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Abstract

Since the seminal work of Venkatakrishnan et al. [80] in 2013, Plug & Play (PnP) methods
have become ubiquitous in Bayesian imaging. These methods derive estimators for inverse
problems in imaging by combining an explicit likelihood function with a prior that is im-
plicitly defined by an image denoising algorithm. In the case of optimisation schemes, some
recent works guarantee the convergence to a fixed point, albeit not necessarily a maximum-
a-posteriori Bayesian estimate. In the case of Monte Carlo sampling schemes for general
Bayesian computation, to the best of our knowledge there is no known proof of convergence.
Algorithm convergence issues aside, there are important open questions regarding whether
the underlying Bayesian models and estimators are well defined, well-posed, and have the
basic regularity properties required to support efficient Bayesian computation schemes. This
paper develops theory for Bayesian analysis and computation with PnP priors. We intro-
duce PnP-ULA (Plug & Play Unadjusted Langevin Algorithm) for Monte Carlo sampling
and minimum mean squared error estimation. Using recent results on the quantitative con-
vergence of Markov chains, we establish detailed convergence guarantees for this algorithm
under realistic assumptions on the denoising operators used, with special attention to de-
noisers based on deep neural networks. We also show that these algorithms approximately
target a decision-theoretically optimal Bayesian model that is well-posed and meaningful
from a frequentist viewpoint. PnP-ULA is demonstrated on several canonical problems
such as image deblurring and inpainting, where it is used for point estimation as well as for
uncertainty visualisation and quantification.
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1 Introduction
1.1 Bayesian inference in imaging inverse problems
Most inverse problems in imaging aim at reconstructing an unknown image x ∈ R

d from a
degraded observation y ∈ Rm under some assumptions on their relationship. For example, many
works consider observation models of the form y = A(x)+n, where A : Rd → R

m is a degradation
operator modelling deterministic instrumental aspects of the observation process, and n is an
unknown (stochastic) noise term taking values in Rm. The operator A can be known or not, and
is usually assumed to be linear (e.g., A can represent blur, missing pixels, a projection, etc.).

The estimation of x from y is usually ill-posed or ill-conditioned1 and additional assumptions
on the unknown x are required in order to deliver meaningful estimates. The Bayesian statistical
paradigm provides a natural framework to regularise such estimation problems. The relationship
between x and y is described by a statistical model with likelihood function p(y|x), and the
knowledge about x is encoded by the prior distribution for x, typically specified via a density
function p(x) or by its potential U(x) = − log p(x). Similarly, in some cases the likelihood p(y|x)
is specified via the potential F (x, y) = − log p(y|x). The likelihood and prior define the joint
distribution with density p(x, y) = p(y|x)p(x), from which we derive the posterior distribution
with density p(x|y) where for any x ∈ Rd, y ∈ Rm

p(x|y) = p(y|x)p(x)/
∫
Rd p(y|x̃)p(x̃)dx̃ ,

which underpins all inference about x given the observation y. Most imaging methods seek to
derive estimators reaching some kind of consensus between prior and likelihood, as for instance
the Minimum Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimators

x̂map = arg maxx∈Rd p(x|y)=arg minx∈Rd {F (x, y) + U(x)} , (1)
x̂mmse = arg minu∈Rd E[‖x− u‖2|y] = E[x|y] =

∫
Rd x̃p(x̃|y)dx̃ . (2)

The quality of the inference about x given y depends on how accurately the specified prior
represents the true marginal distribution for x. Most works in the Bayesian imaging literature
consider relatively simple priors promoting sparsity in transformed domains or piece-wise regu-
larity (e.g., involving the `1 norm or the total-variation pseudo-norm [72, 21, 58, 64]), Markov
random fields [13], or learning-based priors like patch-based Gaussian or Gaussian mixture mod-
els [91, 87, 1, 79, 44]. Special attention is given in the literature to models that have specific
factorisation structures or that are log-concave, as this enables the use of Bayesian computa-
tion algorithms that scale efficiently to high-dimensions and which have detailed convergence
guarantees, [64, 33, 69, 39, 24].

1.2 Bayesian computation in imaging inverse problems
There is a vast literature on Bayesian computation methodology for models related to imaging
sciences (see, e.g., [66]). Here, we briefly summarise efficient high-dimensional Bayesian compu-
tation strategies derived from the Langevin stochastic differential equation (SDE)

dXt = ∇ log p(Xt|y) +
√

2dBt = ∇ log p(y|Xt) +∇ log p(Xt) +
√

2dBt , (3)

where (Bt)t>0 is a d-dimensional Brownian motion. When p(x|y) is proper and smooth, with
x 7→ ∇ log p(x|y) Lipschitz continuous2, then, for any initial condition X0 ∈ Rd, the SDE (3) has a

1That is, either the estimation problem does not admit a unique solution, or there exists a unique solution but
it is not Lipschitz continuous w.r.t. to perturbations in the data y.

2That is, there exists L > 0 such that for any x1, x2 ∈ Rd, ‖∇ log p(x1|y)−∇ log p(x2|y)‖ 6 L‖x1 − x2‖

2



unique strong solution (Xt)t>0 that admits the posterior of interest p(x|y) as unique stationary
density [71]. In addition, for any initial condition X0 ∈ R

d the distribution of Xt converges
towards the posterior distribution in total variation. Although solving (3) in continuous time is
generally not possible, we can use discrete time approximations of (3) to generate samples that
are approximately distributed according to p(x|y). A natural choice is the Unadjusted Langevin
algorithm (ULA) Markov chain (Xk)k>0 obtained from an Euler-Maruyama discretisation of (3),
given by X0 ∈ Rd and the following recursion for all k ∈ N

Xk+1 = Xk + δ∇ log p(y|Xk) + δ∇ log p(Xk) +
√

2δZk+1 , (4)

where {Zk : k ∈ N} is a family of i.i.d Gaussian random variables with zero mean and iden-
tity covariance matrix and δ > 0 is a step-size which controls a trade-off between asymptotic
accuracy and convergence speed [27, 32]. The approximation error involved in discretising (3)
can be asymptotically removed at the expense of additional computation by combining (4) with
a Metropolis-Hastings correction step, leading to the so-called Metropolis-adjusted Langevin
Algorithm (MALA) [71].

When the prior density p(x) is log-concave but not smooth, one can still use ULA by approx-
imating the gradient of U(x) = − log p(x) in (4) by the gradient of the smooth Moreau-Yosida
envelope Uλ(x), given for any x ∈ Rd and λ > 0 by ∇Uλ(x) = 1

λ (x− proxλU (x)). 3 For example,
one could use the Moreau-Yosida ULA [33], given by X0 ∈ Rd and the following recursion for all
k ∈ N

Xk+1 = Xk + δ∇ log p(y|Xk) + δ

λ

[
proxλU (Xk)−Xk

]
+
√

2δZk+1 . (5)

Notice that proxλU is equivalent to MAP denoising under the prior p(x), for additive white
Gaussian noise with noise variance λ. The Plug & Play ULA methods studied in this paper
are closely related to (5), with a state-of-the-art Gaussian denoiser “plugged” in lieu of proxλU .
However, instead of approximating ∇U via a Moreau-Yosida envelope as above, we use Tweedie’s
identity (7) relating ∇U to an MMSE denoiser (see Section 2.1).

1.3 Machine learning and Plug & Play approaches in imaging inverse
problems

In an apparently different direction, machine learning approaches have recently gained a con-
siderable importance in the field of imaging inverse problems, particularly strategies based on
deep neural networks. Indeed, neural networks can be trained as regressors to learn the function
y 7→ x̂mmse empirically from a huge dataset of examples {x′i, y′i}Ni=1, where N ∈ N is the size
of the training dataset. Many recent works on the topic report unprecedented accuracy. This
training can be agnostic [29, 88, 90, 37, 74, 36] or exploit the knowledge of A in the network
architecture via unrolled optimization techniques [41, 25, 28, 38]. However, solutions encoded by
end-to-end neural networks are mostly problem specific and not easily adapted to reflect changes
in the problem (e.g., in instrumental settings). There also exist concerns regarding the stability
of such approaches for general reconstruction problem [5, 4].

A natural strategy to reconcile the strengths of the Bayesian paradigm and neural networks
is provided by Plug & Play approaches. These data-driven regularisation approaches learn an
implicit representation of the prior density p(x) (or its potential U(x) = − log p(x)) while keeping
an explicit likelihood density, which is usually assumed to be known and calibrated [6]. More

3Recall: The Moreau-Yosida envelope is defined as Uλ(x) = inf x̃ U(x̃)+ 1
2λ‖x− x̃‖2 and the proximal operator

is defined as proxλU (x) = arg minx̃∈Rd U(x̃) + 1
2λ‖x− x̃‖2

2.
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precisely, using a denoising algorithm Dε, Plug & Play approaches seek to derive an approxima-
tion of the gradient ∇U (called the Stein score) [11, 12] or proxU [59, 89, 22, 48, 73], which can
for instance been used within an iterative minimisation scheme to approximate x̂MAP, or within
a Monte Carlo sampling scheme to approximate x̂mmse [3, 42, 47]. To the best of our knowledge,
the idea of leveraging a denoising algorithm to approximate the score ∇U within a iterative
Monte Carlo scheme was first proposed in the seminal paper [3] in the context of generative
modelling with denoising auto-encoders, where the authors present a Monte Carlo scheme that
can be viewed as an approximate Plug & Play MALA. This scheme was recently combined with
an expectation maximisation approach and applied to Bayesian inference for inverse problems
in imaging in [42]. Similarly, the recent work [47] proposes to solve imaging inverse problems
by using a Plug & Play stochastic gradient strategy that has close connections to an unadjusted
version of the MALA scheme of [3]. While these approaches have shown some remarkable empir-
ical performance, they rely on hybrid algorithms that are not always well understood and that
in some cases fail to converge. Indeed, their convergence properties remain an important open
question, especially when Dε is implemented as a neural network that is not a gradient mapping.
These algorithms are better understood when interpreted as fixed-point algorithms seeking to
reach a set of equilibrium equations between the denoiser and the data fidelity term [19]. Our
understanding of the convergence properties of hybrid optimisation methods has advanced signif-
icantly recently [73, 86, 78, 45], but these questions remain largely unexplored in the context of
stochastic Bayesian algorithms, to compute x̂mmse or perform other forms of statistical inference.

The use of Plug & Play operators has also been investigated in the context of Approximate
Message Passing (AMP) computation methods (see [30] for an introduction to AMP focused
on compressed sensing and [2] for a survey on PnP-AMP in the context of magnetic resonance
imaging), particularly for applications involving randomised forward operators where it is possible
to characterise AMP schemes in detail (see, e.g., [9, 46, 60, 23]). This is an active area of
research, and recent works have extended the approach to Vector AMP (VAMP) strategies and
characterised their behaviour for a wider class of problems [35].

Approaches based on score matching techniques [76, 43] have also shown promising results
recently [51, 50]. These methods are linked with Plug & Play approaches as they also estimate
a Stein score. However, they do not rely on the asymptotic convergence of a diffusion, but
instead aim at inverting a noising process stemming from an optimal transport problem [16].
The recent work [50] is particularly relevant in this context as it considers a range of imaging
inverse problems, where it exploits the structure of the forward operator to perform posterior
sampling in a coarse-to-fine manner. This also allows the use of multivariate step-sizes that are
specific to each scale and ensure stability. However, to the best of our knowledge, the convergence
properties of [50] have not been studied yet.

1.4 Contributions summary
This paper presents a formal framework for Bayesian analysis and computation with Plug &
Play priors. We propose two Plug & Play ULAs, with detailed convergence guarantees under
realistic assumptions on the denoiser used. We also study important questions regarding whether
the underlying Bayesian models and estimators are well defined, well-posed, and have the ba-
sic regularity properties required to support efficient Bayesian computation schemes. We pay
particular attention to denoisers based on deep neural networks, and report extensive numer-
ical experiments with a specific neural network denoiser [73] shown to satisfy our convergence
guarantees.

The remainder of the paper is organized as follows. Section 2 defines notation, introduces
our framework for studying Bayesian inference methods with Plug & Play priors, and presents
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two Plug & Play ULAs for Bayesian computation in imaging problems. This is then followed
by a detailed theoretical analysis of Plug & Play Bayesian models and algorithms in Section 3.
Section 4 demonstrates the proposed approach with experiments related to non-blind image de-
blurring and image inpainting, where we perform point estimation and uncertainty visualisation
analyses, and report comparisons with the Plug & Play Stochastic Gradient Descent method of
[55]. Conclusions and perspectives for future work are finally reported in Section 5.

2 Bayesian inference with Plug & Play priors: theory meth-
ods and algorithms

2.1 Bayesian modelling and analysis with Plug & Play priors
This section presents a formal framework for Bayesian analysis and computation with Plug
& Play priors. As explained previously, we are interested in the estimation of the unknown
image x from an observation y when the problem is ill-conditioned or ill-posed, resulting in
significant uncertainty about the value of x. The Bayesian framework addresses this difficulty
by using prior knowledge about the marginal distribution of x in order to reduce the uncertainty
about x|y and make the estimation problem well posed. In the Bayesian Plug & Play approach,
instead of explicitly specifying the marginal distribution of x, we introduce prior knowledge
about x by specifying an image denoising operator Dε for recovering x from a noisy observation
xε ∼ N (x, ε Id) with noise variance ε > 0. A case of particular relevance in this context is when
Dε is implemented by a neural network, trained by using a set of clean images {x′i}Ni=1.

A central challenge in the formalisation of Bayesian inference with Plug & Play priors is that
the denoiser Dε used is generally not directly related to a marginal distribution for x, so it is not
possible to derive an explicit posterior for x|y from Dε. As a result, it is not clear that plugging
Dε into gradient-based algorithms such as ULA leads to a well-defined or convergent scheme that
is targeting a meaningful Bayesian model.

To overcome this difficulty, in this paper we analyse Plug & Play Bayesian models through the
prism of M-complete Bayesian modelling [10]. Accordingly, there exists a true -albeit unknown
and intractable- marginal distribution for x and posterior distribution for x|y. If it were possible,
basing inferences on these true marginal and posterior distributions would be optimal both in
terms of point estimation and in terms of delivering Bayesian probabilities that are valid from
a frequentist viewpoint. We henceforth use µ to denote this optimal prior distribution for x on
(Rd,B(Rd)) - where B(Rd) denotes the Borel σ-field of Rd, and when µ admits a density w.r.t.
the Lebesgue measure on R

d, we denote it by p?. In the latter case, the posterior distribution
for x|y associated with the marginal µ also admits a density that is given for any x ∈ Rd and
y ∈ Rm by

p?(x|y) = p(y|x)p?(x)/
∫
Rd p(y|x̃)p?(x̃)dx̃ . (6)

4 Unlike most Bayesian imaging approaches that operate implicitly in an M-closed manner and
treat their postulated Bayesian models as true models (see [10] for more details), we explicitly
regard p? (or more precisely µ) as a fundamental property of the unknown x, and models used
for inference as operational approximations of p? specified by the practitioner (either analyti-
cally, algorithmically, or from training data). This distinction will be useful for using the oracle
posterior (6) as a reference, and Plug & Play Bayesian algorithms based on a denoiser Dε as

4Strictly speaking, the true likelihood p?(y|x) may also be unknown, this is particularly relevant in the case of
blind or myopic inverse imaging problems. For simplicity, we restrict our experiments and theoretical development
to the case where p(y|x) represents the true likelihood. Generalizations of our approach to the blind or semi-blind
setting are discussed, e.g. by [42] - formalising these generalisations is an important perspective for future work.
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approximations to reference algorithms to perform inference w.r.t. p?. The accuracy of the Plug
& Play approximations will depend chiefly on the closeness between Dε and an optimal denoiser
D?
ε derived form p? that we define shortly.

In this conceptual construction, the marginal µ naturally depends on the imaging application
considered. It could be the distribution of natural images of the size and resolution of x, or that
of a class of images related to a specific application. And in problems where there is training data
{x′i}Ni=1 available, we regard {x′i}Ni=1 as samples from µ. Lastly, we note that the posterior for x|y
remains well defined when µ does not admit a density; this is important to provide robustness
to situations where p? is nearly degenerate or improper. For clarity, our presentation assumes
that p? exists, although this is not strictly required 5.

Notice that because µ is unknown, we cannot verify that p?(x|y) satisfies the basic desiderata
for gradient-based Bayesian computation: i.e., p?(x|y) need not be proper and differentiable,
with ∇ log p?(x|y) Lipschitz continuous. To guarantee that gradient-based algorithms that target
approximations of p?(x|y) are well defined by construction, we introduce a regularised oracle µε
obtained via the convolution of µ with a Gaussian smoothing kernel with bandwidth ε > 0.
Indeed, by construction, µε has a smooth proper density pε given for any x ∈ Rd and ε > 0 by

p?ε(x) = (2πε)−d/2
∫
Rd exp [−‖x− x̃‖22/(2ε)]p?(x̃)dx̃ .

Equipped with this regularised marginal distribution, we use Bayes’ theorem to involve the
likelihood p(y|x) and derive the posterior density p?ε(x|y), given for any ε > 0 and x ∈ Rd by

p?ε(x|y) = p(y|x)p?ε(x)/
∫
Rd p(y|x̃)p?ε(x̃)dx̃ ,

which inherits the regularity properties required for gradient-based Bayesian computation when
the likelihood satisfies the following standard conditions:

H1. For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)) and there exists Ly > 0
such that ∇ log(p(y|·)) is Ly Lipschitz continuous.

More precisely, Proposition 1 below establishes that the regularised prior p?ε(x) and posterior
p?ε(x|y) are proper, smooth, and that they can be made arbitrarily close to the original oracle
models p?(x) and p?(x|y) by reducing ε, with the approximation error vanishing as ε→ 0.

Proposition 1. Assume H1. Then, for any ε > 0 and y ∈ Rm, the following hold:

(a) p?ε and p?ε(·|y) are proper.

(b) For any k ∈ N, p?ε ∈ Ck(Rd). In addition, if p(y|·) ∈ Ck(Rd) then p?ε(·|y) ∈ Ck(Rd,R).

(c) Let k ∈ N. If
∫
Rd ‖x̃‖k p?(x)dx̃ < +∞ then

∫
Rd ‖x̃‖k p?ε(x̃|y)dx̃ < +∞.

(d) limε→0 ‖p?ε(·|y)− p?(·|y)‖1 = 0.

(e) In addition, if there exist κ, β > 0 such that for any x ∈ Rd, ‖p? − p?(· − x)‖1 6 ‖x‖β,
then there exists C > 0 such that ‖p?ε(·|y)− p?(·|y)‖1 6 Cεβ/2.

Proof. The proof is postponed to Appendix H.2.

Under H1 and p(y|·) ∈ C1(Rd), x 7→ ∇ log p?ε(x|y) is well-defined and continuous. However,
x 7→ ∇ log p?ε(x|y) might not be Lipschitz continuous and hence the Langevin SDE (3) might not
have a strong solution. This requires an additional assumption on µ.

5Operating without densities requires measure disintegration concepts that are technical [75].
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To study the Lipschitz continuity of x 7→ ∇ log p?ε(x|y), as well as to set the grounds for Plug
& Play methods that define priors implicitly through a denoising algorithm, we introduce the
oracle MMSE denoiser D?

ε defined for any x ∈ Rd and ε > 0 by

D?
ε(x) = (2πε)−d/2

∫
Rd x̃ exp [−‖x− x̃‖2/(2ε)]p?(x̃)dx̃ .

Under the assumption that the expected mean square error (MSE) is finite, D?
ε is the MMSE

estimator to recover an image x ∼ µ from a noisy observation xε ∼ N (x, ε Id) [70]. Again, this
optimal denoiser is a fundamental property of x and it is generally intractable. Motivated by the
fact that state-of-the-art image denoisers are close-to-optimal in terms of MSE, in Section 2.3
we will characterise the accuracy of Plug & Play Bayesian methods for approximate inference
w.r.t. p?ε(x|y) and p?(x|y) as a function of the closeness between the denoiser Dε used and the
reference D?

ε .
To relate the gradient x 7→ ∇ log p?ε(x) and D?

ε , we use Tweedie’s identity [34] which states
that for all x ∈ Rd

ε∇ log p?ε(x) = D?
ε(x)− x , (7)

and hence x 7→ ∇ log p?ε(x|y) is Lipschitz continuous if and only if D?
ε has this property. We

argue that this is a natural assumption on D?
ε , as it is essentially equivalent to assuming that

the denoising problem underpinning D?
ε is well-posed in the sense of Hadamard (recall that an

inverse problem is said to be well posed if its solution is unique and Lipschitz continuous w.r.t
to the observation [77]). As established in Proposition 2 below, this happens when the expected
MSE involved in using D?

ε to recover x from xε ∼ N (x, ε Id), where x has marginal µ, is finite
and uniformly upper bounded for all xε ∈ Rd.

Proposition 2. Assume H1. Let ε > 0. ∇ log p?ε is Lipschitz continuous if and only if there
exists C > 0 such that for any xε ∈ Rd∫

Rd ‖x−D?
ε(xε)‖2 gε(x|xε)dx 6 C ,

where gε(·|xε) is the density of the conditional distribution of the unknown image x ∈ Rd with
marginal µ, given a noisy observation xε ∼ N (x, ε Id). See Section 3.2 for details.

Proof. The proof is postponed to Lemma 20.

These results can be generalised to hold under the weaker assumption that the expected
MSE for D?

ε is finite but not uniformly bounded, as in this case x 7→ ∇ log p?ε(x|y) is locally
instead of globally Lipschitz continuous (we postpone this technical extension to future work).
The pathological case where D?

ε does not have a finite MSE arises when µ is such that the
denoising problem does not admit a Bayesian estimator w.r.t. to the MSE loss. In summary, the
gradient x 7→ ∇ log p?ε(x|y) is Lipschitz continuous when µ carries enough information to make
the problem of Bayesian image denoising under Gaussian additive noise well posed.

Notice that by using Tweedie’s identity, we can express a ULA recursion for sampling ap-
proximately from p?ε(x|y) as follows:

Xk+1 =Xk + δ∇ log p(y|Xk) + (δ/ε) (D?
ε(Xk)−Xk) +

√
2δZk+1 . (8)

where we recall that {Zk : k ∈ N} are i.i.d standard Gaussian random variables on Rd and δ > 0
is a positive step-size. Under standard assumptions on δ, the sequence generated by (8) is a
Markov chain which admits an invariant probability distribution whose density is provably close
to p?ε(x|y), with δ controlling a trade-off between asymptotic accuracy and convergence speed.
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In the following section we present Plug & Play ULAs that arise from replacing D?
ε in (8) with

a denoiser Dε that is tractable.
Before concluding this section, we study whether the oracle p?(x|y) is itself well-posed, i.e.,

if p?(x|y) changes continuously w.r.t. y under a suitable probability metric (see [54]). We
answer positively to this question in Proposition 3 which states that, under mild assumptions on
the likelihood, p?(x|y) is locally Lipschitz continuous w.r.t. y for an appropriate metric. This
stability result implies, for example, that the MMSE estimator derived from p?(x|y) is locally
Lipschitz continuous w.r.t. y, and hence stable w.r.t. small perturbations of y. Note that a
similar property holds for the regularised posterior p?ε(x|y). In particular, Proposition 3 holds
for Gaussian likelihoods (see Section 3 for details).
Proposition 3. Assume that there exist Φ1 : R

d → [0,+∞) and Φ2 : R
m → [0,+∞) such that

for any x ∈ Rd and y1, y2 ∈ Rm

‖log(p(y1|x))− log(p(y2|x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ ,

and for any c > 0,
∫
Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p?(x)dx̃ < +∞. Then y 7→ p?(·|y) is locally

Lipschitz w.r.t ‖ · ‖1, i.e. , for any compact set K there exists CK > 0 such that for any y1, y2 ∈ K
, ‖p?(·|y1)− p?(·|y2)‖1 6 CK ‖y1 − y2‖.
Proof. The proof is a straightforward application of Proposition 18.

To conclude, starting from the decision-theoretically optimal model p?(x|y), we have con-
structed a regularised approximation p?ε(x|y) that is proper and smooth by construction, with
gradients that are explicitely related to denoising operators by Tweedie’s formula. Under mild
assumptions on p(y|x), the approximation p?ε(x|y) is well-posed and can be made arbitrarily
close to the oracle p?(x|y) by controlling ε. Moreover, we established that x 7→ ∇ log p?ε(x) is
Lipschitz continuous when the problem of Gaussian image denoising for µ under the MSE loss is
well posed. This allows imagining convergent gradient-based algorithms for performing Bayesian
computation for p?ε(x|y), setting the basis for Plug & Play ULA schemes that mimic these ide-
alised algorithms by using a tractable denoiser Dε such as neural network, trained to optimise
MSE performance and hence to approximate the oracle MSE denoiser D?

ε .

2.2 Bayesian computation with Plug & Play priors
We are now ready to study Plug & Play ULA schemes to perform approximate inference w.r.t.
p?ε(x|y) (and hence indirectly w.r.t. p?(x|y)). We use (8) as starting point, with D?

ε replaced
by a surrogate denoiser Dε, but also modify (8) to guarantee geometrically fast convergence6 to
a neighbourhood of p?ε(x|y). In particular, geometrically fast convergence is achieved here by
modifying far-tail probabilities to prevent the Markov chain from becoming too diffusive as it
explores the tails of p?ε(x|y). We consider two alternatives to guarantee geometric convergence
with markedly different bias-variance trade-offs: one with excellent accuracy guarantees but that
requires using a small step-size δ and hence has a higher computational cost, and another one
that allows taking a larger step-size δ to improve convergence speed at the expense of weaker
guarantees in terms of estimation bias.

First, in the spirit of Moreau-Yosida regularised ULA [33], we define Plug & Play ULA
(PnP-ULA) as the following recursion: given an initial state X0 ∈ Rd and for any k ∈ N,

(PnP-ULA) Xk+1 =Xk + δ∇ log p(y|Xk) + (δ/ε) (Dε(Xk)−Xk)

+ (δ/λ)(ΠC(Xk)−Xk) +
√

2δZk+1 ,

6Geometric convergence is highly desirable property in large-scale problems and guarantees that the generated
Markov chains can be used for Monte Carlo integration.

8



where C ⊂ Rd is some large compact convex set that contains most of the prior probability mass
of x, ΠC is the projection operator onto C w.r.t the Euclidean scalar product on R

d, and λ > 0
is a tail regularisation parameter that is set such that the drift in PnP-ULA satisfies a certain
growth condition as ‖x‖ → ∞ (see Section 3 for details).

An alternative strategy (which we call Projected PnP-ULA, i.e. PPnP-ULA, see Algorithm 2)
is to modify PnP-ULA to include a hard projection onto C, i.e. (Xk)k∈N is defined by X0 ∈ C
and the following recursion for any k ∈ N

Xk+1 = ΠC

[
Xk + δ∇ log p(y|Xk) + (δ/ε)(Dε(Xk)−Xk) +

√
2δZk+1

]
,

where we notice that, by construction, the chain cannot exit C because of the action of the
projection operator ΠC. The hard projection guarantees geometric convergence with weaker
restrictions on δ and hence PPnP-ULA can be tuned to converge significantly faster than PnP-
ULA, albeit with a potentially larger bias. These two schemes are summarised in Algorithm 1 and
Algorithm 2 below. Note the presence of a regularisation parameter α in these algorithms, which
permits to balance the weights between the prior and data terms. For the sake of simplicity,
this parameter is set to α = 1 in Section 3 and Section 4 but will be taken into account in the
supplementary material Appendix A. Section 3.2 and Section 3.3 present detailed convergence
results for PnP-ULA and PPnP-ULA. Implementation guidelines, including suggestions for how
to set the algorithm parameters of PnP-ULA and PPnP-ULA are provided in Section 4.

Algorithm 1 PnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact
Ensure: 2λ(2Ly + αL/ε) 6 1 and δ < (1/3)(Ly + 1/λ+ αL/ε)−1

Initialization: Set X0 ∈ Rd and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = Xk + δ∇ log(p(y|Xk)) + (αδ/ε)(Dε(Xk)−Xk) + (δ/λ)(ΠC(Xk)−Xk) +

√
2δZk+1

end for
return {Xk : k ∈ {0, . . . , N + 1}}

Algorithm 2 PPnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact

Initialization: Set X0 ∈ C and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = ΠC

(
Xk + δ∇ log(p(y|Xk)) + (αδ/ε)(Dε(Xk)−Xk) +

√
2δZk+1

)
end for
return {Xk : k ∈ {0, . . . , N + 1}}

Lastly, it is worth mentioning that Algorithm 1 and Algorithm 2 can be straightforwardly
modified to incorporate additional regularisation terms. More precisely, one could consider a
prior defined as the (normalised) product of a Plug & Play term and an explicit analytical term.
In that case, one should simply modify the recursion defining the Markov chain by adding the
gradient associated with the analytical term. In a manner akin to [33], analytical terms that are
not smooth are involved via their proximal operator.

9



Before concluding this section, it is worth emphasising that, in addition to being important
in their own right, Algorithm 1 and Algorithm 2 and the associated theoretical results set the
grounds for analysing more advanced stochastic simulation and optimisation schemes for per-
forming Bayesian inference with Plug & Play priors, in particular accelerated optimisation and
sampling algorithms [67]. This is an important perspective for future work.

3 Theoretical analysis
In this section, we provide a theoretical study of the long-time behaviour of PnP-ULA, see
Algorithm 1 and PPnP-ULA, see Algorithm 2. For any ε > 0 we recall that p?ε is given by the
Gaussian smoothing of p with level ε, for any x ∈ Rd by

p?ε(x) = (2πε)−d/2
∫
Rd exp[−‖x− x̃‖2 /(2ε)] p?(x̃)dx̃ .

One typical example of likelihood function that we consider in our numerical illustration, see
Section 4, is p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)] for any x ∈ Rd with σ > 0 and A ∈ Rm×d. We
define π the target posterior distribution given for any x ∈ Rd by (dπ/dLeb)(x) = p?(x|y). We
also consider the family of probability distributions {πε : ε > 0} given for any ε > 0 and x ∈ Rd
by

(dπε/dLeb)(x) = p(y|x)p?ε(x)
/∫

Rd

p(y|x̃)p?ε(x̃)dx̃ .

Note that in the supplementary material Appendix A we investigate the general setting where
p?ε is replaced by (p?ε)α for some α > 0 that acts as a regularisation parameter. We divide our
study into two parts. We recall that πε is well-defined for any ε > 0 under H1, see Proposition 1.
We start with some notation in Section 3.1. We then establish non-asymptotic bounds between
the iterates of PnP-ULA and πε with respect to the total variation distance for any ε > 0, in
Section 3.2. Finally, in Section 3.3 we establish similar results for PPnP-ULA.

3.1 Notation
Denote by B(Rd) the Borel σ-field of Rd, and for f : Rd → R measurable, ‖f‖∞ = supx̃∈Rd |f(x̃)|.
For µ a probability measure on (Rd,B(Rd)) and f a µ-integrable function, denote by µ(f) the
integral of f w.r.t. µ. For f : Rd → R measurable and V : Rd → [1,∞) measurable, the V -norm
of f is given by ‖f‖V = supx̃∈Rd |f(x̃)|/V (x̃). Let ξ be a finite signed measure on (Rd,B(Rd)).
The V -total variation distance of ξ is defined as

‖ξ‖V = sup‖f‖V 61
∣∣∫
Rd f(x̃)dξ(x̃)

∣∣ .
If V = 1, then ‖·‖V is the total variation denoted by ‖·‖TV. Let U be an open set of Rd. For
any pair of measurable spaces (X,X ) and (Y,Y), measurable function f : (X,X ) → (Y,Y)
and measure µ on (X,X ) we denote by f#µ the pushforward measure of µ on (Y,Y) given for
any A ∈ Y by f#µ(A) = µ(f−1(A)). We denote P(Rd) the set of probability measures over
(Rd,B(Rd)) and for any m ∈ N, Pm(Rd) = {ν ∈P(Rd) :

∫
Rd ‖x̃‖mdν(x̃) < +∞}.

We denote by Ck(U,Rm) and Ckc (U,Rm) the set of Rm-valued k-differentiable functions, re-
spectively the set of compactly supported Rm-valued and k-differentiable functions. Let f : U→
R, we denote by ∇f , the gradient of f if it exists. f is said to be m-convex with m > 0 if for all
x1, x2 ∈ Rd and t ∈ [0, 1],

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2)− mt(1− t) ‖x1 − x2‖2 /2 .
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For any a ∈ Rd and R > 0, denote B(a,R) the open ball centered at a with radius R. Let (X,X )
and (Y,Y) be two measurable spaces. A Markov kernel P is a mapping K : X×Y → [0, 1] such
that for any x̃ ∈ X, P(x̃, ·) is a probability measure and for any A ∈ Y, P(·,A) is measurable.
For any probability measure µ on (X,X ) and measurable function f : Y → R+ we denote
µP =

∫
X P(x, ·)dµ(x) and Pf =

∫
Y f(y)P(·,dy). In what follows the Dirac mass at x̃ ∈ R

d is
denoted by δx̃. For any x̃ ∈ Rd, we denote τx̃ : R

d → R
d the translation operator given for any

x̃′ ∈ Rd by τx̃(x̃′) = x̃′ − x̃. The complement of a set A ⊂ Rd, is denoted by Ac. All densities are
w.r.t. the Lebesgue measure (denoted Leb) unless stated otherwise. For all convex and closed
set C ⊂ R

d, we define ΠC the projection operator onto C w.r.t the Euclidean scalar product on
R
d. For any matrix a ∈ Rd1×d2 with d1, d2 ∈ N, we denote a> ∈ Rd2×d1 its adjoint.

3.2 Convergence of PnP-ULA
In this section, we fix ε > 0 and derive quantitative bounds between the iterates of PnP-ULA and
πε with respect to the total variation distance. To address this issue, we first show that PnP-ULA
is geometrically ergodic and establish non-asymptotic bounds between the corresponding Markov
kernel and its invariant distribution. Second, we analyse the distance between this stationary
distribution and πε.

For any ε > 0 we define gε : R
d × Rd → [0,+∞) for any x1, x2 ∈ Rd by

gε(x1|x2) = p?(x1) exp[−‖x2 − x1‖2 /(2ε)]
/∫

Rd

p?(x̃) exp[−‖x2 − x̃‖2 /(2ε)]dx̃ . (9)

Note that g(·|Xε) is the density with respect to the Lebesgue measure of the distribution of
X given Xε, where X is sampled according to the prior distribution µ (with density p?) and
Xε = X + ε1/2Z where Z is a Gaussian random variable with zero mean and identity covariance
matrix. Throughout, this section, we consider the following assumption on the family of denoising
operators {Dε : ε > 0} which will ensure that PnP-ULA approximately targets πε.

H 2 (R). We have that
∫
Rd ‖x̃‖2p?(x̃)dx̃ < +∞. In addition, there exist ε0 > 0, MR > 0 and

L > 0 such that for any ε ∈ (0, ε0], x1, x2 ∈ Rd and x ∈ B(0, R) we have

‖(Id−Dε)(x1)− (Id−Dε)(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 MR , (10)

where we recall that
D?
ε(x1) =

∫
Rd x̃ gε(x̃|x1)dx̃ . (11)

The Lipschitz continuity condition in (10) will be useful for establishing the stability and
geometric convergence of the Markov chain generated by PnP-ULA. This condition can be ex-
plicitly enforced during training by using an appropriate regularization of the neural network
weights [73, 62]. Regarding the second condition in (10), MR is a bound on the error involved
in using Dε as an approximation of D?

ε for images of magnitude R (i.e., for any x ∈ B(0, R)),
and it will be useful for bounding the bias resulting from using PnP-ULA for inference w.r.t.
πε (recall that the bias vanishes as MR → 0 and δ → 0). For denoisers represented by neural
networks, one can promote a small value of MR during training by using an appropriate loss
function. More precisely, consider a neural network fw : Rd → R

d, parameterized by its weights
and bias gathered in w ∈ W where W is some measurable space, for any ε > 0, one could
target empirical approximation of a loss of the form `ε : W → [0,+∞) given for any w ∈ W
by `ε(w) =

∫
Rd×Rd ‖x− fw(xε)‖2p?ε(xε)gε(x|xε)dxεdx. Note that such a loss is considered in the

Noise2Noise network introduced in [56].
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With regards to the theoretical limitations stemming from representing Dε by a deep neural
network, universal approximation theorems (see e.g., [7, Section 4.7]) suggest that MR could be
arbitrarily low in principle. For a given architecture and training strategy, and if there exists
M̃R > 0 such that infw∈W supx∈B(0,R) M̃−1

R ‖fw(x)−D?
ε(x)‖} 6 1 then the second condition in (10)

holds upon letting Dε = fw† for an appropriate choice of weights w† ∈ W. This last inequality
can be established using universal approximation theorems such as [7, Section 4.7]. Moreover,
for any other w ∈ W, `ε(w) >

∫
Rd×Rd ‖x − D?

ε(xε)‖2p?ε(xε)gε(x|xε)dxdxε = `?ε, since for any
xε ∈ R

d, D?
ε(xε) =

∫
Rd x̃ gε(x̃|xε)dx̃, see (11). Consider w† ∈ W obtained after numerically

minimizing `ε and satisfying `ε(w†) 6 `?ε+η with η > 0. In this case, the following result ensures
that (10) is satisfied with MR of order η1/(2d+2) for any R > 0 and letting Dε = fw† .

Proposition 4. Assume that for any w ∈ W∫
Rd(‖x‖2 + ‖fw(xε)‖2)p?ε(xε)gε(x|xε)dxdxε < +∞ . (12)

Let R, η > 0 and w† ∈ W such that `ε(w?) 6 `?ε + η. In addition, assume that

sup
x1,x2∈B(0,2R)

{
‖x2 − x1‖−1 (‖fw†(x2)− fw†(x1)‖+ ‖D?

ε(x2)−D?
ε(x1)‖)

}
< +∞ ,

where D?
ε is given in (11). Then there exists CR, η̄R > 0 such that if η ∈ (0, η̄R] then for any

x̃ ∈ B(0, R), ‖fw†(x̃)−D?
ε(x̃)‖ 6 CRη

1/(2d+2).

Proof. The proof is postponed to Appendix F.1.

Note that (12) is satisfied if for any w ∈ W, supx∈Rd ‖fw(x)‖(1+‖x‖)−1 < +∞ and H2 holds
.

We recall that PnP-ULA, see Algorithm 1, is given by the following recursion: X0 ∈ Rd and
for any k ∈ N

Xk+1 = Xk + δbε(Xk) +
√

2δZk+1 , (13)
bε(x) = ∇ log p(y|x) + Pε(x) + (proxλ(ιC)(x)− x)/λ , Pε(x) = (Dε(x)− x)/ε ,

where δ > 0 is a step-size, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ R
d is a closed

convex set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and
identity covariance matrix and proxλ(ιC) the proximal operator of ιC with step-size λ, see [8,
Definition 12.23], where ιC is the convex indicator of C defined for x ∈ Rd by ιC = +∞ if x /∈ C
and 0 if x ∈ C. Note that for any x ∈ R

d we have proxλ(ιC)(x) = ΠC(x), where ΠC is the
projection onto C.

In what follows, for any δ > 0 and C ⊂ R
d closed and convex, we denote by Rε,δ : R

d ×
B(Rd) → [0, 1] the Markov kernel associated with the recursion (17) and given for any x ∈ Rd
and A ∈ B(Rd) by

Rε,δ(x,A) = (2π)−d/2
∫
Rd

1A(x+ δbε(x) +
√

2δz) exp[−‖z‖2 /2]dz .

Note that for ease of notation, we do not explicitly highlight the dependency of Rε,δ and bε with
respect to the hyperparameter λ > 0 and C.

Here we consider the case where x 7→ log p(y|x) satisfies a one-sided Lipschitz condition, i.e.
we consider the following condition.
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H3. There exists m ∈ R such that for any x1, x2 ∈ Rd we have

〈∇ log p(y|x2)−∇ log p(y|x1), x2 − x1〉 6 −m ‖x2 − x1‖2 .

We refer to the supplementary material Appendix C for refined convergence rates in the
case where x 7→ log p(y|x) is strongly m-concave. Note that if H3 is satisfied with m > 0 then
x 7→ log p(y|x) is m-concave. Assume H1 then H3 holds for m = −Ly. However, it is possible
that m > −Ly which leads to better convergence rates for PnP-ULA. As a result even when H1
holds we still consider H3. In order to deal with H3 in the case where m 6 0, we set C ⊂ R

d to
be some convex compact set fixed by the user. Doing so, we ensure the stability of the Markov
chain. The choice of C in practice is discussed in Section 4. In our imaging experiments, we
recall that for any x ∈ Rd we have, p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)]. If A is not invertible then
x 7→ log p(y|x) is not m-concave with m > 0. This is the case, in our deblurring experiment when
the convolution kernel has zeros in the Fourier domain.

We start with the following result which ensures that the Markov chain (17) is geometrically
ergodic under H2 for the Wasserstein metric W1 and in V -norm for V : R

d → [1,+∞) given
for any x ∈ Rd by

V (x) = 1 + ‖x‖2 . (14)

Proposition 5. Assume H1, H2(R) for some R > 0 and H3. Let λ > 0, ε ∈ (0, ε0] such that
2λ(Ly + L/ε−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε+ 1/λ)−1. Then for any C ⊂ Rd convex and
compact with 0 ∈ C, there exist A1,C > 0 and ρ1,C ∈ [0, 1) such that for any δ ∈ (0, δ̄], x1, x2 ∈ Rd
and k ∈ N we have ∥∥δx1Rk

ε,δ − δx2Rk
ε,δ

∥∥
V
6 A1,Cρ

kδ
1,C(V 2(x1) + V 2(x2)) ,

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1,Cρ
kδ
1,C ‖x1 − x2‖ ,

where V is given in (18).

Proof. The proof is postponed to Appendix F.2.

The constants A1,C and ρ1,C do not depend on the dimension d but only on the parameters
m, L, Ly, ε and C. Note that a similar result can be established for Wp for any p ∈ N∗ instead of
W1. Under the conditions of Proposition 5 we have for any ν1, ν2 ∈P1(Rd)

∥∥ν1Rk
ε,δ − ν2Rk

ε,δ

∥∥
V
6 A1,Cρ

kδ
1,C

(∫
Rd

V 2(x̃)dν1(x̃) +
∫
Rd

V 2(x̃)dν2(x̃)
)
, (15)

W1(ν1Rk
ε,δ, ν2Rk

ε,δ) 6 A1,Cρ
kδ
1,C

(∫
Rd

‖x̃‖ dν1(x̃) +
∫
Rd

‖x̃‖ dν2(x̃)
)
.

First, (P1(Rd),W1) is a complete metric space [81, Theorem 6.18]. Second, for any δ ∈ (0, δ̄],
there exists m ∈ N

∗ such that fm is contractive with f : P1(Rd) → P1(Rd) given for any
ν ∈P1(Rd) by f(ν) = νRε,δ using Proposition 5. Therefore we can apply the Picard fixed point
theorem and we obtain that Rε,δ admits an invariant probability measure πε,δ ∈P1(Rd).

Therefore, since πε,δ is an invariant probability measure for Rε,δ and πε,δ ∈ P1(Rd), using
(15), we have for any ν ∈P1(Rd)

∥∥νRk
ε,δ − πε,δ

∥∥
V
6 A1,Cρ

kδ
1,C

(∫
Rd

V 2(x̃)dν(x̃) +
∫
Rd

V 2(x̃)dπε,δ(x̃)
)
,

W1(νRk
ε,δ, πε,δ) 6 A1,Cρ

kδ
1,C

(∫
Rd

‖x̃‖ dν(x̃) +
∫
Rd

‖x̃‖ dπε,δ(x̃)
)
.
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Combining this result with the fact that for any t > 0, (1 − e−t)−1 6 1 + t−1, we get that for
any n ∈ N∗ and h : R

d → R measurable such that supx∈Rd{(1 + ‖x‖2)−1 |h(x)|} < +∞∣∣∣∣∣n−1
n∑
k=1

E[h(Xk)]−
∫
Rd

h(x̃)dπε,δ(x̃)

∣∣∣∣∣
6 A1,C(δ̄ + log−1(1/ρ1,C))

(
V 2(x) +

∫
Rd

V 2(x̃)dπε,δ(x̃)
)/

(nδ) ,

where (Xk)k∈N is the Markov chain given by (17) with starting point X0 = x ∈ Rd.
In the rest of this section we evaluate how close the invariant measure πε,δ is to πε. Our

proof will rely on the following assumption which is necessary to ensure that x 7→ log p?ε(x) has
Lipschitz gradients, see Proposition 2.

H4. For any ε > 0, there exists Kε > 0 such that for any x ∈ Rd,∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃′|x)dx̃′
∥∥∥∥2
gε(x̃|x)dx̃ 6 Kε ,

with gε given in (9).

We emphasize that H 4 is not needed to establish the convergence of the Markov chain.
However, we impose it in order to compare the stationary distribution of PnP-ULA with the
target distribution πε. Depending on the prior distribution density p?, H4 may be checked by
hand. Finally, note that H4 can be extended to cover the case where the prior distribution µ
does not admit a density with respect to the Lebesgue measure.

In the following proposition, we show that we can control the distance between πε,δ and πε
based on the previous observations.

Proposition 6. Assume H1, H2(R) for some R > 0, H3 and H4. Moreover, let ε ∈ (0, ε0] and
assume that

∫
Rd(1 + ‖x̃‖4)p?ε(x̃)dx̃ < +∞. Let λ > 0 such that 2λ(Ly + (/ε) max(L, 1 + Kε/ε)−

min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε + 1/λ)−1. Then for any δ ∈ (0, δ̄] and C convex and
compact with 0 ∈ C, Rε,δ admits an invariant probability measure πε,δ. In addition, there exists
B0 > 0 such that for any C convex compact with B(0, RC) ⊂ C and RC > 0, there exists B1,C > 0
such that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B0R
−1
C +B1,C(δ1/2 + MR + exp[−R]) ,

where V is given in (18).

Proof. The proof is postponed to Appendix F.3.

We now combine Proposition 5 and Proposition 6 in order to control the bias of the Monte
Carlo estimator obtained using PnP-ULA. In the supplementary material Appendix D we also
provide bounds on |n−1∑n

k=1 E[h(Xk)]−
∫
Rd h(x̃)dπ(x̃)| by controlling ‖π − πε‖V .

Proposition 7. Assume H1, H2(R) for some R > 0, H3 and H4. Moreover, let > 0, ε ∈ (0, ε0]
and assume that

∫
Rd(1 + ‖x̃‖4)p?ε(x̃)dx̃ < +∞. Let λ > 0 such that 2λ(Ly + (1/ε) max(L, 1 +

Kε/ε) −min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε + 1/λ)−1. Then there exists C1,ε > 0 such that
for any C convex compact with B(0, RC) ⊂ C and RC > 0 there exists C2,ε such that for any
h : R

d → R measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] we have
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∣∣∣∣∣n−1
n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπε(x̃)

∣∣∣∣∣
6
{
C1,εR

−1
C + C2,ε,C(δ1/2 + MR + exp[−R] + (nδ)−1)

}
(1 + ‖x‖4) .

Proof. The proof is straightforward combining Proposition 5 and Proposition 6.

3.3 Convergence guarantees for PPnP-ULA
We now study the Projected Plug & Play Unadjusted Langevin Algorithm (PPnP-ULA). It is
given by the following recursion: X0 ∈ C and for any k ∈ N

Xk+1 = ΠC(Xk + δbε(Xk) +
√

2δZk+1) , (16)
bε(x) = ∇ log p(y|x) + Pε(x) , Pε(x) = (Dε(x)− x)/ε ,

where δ > 0 is a step-size, ε > 0 is an hyperparameter of the algorithm, C ⊂ Rd is a closed convex
set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and identity
covariance matrix and where ΠC is the projection onto C. In what follows, for any δ > 0 and
C ⊂ Rd closed and convex, we denote by Qε,δ : Rd×B(Rd)→ [0, 1] the Markov kernel associated
with the recursion (16) and given for any x ∈ Rd and A ∈ B(Rd) by

Qε,δ(x,A) = (2π)−d/2
∫
Rd

1Π−1
C (A)(x+ δbε(x) +

√
2δz) exp[−‖z‖2 /2]dz .

Note that for ease of notation, we do not explicitly highlight the dependency of Qε,δ and bε with
respect to the hyperparameter C.

First, we have the following result which ensures that PPnP-ULA is geometrically ergodic
for all step-sizes.

Proposition 8. Assume H1, H2(R) for some R > 0. Let λ, ε, δ̄ > 0. Then for any C ⊂ R
d

convex and compact with 0 ∈ C, there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that for any δ ∈ (0, δ̄],
x1, x2 ∈ C and k ∈ N we have

‖δx1Qk
ε,δ − δx2Qk

ε,δ‖TV 6 ÃCρ̃
kδ
C .

Proof. The proof is postponed to Appendix G.1.

In particular Qε,δ admits an invariant probability measure πC
ε,δ. The next proposition ensures

that for small enough step-size δ the invariant measures of PnP-ULA and PPnP-ULA are close
if the compact convex set C has a large diameter.

Proposition 9. Assume H1, H2(R) for some R > 0 and H3. In addition, assume that there
exists m̃, c > 0 such that for C = R

d and for any ε > 0 and x ∈ Rd, 〈bε(x), x〉 6 −m̃ ‖x‖2 + c. Let
λ > 0, ε ∈ (0, ε0] such that 2λ(Ly + L/ε −min(m, 0)) 6 1. Then there exist Ā > 0 and η, δ̄ > 0
such that for any C ⊂ R

d convex and compact with 0 ∈ C and B(0, RC/2) ⊂ C ⊂ B(0, RC) and
δ ∈ (0, δ̄] we have

‖πε,δ − πC
ε,δ‖TV 6 Ā exp[−ηRC] ,

where πε,δ is the invariant measure of Rε,δ and πC
ε,δ is the invariant measure of Qε,δ.

Proof. The proof is postponed to Appendix G.2.
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It is worth mentioning at this point that in our experiments, see Section 4, the probability of
the iterates (Xn)n∈N leaving C with PnP-ULA or with PPnP-ULA is so low that the projection
constraint is not activated. As a result, if implemented with the same step-size both algorithms
produce the same results. We do not suggest completely removing the constraints as this is
important to theoretically guarantee the geometric ergodicity of the algorithms.

Regarding the choice of the step-size, we observe that the bound δ̄ = (1/3)(Ly +L/ε+1/λ)−1

used in PnP-ULA is conservative and our experiments suggest that PnP-ULA is stable for larger
step-sizes.

4 Experimental study
This section illustrates the behaviour of PnP-ULA and PPnP-ULA with two classical imaging
inverse problems: non-blind image deblurring and inpainting. For these two problems, we first
analyse in detail the convergence of the Markov chain generated by PnP-ULA for different test
images. This is then followed by a comparison between the MMSE Bayesian point estimator, as
calculated by using PnP-ULA and PPnP-ULA and the MAP estimator provided by the recent
PnP-SGD method [55]. We refer the reader to [55] for comparisons with PnP-ADMM [73].
To simplify comparisons, for all experiments and algorithms, the operator Dε is chosen as the
pretrained denoising neural network introduced in [73], for which (Dε − Id) is L-Lipschitz with
L < 1.

For the deblurring experiments, the observation model takes the form

y = Ax+ n ,

where x ∈ Rd is the unknown original image, y ∈ Rm the observed image, n is a realization of
a Gaussian i.i.d. centered noise with variance σ2 Id (with σ2 = (1/255)2), and A is a 9× 9 box
blur operator. The log-likelihood for this case writes log p(y|x) = −‖Ax− y‖2/(2σ2).

In the inpainting experiments, we seek to recover x ∈ Rd from y = Ax where the matrix A is
a m× d matrix containing m randomly selected rows of the d× d identity matrix. We focus on a
case where 80% of the image pixels are hidden and the observed pixels are measured without any
noise. Because the posterior density for x|y is degenerate, we run PnP-ULA on the posterior x̃|y
where x̃ := Px ∈ Rn denotes the vector of n = d−m unobserved pixels of x, and map samples
to the pixel space by using the affine mapping fy : Rn → R

d defined for any x̃ ∈ Rn and y ∈ Rm
by

fy(x̃) = P>x̃+ A>y.
Note that we can write the log-posterior Ũε(x̃) = − log pε(x̃|y) on the set Rn of hidden pixels in
terms of fy and the log-prior Uε(x) = − log pε(x) on the set Rd:

Ũε = Uε ◦ fy.

Using the chain rule and Tweedie’s formula, we have that for any x ∈ Rd and y ∈ Rm

bε(x̃) = −∇Ũε(x̃) = −P∇Uε(fy(x̃)) = (1/ε)P(Dε − Id)(fy(x̃)) .

Since P and fy are 1-Lipschitz, bε = −∇Ũε is also Lipschitz with constant L̃ 6 (L/ε).
Figure 1 shows the six test images of size 256× 256 pixels that were used in the experiments.

We have selected these six images for their diversity in composition, content and level of detail
(some images are predominantly composed of piece-wise constant regions, whereas others are
rich in complex textures). This diversity will highlight strengths and limitations of the chosen
denoiser as an image prior. Figure 2 depicts the corresponding blurred images and Figure 3 the
images to inpaint.
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Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 1: Original images used for the deblurring and inpainting experiments.

4.1 Implementation guidelines and parameter setting
In the following, we provide some simple and robust rules in order to set the parameters of
the different algorithms, in particular the discretization step-size δ and the tail regularization
parameter λ.

Choice of the denoiser The theory presented in Section 3 requires that Dε satisfies H2(R).
As default choice, we recommend using a pretrained denoising neural network such as the one
described in [73]. The Lipschitz constant of the network is controlled during training by using
spectral normalization and therefore the first condition of H 2(R) holds. Moreover, the loss
function used to train the network is given by `ε as introduced in Section 3.2. Therefore, under
the conditions of Proposition 4, we get that the second condition of H2(R) holds.

Step-size δ The parameter δ controls the asymptotic accuracy of PnP-ULA and PPnP-ULA,
as well as the speed of convergence to stationarity. This leads to the following bias-variance
trade-off. For large values of δ, the Markov chain has low auto-correlation and converges quickly
to its stationary regime. Consequently, the Monte Carlo estimates computed from the chain
exhibit low asymptotic variance, at the expense of some asymptotic bias. On the contrary, small
values of δ produce a Markov chain that explores the parameter space less efficiently, but more
accurately. As a result, the asymptotic bias is smaller, but the variance is larger. In the context
of inverse problems that are high-dimensional and ill-posed, properly exploring the solution space
can take a large number of iterations. For this reason, we recommend using large values of δ,
at the expense of some bias. In addition, in PnP-ULA, δ is also subject to a numerical stability
constraint related to the inverse of the Lipschitz constant of bε(x) = ∇ log pε(x|y); namely, we
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PSNR=20.30/SSIM=0.70 PSNR=22.44/SSIM=0.66 PSNR=20.34/SSIM=0.49

PSNR=22.64/SSIM=0.46 PSNR=21.84/SSIM=0.49 PSNR=22.61/SSIM=0.45

Figure 2: Images of Figure 1, blurred using a 9 × 9-box-filter operator and corrupted by an
additive Gaussian white noise with standard deviation σ = 1/255.

require δ < (1/3) Lip(bε)−1 where

Lip(bε) =
{
αL/ε+ 1/λ for the inpainting problem
αL/ε+ Ly + 1/λ otherwise

where L and Ly are respectively the Lipschitz constant of the denoiser residual (Dε− Id) and the
Lipschitz constant of the log-likelihood gradient. In our experiments, L = 1 and Ly = ‖A>A‖/σ2,
so we choose δ just below the upper bound δth = 1/3(Lip(bε))−1 where A> is the adjoint of A.
For PPnP-ULA, we set δ < (L/ε+ Ly)−1 (resp. δ < (L/ε)−1 for inpainting) to prevent excessive
bias.

Parameter λ The parameter λ controls the tail behaviour of the target density. As previously
explained, it must be set so that the tails of the target density decay sufficiently fast to ensure
convergence at a geometric rate, a key property for guaranteeing that the Monte Carlo estimates
computed from the chain are consistent and subject to a Central Limit Theorem with the stan-
dard O(

√
k) rate. More precisely, we require λ ∈ (0, 1/2(L/ε + 2Ly)). Within this admissible

range, if λ is too small this limits the maximal δ and leads to a slow Markov chain. For this
reason, we recommend setting λ as large as possible below (2L/ε+ 4Ly)−1.

Other parameters The compact set C is defined as C = [−1, 2]d, even if in practice no
samples where generated outside of C in all our experiments, which suggests that the tail decay
conditions hold without explicitly enforcing them. In all our experiments, we set the noise level
of the denoiser Dε to ε = (5/255)2. The initialization X0 can be set to a random vector. In
our experiments (where m = d), we chose X0 = y in order to reduce the number of burn-in
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Figure 3: Images of Figure 1, with 80% missing pixels.

iterations. For m 6= d we could use X0 = A>y instead. Concerning the regularization parameter
α, by default we set α = 1, but in some cases it is possible to marginally improve the results by
fine tuning it. All algorithms are implemented using Python and the PyTorch library, and run
on an Intel Xeon CPU E5-2609 server with a Nvidia Titan XP graphic card or on Idris’ Jean-Zay
servers featuring Intel Cascade Lake 6248 CPUs with a single Nvidia Tesla V100 SXM2 GPU.
Reported running times correspond to the Xeon + Titan XP configuration.

4.2 Convergence analysis of PnP-ULA in non-blind image deblurring
and inpainting

When using a sampling algorithm such as PnP-ULA on a new problem, it is essential to check
that the state space is correctly explored. In order to provide a thorough convergence study, we
first run the algorithm for 25 × 106 iterations. We use a burn-in period of 2.5 × 106 iterations,
and consider only the samples computed after this burn-in period to study the Markov chain in
close-to-stationary regime. In section 4.3, we will see that much less iterations are required if the
goal is only to compute point estimators with PnP-ULA. For simplicity, the algorithm is always
initialized with the observation y in our experiments with PnP-ULA (for inpainting, this means
that unknown pixels are initialized to the value 0).

There is no fully comprehensive way to empirically characterise the convergence properties
of a high-dimensional Markov chain, as different statistics computed from the same chain align
differently with the eigenfunctions of the Markov kernel and hence exhibit different convergence
speeds. In problems of small dimension, we would calculate and analyse the d-dimensional
multivariate autocorrelation function (ACF) of the Markov chain, but this is not feasible in
imaging problems. In problems of moderate dimension, one could characterise the range of
convergence speeds by first estimating the posterior covariance matrix (which, for 256 × 256
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images, would be a 2562 × 2562 matrix) and then performing a principal component analysis on
this matrix to identify the directions with smallest and largest uncertainty, as these would provide
a good indication of the subspaces where the chain converges the fastest and the slowest. However,
computing the posterior covariance matrix is also not possible in imaging problems because of the
dimensionality involved. Here we focus on approximations of the posterior covariance which make
sense for the particular inverse problem we study. More precisely, we use the diagonalization
basis of the inverse operator, i.e. the Fourier basis for the deblurring experiments, and the
basis formed by the unknown pixels for the inpainting experiments. Under the assumption
that the posterior covariance is mostly determined by the likelihood, this strategy allows broadly
identifying the linear statistics that converge fastest and slowest, without requiring the estimation
and manipulation of prohibitively large matrices.

Figure 4: Marginal posterior standard deviation of the unobserved pixels for the inpainting
problem. Uncertainty is located around edges and in textured areas.

Inpainting We first focus on the inpainting problem. Figure 4 shows a map of the pixel-wise
marginal standard deviations, for all images. We observe that pixels in homogeneous regions
have low uncertainty, while pixels on textured regions, edges, or complex structures (a reflection
on the window shutter in the Alley image for instance) are the most uncertain.

For the same experiments, Figure 5 shows the Euclidean distance between the final MMSE
estimate (computed using all samples) and the samples of the chain, every 2500 samples (after the
burn-in period, and hence in what is considered to be a close-to-stationary regime). Fluctuations
around the posterior mean and the absence of temporal structure in the plots of Alley or
Goldhill are a first indication that the chain explores the solution space with ease. However,
in some other cases such as the Simpson image, we observe meta-stability, where the chain stays
in a region of the space for millions of iterations and then jumps to a different region, again for
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Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 5: Evolution of the L2 distance between the final MMSE estimate and the samples
generated by PnP-ULA for the inpainting problem after the burn-in phase. Samples randomly
oscillate around the MMSE. It means that they are uncorrelated. For the images Cameraman,
Simpson or Bridge, we note a change of range for the L2 distance. It could be interpreted as a
mode switching as our posterior is likely not log-concave.
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Fastest direction Median direction Slowest direction

Figure 6: ACF for the inpainting problem. The ACF are shown for lags up to 5e5 for all images
in the pixel domain. After 5e5 iterations, sample pixels are nearly uncorrelated in all spatial
directions for the images Traffic, Alley, Bridge and Goldhill. For the images Cameraman and
Simpson, in the slowest direction, samples need more iterations to become uncorrelated.

millions of iterations. This is one of the drawbacks of operating with a posterior distribution
that is not log-concave and that may exhibit several modes.

Lastly, Figure 6 displays the sample ACFs of the fastest and slowest converging statistics
associated with the inpainting experiments (as estimated by identifying, for each image, the
unknown pixels with lowest and highest uncertainty). These ACF plots measure how fast samples
become uncorrelated. A fast decay of the ACF is associated with good Markov chain mixing,
which in turn implies accurate Monte Carlo estimates. On the contrary, a slow decay of the ACF
indicates that the Markov chain is moving slowly, which leads to Monte Carlo estimates with
high variance. As mentioned previously, because computing and visualising a multivariate ACF
is difficult, here we show the ACF of the chain along the slowest and the fastest directions in the
spatial domain (for completeness, we also show the ACF for a pixel with median uncertainty).
We see that independence is reached very fast in the subspaces of low or median uncertainty,
and is much slower for the few very uncertain pixels.

Deblurring We now focus on the non-blind image deblurring experiments, where, as explained
previously, we perform our convergence analysis by using statistics associated with the Fourier
domain. Figure 7 depicts the marginal standard deviation of the Fourier coefficients (in absolute
value), for all images. For the three images Cameraman, Simpsons and Traffic, all the standard
deviations have a similar range of values, and the largest values are observed around frequencies
in the kernel of the blur filter (shown on the right of the same figure) and for high frequencies.
Conversely, for the three images Alley, Bridge and Goldhill, very high uncertainty is observed
in the vicinity of four specific frequencies. This suggests that the denoiser used is struggling to
regularise these specific frequencies, and consequently the posterior distribution is very spread
along these directions and difficult to explore by Markov chain sampling as a result. Interestingly,
this phenomenon is only observed in the images that are rich in texture content.

Moreover, Figure 8 depicts the Euclidean distance between the MMSE estimator computed
from entire chain (i.e. all samples) and each sample (we show one point every 2500 samples).
We notice that many of the images exhibit some degree of meta-stability or slow convergence
because of the presence of directions in the solution space with very high uncertainty. Again, this
is consistent with our convergence theory, which identifies posterior multimodality and anisotropy
as key challenges that future work should seek to overcome.
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Inverse Fourier
transform of

the blur kernel.

Figure 7: Log-standard deviation maps in the Fourier domain for the Markov chains defined
by PnP-ULA for the deblurring problem. First line: images Cameraman, Simpson, Traffic.
Second line: images Alley, Bridge and Goldhill. For the first three images, we clearly see
that uncertainty is observed on frequencies that are near the kernel of the blur filter (shown
on the right), and is also higher around high frequencies (i.e. around edges and textured areas
in images). For the last three images, very high uncertainty is observed around some specific
frequencies. In the direction of these frequencies, the Markov chain is moving very slowly and
the mixing time of the chain is particularly slow, as shown on Figure 9.
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Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 8: Evolution of the L2 distance between the final MMSE estimate and the samples
generated by PnP-ULA for the deblurring problem after the burn-in phase. For images as
Cameraman or Simpson, samples randomly oscillate around the MMSE. On the contrary, for
images as Bridge or Goldhill, the plot is structured, meaning that samples are still correlated.

Fast direction Slow direction Fast direction Slow direction

Figure 9: ACF for the deblurring problem. The ACF are shown for lags up to 1.75e5 for the
three images Cameraman, Simpson and Traffic (see the two plots to the left) and independence
seems to be achieved in all directions. For the three other images, independence is not achieved
in the slowest direction (corresponding to the most uncertain frequency of the samples in the
Fourier domain) even after 1e6 iterations.
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Figure 10: Left: PSNR evolution of the estimated MMSE for the inpainting problem. After
5e5 iterations, the convergence of the first order moment of the posterior distribution seems to
be achieved for all images. Middle and right: PSNR evolution of the estimated MMSE for the
deblurring problem. The convergence for the posterior mean can be fast for simple images such
as Cameraman, Simpson, and Traffic (for these images the PSNR evolution is shown for the first
5e5 iterations). Increasing the δ increases the convergence speed for these images by a factor
close to 2. For more complex images, such as Alley or Goldhill, the convergence is much slower
and is still not achieved after 3e6 iterations with PPnP-ULA for δ = 6δth.

Lastly, we show on Figure 9 the sample ACFs for the slowest and the fastest directions
in the Fourier domain7. Again, in all experiments, independence is achieved quickly in the
fastest direction. The behaviours of the slowest direction for the three images Alley, Bridge
and Goldhill suggest that the Markov chain is close to the stability limit and exhibits highly
oscillatory behaviour as well as poor mixing.

4.3 Point estimation for non-blind image deblurring and inpainting
We are now ready to study the quality of the MMSE estimators delivered by PnP-ULA and
PPnP-ULA and report comparisons with MAP estimation by PnP-SGD [55].

Quantitative results Figure 10 illustrates the evolution of the PSNR of the mean of the
Markov chain (the Monte Carlo estimate of the MMSE solution), as a function of the number of
iterations, for the six images of Figure 1. These plots have been computed by using a step-size
δ = δth that is just below the stability limit and a 1-in-2500 thinning. We observe that the
PSNR between the MMSE solution as computed by the Markov chain and the truth stabilises

7The slowest direction corresponds to the Fourier coefficient with the highest (real or imaginary) variance.

25



in approximately 105 iterations in the experiments where the chain exhibits fast convergence,
whereas over 106 are required in experiments that suffer from slow convergence (e.g., deblurring
of Alley, Bridge and Goldhill). Moreover, we observe that using PPnP-ULA with a larger
step-size can noticeably reduce the number of iterations required to obtain a stable estimate of
the posterior mean, particularly in the image deblurring experiments.
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Figure 11: Results comparison for the inpainting task of the images presented in Figure 3 using
PnP-ULA (first row) and PnP-SGD initialized with a TVL2 restoration (second row).

Visual results Figures 11, 12, 13 and 14 show the MMSE estimate computed by PnP-ULA on
the whole chain including the burn-in for the 6 images, for the inpainting and deblurring exper-
iments. We also provide the MAP estimation results computed by using PnP-SGD [55], which
targets the same posterior distributions. We report the Peak Signal-To Noise Ratio (PSNR) and
the Structural Similarity Index (SSIM) [83, 84] for all these experiments.

For the inpainting experiments, PnP-SGD struggles to converge when initialized with the
observed image (see [55]). For this reason, we warm start PnP-SGD by using an estimate of
x obtained by minimizing the Total Variation pseudo-norm under the constraint of the known
pixels. For simplicity, PnP-ULA is initialized with the observation y. We observe in Figure 11
and Figure 12 that the results obtained by computing the MMSE Bayesian estimator with PnP-
ULA are visually and quantitatively superior to the ones delivered by MAP estimation with
PnP-SGD. In particular, the sampling approach seems to better recover the continuity of fine
structures and lines in the different images.

For the deblurring experiments, the results of PnP-SGD are provided by using a regularisation
parameter α = 0.3 (which was shown to yield optimal results on this set of images in [55]) and
for α = 1, which recovers the model used by PnP-ULA. Observe that for the three first images
(shown on Figure 13), the MMSE result is much sharper than the best MAP result, and the PSNR
/ SSIM results also show a clear advantage for the MMSE. For the other three images (results are
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Figure 12: Results comparison for the inpainting task of the images presented in Figure 3 using
PnP-ULA (first row) and PnP-SGD initialized with a TVL2 restoration (second row).

shown on Figure 14), the quality of the MMSE solutions delivered is slightly deteriorated by the
slow convergence of the Markov chain and the poor regularisation of some specific frequencies,
which leads to a common visual artefact (a rotated rectangular pattern). Using a different
denoiser more suitable for handling textures, or combining a learnt denoiser with an analytic
regularisation term, might correct this behaviour and will be the topic of future work.

A partial conclusion from this set of comparisons is that the sampling approach of PnP-
ULA, when it samples the space correctly, seems to provide much better results than the MAP
estimator for the same posterior. Of course, this increase in quality comes at the cost of a much
higher computation time.

4.4 Deblurring and inpainting: uncertainty visualisation study
One of the benefits of sampling from the posterior distribution with PnP-ULA is that we can
probe the uncertainty in the delivered solutions. In the following, we present an uncertainty
visualisation analysis that is useful for displaying the uncertainty related to image structures
of different sizes and located in different regions of the image (see [20] for more details). The
analysis proceeds as follows. First, Figure 4 and Figure 15 show the marginal posterior standard
deviation associated with each image pixel, as computed by PnP-ULA over all samples, for
the inpainting and deblurring problems. As could be expected, we observe for both problems
that highly uncertain pixels are concentrated around the edges of the reconstructed images, but
also on textured areas. The dynamic range of the pixel standard deviations is larger for the
inpainting problem than for deblurring, which suggests that the problem has a higher level of
intrinsic uncertainty.

Figure 16 shows the evolution of the RMSE between the standard deviation computed along
the samples and its asymptotic value, respectively for the inpainting and deblurring problems.
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Figure 13: Results comparison for the deblurring task of the images presented in Figure 2 using
PnP-ULA with α = 1 (first row), PnP-SGD with α = 0.3 (second row) and α = 1 (third row).
PnP-ULA was initialized with the observation y (see Figure 2) whereas PnP-SGD was initialised
with a TVL2 restoration.

Estimating these standard deviation maps necessitates to run the chain longer than to estimate
the MMSE, as could be expected for second order statistical moment.

Following on from this, to explore the uncertainty for structures that are larger than one pixel,
Figure 17 and Figure 18 report the marginal standard deviation associated with higher scales.
More precisely, for different values of the scale i, we downsample the stored samples by a factor
2i before computing the standard deviation. This downsampling step permits quantifying the
uncertainty of larger or lower-frequency structures, such as the bottom of the glass in Simpson
for the deblurring experiment. At each scale, we see that the uncertainty of the estimate is
much more localized for the inpainting problem (resulting in higher uncertainty values in some
specific regions) and more spread out for deblurring, certainly because of the different nature of
the degradations involves.
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Figure 14: Results comparison for the deblurring task of the images presented in Figure 2 using
PnP-ULA with α = 1 (first row), PnP-SGD with α = 0.3 (second row) and α = 1 (third row).
PnP-ULA was initialized with the observation y (see Figure 2) whereas PnP-SGD was initialised
with a TVL2 restoration.

5 Conclusion
This paper presented theory, methods, and computation algorithms for performing Bayesian
inference with Plug & Play priors. This mathematical and computational framework is rooted in
the Bayesian M-complete paradigm and adopts the view that Plug & Play models approximate
a regularised oracle model. We established clear conditions ensuring that the involved models
and quantities of interest are well defined and well posed. Following on from this, we studied
three Bayesian computation algorithms related to biased approximations of a Langevin diffusion
process, for which we provide detailed convergence guarantees under easily verifiable and realistic
conditions. For example, our theory does not require the denoising algorithms representing the
prior to be gradient or proximal operators. We also studied the estimation error involved in using
these algorithms and models instead of the oracle model, which is decision-theoretically optimal
but intractable. To the best of our knowledge, this is the first Bayesian Plug & Play framework
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Figure 15: Marginal posterior standard deviation for the deblurring problem. On simple images
such as Simpson (see figure 1), most of the uncertainty is located around the edges. For the
images Alley, Bridge and Goldhill, associated with a highly correlated Markov chain in some
directions, some areas are very uncertain. They correspond to the zones where the rotated
rectangular pattern appears in the MMSE estimate.

with this level of insight and guarantees on the delivered solutions. We illustrated the proposed
framework with two Bayesian image restoration experiments - deblurring and inpainting - where
we computed point estimates as well as uncertainty visualisation and quantification analyses and
highlighted how the limitations of the chosen denoiser manifest in the resulting Bayesian model
and estimates.

In future work, we would like to continue our theoretical and empirical investigation of
Bayesian Plug & Play models, methods and algorithms. From a modelling viewpoint, it would be
interesting to consider priors that combine a denoiser with an analytic regularisation term, and
other neural network based priors such as the generative ones used in [15] or the autoencoder-
based priors in [40], as well as to generalise the Gaussian smoothing to other smoothings and
investigate their properties in the context of Bayesian inverse problems. We are also very in-
terested in strategies for training denoisers that automatically verify the conditions required for
exponentially fast convergence of the Langevin SDE, for example by using the framework re-
cently proposed in [68] to learn maximally monotone operators, or the data-driven regularisers
described in [52, 63]. In addition, we would like to understand when the projected RED estima-
tor [26] - or its relaxed variant - are the MAP estimators for well-defined Bayesian models, as
well as to study the interplay between the geometric aspects of the loss defining this estimator
[65] and the geometry of the set of fixed points of the denoiser defining the model. With regards
to Bayesian analysis, it would be important to investigate the frequentist accuracy of Plug &
Play models, as well as the adoption of robust Bayesian techniques in order to perform inference
directly w.r.t. to the oracle model [85]. From a Bayesian computation viewpoint, a priority is
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Inpainting. Deblurring.

Figure 16: Evolution of the Root Mean Squared Error (RMSE) between the final standard devi-
ation and the estimated current standard deviation for the inpainting and deblurring problems.

Scale 1 Scale 2 Scale 3 Scale 4

Figure 17: Marginal posterior standard deviation of the Alley and Simpson images for the
inpainting problem at different scales. The scale i corresponds to a downsampling by a factor 2i
of the original sample size.
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Scale 1 Scale 2 Scale 3 Scale 4

Figure 18: Marginal posterior standard deviation of the images Alley and Simpson for the
deblurring problem at different scales. The scale i corresponds to a downsampling by a factor 2i
of the original sample size.

to develop accelerated algorithms similar to [67]. Lastly, with regards to experimental work, we
intend to study the application of this framework to uncertainty quantification problems, e.g.,
in the context of medical imaging.
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A Organization of the supplementary
In this supplementary document we present some extensions and gather the proofs of this paper.
We first introduce a more general framework in Appendix B. Then in Appendix C we present
our improved convergence results in the case where the log-likelihood is strongly log-concave.
Posterior approximation bounds in our general setting are gathered in Appendix D. Then we
turn to the proof of these results. We first derive technical results in Appendix E. Proofs of
Section 3.2 and Section 3.3 are presented in Appendix F and Appendix G respectively. Finally,
proofs of Appendix D are given in Appendix H.

B A general framework
We start by considering a slightly more general framework than the one previously introduced.
More precisely, instead of p? we consider a general distribution p and instead of considering pε as
a prior we consider a tamed version of this density by introducing another hyperparameter α > 0.
In what follows, we describe this setting in details. We start by recalling a mild assumption on
the likelihood.

H1. For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)) and there exists Ly > 0
such that ∇ log(p(y|·)) is Ly Lipschitz continuous.
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For any ε > 0 we recall that pε is given by the Gaussian smoothing of p with level ε, for any
x ∈ Rd by

pε(x) = (2πε)−d/2
∫
Rd exp[−‖x− x̃‖2 /(2ε)] p(x̃)dx̃ .

One typical example of likelihood function that we consider in our numerical illustration, see
Section 4, is p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)] for any x ∈ Rd with σ > 0 and A ∈ Rm×d. Before
turning to the analysis of the convergence of the introduced algorithms we state the following
proposition which ensures the regularity of the posterior model w.r.t to the observation y.

We consider the following assumption on x 7→ p(y|x) and the prior p for some hyperparameter
α > 0 and an observation y ∈ Rm.

H5. The following hold:

(a)
∫
Rd p(y|x̃)pα(x̃)dx̃ < +∞ and for any ε > 0,

∫
Rd p(y|x̃)pαε (x̃)dx̃ < +∞.

(b)
∫
Rd ‖x̃‖2p(x)dx < +∞.

Note that if α = 1, H5-(a) hold under H1, see Proposition 1. Under H5-(a), define π the
target probability distribution for any x ∈ Rd by

(dπ/dLeb)(x) = p(y|x)pα(x)
/∫

Rd

p(y|x̃)pα(x̃)dx̃ .

Note that for ease of notation, we do not explicitly highlight the dependency of the posterior
distribution π with respect to the hyperparameter α > 0, since it is fixed in the rest of this
section. We also consider the family of probability distributions {πε : ε > 0} given for any ε > 0
and x ∈ Rd by

(dπε/dLeb)(x) = p(y|x)pαε (x)
/∫

Rd

p(y|x̃)pαε (x̃)dx̃ .

We also recall the assumption on the denoiser Dε, see Section 3.2 for details.

H 2. There exist ε0 > 0, MR > 0 and L > 0 such that for any ε ∈ (0, ε0], x1, x2 ∈ R
d and

x ∈ B(0, R) we have

‖(Id−Dε)(x1)− (Id−Dε)(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 MR ,

where we recall that
D?
ε(x1) =

∫
Rd x̃ gε(x̃|x1)dx̃ .

C Strongly log-concave case
We now present an improvement on the results of Section 3.2 in the case where the log-likelihood
x 7→ log p(y|x) is strongly concave. We recall that the Markov chain is given by the following
recursion: X0 ∈ Rd and for any k ∈ N

Xk+1 = Xk + δbε(Xk) +
√

2δZk+1 , (17)
bε(x) = ∇ log p(y|x) + αPε(x) + (proxλ(ιC)(x)− x)/λ , Pε(x) = (Dε(x)− x)/ε ,

In the strongly concave setting we set C = R
d, i.e. ∀x ∈ C, proxλ(ιC)(x) = x. We recall that in

our image processing applications, we have that for any x ∈ Rd, p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)]
and that x 7→ p(y|x) is strongly log-concave if and only if A is invertible. This is the case for
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denoising tasks where A = Id and for deblurring tasks with convolution kernels which have full
Fourier support.

We start with the following result which ensures that the Markov chain (17) is geometrically
ergodic under H2 for the Wasserstein metric W1 and in V -norm for V : R

d → [1,+∞) given
for any x ∈ Rd by

V (x) = 1 + ‖x‖2 . (18)
The following proposition is the counterpart of Proposition 5.

Proposition 10. Assume H1, H5 and H2(R) for some R > 0. Let α > 0 and ε ∈ (0, ε0]. If
there exists m > 0 such that log(p(y|·)) is m-concave with m > 2αL/ε then there exist A1 > 0 and
ρ1 ∈ [0, 1) such that for any δ ∈ (0, δ̄], x1, x2 ∈ Rd and k ∈ N we have∥∥δx1Rk

ε,δ − δx2Rk
ε,δ

∥∥
V
6 A1ρ

kδ
1 (V 2(x1) + V 2(x2)) ,

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1ρ
kδ
1 ‖x1 − x2‖ ,

where V is given in (18) and δ̄ = m(Ly + αL/ε)−2/2.

Proof. The proof is postponed to Appendix F.2.

We recall the assumption on gε which ensures that x 7→ log(pε(x)) has Lipschitz gradients.

H4. For any ε > 0, there exists Kε > 0 such that for any x ∈ Rd,∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃′|x)dx̃′
∥∥∥∥2
gε(x̃|x)dx̃ 6 Kε ,

with gε given in (9).

The following proposition is the counterpart of Proposition 6.

Proposition 11. Assume H1, H5, H2(R) for some R > 0 and H4. Moreover, let α > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0 such

that log(p(y|·)) is m-concave with m > (2α/ε) max(L, 1 + Kε/ε) and δ̄ = m(Ly + αL/ε)−2/2, then
for any δ ∈ (0, δ̄], Rε,δ admits an invariant probability measure πε,δ and there exists B1 > 0 such
that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B1(δ1/2 + MR + exp[−R]) , (19)
where V is given in (18) and B1 does not depend on R.

Proof. The proof is postponed to Appendix F.3.

The bound appearing in (19) depends on an extra hyperparameter R > 0 which may be
optimized if H2(R) holds for any R > 0 and {MR : R > 0} can be expressed in a closed form. In
particular if there exists M ∈ (0, 1) such that for any R > 0, MR = M×R then there exists B1 > 0
such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ1/2 + M log(1/M)) ,

by setting R = log(1/M). Similarly if there exists M > 0 such that for any R > 0, MR = M then
there exists B1 > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ1/2 + M) ,

by letting R→ +∞.
We now combine Proposition 10 and Proposition 11 in order to control the bias of the Monte

Carlo estimator obtained using PnP-ULA. This proposition is the counterpart of Proposition 7.
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Proposition 12. Assume H1, H5, H2(R) for some R > 0 and H4. Moreover, let α > 0, ε ∈
(0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0 such that

log(p(y|·)) is m-concave with m > (2α/ε) max(L, 1 + Kε/ε) and δ̄ = m(Ly + αL/ε)−2/2, then there
exists C1,ε > 0 such that for any h : R

d → R measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1,
n ∈ N∗, δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπε(x̃)

∣∣∣∣∣ 6 C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) .

Proof. The proof is straightforward upon combining Proposition 10 and Proposition 11.

In particular, applying Proposition 12 to the family {hi}di=1 where for any i ∈ {1, . . . , d},
hi(x) = xi we get that∥∥∥∥∥n−1

n∑
k=1

E [Xk]−
∫
Rd

x̃dπε(x̃)

∥∥∥∥∥ 6 C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) ,

and n−1∑n
k=1Xk is an approximation of the MMSE given by

∫
Rd x̃dπε(x̃).

D Posterior approximation
We consider the following general regularity assumption.

H6 (α). There exist κ > 0, β > 0 and q : R
d → (0,+∞) such that

∫
Rd q(x̃)dx̃ = 1, ‖q‖∞ < +∞

and for almost every x ∈ Rd,
∫
Rd |p(x̃)− p(x− x̃)| qmin(1−1/α,0)(x̃)dx̃ 6 eκ(1+‖x‖2) ‖x‖β.

In the case where α > 1, H6(α) is equivalent to the following assumption: there exist κ > 0
and β > 0 such that for almost every x ∈ R

d, ‖µ− (τx)#µ‖TV 6 eκ(1+‖x‖2) ‖x‖β, where we
recall that µ is the probability distribution with density with respect to the Lebesgue measure
proportional to p and that for any x̃ ∈ Rd, τx(x̃) = x̃ − x. Note that since p ∈ L1(Rd) we have
limx→0 ‖µ− (τx)#µ‖TV = 0. In H6(α) for α < 1 we assume more regularity for x 7→ (τx)#µ in
total variation in order to obtain explicit bounds between πε and π.

In the following proposition we provide easy-to-check conditions on the density of the prior
distribution µ so that H6(α) holds.

Proposition 13. Assume that there exists U : R
d → R such that for any x ∈ R

d, p(x) =
e−U(x)/

∫
Rd e−U(x̃)dx̃. Assume that U is γ-Hölder, i.e. there exists Cγ > 0 such that for any

x1, x2 ∈ R
d, i.e. ‖U(x1)− U(x2)‖ 6 Cγ ‖x1 − x2‖γ . Then H6(α) is satisfied for α > 1. In

addition, assume that γ 6 2 and that there exist c1, $ > 0 and c2 ∈ R such that for any x ∈ Rd,
U(x) > c1 ‖x‖$ + c2 then H6(α) holds for any α > 0.

Under H6(α) we establish the following result which ensures that πε is close to π in total
variation for small values of ε.

Proposition 14. Assume H1, then the following hold:

(a) If α = 1, then limε→0 ‖πε − π‖TV = 0 .

(b) Assume that ‖p‖∞ < +∞ then for any α > 1, limε→0 ‖πε − π‖TV = 0.

(c) Assume that ‖p‖∞ < +∞ and H6(α) then there exist ε1 > 0 and A0 > 0 such that for
any ε ∈ (0, ε1] we have ‖πε − π‖TV 6 A0ε

β min(α,1)/2.
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Note that a related result in the case where p(x) = e−U(x)/
∫
Rd e−U(x̃)dx̃ with U Lipschitz

continuous and α = 1 can be found in [82, Corollary 1] with explicit dependency with respect
to the dimension d. However, note that Proposition 14 differs from [82, Corollary 1] since
the Gaussian smoothing approximation is applied to the prior distribution and the estimate is
given on the posterior distribution in Proposition 14, whereas in [82, Corollary 1] the Gaussian
smoothing approximation is applied to the posterior distribution and the estimate is given on
the posterior distribution as well.

The following proposition is an extension of Proposition 12 and Proposition 7. The main
difference is that the approximation is expressed with respect to the true posterior π and not πε
for some value ε > 0. Let ε1 > 0 be given by Proposition 14. In order to state this proposition,
we recall the following assumption which is a relaxation of the strongly log-concave condition.

H3. There exists m ∈ R such that for any x1, x2 ∈ Rd we have

〈∇ log p(y|x2)−∇ log p(y|x1), x2 − x1〉 6 −m ‖x2 − x1‖2 .

Note that the posterior is strongly log-concave if and only if m > 0.

Proposition 15. Assume H1, H5, H2, H4 and H3. Let α > 0 and assume that for any
ε ∈ (0,min(ε0, ε1)],

∫
Rd(1 + ‖x̃‖4)(pαε + pα)(x̃)dx̃ < +∞ and H6(α). Then there exists C0 > 0

such that for any ε > 0 and λ > 0 such that 2λ(Ly + (α/ε) max(L, 1 + Kε/ε)−min(m, 0)) 6 1 and
δ̄ = (1/3)(Ly + αL/ε + 1/λ)−1, there exists C1,ε > 0 such that for any C convex compact with
B(0, RC) ⊂ C and RC > 0, there exists C2,ε,C > 0 such that for any h : R

d → R measurable with
supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπ(x̃)

∣∣∣∣∣
6
{
C0ε

β min(α,1)/4 + C1,εR
−1
C + C2,ε,C(δ1/2 + MR + exp[−R] + (nδ)−1)

}
(1 + ‖x‖4) .

In addition, if there exists m > 0 such that log(p(y|·)) is m-concave with m > 2(α/ε) max(L, 1 +
Kε/ε) and δ̄ = m(Ly + αL/ε)−2/2, then there exists C1,ε > 0 such that for any h : R

d → R

measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1
n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπ(x̃)

∣∣∣∣∣
6 C0ε

β min(α,1)/4 + C1,ε(δ1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) .

Proof. In the general case where log(p(y|·)) is not assumed to be m-concave with m > 0, the proof
is completed upon combining Proposition 7, Proposition 14 and the fact that for any probability
distribution ν1, ν2, ‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V 2] + ν2[V 2])1/2. The proof is similar in the
case where log(p(y|·)) is m-concave upon replacing Proposition 7 by Proposition 12.

E Technical results
In this section, we gather technical results which will be used throughout our analysis. Let
b ∈ C(Rd,Rd) such that for any x ∈ Rd, the following Stochastic Differential Equation admits a
unique strong solution

dXt = b(Xt)dt+
√

2dBt , (20)
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where (Bt)t>0 is a d-dimensional Brownian motion and X0 = x. In this case, (20) defines a
Markov semi-group (Pt)t>0 for any x ∈ R

d and A ∈ B(Rd) by Pt(x,A) = P(Xt ∈ A) where
(Xt)t>0 is the solution of (20) with X0 = x. Consider now the generator of (Pt)t>0, defined for
any f ∈ C2(Rd,R) by

Af = 〈∇f, b(x)〉+ ∆f .

We say that a Markov semi-group (Pt)t>0 on R
d × B(Rd) with extended infinitesimal generator

(A,D(A)) (see e.g. [61] for the definition of (A,D(A))) satisfies a continuous drift condition
Dc(W, ζ, β) if there exist ζ > 0, β > 0 and a measurable function W : Rd → [1,+∞) with
W ∈ D(A) such that for all x ∈ Rd

AW (x) 6 −ζW (x) + β .

Similarly, we consider the Markov chain (Xk)k∈N given by the following recursion for any
k ∈ N and x ∈ Rd

Xk+1 = Xk + γb(Xk) +
√

2γZk ,

with X0 = x, γ > 0 and {Zk : k ∈ N} a family of i.i.d Gaussian random variables with zero mean
and identity covariance matrix. We define its associated Markov kernel Rγ : Rd ×B(Rd)→ [0, 1]
as follows for any x ∈ Rd and A ∈ B(Rd)

Rγ(x,A) =
∫
Rd

1A(x+ γb(x) +
√

2γz) exp[−‖z‖2 /2]dz .

We say that Rγ satisfies a discrete drift condition Dd(W,λ, c) if there exist λ ∈ [0, 1), c > 0 and
a measurable function W : Rd → [1,+∞) such that for all x ∈ Rd

RγW (x) 6 λW (x) + c .

The following two lemmas are classical, see for instance [17, Lemma 18, Lemma 19]. We
recall these results and their proofs for the sake of completeness.

Lemma 16. Assume that there exist L, c > 0 and m > 0 such that for any x1, x2 ∈ Rd we have

〈b(x1), x1〉 6 −m ‖x1‖2 + c , ‖b(x1)− b(x2)‖ 6 L ‖x1 − x2‖ . (21)

Let γ̄ = m/L2. Then the following results hold:

(a) For any $ ∈ N∗ there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄], Rγ

satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = 1 + ‖x‖2$.

(b) For any $ > 0, there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄], Rγ

satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = exp[$
√

1 + ‖x‖2].

Proof. We divide the proof into two parts.

(a) Let $ ∈ N
∗ and γ ∈ (0, γ̄] with γ̄ = m/(4L2). Let Tγ(x) = x − γb(x). In the sequel, for

any k ∈ {1, . . . , $}, c, c̃k > 0 and λ, λ̃k ∈ [0, 1) are constants independent of γ which may take
different values at each appearance. Let ε ∈ (0, 1/2). Using (21), the fact that for any a, b > 0,
(a+b)2 6 (1+ε)a2 +(1+ε−1)b2 and the fact that for any a, b > 0 we have (a+b)1/2 6 a1/2 +b1/2,
we get that for any x ∈ Rd with ‖x‖ > (2c/(εm))1/2

‖Tγ(x)‖ =
(
‖x‖2 + 2γ〈b(x), x〉+ γ2 ‖b(x)‖2

)1/2
(22)
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6
(

(1− 2γm + (1 + ε)γ2L2) ‖x‖2 + 2γc + (1 + ε−1)γ2 ‖b(0)‖2
)1/2

6
(

(1− γm + (1 + ε)γ2L2) ‖x‖2 + (1 + ε−1)γ2 ‖b(0)‖2
)1/2

6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ (1 + ε−1/2)γ ‖b(0)‖ .

Note that (2 − ε)m − (1 + ε)L2γ̄ < 0 since ε ∈ (0, 1/2) and γ̄ = m/L2. On the other hand using
(21) and the fact that for any a, b > 0 with a > b and ea− eb 6 ea(a− b), we have for any x ∈ Rd
with ‖x‖ 6 (2c/(εm))1/2

‖Tγ(x)‖ 6 (1 + γL) ‖x‖+ γ ‖b(0)‖
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖

+ (2c/(εm))1/2 {exp[γL]− exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2]
}

+ γ ‖b(0)‖
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ γ(2c/(εm))1/2 exp[γ̄L](L + 2m) + γ ‖b(0)‖ .

(23)

Combining (22) and (23), there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄] and x ∈ Rd,

‖Tγ(x)‖ 6 λγ ‖x‖+ γc . (24)

Note that using (24), for any k ∈ {1, . . . , 2$} there exist λ̃k ∈ (0, 1) and c̃k > 0 such that

‖Tγ(x)‖k 6 {λ̃γk ‖x‖+ γc̃k}k (25)

6 λ̃γkk ‖x‖
k + γ2k max(c̃k, 1)k max(γ̄, 1)k−1{1 + ‖x‖k−1}

6 λ̃γk ‖x‖
k + c̃kγ{1 + ‖x‖k−1} 6 (1 + ‖x‖k)(1 + c̃kγ) .

Therefore, combining (25) and the Cauchy-Schwarz inequality we obtain that for any γ ∈ (0, γ̄]
and x ∈ Rd∫

Rd

(1 + ‖y‖2$)Rγ(x, dy) = 1 + E[(‖Tγ(x)‖2 + 2
√

2γ〈Tγ(x), Z〉+ 2γ ‖Z‖2)$]

= 1 +
$∑
k=0

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k) 2(3k−`)/2γ(k+`)/2

E[〈Tγ(x), Z〉k−` ‖Z‖2`]

6 1 + ‖Tγ(x)‖2$

+ 23$/2
$∑
k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k)

γ(k+`)/2
E[〈Tγ(x), Z〉k−` ‖Z‖2`]1{(1,0)}c(k, `)

6 1 + ‖Tγ(x)‖2$

+ γ23$/2
$∑
k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2$−k−` γ̄(k+`)/2−1

E[‖Z‖k+`]1{(1,0)}c(k, `)

6 1 + λ̃γ2$ ‖x‖
2$ + c̃2$γ{1 + ‖x‖2$−1}

+ γ23$/222$ max(γ̄, 1)2$ sup
k∈{1,...,$}

{(1 + c̃kγ̄)E[‖Z‖k]}(1 + ‖x‖2$−1)

6 1 + λγ ‖x‖2$ + γc(1 + ‖x‖2$−1)
6 λγ/2(1 + ‖x‖2$) + γc(1 + ‖x‖2$−1) + λγ(1 + ‖x‖2$)− λγ/2(1 + ‖x‖2$) .
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Using that λγ−λγ/2 6 − log(1/λ)γλγ/2/2, we get that for any γ ∈ (0, γ̄], Rγ satisfies Dd(W,λγ , cγ).
We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0 satisfies Dc(W, ζ, β). First, for
any x ∈ Rd we have

∇W (x) = 2$ ‖x‖2($−1)
x , ∆W (x) = 2$(2$ − 1) ‖x‖2($−1)

Combining this result, the Cauchy-Schwarz inequality and (21), we obtain that for any x ∈ Rd

AW (x) = 〈∇W (x), b(x)〉+ ∆W (x)

6 −2m$ ‖x‖2$ + 2$c ‖x‖2$−1 + 2$(2$ − 1) ‖x‖2($−1)

6 −m$ ‖x‖2$ + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}

6 −m$W (x) + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}+ m$ .

Hence letting ζ = m$ and β = supx∈Rd{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}+ m$, we obtain
that (Pt)t>0 satisfies Dc(W, ζ, β).

(b) First, we show that for any γ ∈ (0, γ̄], Rγ satisfies Dd(Φ, λγ , c), where Φ(x) = (1+‖x‖2)1/2 =
W

1/2
2 (x) and W2(x) = 1 + ‖x‖2. Using the first part of the proof, there exist λ0 ∈ [0, 1) and

c0 > 0 such that for any γ ∈ (0, γ̄] with γ̄ = m/(4L2) we have that Rγ satisfies Dd(W2, λ
γ
0 , c0γ).

Using Jensen’s inequality we obtain that for any γ ∈ (0, γ̄] and x ∈ R
d with ‖x‖ > R and

R = max(1, ((2c0λ−γ̄0 )/ log(1/λ0))1/2) we have

RγΦ(x) 6 (RγW2(x))1/2 6 exp[(γ/2){log(λ0) + λ−γ̄0 c0R
−2}]Φ(x) 6 λ

γ/4
0 Φ(x) .

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for any
x ∈ Rd with ‖x‖ 6 R

RγΦ(x) 6 (RγW2(x))1/2 6 exp[(γ/2){log(λ0) + λ−γ̄0 c0}]Φ(x)
6 exp[(γ/2){log(λ0) + λ−γ̄0 c0R

−2}]Φ(x)
+ λ−γ̄0 c0(1−R−2) exp[(γ/2){log(λ0) + λ−γ̄0 c0R

−2}]Φ(R) .

Hence, there exist λ1 ∈ [0, 1) and c1 > 0 such that for any γ ∈ (0, γ̄] we have that Rγ satisfies
Dd($Φ, λγ1 , c1γ). Now let W (x) = exp[Φ(x)]. Using the logarithmic Sobolev inequality [18,
Theorem 5.5] we get for any γ ∈ (0, γ̄] and x ∈ Rd with ‖x‖ > R and R = 1+($2+c1)−1 log(1/λ1)

RγW (x) 6 exp[Rγ$Φ(x) + γ$2] 6 exp[−(1− λγ1)Φ(x) + γ($2 + c1)]W (x)
6 exp[−γ log(1/λ1)R+ γ($2 + c1)]W (x) 6 λγ1W (x) .

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for any
x ∈ Rd with ‖x‖ 6 R

RγW (x) 6 exp[Rγ$Φ(x) + γ] 6 exp[γ($2 + c1)]W (x)
6 λγ1W (x) + γ exp[γ̄($2 + c1)]((1 + c1) + log(1/λ1))W (R) .

Therefore, there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄] we have that Rγ satisfies
Dd(W,λγ , cγ). We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0 satisfies
Dc(W, ζ, β). First, for any x ∈ Rd we have

∇W (x) = $xΦ−1(x)W (x) , ∆W (x) = {$Φ−1(x)(1− ‖x‖2 /Φ2(x)) +$2 ‖x‖2 /Φ2(x)}W (x) .
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Therefore using (21) we obtain that for any x ∈ Rd with ‖x‖ >
√

2(1 + (c+ 1 +$)/m)

AW (x) 6 $(−mΦ−1(x) ‖x‖2 + c+ 1 +$)W (x) 6 −(m/2)W (x) ,

which concludes the proof.

Lemma 17. Assume that there exist λ ∈ (0, 1], c, β > 0, ζ, γ̄ > 0 such that for any γ ∈ (0, γ̄],
Rγ satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β). Then, there exists C > 0 such that
for any x ∈ Rd, t > 0 and k ∈ N∗ we have

Rk
γW (x) + PtW (x) 6 CW (x) .

Proof. There exists Cc > 0 such that for any x ∈ Rd and t > 0, PtW (x) 6 CcW (x) using [16,
Lemma 25-(b)]. Using that for any t > 0, (1 − e−t)−1 6 1 + 1/t we get that for any γ ∈ (0, γ̄],
x ∈ Rd and k ∈ N∗

Rk
γW (x) 6W (x) + cγ

∑
k∈N

λkγ 6 (1 + c(γ̄ + log(1/λ)))W (x) ,

which concludes the proof upon letting C = Cc + 1 + c(γ̄ + log(1/λ).

Proposition 18. Assume that there exist Φ1 : R
d → [0,+∞) and Φ2 : R

m → [0,+∞) such
that for any x ∈ Rd and y1, y2 ∈ Rm

‖log(qy1(x))− log(qy2(x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ ,

and for any c > 0,
∫
Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p(x)dx < +∞. Then y 7→ πy is locally Lipschitz

w.r.t the total variation ‖·‖TV, where for any x ∈ Rd, y ∈ Rm we have

(dπy/dLeb)(x) = qy(x)p(x)
/∫

Rd

qy(x̃)p(x̃)dx̃ .

Proof. Let y1, y2 ∈ K with K a compact set. Let y0 ∈ K and DK be the diameter of K. Using
Lemma 22 we get that

‖πy1 − πy2‖TV 6 2cy1

∫
Rd

|qy1(x)− qy2(x)| p(x)dx ,

with cy1 =
∫
Rd qy1(x)p(x)dx. Combining this result with the fact that for any a, b ∈ R we have∣∣ea − eb

∣∣ 6 |a− b|max(ea, eb) we get that

‖πy1 − πy2‖TV 6 2cy1

∫
Rd

|qy1(x)− qy2(x)| p(x)dx

6 2cy1

∫
Rd

(Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖

× exp[(2Φ1(x) + Φ2(y1) + Φ2(y0) + Φ2(y2))DK]p(x)dx
6 2cy1(Φ2(y1) + Φ2(y2)) exp[Φ2(y1) + Φ2(y0) + Φ2(y2)]

×
∫
Rd

(1 + Φ1(x)) exp[2DKΦ1(x)]p(x)dx× ‖y1 − y2‖ ,

which concludes the proof.
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F Proofs of Section 3.2
We recall that the Markov chain (Xk)k∈N, defined in (17), is given by

Xk+1 = Xk + δbε(Xk) +
√

2δZk+1 ,

bε(x) = ∇ log(p(y|x)) + α(Dε(x)− x)/ε+ (x−ΠC(x))/λ ,

where δ > 0 is a stepsize, α, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ R
d is a closed

convex set with 0 ∈ C, ΠC is the projection on C and {Zk : k ∈ N} a family of i.i.d. Gaussian
random variables with zero mean and identity covariance matrix.

In this section, we prove the convergence of PnP-ULA and control the bias of its invariant
measure in the general framework introduced in Appendix B (i.e. α 6= 1) under two different
assumptions on the posterior: either the posterior is log-concave as in Appendix C or the posterior
satisfies a more general one-sided Lipschitz condition as in Section 3.2. Note that in Section 3.2
the results are only stated for α = 1. The statements of the propositions can be generalized
to α > 0 by replacing 2λ(Ly + L/ε − min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε + 1/λ)−1 by
2λ(Ly + αL/ε−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + αL/ε+ 1/λ)−1 in Proposition 5 and 2λ(Ly +
(a/ε) max(L, 1+Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly+L/ε+1/λ)−1 by 2λ(Ly+(α/ε) max(L, 1+
Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + αL/ε+ 1/λ)−1 in Proposition 6 and Proposition 7.

F.1 Proof of Proposition 4
Let R > 0. Let X and Z be random variables with distribution µ and zero mean Gaussian with
identity covariance matrix. Let Xε = X + ε1/2Z. We recall that the distributions of X and Xε

have density with respect to the Lebesgue measure given by p and pε respectively. In addition,
the conditional density of X given Xε is given by gε. By definition D?

ε(Xε) = E[X|Xε] and
therefore we have

`ε(w†) = E

[
‖X − fw†(Xε)‖2

]
= E

[
‖X −D?

ε(Xε)‖2
]

+ 2E [〈X −D?
ε(Xε), D?

ε(Xε)− fw†(Xε)〉] + E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]

= E

[
‖X −D?

ε(Xε)‖2
]

+ E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]

= `?ε + E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]
.

Combining this result, the condition that `ε(w†) 6 `?ε + η and the Cauchy-Schwarz inequality we
get that

E[‖fw†(Xε)−D?
ε(Xε)‖] 6

√
η . (26)

Since fw† and D?
ε are locally Lipschitz, there exists CR > 0 such that for any x1, x2 ∈ B(0, 2R)

we have
|‖fw†(x2)−D?

ε(x2)‖ − ‖fw†(x1)−D?
ε(x1)‖| 6 CR ‖x2 − x1‖ . (27)

Assume that supx̃∈B(0,R) ‖fw†(x̃)−D?
ε(x̃)‖ > η$ with $ = (2d+ 2)−1 and denote xR ∈ B(0, R)

such that we have supx̃∈B(0,R) ‖fw†(x̃)−D?
ε(x)‖ = ‖fw?(xR)−D?

ε(xR)‖. Using (27) we have

E[‖fw†(Xε)−D?
ε(Xε)‖] >

∫
B(0,2R)∩B(xR,C

−1
R
η$)
‖fw†(x̃)−D?

ε(x̃)‖pε(x̃)dx̃

> (‖fw†(xR)−D?
ε(xR)‖ − η$)

∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃ .
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Combining this result and (26) we obtain that

‖fw†(xR)−D?
ε(xR)‖ 6 η1/2

(∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃
)−1

+ η$ ,

Setting MR = η1/2(
∫

B(0,2R)∩B(xR,C
−1
R
η$) pε(x̃)dx̃)−1 + η$ concludes the first part of the proof.

Denote vd the volume of the unit d-dimensional ball. We have that Leb(B(xR, C−1
R η$)) =

C−dR η$dvd. Using the Fubini theorem, the Lebesgue differentiation theorem [14, Theorem
5.6.2], the dominated convergence theorem and the fact that for η ∈ (0, (CRR)1/$], B(0, 2R) ∩
B(xR, C−1

R η$) = B(xR, C−1
R η$) we get that

lim
η→0

Leb(B(xR, C−1
R η$))−1

∫
Rd

1B(xR,C
−1
R
η$)∩B(xR,C

−1
R
η$)(x)pε(x)dx

= lim
η→0

∫
Rd

|B(xR, C−1
R η$)|−1(2πε)−d/2

∫
Rd

1B(xR,C
−1
R
η$)(x) exp[−‖x− x̃‖2/(2ε)]p(x̃)dxdx̃

=
∫
Rd

(2πε)−d/2 exp[−‖xR − x̃‖2/(2ε)]p(x̃)dxdx̃ = pε(xR) > 0 .

Using this result we have,

lim sup
η→0

η−$MR = 1 + lim sup
η→0

η1/2−$(d+1)η$d

(∫
B(0,2R)∩B(xR,C

−1
R
η$)

pε(x̃)dx̃
)−1

= 1 + CdRvdp
−1
ε (xR) < +∞ ,

which concludes the proof.

F.2 Proof of Proposition 5 and Proposition 10
We divide this section into two parts. First, we prove the general case where log(p(y|·)) is
not assumed to be strongly concave but only satisfying a one-sided Lipschitz condition, i.e.
Proposition 5. Then we turn to the proof of Proposition 10.

(a) Let λ > 0 such that 2λ(Ly + αL/ε) 6 1 and δ̄ = (1/3)(Ly + αL/ε + 1/λ)−1. Let C be a
compact convex set with 0 ∈ C. Using H2, (17) and that Id−ΠC is non-expansive we have for
any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ .

Denote RC = sup{‖x1 − x2‖ : x1, x2 ∈ C}. Using (17), the Cauchy-Schwarz inequality and that
2λ(αL/ε− m) 6 1 we have for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 (−m + αL/ε) ‖x1 − x2‖2 − ‖x1 − x2‖2 /λ+RC ‖x1 − x2‖ /λ

6 −‖x1 − x2‖2 /(2λ) +RC ‖x1 − x2‖ /λ .

Hence, for any x1, x2 ∈ Rd with ‖x1 − x2‖ > 4RC we obtain that 〈bε(x1) − bε(x2), x1 − x2〉 6
−‖x1 − x2‖2/(4λ). We also have that for any x ∈ Rd

〈bε(x), x〉 6 −‖x‖2 /(4λ) + sup
x̃∈Rd

{
(RC/λ+ ‖b(0)‖) ‖x̃‖ − ‖x̃‖2 /(4λ)

}
.

49



We conclude the proof of Proposition 5 upon using Lemma 16, Lemma 17, [16, Corollary 2] with
γ̄ ← (4λ)−1(Ly + αL/ε+ 1/λ)−2 > δ̄ and the fact that for any probability distribution ν1, ν2,

‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V 2] + ν2[V 2])1/2 . (28)

(b) Using that log(p(y|·)) is m-concave with 2αL/(mε) 6 1, we obtain that for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 −m ‖x1 − x2‖2 /2 ,
‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ .

This concludes the proof of Proposition 10 upon using [16, Corollary 2] with γ̄ ← m(Ly +
αL/ε)−2 > δ̄ and (28).

F.3 Proof of Proposition 6 and Proposition 11
Before proving Proposition 6 and Proposition 11, we show the following lemma which is a straight-
forward consequence of Girsanov’s theorem [57, Theorem 7.7]. A similar version of this lemma
can be found in the proof of [32, Proposition 2].
Lemma 19. Let T > 0, b1, b2 : [0,+∞) × Rd → R

d measurable such that for any i ∈ {1, 2}
and x ∈ R

d, dX(i)
t = bi(t,X(i)

t )dt +
√

2dBt admits a unique strong solution with X(i)
0 = x

with Markov semigroup (P(i)
t )t>0 and where (Bt)t>0 is a d-dimensional Brownian motion. In

addition, assume that for any x ∈ Rd and P(
∫ T

0 {‖bi(t,X
(i)
t )‖2 + ‖bi(t,Bt)‖2}dt < +∞) = 1. Let

V : R
d → [0,+∞) measurable, then for any x ∈ Rd we have∥∥∥δxP(1)
T − δxP(2)

T

∥∥∥
V

6
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2

(∫ T

0
E

[
‖b1(t,X(1)

t )− b2(t,X(1)
t )‖2

]
dt
)1/2

.

Proof. Let T > 0 and x ∈ Rd. For any i ∈ {1, 2}, denote µx(i) the distribution of (X(i)
t )t∈[0,T ]

on the Wiener space (C([0, T ] ,R),B(C([0, T ] ,R))) with X(i)
0 = x. Similarly denote µxB the

distribution of (Bt)t∈[0,T ] witgh B0 = x. Using the generalized Pinsker inequality [32, Lemma
24] and the transfer theorem [53, Theorem 4.1] we get that∥∥∥δxP(1)

T − δxP(2)
T

∥∥∥
V
6
√

2
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2

KL1/2(µ(1)|µ(2)) .

Since for any i ∈ {1, 2} we have P(
∫ T

0 {‖bi(X
(i)
t )‖2 + ‖bi(Bt)‖2}dt < +∞) = 1, we can apply

Girsanov’s theorem [57, Theorem 7.7] and µB-almost surely for any w ∈ C([0, T ] ,R) we get

(dµx(1)/dµxB)((wt)t∈[0,T ]) = exp
[

(1/2)
∫ T

0
〈b1(wt),dwt〉 − (1/4)

∫ T

0
‖b1(wt)‖2 dt

]
,

(dµxB/dµx(2))((wt)t∈[0,T ]) = exp
[
−(1/2)

∫ T

0
〈b2(wt),dwt〉+ (1/4)

∫ T

0
‖b2(wt)‖2 dt

]
.

Hence, we obtain that

KL(µx(1)|µ
x
(2)) = E

[
log((dµx(1)/dµx(2))(X

(1)
t ))

]
= (1/4)

∫ T

0
E

[∥∥∥b1(X(1)
t )− b2(X(2)

t )
∥∥∥2
]

dt ,

which concludes the proof.
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In the following lemma, we show that under H4, ∇ log(pε) is Lipschitz continuous.

Lemma 20. Assume H4. Then for any x1, x2 ∈ Rd we have

‖∇ log(pε(x1))−∇ log(pε(x2))‖ 6 (1 + Kε/ε) ‖x1 − x2‖ /ε .

Reciprocally, if there x 7→ ∇ log(pε(x)) is Lipschitz-continuous then H4.

Proof. Let ε > 0. We recall that for any x ∈ Rd we have

pε(x) =
∫
Rd

exp[−‖x− x̃‖2 /(2ε)]p(x̃)dx̃ .

Using the dominated convergence theorem we obtain that log(pε) ∈ C∞(Rd,R). In particular we
have for any x ∈ Rd

∇2 log(pε(x)) = −ε−1 Id +ε−2
∫
Rd

(x− x̃)⊗2gε(x̃|x)dx̃− ε−2
(∫

Rd

(x− x̃)gε(x̃|x)dx̃
)⊗2

(29)

= −ε−1 Id +ε−2
∫
Rd

(
x̃−

∫
Rd

x̃′gε(x̃′|x)dx̃′
)⊗2

gε(x̃|x)dx̃

Therefore, using H4 we obtain that for any x ∈ Rd we have

‖∇2 log(pε(x))‖2 6 ε−1 + ε−2Kε ,

which concludes the first part of the proof. Reciprocally, since x 7→ ∇ log(pε(x)) is Lipschitz-
continuous with constant K > 0 we get that for any basis vector (ei)i∈{1,...,d} we have that
e>i ∇2 log(pε(x))ei 6 K. Combining this result with (29), we get that

ε−2
∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃′|x)dx̃′
∥∥∥∥2
gε(x̃|x)dx̃ 6 Kd+ ε−1d ,

which concludes the proof.

In what follows we prove Proposition 6. The proof of Proposition 11 is similar and left to the
reader.

Proof of Proposition 6. Let λ > 0 such that 2λ(Ly + αL/ε − m) 6 1 and δ̄ = (1/3)(Ly + αL/ε +
1/λ)−1. We divide the proof into two parts. First, we show that for any C convex compact with
0 ∈ C there exists B1,C > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − π̃ε‖V 6 B1,C(δ1/2 + MR + exp[−R]) ,

with π̃ε given by
(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) ,

Second, we show that there exists B0 > 0 such that for any C convex compact with 0 ∈ C

‖πε − π̃ε‖V 6 B0 diam−1/4(C) ,

which concludes the proof upon using the triangle inequality.
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(a) Let C convex compact with 0 ∈ C. We introduce (X̄t)t>0 solution of the following Stochastic
Differential Equation (SDE): X̄0 = X0 and

dX̄t = b̄ε(X̄t)dt+
√

2dBt , (30)
b̄ε(x) = ∇ log(p(y|x)) + α∇ log(pε(x)) + proxλ(ιC)(x) ,

with (Bt)t>0 a d-dimensional Brownian motion. b̄ε is Lipschitz continuous using Lemma 20, hence
this SDE admits a unique strong solution for any initial condition X0 with E[‖X0‖2] < +∞, see
[49, Chapter 5, Theorem 2.9]. We denote by (Pt,ε)t>0 the semigroup associated with the strong
solutions of (30). Similarly to the proof of Proposition 10, replacing [16, Corollary 2] by [16,
Corollary 22], there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that that for any x1, x2 ∈ Rd and t > 0

‖δx1Pt,ε − δx2Pt,ε‖V 6 ÃCρ̃
t
C(V 2(x1) + V 2(x2)) , (31)

W1(δx1Pt,ε, δx2Pt,ε) 6 ÃCρ̃
t
C ‖x1 − x2‖ .

Combining (31), Proposition 10, the fact that (P1(Rd),W1) is a complete metric space and the
Picard fixed point theorem we obtain that for any δ ∈ (0, δ̄] there exist πε,δ, π̃ε ∈ P1(Rd) such
that πε,δRε,δ,C = πε,δ and for any t > 0, π̃εPt,ε = π̃ε. Note that by [71, Theorem 2.1] we have
for any x ∈ Rd

(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) ,
since proxλ(ιC) = ∇d2(·,C)/(2λ). Let f : R

d → R measurable and such that for any x ∈ Rd,
|f(x)| 6 V (x). Let m ∈ N∗ such that m > δ̄−1, x ∈ Rd and k ∈ N we have

∥∥∥δxRkm
ε,1/m[f ]− δxPkmkm,ε[f ]

∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=0

δxRjm
ε,1/m(Rm

ε,1/m − P1,ε)Pk−j−1,ε[f ]

∥∥∥∥∥∥ (32)

Using (31), Lemma 16 and Lemma 17 there exists Ba > 0 such that for any x ∈ Rd and k ∈ N
we have

‖δxPk,ε,C[f ]− π̃ε[f ]‖ 6 Baρ̃
k
CV

2(x) . (33)

Let T = 1, b1(t, (wt)t∈[0,T ]) =
∑m−1
j=0 1[j/m,(j+1)/m)(t)bε(wjδ) and b2(t, (wt)t∈[0,T ] = b̄ε(wt). Let

X(1)
t and X(2)

t the unique strong solution of dXt = b(t, (Xt)t∈[0,1]) +
√

2Bt with X0 = x with
x ∈ Rd and b = b1, respectively b = b2. Note that (X(2)

t )t>0 = (X̄t)t>0 and (X(1)
k/m) = (Xk)k∈N.

For any i ∈ {1, 2}, denote P(i)
t the Markov semigroup associated with X(i)

t . For any x ∈ Rd we
have ∥∥∥δxRm

ε,1/m,C − δxP1,ε,C

∥∥∥
TV

=
∥∥∥δxP(1)

1 − δxP(2)
1

∥∥∥
TV

. (34)

Using H2(R) and the fact that for any a, b > 0, (a + b)2 6 2(a2 + b2), we have for any t ∈
[j/m, (j + 1)/m), j ∈ {0, . . . ,m− 1} and (wt)t∈[0,1] ∈ C([0, 1] ,Rd)∥∥b1(t, (wt)t∈[0,1])− b2(t, (wt)t∈[0,1])

∥∥2 =
∥∥bε(wj/m)− b̄ε(wt)

∥∥2

6 2
∥∥bε(wj/m)− bε(wt)

∥∥2 + 2
∥∥b̄ε(wt)− bε(wt)∥∥2

6 2L2
b

∥∥wj/m − wt∥∥2 + 4α2M2
R/ε

2 + 4α21B(0,R)c(‖wt‖)/ε2 , (35)

where Lb is the Lipschitz constant associated with bε. In addition using Itô’s isometry we have
for any t ∈ [j/m, (j + 1)/m)

E[‖X(1)
t −X(1)

j/m‖
2] = 2E[‖

∫ t
j/m

dBt‖2] 6 2dδ . (36)
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Finally, using Lemma 16, Lemma 17, the logarithmic Sobolev inequality [18, Theorem 5.5], the
Cauchy-Schwarz inequality and the Markov inequality, there exists B̃b > 0 such that for any
t > 0 and x ∈ Rd

P(‖X(1)
t ‖ > R) 6 exp[−2R]E

[
exp[2‖X(1)

t ‖
]

6 exp[−2R]E1/2
[
exp

[
4
√

2‖
∫ t
`t/m

dBt‖
]]
E

1/2 [exp[4‖X`t
‖]

6 B̃b exp[−2R] exp[2Φ(x)] ,

where `t = btmc and Φ(x) =
√

1 + ‖x‖2. Combining this result, (35), (34), (36) and Lemma 19,
we obtain that there exists Bb > 0 such that for any x ∈ Rd and R > 0∥∥∥δxRm

1/m,C − δxP1,C

∥∥∥
V
6 2Bb(

√
δ + MR + exp[−R])(1 + ‖x‖4) exp[Φ(x)]

6 48Bb(
√
δ + MR + exp[−R]) exp[2Φ(x)] ,

Combining this result and (33) we obtain that for any k ∈ N, j ∈ {0, . . . , k − 1}, x ∈ Rd and
R > 0 we have∣∣∣(δxRm

1/m,C − δxP1,C)Pk−j−1,C[f ]
∣∣∣ 6 BaBb(

√
δ + MR + exp[−R])ρ̃k−j−1

C exp[2Φ(x)] .

Using this result, Lemma 16, Lemma 17 and (32) we obtain that there exists Bc > 0 such that
for any m ∈ N∗ with m−1 > δ̄∥∥πε,1/m,C − π̃ε∥∥V 6 lim sup

k→+∞

∥∥∥δ0Rkm
ε,1/m,C − δ0Pkmkm,ε,C

∥∥∥
V
6 Bc(

√
δ + MR + exp[−R]) .

The proof in the general case where δ ∈ (0, δ̄] is similar and we obtain that there exists Bc > 0
such that for any δ ∈ (0, δ̄]

‖πε,δ − π̃ε‖V 6 Bc(
√
δ + MR + exp[−R]) .

(b) For any C compact convex with 0 ∈ C we define π̃ε and ρε,C such that for any x ∈ Rd

ρε,C(x) = exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) , (dπ̃ε/dLeb)(x) = ρε,C(x)
/∫

Rd

ρε,C(x̃)dx̃ .

Similarly, define ρε and πε such that for any x ∈ Rd

ρε(x) = p(y|x)pαε (x) , (dπε/dLeb)(x) = ρε(x)
/∫

Rd

ρε(x̃)dx̃ .

Since for any x ∈ Rd, ρε,C(x) 6 ρε(x) we get
∫
Rd ρε,C(x̃)dx̃ 6

∫
Rd ρε(x̃)dx̃. Hence we obtain using

the Cauchy-Schwarz inequality and the Markov inequality

KL(πε|πC) 6
∫
Rd

log(ρε(x̃)/ρε,C(x̃))dπε(x̃)

6
∫

Cc
‖x̃‖2 dπε(x̃) 6 P

1/2 (X /∈ C)E1/2[‖X‖4] 6 E[‖X‖4]R−2
C .

with X a random variable with distribution πε. We conclude using the generalized Pinsker
inequality [32, Lemma 24].
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G Proofs of Section 3.3
G.1 Proof of Proposition 8
Let α, λ, ε, δ̄ > 0, δ ∈ (0, δ̄] and C ⊂ Rd convex and compact with 0 ∈ C. For any x1, x2 ∈ Rd we
have

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ .
Denote (Xn, Yn)n∈N the Markov chain obtained using the coupling described in [16, Section 3]
with initial condition (x1, x2) ∈ C. Using [16, Corollary 7-(b)] we get that for any ` ∈ N

E

[
1∆c

Rd
(X(`+1)d1/δe, Y(`+1)d1/δe)

]
6 (1− β)E

[
1∆c

Rd
(X`d1/δe, Y`d1/δe)

]
, (37)

where ∆Rd = {(x, x) : x ∈ Rd} and β ∈ (0, 1) with

β = 2Φ{−(1 + δ̄)(1 + Ly + (αL/ε))diam(C)} ,

where Φ is the cumulative distribution function of the univariate Gaussian distribution with zero
mean and unit variance. In addition, using that the coupling is absorbing, we have that for any
k ∈ N,

E

[
1∆c

Rd
(Xk, Yk)

]
6 E

[
1∆c

Rd
(Xbk/d1/δecd1/δe, Ybk/d1/δecd1/δe)

]
,

Combining this result and (37), we get that for any k ∈ N∥∥δx1Qk
ε,δ − δx2Qk

ε,δ

∥∥
TV 6 E

[
1∆c

Rd
(Xk, Yk)

]
6 (1− β)bk/d1/δec .

Using that bk/d1/δec > kδ/(1 + δ)− 1 concludes the proof upon letting ρ̃C = (1− β)1/(1+δ̄) and
ÃC = (1− β)−1.

G.2 Proof of Proposition 9
Let α, λ > 0, ε ∈ (0, ε0] such that 2λ(Ly+αL/ε−min(m, 0)) 6 1 and δ̄1 = (1/3)(Ly+αL/ε+1/λ)−1.
Recall that for any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ .

Using this result, the fact that for any x ∈ Rd, 〈bε(x), x〉 6 −m̃ ‖x‖2 + c and [31, Theorem 19.4.1]
there exist δ̄2 > 0, B̃ > 0 and ρ̃ ∈ (0, 1] such that for any δ ∈ (0, δ̄2], x ∈ Rd and k ∈ N∥∥δxRk

ε,δ − πε,δ
∥∥
V

+
∥∥δxQk

ε,δ − πC
ε,δ

∥∥
V
6 B̃ρ̃kδV (x) ,

with B̃ and ρ̃ which do not depend on R. In addition, using Lemma 16, for any k ∈ N and
δ ∈ (0, δ̄2] we have

Rk
ε,δV (x) 6 λ̃kδV (x) + c̃δ ,

with λ̃ ∈ [0, 1) and c̃ > 0 which do not depend on R > 0. For any δ ∈ (0, δ̄2] we have

λδ + cδ 6 λδ(1 + cδλ−δ̄2) 6 (λ exp[cλ−δ̄2 ])δ .

Let A = λ exp[cλ−δ̄2 ], we have that for any x ∈ R
d, Rε,δV (x) 6 AδV (x). Therefore we get

that (V (Xn)A−n)n∈N is a supermartingale. Hence using Doob maximal inequality and Markov
inequality we get that

P

(
sup

k∈{0,...,n}
‖Xk‖ > R

)
6 V (x)Anδ exp[−R] .
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Therefore, we get that for any k ∈ N∥∥πε,δ − πC
ε,δ

∥∥
TV 6 (V (0) + c̃δ̄2)Akδ exp[−R] + B̃ρ̃kδV (0) .

We conclude upon letting k = br/(2 log(A)δ)c.

H Proofs of Appendix D
H.1 Proof of Proposition 13
The first part of the proposition is straightforward. Using Pinsker’s inequality [18, Theorem
4.19] we have for any x ∈ Rd

‖µ− (τx)#µ‖2TV 6 2KL((τx)#µ|µ) 6 2
∫
Rd ‖U(x̃+ x)− U(x̃)‖dµ(x̃) 6 2Cγ ‖x‖γ

.

For the second part of the proof, since there exist c1, $ > 0 and c2 ∈ R such that for any
x ∈ Rd, U(x) > c1 ‖x‖$ + c2 then for any k ∈ N∗ and α > 0,

∫
Rd(1 + ‖x‖)kp(x) < +∞. Let

q(x) = (1 + ‖x‖)−(d+1)/
∫
Rd(1 + ‖x̃‖)−(d+1)dx̃. Then using that for any t > 0, |et − 1| 6 |t| e|t|

we get that for any x ∈ Rd∫
Rd

|p(x̃)− p(x− x̃)| q1−1/α(x̃)dx̃

6 Cγ ‖x‖γ exp[Cγ ‖x‖γ ]
∫
Rd

(1 + ‖x̃‖)(d+1)(1/α−1)p(x̃)dx̃
(∫

Rd

(1 + ‖x̃‖)−(d+1)dx̃
)1−1/α

,

which concludes the proof.

H.2 Proof of Proposition 14
First we show the following technical lemma.

Lemma 21. For any x, y > 0 and β > 0, (x+ y)β − xβ 6 2β(yβ + x(β−1)∧0y).

Proof. The result is straightforward if β ∈ (0, 1], since in this case (x+ y)β 6 xβ + yβ . Assume
that β > 1. If x = 0 the result holds. Now assume that x > 0. If y > x then (x+y)β−xβ 6 2βyβ .
Assume that y 6 x. Since f : t 7→ (1+t)β−1 is convex we obtain that for any t ∈ [0, 1], f(t) 6 2βt.
Using this result we have

(x+ y)β − xβ 6 xβf(y/x) 6 2βxβ−1y ,

which concludes the proof.

Before proving Proposition 14 we state the following lemma.

Lemma 22. Let π1, π2 two probability measures and q1, q2 : R
d → [0,+∞) two measurables

functions such that for any x ∈ R
d, (dπi/dLeb)(x) = qi(x)/ci with ci =

∫
Rd qi(x̃)dx̃. Denote

D =
∫
Rd |q1(x)− q2(x)|. We have

‖π1 − π2‖TV 6 2c−1
1 D .

55



Proof. We have

‖π1 − π2‖TV =
∫
Rd

∣∣∣∣q1(x)
c1
− q2(x)

c2

∣∣∣∣ dx 6 c−1
1 (D + |c2 − c1|) ,

which concludes the proof using that |c2 − c1| 6 D.

We now give the proof of Proposition 14.

Proof. Let α > 0. For any ε > 0 and x ∈ Rd denote p̄(x) = p(y|x)pα(x) and p̄ε(x) = (py|x)pαε (x),
where we recall that for any x ∈ Rd

pε(x) = (2πε)−d/2
∫
Rd

p(x̃) exp[−‖x− x̃‖2 /(2ε)]dx̃ .

For any ε > 0 we have∫
Rd

|p̄(x)− p̄ε(x)|dx 6 ‖p(y|·)‖∞
∫
Rd

|pα(x)− pαε (x)|dx .

Using Lemma 21 and that ‖pε‖∞ 6 ‖p‖∞ < +∞, we have for any ε > 0 and x ∈ Rd∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ ) (38)

×
{∫

Rd

|p(x)− pε(x)|dx+
∫
Rd

|p(x)− pε(x)|α dx
}
.

Using Jensen’s inequality, for any q : R
d → (0,+∞) with

∫
Rd q(x̃)dx̃ = 1 we have∫

Rd

|p(x)− pε(x)|α dx 6

(∫
Rd

∣∣∣p(x)− pε(x)q1−1/α(x)
∣∣∣dx)α .

Combining this result with (38) we get that∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ )

×
{∫

Rd

|p(x)− pε(x)|dx+
(∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

.

If α > 1, choosing q such that ‖q‖∞ 6 1 we get∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ )

×
{∫

Rd

|p(x)− pε(x)|dx+
(∫

Rd

|p(x)− pε(x)| (x)dx
)α}

. (39)

Hence since p ∈ L1(Rd) and {x̃ 7→ (2πε)−d/2 exp[−‖x̃‖2 /(2ε)] : ε > 0} is a family of mollifiers,
we have limε→0

∫
Rd |p(x)− pε|dx = 0. Combining this result, (39) and Lemma 22 concludes the

first part of the proof.
Now let α > 0 and assume H6(α). If α > 1 then using (38) we have∫

Rd

|p̄(x)− p̄ε(x)|dx 6 2α(1 + 2α−1) ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ )

∫
Rd

|p(x)− pε(x)|dx .
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If α < 1 then using that ‖q‖∞ < +∞, we get that∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖q‖1/α−1
∞ )(1 + ‖p‖(α−1)∧0

∞ )

×
{∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx+
(∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

.

Hence, in any case, there exists C̃0 > 0 such that∫
Rd

|p̄(x)− p̄ε(x)|

6 C̃0

{∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx+
(∫

Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx
)α}

.

Using Jensen’s inequality and the change of variable x̃ 7→ ε1/2x̃, we have for any ε ∈ (0, (4κ)−1]∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx

6
∫
Rd

∫
Rd

|p(x)− p(x− x̃)| qmin(1−1/α,0)(x)(2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dxdx̃

6
∫
Rd

exp[κ ‖x̃‖2] ‖x̃‖β (2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dx̃

6 εβ/2(2π)−d/2
∫
Rd

exp[κε ‖x̃‖2] ‖x̃‖β exp[−‖x̃‖2 /2]dx̃

6 εβ/2(2π)−d/2
∫
Rd

‖x̃‖β exp[−‖x̃‖2 /4]dx̃ 6 C0ε
β/2 ,

with C0 = (2π)−d/2
∫
Rd ‖x̃‖β exp[−‖x̃‖2 /4]dx̃. Hence, we have∫

Rd

|p̄(x)− p̄ε(x)|dx 6 C1(εβ/2 + εβα/2) , (40)

with C1 = C̃0(C0 +Cα0 ). Let ε1 = min((cC1)−2/β/2, (cC1)−2/(βα)/2, (4κ)−1) and c =
∫
Rd p̄(x)dx.

Combining (40) with Lemma 22, we get that for any ε ∈ (0, ε1]

‖π − πε‖TV 6 2c−1C1(εβ/2 + εβα/2) ,

which concludes the proof upon letting A0 = 2c−1C1.
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