have

λδ + cδ 6 λδ(1 + cδλ−δ̄2) 6 (λ exp[cλ−δ̄2 ])δ .

Let A = λ exp[cλ−δ̄2 ], we have that for any x ∈ Rd, Rε,δV (x) 6 AδV (x). Therefore we get
that (V (Xn)A−n)n∈N is a supermartingale. Hence using Doob maximal inequality and Markov
inequality we get that

P

(
sup

k∈{0,...,n}
‖Xk‖ > R

)
6 V (x)Anδ exp[−R] .

Therefore, we get that for any k ∈ N∥∥πε,δ − πC
ε,δ

∥∥
TV 6 (V (0) + c̃δ̄2)Akδ exp[−R] + B̃ρ̃kδV (0) .

We conclude upon letting k = br/(2 log(A)δ)c.

D Proofs of Section 5.3
D.1 Proof of Proposition 19
The first part of the proposition is straightforward. Using Pinsker’s inequality [19, Theorem
4.19] we have for any x ∈ Rd

‖µ− (τx)#µ‖2TV 6 2KL((τx)#µ|µ) 6 2
∫

Rd ‖U(x̃+ x)− U(x̃)‖ dµ(x̃) 6 2Cγ ‖x‖γ
.

For the second part of the proof, since there exist c1, $ > 0 and c2 ∈ R such that for any
x ∈ Rd, U(x) > c1 ‖x‖$ + c2 then for any k ∈ N∗ and α > 0,

∫
Rd(1 + ‖x‖)kp(x) < +∞. Let

q(x) = (1 + ‖x‖)−(d+1)/
∫

Rd(1 + ‖x̃‖)−(d+1)dx̃. Then using that for any t > 0, |et − 1| 6 |t| e|t|
we get that for any x ∈ Rd∫

Rd

|p(x̃)− p(x− x̃)| q1−1/α(x̃)dx̃

6 Cγ ‖x‖γ exp[Cγ ‖x‖γ ]
∫

Rd

(1 + ‖x̃‖)(d+1)(1/α−1)p(x̃)dx̃
(∫

Rd

(1 + ‖x̃‖)−(d+1)dx̃
)1−1/α

,

which concludes the proof.
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D.2 Proof of Proposition 20
First we show the following technical lemma.

Lemma 28. For any x, y > 0 and β > 0, (x+ y)β − xβ 6 2β(yβ + x(β−1)∧0y).

Proof. The result is straightforward if β ∈ (0, 1], since in this case (x+ y)β 6 xβ + yβ . Assume
that β > 1. If x = 0 the result holds. Now assume that x > 0. If y > x then (x+y)β−xβ 6 2βyβ .
Assume that y 6 x. Since f : t 7→ (1+t)β−1 is convex we obtain that for any t ∈ [0, 1], f(t) 6 2βt.
Using this result we have

(x+ y)β − xβ 6 xβf(y/x) 6 2βxβ−1y ,

which concludes the proof.

Before proving Proposition 20 we state the following lemma.

Lemma 29. Let π1, π2 two probability measures and q1, q2 : Rd → [0,+∞) two measurables
functions such that for any x ∈ Rd, (dπi/dLeb)(x) = qi(x)/ci with ci =

∫
Rd qi(x̃)dx̃. Denote

D =
∫

Rd |q1(x)− q2(x)|. We have

‖π1 − π2‖TV 6 2c−1
1 D .

Proof. We have

‖π1 − π2‖TV =
∫

Rd

∣∣∣∣q1(x)
c1
− q2(x)

c2

∣∣∣∣ dx 6 c−1
1 (D + |c2 − c1|) ,

which concludes the proof using that |c2 − c1| 6 D.

We now give the proof of Proposition 20.

Proof. Let α > 0. For any ε > 0 and x ∈ Rd denote p̄(x) = qy(x)pα(x) and p̄ε(x) = qy(x)pαε (x),
where we recall that for any x ∈ Rd

pε(x) = (2πε)−d/2
∫

Rd

p(x̃) exp[−‖x− x̃‖2 /(2ε)]dx̃ .

For any ε > 0 we have∫
Rd

|p̄(x)− p̄ε(x)|dx 6 ‖qy‖∞
∫

Rd

|pα(x)− pαε (x)|dx .

Using Lemma 28 and that ‖pε‖∞ 6 ‖p‖∞ < +∞, we have for any ε > 0 and x ∈ Rd∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖qy‖∞ (1 + ‖p‖(α−1)∧0
∞ ) (52)

×
{∫

Rd

|p(x)− pε(x)|dx+
∫

Rd

|p(x)− pε(x)|α dx
}
.

Using Jensen’s inequality, for any q : Rd → (0,+∞) with
∫

Rd q(x̃)dx̃ = 1 we have∫
Rd

|p(x)− pε(x)|α dx 6

(∫
Rd

∣∣∣p(x)− pε(x)q1−1/α(x)
∣∣∣dx)α .
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Combining this result with (52) we get that∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖qy‖∞ (1 + ‖p‖(α−1)∧0
∞ )

×
{∫

Rd

|p(x)− pε(x)|dx+
(∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

.

If α > 1, choosing q such that ‖q‖∞ 6 1 we get∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖qy‖∞ (1 + ‖p‖(α−1)∧0
∞ )

×
{∫

Rd

|p(x)− pε(x)|dx+
(∫

Rd

|p(x)− pε(x)| (x)dx
)α}

. (53)

Hence since p ∈ L1(Rd) and {x̃ 7→ (2πε)−d/2 exp[−‖x̃‖2 /(2ε)] : ε > 0} is a family of mollifiers,
we have limε→0

∫
Rd |p(x)− pε|dx = 0. Combining this result, (53) and Lemma 29 concludes the

first part of the proof.
Now let α > 0 and assume H6(α). If α > 1 then using (52) we have∫

Rd

|p̄(x)− p̄ε(x)|dx 6 2α(1 + 2α−1) ‖qy‖∞ (1 + ‖p‖(α−1)∧0
∞ )

∫
Rd

|p(x)− pε(x)|dx .

If α < 1 then using that ‖q‖∞ < +∞, we get that∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖qy‖∞ (1 + ‖q‖1/α−1
∞ )(1 + ‖p‖(α−1)∧0

∞ )

×
{∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx+
(∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

.

Hence, in any case, there exists C̃0 > 0 such that∫
Rd

|p̄(x)− p̄ε(x)|

6 C̃0

{∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx+
(∫

Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx
)α}

.

Using Jensen’s inequality and the change of variable x̃ 7→ ε1/2x̃, we have for any ε ∈ (0, (4κ)−1]∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx

6
∫

Rd

∫
Rd

|p(x)− p(x− x̃)| qmin(1−1/α,0)(x)(2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dxdx̃

6
∫

Rd

exp[κ ‖x̃‖2] ‖x̃‖β (2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dx̃

6 εβ/2(2π)−d/2
∫

Rd

exp[κε ‖x̃‖2] ‖x̃‖β exp[−‖x̃‖2 /2]dx̃

6 εβ/2(2π)−d/2
∫

Rd

‖x̃‖β exp[−‖x̃‖2 /4]dx̃ 6 C0ε
β/2 ,
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with C0 = (2π)−d/2
∫

Rd ‖x̃‖β exp[−‖x̃‖2 /4]dx̃. Hence, we have∫
Rd

|p̄(x)− p̄ε(x)|dx 6 C1(εβ/2 + εβα/2) , (54)

with C1 = C̃0(C0 +Cα0 ). Let ε1 = min((cC1)−2/β/2, (cC1)−2/(βα)/2, (4κ)−1) and c =
∫

Rd p̄(x)dx.
Combining (54) with Lemma 29, we get that for any ε ∈ (0, ε1]

‖π − πε‖TV 6 2c−1C1(εβ/2 + εβα/2) ,

which concludes the proof upon letting A0 = 2c−1C1.

E Proofs of Section 5.4
E.1 Proof of Proposition 22]
Let ε > 0. For any k ∈ N, let ζk = Zk+1 and ηk = bε(Xk)+∇ log qy(Xk)+∇ log pε(Xk). For any
k ∈ N using H3 we have ‖b(Xk)−∇ log pε(Xk)−∇ log pε(Xk)‖ = ε−1 ‖Dε(Xk)−D?

ε(Xk)‖ 6 MR.
Hence, we obtain that [80, Assumption 2.1, Assumption 2.2] are satisfied. In what follows, we
show that [80, Assumption 2.3.c] holds. Denoting Gε(x) = (2πε)−d/2 exp[−‖x‖2/(2ε)] we have
that for any x ∈ Rd, pε(x) = (p∗Gε)(x), where ∗ denotes the convolution product. Since p,Gε ∈
L1(Rd) we get that for any ξ ∈ Rd, p̂ ∗Gε(ξ) = p̂(ξ)Ĝε(ξ). Since p ∈ L1(Rd), ‖p̂‖∞ < +∞ using
Riemann-Lebesgue theorem and in addition Ĝε(ξ) = exp[−ε ‖ξ‖2 /2]. Hence, p̂ ∗Gε ∈ L1(Rd)
and we obtain that almost everywhere for any x ∈ Rd

pε(x) =
∫

Rd

p̂(ξ)Ĝε(ξ) exp[i〈x, ξ〉]dξ .

Denote p̄ε : Cd → C give for any z ∈ Cd by p̄ε(z) =
∫

Rd p̂(ξ)Ĝε(ξ) exp[i〈z, ξ〉]dξ. We have that p̄ε
is analytic. Since for any x ∈ Rd, pε(x) > 0 and p̄ε ∈ C(Cd,C), there exists an open set U ⊂ Cd

such that for any z ∈ U, <(p̄ε(z)) > 0. Since log : C\({t ∈ C : <(t) 6 0}) → C is analytic we
obtain that z 7→ log(p̄ε) is analytic on U. Hence, x 7→ log(qy(x)) + log(pε(x)) is real-analytic on
Rd. We conclude using [80, Theorem 2.1].

E.2 Proof of Proposition 23
Let (εn)n∈N ∈ E such that limn→+∞ SK,εn

= S. Let x? ∈ S. For any η > 0 there exists εη ∈ N
such that for any n ∈ N, S ⊂ SK,εn

+ B(0, η). Hence, for any n ∈ N∗ there exist an increasing
sequence (kn)n∈N ∈ NN and xn ∈ SK,εkn

and zn ∈ B(0, 1/n) such that x? = xkn
+ zn. Up to

extraction, we can assume that limn→+∞ xkn = x? since for any n ∈ N, xkn ∈ K.
In what follows, we show that x? ∈ SK. For any n ∈ N we have using the dominated

convergence theorem

∇ log(pεkn
(xkn)) = (∇pεkn

/pεkn
)(xkn) = (((∇p) ∗Gεkn

)/(p ∗Gεkn
))(xkn) ,

where for any x ∈ Rd and ε > 0, Gε(x) = (2πε)−d/2 exp[−‖x‖2 /(2ε)]. Using that for any t ∈ R,
|1− et| 6 |t| e|t| we get that for any x1, x2 ∈ Rd

|p(x1)− p(x2)| 6 |1− exp[U(x1)− U(x2)]|/c 6 N ‖x1 − x2‖ exp[N ‖x1 − x2‖]/c ,
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where c =
∫

Rd exp[−U(x̃)]dx̃. Similarly we have for any x1, x2 ∈ K

‖∇p(x1)−∇p(x2)‖ 6 c−1 (‖∇U(x1)‖ |exp[−U(x1)]− exp[−U(x2)]|+ ‖∇U(x1)−∇U(x2)‖)
6 c−1N(1 + sup

x̃∈K
‖∇U(x̃)‖ exp[N ‖x1 − x2‖]) ‖x1 − x2‖ .

Therefore, there exists NK > 0 such that for any x1, x2 ∈ K we have

max (|p(x1)− p(x2)| , ‖∇p(x1)−∇p(x2)‖) 6 NK ‖x1 − x2‖ .

Using this result, we obtain that limn→+∞ |p(xkn) − p(x?)| = 0 and limn→+∞ ‖∇pεkn
(xkn) −

∇p(x?)‖ = 0. Hence we obtain that limn→+∞∇ log(p(xkn)) = ∇ log p(x?) since p(x?) > 0. We
also have that

lim
ε→0

max(|p− pεkn
|∞,K, ‖∇p−∇pεkn

‖∞,K) = 0 ,

since {Gε : ε > 0} is a family of mollifiers and p ∈ C1(Rd,R). Therefore, we obtain that
limn→+∞∇ log(pεkn

(xkn
)) = ∇ log p(x?). Finally, we obtain that

lim
n→+∞

{
∇ log(qy(xkn

)) + log(pεkn
(xkn

))
}

= ∇ log(qy(x?)) + log(p(x?)) = 0 .

Hence, x? ∈ SK and therefore S?K ⊂ SK.
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