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SUMMARY

Scattered seismic coda waves are frequently used to characterize small scale medium hetero-

geneities, intrinsic attenuation or temporal changes of wave velocity. Spatial variability of these

properties raises questions about the spatial sensitivity of seismic coda waves. Especially the

continuous monitoring of medium perturbations using ambient seismic noise led to a demand

for approaches to image perturbations observed with coda waves. An efficient approach to lo-

calize spatial and temporal variations of medium properties is to invert the observations from

different source-receiver combinations and different lapse times in the coda for the location of

the perturbations. For such an inversion, it is key to calculate the coda-wave sensitivity kernels

which describe the connection between observations and the perturbation. Most discussions

of sensitivity kernels use the acoustic approximation in a spatially uniform medium and often

assume wave propagation in the diffusion regime. We model 2-D multiple nonisotropic scat-

tering in a random elastic medium with spatially variable heterogeneity and attenuation using

the radiative transfer equations which we solve with the Monte-Carlo method. Recording of

the specific energy density of the wavefield that contains the complete information about the
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energy density at a given position, time and propagation direction allows us to calculate sen-

sitivity kernels according to rigorous theoretical derivations. The practical calculation of the

kernels involves the solution of the adjoint radiative transport equations. We investigate sensi-

tivity kernels that describe the relationships between changes of the model in P- and S-wave

velocity, P- and S-wave attenuation, and the strength of fluctuation on the one hand and seis-

mogram envelope, travel time changes and waveform decorrelation as observables on the other

hand. These sensitivity kernels reflect the effect of the spatial variations of medium properties

on the wavefield and constitute the first step in the development of a tomographic inversion

approach for the distribution of small-scale heterogeneity based on scattered waves.

Key words: Inverse theory; Seismic attenuation; Seismic interferometry; Seismic tomogra-

phy; Wave scattering and diffraction.

1 INTRODUCTION

Elastic waves are an important tool to probe the interior of the Earth, geotechnical targets and

man-made structures. Furthermore, processes that alter the wave propagation can be investigated

remotely using elastic waves. The interaction of seismic waves with the propagation medium is a

complex process that occurs on a range of length scales characterized by elastic and inelastic con-

tributions. Interpretations of seismic observations therefore use simplifying assumptions about the

dominant effects. A simplification commonly used in seismic imaging is based on the assumption

of weak interaction, that is to say, one assumes that a particular wave is perturbed only at one spe-

cific location on its way from source to receiver. Single-scattering imaging techniques are based

on this assumption (Nishigami 1991, 1997, 2000). Apart from this perturbation, the propagation

path is assumed to be predictable based on knowledge of the background medium (Pacheco &

Snieder 2006). Furthermore, heterogeneities in the medium have to be rare or weak enough such

that reflections from different structures can be disentangled. Imaging methods have evolved in

exactly that parameter range of wave propagation where the requirements for this approximation

are fulfilled. This allows to deterministically image the large-scale structure with resolution limits

determined by wavelength and ray coverage.
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Outside this niche of the weak interaction, the wavefield can be dominated by multiple scat-

tering such that the signal recorded at any time consists of a complex superposition of waves from

different directions, therefore carrying information about different location in the medium at the

same time. In this regime, the waveform is made up of continuous oscillations which cannot be

associated with any particular contrast in the medium. Yet the ensemble of scattered waves that

forms the coda of high-frequency seismograms carries information about the statistical properties

of the heterogeneity in the propagation medium (Sato et al. 2012).

The properties of the scattered wavefield allow obtaining information about the medium that

is complementary to conventional seismic investigations. In particular, one can (A) characterize

statistically the structure of the propagation at small spatial scales (typically in the range 102 −

104m) where traditional methods fail, (B) monitor very weak changes of the elastic properties in

the medium due to the long propagation time of the waves leading to a high sensitivity and (C)

monitor localized changes anywhere in the medium due to the extended sampling of the medium

by scattered waves.

In the present paper we use scattering theory to model the propagation of scattered seismic

energy in a medium that contains random fluctuations of elastic properties. We extend existing

methodology to obtain (1) directional information about the energy propagation and (2) model the

energy propagation in the presence of large scale variations of statistical properties of the random

fluctuations. These developments provide the basis for the calculation of sensitivity kernels that

describe the expected changes of coda wavefield observables in response to localized changes of

medium properties and thus allow for an iterative tomographic imaging of the spatial distribution

of heterogeneity and intrinsic attenuation.

The aim of this work is to present a forward simulation framework for the scattered wavefield

as a first step towards a rigorous tomographic approach and use it to construct sensitivity kernels

for the spatial variation of scattering properties.

We give a brief review of scattering theory and the use of sensitivity kernels in the following

sections. In section 2 we describe the algorithm that is used to model the seismic energy prop-

agation in a medium with statistical fluctuations. The extension of the methodology to models
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with spatially variable fluctuations is described in section 3 and we turn to the modelling of the

directional dependence of energy propagation in section 4. Equipped with this tool we discuss in

section 5 the computation of sensitivity kernels that connect various observables to different types

of changes in the medium. The results are discussed in section 6. In section 7 we finish with some

concluding remarks and an outlook on the use of the described kernels in tomography.

1.1 Scattering Theory

Seismic scattering has early been recognized as the origin of coda waves that are observed in the

seismograms following ballistic wave arrivals. Aki (1969) first identified the coda as the signa-

ture of backscattered waves from distributed scatterers. Aki & Chouet (1975) then proposed two

classical models to describe the amplitude of the scattered wave field, the single backscattering

model and the diffusion model, which represent approximations for the weak and strong scatter-

ing processes, respectively. On the one hand, the single scattering model considers scattering to

happen only once between the source and the receiver. The diffusion model on the other hand re-

quires scattering to occur often enough for the wave to lose information about its initial direction

of propagation and polarization, such that it is usually applicable to seismogram modeling at long

lapse-time only. Therefore the multiple-scattering model that considers the continuum from single

scattering to many scattering events is more suitable to describe the realistic scattering processes.

Wu (1985) first employed the multiple scattering model for isotropic scattering and strong for-

ward scattering. Isotropic scattering indicates that the distribution of scattering angles is uniform

and does not show any preferred direction. This is a special case, and in fact nonisotropic scatter-

ing widely exists. Gusev & Abubakirov (1987), Abubakirov & Gusev (1990) and Hoshiba (1995)

found evidence of non-isotropic scattering in the data. However, all the above mentioned inves-

tigations worked under the assumption of acoustic scattering which does not consider the energy

conversion between P- and S-waves and the polarization of the S-waves.

Since Weaver (1990) and Ryzhik et al. (1996) derived the radiative transfer equations for elastic

waves, Margerin et al. (2000) gave a detailed description of the multiple scattering of elastic waves.
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Gaebler et al. (2015) applied it in elastic media to model the transational and rotational motion

seismogram envelopes.

A further challenge for the simulation of wave scattering arises when the scattering properties

of the medium are spatially variable. Hoshiba (1994) used the Monte-Carlo simulation method

to synthesize the energy density of the coda in depth-dependent scattering structure under the

assumption of isotropic scattering. These efforts were continued by Margerin et al. (1998) who

introduced a discontinuity in both scattering and velocity properties in multiple scattering sim-

ulations. Wegler (2004) used a model containing a scattering layer over a half space to take the

depth dependency of scattering into account. Using an analytic solution of the diffusion equation

in a simple model with spatially variable diffusivity, Friedrich & Wegler (2005) could improve the

modeling of the spatio-temporal coda decay at Merapi volcano showing that scattering is concen-

trated within the edifice. A block of increased scattering strength embedded in a less heterogeneous

crust above a transparent mantle was modeled with the Monte-Carlo method by Sens-Schönfelder

et al. (2009) to explain Lg-wave blockage. De Siena et al. (2013) combined the modeling of mul-

tiple scattering with boundary conditions obtained from diffusion in a circular structure of highly

heterogeneous material to explain spatially variable coda decay at Campi Flegrei.

Among various methods for the description of seismic scattering, radiative transfer theory is

a flexible tool that can be adapted to different approximations of the scattering process. Many pi-

oneering works employed this method to describe the wave scattering (Wu 1985; Hoshiba 1991;

Zeng 1991). A detailed introduction to radiative transfer theory was given by Margerin (2005).

Further work used it to simulate the energy transfer for more complicated problems (Wegler et al.

2006; Przybilla et al. 2006; Sens-Schönfelder & Wegler 2006). To numerically solve the radia-

tive transfer equations, the Monte-Carlo method has been proposed by Hoshiba (1991); Gusev &

Abubakirov (1987) and has since then been widely used to simulate the envelopes of waves (Gusev

& Abubakirov 1996; Margerin et al. 2000; Yoshimoto 2000; Mancinelli & Shearer 2016; Sanborn

et al. 2017).

In this paper, we follow the work of Sens-Schönfelder et al. (2009), who describe an algo-

rithm to simulate multiple nonisotropic scattering of elastic waves at randomly distributed het-
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erogeneities. However, they do not consider spatially variable scattering and intrinsic attenuation

properties. With elastic radiative transfer equations and Monte-Carlo method, we simulate a 2-D

multiple nonisotropic scattering process in spatially heterogeneous media to model the complete

waveform envelope with the specific energy density. The specific energy density contains the in-

formation about the angular dependence which has not been considered before.

1.2 Sensitivity Kernels

Sensitivity kernels of the coda provide the connection between a localized spatial perturbation

of some propagation properties in the medium (e.g., wave-speed, attenuation, scattering strength)

and the changes of a certain waveform property that we observe in the coda wave. This means

the sensitivity kernels solve the forward problem of predicting the effect of a medium change on

the observable and are thus a tool to localize the perturbations in the Earth based on seismogram

changes.

Pacheco & Snieder (2005) first discussed the traveltime changes in a scattered wave field due

to localized changes of the velocity under the assumption of scattering in the diffusion regime.

The kernel they proposed directly expresses the relationship between the mean traveltime change

of the wavefield and the perturbation in the slowness. For weakly scattering media they use the

single-scattering approximation (Pacheco & Snieder 2006). Larose et al. (2010) locate the region

of new scattering based on the decorrelation between diffuse scattered waveforms recorded before

and after a change was experimentally introduced. Rossetto et al. (2011) derive the spatial sensi-

tivity of the decorrelation observable in the diffusion regime. Planès et al. (2014) argue that the

diffusion regime is not applicable to a perturbation close to the source or near the stations and care-

fully compare the similarities and differences in kernels obtained using the multiple scattering and

the diffusion approximations. Most discussions above are based on the assumption of point-like

perturbations.

A separate problem is the depth localization of a change in the presence of body and surface

waves. Obermann et al. (2013b) introduced an empirical depth sensitivity kernel of coda waves

to perturbations within a thin layer using numerical wavefield simulations in a heterogeneous
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medium. According to Obermann et al. (2013b) the depth sensitivity of coda waves at the surface

is a combination of the bulk wave sensitivity and the surface wave sensitivity with temoprally

varying contributions. These empirical kernels can be used to discriminate between shallow and

deep velocity variations. This approach was later extended to the depth sensitivity calculations in

the 3-D case (Obermann et al. 2016).

Mayor et al. (2014) derive theoretical expressions for scattering and absorption kernels which

describe the direct relationship between the distribution of scattering and absorption properties in

space on the one hand and the observed intensity on the other hand. Without assumptions about the

propagation regime Margerin et al. (2016) proposed two concepts of passive and active medium

perturbations to derive the traveltime and decorrelation sensitivity kernels, which provides a com-

plete mathematical formulation for the spatial sensitivities. These expressions equal the derivation

of Planès et al. (2014) in the diffusion regime but extend beyond it. Zhang et al. (2016) use labora-

tory experiments in a concrete specimen to verify that the decorrelation kernels have high sensitiv-

ity to changes in the material. Snieder et al. (2019) gave the expressions for traveltime sensitivity

kernels of elastic waves which consider perturbations of P-waves and S-waves velocities. Also

considering the elastic case we use the formulation of Margerin et al. (2016) to derive new ex-

pressions for traveltime, decorrelation, scattering and attenuation sensitivity kernels in this paper.

We develop a Monte-Carlo approach to calculate the specific energy density distribution, which

is central in the theoretical formulation. Our approach is very general and is able to incorporate

important ingredients such as nonisotropic scattering of elastic waves and spatially variable scat-

tering and attenuation properties. This is a prerequisite for an iterative tomographic inversion for

material properties and property changes of geological or geotechnical structures with scattered

seismic waves.

Previous work on estimating medium properties from coda waves often either assumed spa-

tially homogeneous properties (Fehler et al. 1992; Lacombe et al. 2003; Sens-Schönfelder & We-

gler 2006) or made very simple assumptions about the spatial sensitivity. Imaging of the total atten-

uation is often based on the coda-normalization method with straight-path ray theory (Del Pezzo

et al. 2006). This method is widely applied in attenuation tomography of volcanoes (De Siena
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et al. 2009, 2014a,b; Prudencio et al. 2015b). More recently the method was improved by integrat-

ing sensitivity kernels based on assumptions of diffusion or multiple scattering into the inversion

(De Siena et al. 2017; Del Pezzo et al. 2018). Using radiative transfer with the approximation of

isotropic acoustic wave scattering, Obermann et al. (2013a) calculated the decorrelation sensitivity

kernel to image changes in the structure of a volcano. This algorithm was also applied to locate

the velocity variations after an earthquake or the eruption of a volcano in other studies (Obermann

et al. 2014; Budi-Santoso & Lesage 2016). Takeuchi (2016) developed a differential Monte-Carlo

method that allows to directly calculate the sensitivity kernel in a Monte-Carlo simulation. This

approach requires only a single simulation instead of two to obtain the derivative of the envelope

with respect to a certain perturbation of the medium. Ogiso (2019) used this approach to map

scattering and attenuation in Japan and Sens-Schönfelder et al. (2020) used it to study the effect of

scattering at the core mantle boundary.

The assumption of an initially uniform distribution of heterogeneity is common to most studies

that investigated the spatial variability of heterogeneity and attenuation properties with scattered

coda waves. Therefore, previous studies are restricted to a first order mapping of deviations from

uniform heterogeneity (De Siena et al. 2014a,b; Prudencio et al. 2015a; Zieger et al. 2016; Gabrielli

et al. 2020; Sketsiou et al. 2020) An iterative tomography of this nonlinear problem is therefore

impossible so far and requires developments such as those presented here.

2 RADIATIVE TRANSFER THEORY

2.1 Elastic Radiative Transfer Equations

The transport of energy through a random medium is described by the theory of radiative transfer

(Apresyan & Kravtsov 1983; Wu 1985; Hoshiba 1991). The fundamental quantity of radiative

transfer is the specific energy densityE (r,n, t) which describes the energy flux density at location

r, time t in directions n. Following the work of Sens-Schönfelder et al. (2009), we rewrite the
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coupled radiative transfer equations for P- and S-waves in 2-D:(
∂

∂t
+ nα0 · ∇

)
EP (r,n, t) =

−
(
α0g

P�P
0 + α0g

P�S
0 +

ω

QP

)
EP (r,n, t)

+

∫
2π

α0g
P�P (n,n′)EP (r,n′, t) dn′

+

∫
2π

β0g
S�P (n,n′)ES (r,n′, t) dn′

(1)

(
∂

∂t
+ nβ0 · ∇

)
ES (r,n, t) =

−
(
β0g

S�S
0 + β0g

S�P
0 +

ω

QS

)
ES (r,n, t)

+

∫
2π

β0g
S�S (n,n′)ES (r,n′, t) dn′

+

∫
2π

α0g
P�S (n,n′)EP (r,n′, t) dn′

(2)

where α0 and β0 are the mean velocities of P-waves and S-waves, respectively. The subscript P

or S indicate the energy type of the energy density. gV�W
0 denotes the total scattering coefficient

which is the total probability of scattering a wave of type V to type W per unit length of propa-

gation path. QP and QS are the intrinsic quality factors of P- and S-waves, respectively and ω is

the angular frequency. The scattering coefficient gV�W (n,n′) defines the probability of a wave

of type V incident in direction n′ to be scattered into the outgoing direction n as type W . For

isotropic random media gV�W (n,n′) = gV�W (θ) where θ is the scattering angle between n and

n′. The expressions of the 2D scattering coefficients are derived in Appendix A. They differ from

the coefficients given by Przybilla et al. (2006) in some powers of the cp/cs velocity ratio γ and a

factor of 2π in the definition of the total scattering coefficients. The total scattering coefficient is

defined as:

gV�W
0 =

∫
2π

gV�W (θ) dθ . (3)

which is the integral overall scattering angles and the reciprocal of the mean free path which

determines the total probability of scattering. More discussion is found in Appendix D5 of Sens-

Schönfelder et al. (2009).

In the present paper, we focus on 2D infinite in-plane elastodynamics in which the S-wave is
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polarized in the plane of propagation (SV-wave). In this setting, SH-waves are polarized normal

to the plane of propagation and are not coupled to P or SV-waves. They can thus be treated in the

acoustic approximation.

2.2 Spatially Variable Heterogeneity and Attenuation

The radiative transfer equations are normally used in spatially homogeneous random media in

which the power spectrum of the fluctuation is independent of location. In accord with Takeuchi

(2016) we consider a more general situation here, in which the standard deviation of the fluctua-

tions is a function of location (ε(r)), while all other parameters of the fluctuations remain constant.

For a given wavenumber |m|, the local power spectral density function (PSDF) of random media

is rewritten as

Φ
(
|m|, ε2(r)

)
=
ε2(r)

ε2
0

Φ
(
|m|, ε2

0

)
(4)

where ε0 is a background value that is homogeneous in space. Φ (|m|, ε2
0) is the PSDF of the

background fluctuation ε0. Note that perturbing variance of the fluctuations only affects propor-

tionally the magnitude of the scattering coefficient gV�W (θ) but not its angular distribution. In

consequence the total scattering coefficients are now functions of the position gV�W
0 (ε2(r)).

Spatial variations of intrinsic attenuation may be incorporated similarly by replacing QV with

QV (r). The right-hand side in eq. (1) and eq. (2) may accordingly be rewritten as:

−
(
α0g

P�P
0 (ε2(r)) + α0g

P�S
0 (ε2(r)) +

ω

QP (r)

)
EP (r,n, t)

+

∫
2π

α0g
P�P (θ, ε2(r)

)
EP (r,n′, t) dn′

+

∫
2π

β0g
S�P (θ, ε2(r)

)
ES (r,n′, t) dn′

(5)

and

−
(
β0g

S�S
0 (ε2(r)) + β0g

S�P
0 (ε2(r)) +

ω

QS(r)

)
ES (r,n, t)

+

∫
2π

β0g
S�S (θ, ε2(r)

)
ES (r,n′, t) dn′

+

∫
2π

α0g
P�S (θ, ε2(r)

)
EP (r,n′, t) dn′ .

(6)
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To solve the radiative transfer equations in the presence of spatially variable medium properties

we implemented a Monte-Carlo algorithm that is detailed in Appendix B.

3 MODELLING WITH SPATIALLY VARIABLE HETEROGENEITY AND

ATTENUATION

We build a model with 2-D space and time on a 400 × 400 × 100 grid. The size of each grid

cell is 0.1 km × 0.1 km × 0.1 s. The two illustrations in Figure 1 show three sets of simula-

tions: (1) baseline simulation with uniform ε = 0.05 and no intrinsic attenuation, (2) scattering

anomaly for fluctuation strength ε = 0.09 and (3) attenuation anomaly for intrinsic quality factor

Q−1
P = 0.17, Q−1

S = 0.1. The values of Q−1
P and Q−1

S assumed here imply much stronger attenua-

tion than typically found in the lithosphere. The background velocity of all models is α0 = 6 km/s,

β0 = 3.46 km/s. The density is ρ = 2.7 g cm−3and the correlation length is a = 0.3 km. Random

fluctuations of velocity and density in this study are always of exponential type. With a length

scale of 10 km the anomalous region is significantly larger than the length scale of the random

fluctuations a, ensuring a meaningful statistical description of the fluctuations. As discussed by

Cormier & Sanborn (2019) the determination of a is subject to a trade-off with ε. The angular

frequency in this study is 30 rad/s so the frequency is 4.78 Hz adapted to observations of high

frequency wave scattering in the crust. Resulting wavelengths of P-wave and S-wave are 1.257 km

and 0.726 km. In the Monte-Carlo Method, 100 million particles are used to simulate the energy

transport in these 2-D models.

3.1 Scattering Anomaly Simulation

Results of the simulation in the homogeneously scattering medium and scattering anomaly medium

are shown for pure P-wave and pure S-wave source with isotropic radiation pattern in Figures 2

and 3, respectively. Firstly, we analyze the results with P source. Figures 2(a) and 2(b) show the

snapshots of the P and S energy density at lapse time of 2 s and 5 s in the homogeneous medium

and the scattering anomaly medium with P source, respectively. There is obviously a reduction of
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Figure 1. Illustrations of the model setup. (a) Homogeneous model with background ε = 0.05 and Q−1
p =

Q−1
s = 0 (simulation 1) and (b) Anomalous model with ε = 0.09 (simulation 2) or intrinsic quality factors

Q−1
p = 0.17, Q−1

s = 0.1 inside the anomaly (simulation 3). The background velocity of all models is

Vp = 6 km/s, Vs = 3.46 km/s. The background density is ρ = 2.7 g cm−3. The correlation length is

a = 0.3 km in all simulations. The red star indicates the source and three white triangles indicate receivers

that are located before, within and behind the anomaly as seen from the source.

the ballistic energy (P energy) and an increase of the scattered energy (S energy) where there is

a stronger scattering area. An apparent ballistic S-wave can be seen emanating from the source

in Figure 2(a)(S energy). It also shows the S-coda of the ballistic P-wave front. Strong S-wave

generation inside the scattering anomaly is also apparent in Figure 2(b)(S energy). In particular

there is a secondary S-wave generated at the time when the P-wave hits the anomaly. Furthermore,

there is an obvious Mach cone emanating from the edges of the anomaly. Because the velocity of

P-waves is larger than that of the S-wave the speed of the source of scattered S-waves is faster than

their propagation. To examine in greater details the energy conversion in the scattering process,

we subtract the results of the simulation in the homogeneous model from the results of the simu-

lation in the scattering anomaly model. The difference is shown in Figure 2(c). Before the P-wave

hits the anomaly area, there should be no difference. Since the initial directions of all particles

are random, small fluctuations are observed but can be ignored. With increasing lapse time, the

energy conversion is more and more obvious. In addition, the envelopes at three receivers for the

homogeneous model(dotted) and the anomalous model(solid) are compared in Figure 4(a). Since

receiver A (corresponding to the red curves) is located closer to the source than the anomaly area,



Sensitivity kernels for tomography of scattering and absorbing media 13

the ballistic waves show no difference between the two models but with the lapse time increas-

ing, the energy is higher in the anomaly model due to back-scattering. Receiver B (shown by blue

curves) is in the centre of the anomaly. There is obviously more S energy when the wave arrives.

We can see strong differences in S energy between the two models also at receiver C (shown by

green curves). The S energy in the scattering anomaly peaks in between the arrival times of the

ballistic P and apparently ballistic S arrivals, confirming that the origin of this extra pulse of S

energy is located in the anomaly.

In Figure 3 we show the results of the simulation in the case of an S-wave source. There

are many similar phenomena that can be seen in the snapshots of simulated energy densities as

compared to the case of a P source. However, no Mach cone can be seen in Figure 3(b)(P energy)

because the velocity of S-wave is less than that of P-wave. Besides, there exist some cells where

the direct S-wave has not arrived but that already contain P energy. This can be explained by the

fact that a fraction of P-wave energy has been converted from the S-wave source and forms a

precursor to the ballistic S wave. We can also see that there is stronger scattering when the direct

S-wave arrives at the anomaly area in Figure 3(c). The energy envelopes for a pure S source are

shown in Figure 4(b). Notice that for the S energy at the receiver B (shown by blue curves) there

is some energy arriving before the direct S wave (at a lapse-time of about three seconds). This

illustrates the S-to-P energy conversions that form precursors to the direct S wave. It can also be

observed in Figure 4(b)(P energy).

3.2 Intrinsic Attenuation Anomaly Simulation

Energy lost through the propagation is normally due to scattering and intrinsic attenuation. In

Section 3.1 we discussed the scattering simulation results in a scattering anomaly model without

intrinsic attenuation. We are also able to simulate the wave scattering in a specific area with in-

trinsic attenuation. In order to show the attenuation more obviously, we select an anomaly with

a high value of intrinsic inverse quality factors for both P-wave Q−1
P and S-wave Q−1

S and back-

ground RMS fluctuations ε = 0.05 as in the background medium. The location of the anomaly

is the same as Figure 1(b). Since Q−1
P = 0.17, Q−1

S = 0.1, the intrinsic attenuation is so strong
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(b) medium with scattering anomaly
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Figure 2. Snapshots (2s−5s) of the simulated energy field in (a) the uniform medium and (b) the scattering

anomaly medium. (c) differences between (a) and (b). The source emits pure P-wave energy. Both the P

energy and the S energy are recorded.
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(b) medium with scattering anomaly
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Figure 3. Snapshots (2s−5s) of the simulated energy field in (a) the uniform medium and (b) the scattering

anomaly medium. (c) differences between (a) and (b). The source emits pure S-wave energy. Both the P

energy and the S energy are recorded. Note that the maximum of plot scale for the S-wave energy in the

differences is 20% of the real maximum.
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(a) The source emits pure P-wave energy.
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(b) The source emits pure S-wave energy.

Figure 4. Envelopes at three receivers for the uniform medium (dotted) and the scattering anomaly medium

(solid). The red, blue and green curves indicate the energy that arrives at the receiver A, B and C respectively.

Both the P energy and the S energy are recorded.

in our model that a gap in the energy field develops as the ballistic waves propagate through the

strongly absorbing anomaly (see Figure 5). Furthermore, both P-wave energy and S-wave energy

are rapidly absorbed as time increases. The exceptionally low Q-values in the anomalous region

are for illustration purposes.

3.3 Irregular Anomaly Simulation

In Section 3.1 and Section 3.2, the shape of the anomaly is a square as shown in Figure 1(b). The

grids we employ offer the possibility to models with various spatial distributions of heterogeneity.
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(b) S source

Figure 5. Snapshots (2s − 5s) of the simulated energy field in the model with the anomaly in intrinsic

attenuation. The intrinsic quality factors Q−1
p and Q−1

s are 0.17 and 0.1, respectively. The source is (a)

P-wave and (b) S-wave. Both the P energy and the S energy are recorded.

Here we build a scattering anomaly model with irregular shapes as shown in Figure 6. Note that

there is no intrinsic absorption in this model and the background RMS fluctuations ε is 0.05. The

light blue and dark blue areas indicate, respectively, regions with ε of 0.02 and 0.09. The source

is located in the center with x = 20 km, y = 20 km. The simulation results with P source and S

source are shown in Figure 7 and Figure 8. Compared with the uniform model the regions with per-

turbed fluctuation strength leave a clear imprint on the energy field, mostly by increased/decreased

conversion of ballistic energy into scattered energy by larger/smaller fluctuation strength.

4 MODELLING THE SPECIFIC ENERGY DENSITY

With radiative transfer theory, the wave energy propagation is encapsulated in the specific en-

ergy density EY X (r,n, t) where Y X indicate the mode of excitation (X) and recording (Y ). The

benefit of this description, is that we have access to the complete information about the energy

distribution at any position r including its time dependence and propagation directions n. Figure 9
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Figure 6. Illustrations of the source (red star) in the irregular scattering anomaly model. The background

value of ε is 0.05. The light blue and the dark blue colors indicate areas with ε = 0.02 and 0.09, respectively.

shows the specific energy density of a simulation in a uniform medium at lapse times t = 2 s and

t = 4 s in the propagation direction n = 45◦ and n = 90◦. We define the north direction at 0◦

and the rotation direction is clockwise. The parameters of the medium are the same as discussed

before. The RMS fluctuation is ε = 0.05 and there is no intrinsic attenuation. Here we employ a

slightly coarser grid to reduce the numerical fluctuations inherent to Monte-Carlo simulations. We

model in 2-D space and time on a 100× 100× 100 grid and the size of each grid cell is 0.5 km ×

0.5 km× 0.1 s. The propagation direction is recorded in 72 non-overlapping angular bins of width

5◦.

Focusing on the plot of EY X (r, 90◦, 4s), it illustrates how the energy propagating in direction

n = 90◦ at lapse-time t = 4 s is distributed in space. Most energy is located to the east of the

source which exactly reflects the scattering patterns, as detailed in Appendix D. Because the direct
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Figure 7. Snapshots (1s− 4s) of the simulated energy field in (a) the uniform medium and (b) the medium

with the irregular scattering anomaly and (c) the differences between (a) and (b). The source emits P-wave

energy.
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Figure 8. Snapshots (1s− 4s) of the simulated energy field in (a) the uniform medium and (b) the medium

with the irregular scattering anomaly and (c) the differences between (a) and (b). The source emits S-wave

energy. Note that the maximum of plot scale for the S-wave energy in the differences is 20% of the real

maximum.
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wave is strong, it is difficult to observe the scattered wave energy. To enhance its visibility, we

deliberately saturated the color scale in Figure 9.

Instead of investigating the spatial distribution of energy propagating in a specific direction it is

interesting to illustrate the directional distribution of the energy propagation at a specific location.

Figure 10 shows polar plots of the energy density as a function of propagation directions n or

azimuth θ at a receiver located to the east of the source at r : x = 25 km, y = 35 km. The

top row of Figure 10 illustrates an early lapse time (t = 3.4 s) during the arrival of the ballistic

P-energy which obviously propagates in the forward direction (EPP ). Interestingly EPS is also

peaked in the forward direction as the conversion must have happened close to the source for

the energy to arrive at this early lapse time. For the same reason the scattering that generated

ESP must have happened close to the observation point, creating a specific energy density that

resembles the scattering coefficient gP�S . ESS is poorly sampled as it requires both, scattering

close to the sources and close to the receiver which occurs seldom. At lapse time t = 5.5 s

shown in the second row of Figure 10 the ballistic S-wave arrives, resulting in a forward peaked

ESS . Caused by the dominance of the focused conversion at the source ESP is also peaked in the

forward direction at this lapse time. EPS resembles a biased version of the conversion scattering

coefficient as scattering may have occurred not only close to the receiver but along an ellipse-like

single scattering line around the source. At later lapse time when both ballistic waves have passed

the receiver (t = 7 s, bottom row of Figure 10), the specific energy densities show complicated

patterns which are far from being isotropic. This anisotropy of the energy flux density that persists

for late lapse times documents the importance of considering the specific energy density for the

calculation of probabilistic wavefield sensitivities.

Since the specific energy density contains the information about the amplitude of the energy

flux for any combination of position, time and propagation direction, recording the specific energy

density requires a large amount of memory and storage. In the simulations shown here, P- and

S-wave are both recorded with double precision resulting in a memory usage of 576 MB. This is

easy to handle for now but when the approach is extended to the 3-D case, the space has three

dimensions and the propagation direction has two degrees of freedom which means that the mem-
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Figure 9. Snapshots (2s, 4s) of the specific energy densityEY X (r,n, t) for propagation directions n = 45◦

and n = 90◦ in a uniform medium with background ε = 0.05. The red point indicates the source. Note that

the maximum of the color scale for is clipped to avoid the high values of the ballistic energy.

ory requirements inflate. On the other hand, the Monte-Carlo method needs more particles for a

sufficient description of the energy density field in 3 dimensions which translates into more CPU

hours. Here we launched 100 millions particles and simulate for 15 s propagation time with 0.01 s

time-step. This setup required about half an hour for each simulation on 64 cores.

5 SENSITIVITY KERNELS

A tomographic inversion tries to obtain the model of the target medium which best describes

observed data. The model is encapsulated in a model vector m that may for example contain the

elastic parameters of the medium at the nodes of a spatial grid. Observations are contained in a

data vector dobs consisting, for example, of traveltime measurements or waveform data. Data and

model vectors are connected by the forward operator F(m) = dsyn where dsyn is a synthetic data

vector. How well the model m describes the target medium is evaluated by an objective function

χ(F(m),dobs) which compares the synthetic data predicted from the model to the observed data.

Usually χ is designed such that it assumes a minimum for the best possible model.

Finding a model that improves the description of the data requires knowledge of the gradient
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Figure 10. Polar plots of the energy density at receiver r: x = 25 km, y = 35 km (white triangle) as a

function of propagation directions n in a uniform medium (background ε = 0.05). The red point denotes

the source. The time increases from top to bottom. The corresponding snapshots of the spatial energy dis-

tribution are shown to illustrate the wave propagation. Combination of emitted (X) and recorded (Y ) wave

type is indicated above as EX,Y above each panel.
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of the objective function with respect to the model parameters - the Fréchet derivative ∇mχ. We

can write the Fréchet derivative as (Fichtner 2010):

∇mχ(F(m),d) = ∇Fχ(F(m),d)∇mF(m) . (7)

∇Fχ is the gradient of the objective function with respect to the forward operator, ∇mF is the

gradient of the forward operator with respect to the model parameters. The particular difficulty

in this formulation is the presence of the forward operator on the right hand side which renders

an explicit calculation of ∇mχ almost impossible for all possible variations of the model (δm)

because in a finite difference approach each model parameter would require at least one forward

simulation. In this section we discuss an alternative way to derive∇mχ for the transport equations

with different objective functions χ and different models m using Bayes’ theorem.

Irrespective of the strategy to derive ∇mχ it has the same structure as the model space which

is a regular spatial grid of the investigated domain, here. For small perturbations of the model pa-

rameters the variations of the forward operator can be assumed linear which leads to the following

integral formulation for the change of the objective function in response to a model perturbation

δm

∇mχ · δm =

∫
V

K(r)δm(r)dV (r) (8)

where K(r) is the sensitivity kernel.

The sensitivity kernels encapsulate the information about the spatial sensitivity of the objective

function to local changes of model parameters. This information is used to decide where the model

needs to be changed to achieve a certain change in the modeled data and improve the model fit.

The model m describes certain material properties which usually are the velocities of P- and

S-waves and attenuation for classical seismic tomography. Lamé parameters and quality factors

might similarly be used. In our case the medium has additional properties that describe the small

scale heterogeneity which is responsible for the scattering. Here we assume that changes of the

scattering properties occur in the form of changes in ε2 only, which we use together with α and β,

QP and QS as model parameters.

Observations or observables on the other hand are functions of the observed seismic data.
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In fact sensitivity kernels relate changes of the model to changes of the data. Here we have to

differentiate between two possible applications. The first application is the tomographic question

of determining the spatial distribution of material properties. In this case the kernels describe the

change in the simulated data resulting from a change in the model. The second application is the

monitoring of changes in the medium. This application gained significance with the development

of continuous subsurface monitoring using ambient seismic noise. In this case the observable is

derived from the seismic observations before and after a change in the medium occurred and the

result is the change in medium properties rather than their absolute values.

So observations either describe the changes between two seismic traces observed before and

after a change occurred in the medium (monitoring) or the misfit between simulated and measured

data (tomography). For scattered waves, commonly used types of observables are the seismic

energy difference δE (difference between the envelopes of the seismic traces), the travel time

change δtt and the decorrelation of two traces dc. The travel time change can be measured from

the seismograms with the time-windowed cross-correlation method (Poupinet et al. 1984; Snieder

2006). The decorrelation is defined as one minus the normalized correlation coefficient of two

seismograms recorded before and after a change occurred in the medium (Larose et al. 2010;

Planès et al. 2014). Only the energy difference δE can be used for tomography since measurements

of travel time changes and decorrelation involve phase information that cannot be obtained with

the forward simulation used here. These observables would require wavefield simulations if one

aims at absolute parameters of the medium.

For elastic waves the observations can be made with the two different wave modes. Hence, it is

natural to first decompose the sensitivity into elementary contributions depending on the emission

mode X at the source and the detection mode Y at the receiver. Such a decomposition offers

insight into the physical interpretation of the sensitivity. In a second step the elementary kernels

will be recombined linearly to take into account the partitioning of the energy emitted at the source

and detected at the receiver. This will yield expressions that are directly applicable to observations

in seismology or acoustics. Some typical examples will be given later in the paper.

The elementary sensitivity kernels are of the form ψKφ
Y X(r, t). Here ψ stands for the model
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parameter (α, β, QP , QS , ε). φ indicates the observable (E, tt, dc). Y and X indicate the mode of

excitation (X) and recording (Y ). The notation with the receiving mode as first and the excitation

mode as second subscript is chosen in accordance with the order of the arguments which lists

the conditional arguments of the source in the last position. Not all combinations of φ and ψ are

physically meaningful as there should be a significant influence of the medium parameter on the

observable. In the following we discuss the most useful combinations in which the observable has

a first order dependence on the model parameter.

The notation of sensitivity kernels we used here is determined by the type of observation and

the type of perturbation. The decorrelation and energy change are actually functions of changes

in ε2, but for the sake of simplicity we use ε in the notation. Similarly, the change of intrinsic

attenuation involves the factor 1/Q but for simplicity of notation we use Q. The notations α and

β in the traveltime sensitivity kernels also indicate δα/α0 and δβ/β0, respectively.

5.1 Traveltime Sensitivity Kernels

We first look at the travel time sensitivity kernels αKtt
Y X , βKtt

Y X that describe the travel time change

due to a perturbation of the P- or S-wave velocities, respectively. In the case of vectorial waves,

the observable may be defined more precisely as the travel time perturbation averaged over each

cartesian component of the field.

We utilize Bayes’ theorem to derive the traveltime sensitivity kernels for the elastic case. It

is the same probability based method as used by Margerin et al. (2016) in which they define two

events A and B. A denotes the event that: a seismic phonon is detected at time t′ in the volume

dV (r′) with a propagation direction n′. In the elastic case, we use a subscript AV to indicate that

the seismic phonon has mode V in the event A. Similarly, BY denotes the event: a seismic phonon

of mode Y reaches r at time t in any direction.

We denote the energy density detected at the receiver position r from the source position r0 at

the time t by EY X (r, t; r0). It corresponds to event BY . Y and X indicate the mode of excitation

(X) and recording (Y ). For any position r′ at any time t′ the probability density function relevant to

event AV is (up to a normalization factor) given by the specific energy density EV X (r′, t′,n′; r0).
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Hence, the probability that a phonon which we observe at location r in mode Y has visited dV (r′)

in P-mode after being launched in mode X from location r0 is given by:

P (AP | BY ) =
P (BY | AP )P (AP )

P (BY )

=
EY P (r, t− t′; r′,n′)EPX (r′, t′,n′; r0) dV (r′)

EY X (r, t; r0)

(9)

EY P (r, t − t′; r′,n′) is the energy density recorded at the receiver at r from a source radiating

in direction n′ at location r′. It correspond to the probability that the phonon at r′ continues to

propagate in direction n′ and reaches the receiver in the remaining time t − t′ in mode Y . The

probability that the phonon visited dV (r′) in S-mode is given by:

P (AS | BY ) =
P (BY | AS)P (AS)

P (BY )

=
EY S (r, t− t′; r′,n′)ESX (r′, t′,n′; r0) dV (r′)

EY X (r, t; r0)

(10)

Thanks to these probability distributions we may compute, at a given lapse-time t in the signal, the

typical time spent in the volume dV (r′) by either P-mode or S-mode seismic phonons propagating

in direction n′:

αTY X(dV (r′),n′, t; r, r0) =

dV (r′)

∫ t

0

EY P (r, t− t′; r′,n′)EPX(r′, t′,n′; r0)

EY X(r, t; r0)
dt′

(11)

βTY X(dV (r′),n′, t; r, r0) =

dV (r′)

∫ t

0

EY S(r, t− t′; r′,n′)ESX(r′, t′,n′; r0)

EY X(r, t; r0)
dt′

(12)

To obtain the time spent in dV (r′) irrespective of propagation direction, eq. (11) and eq. (12)

have to be integrated over directions n′. The travel time change that a wave accumulates during

its propagation in dV (r′) is −δc/c(r′) · T (dV (r′)) with δc/c the fractional change of the wave

velocity. We assume that perturbations are small and travel time changes from different locations

can be superimposed. Now we can obtain the travel time shift for spatially distributed changes of
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P- and S-wave velocities:

δtY X(t) = −
∫
V d

[
δα

α
(r′)

∫
Sd

αTY X(dV (r′),n′, t; r, r0)dn′+

δβ

β
(r′)

∫
Sd

βTY X(dV (r′),n′, t; r, r0)dn′]dV (r′)

= −
∫
V d

[
δα

α
(r′)αKtt

Y X(r′,n′, t; r, r0)+

δβ

β
(r′)βKtt

Y X(r′,n′, t; r, r0)]dV (r′)

(13)

which defines the sensitivity kernels αKtt
Y X and βKtt

Y X . In Eq. (13) Sd denotes the unit sphere

in space dimension d and V d is the full space. Measurements of the travel time shifts can be

performed on any seismogram component and may be averaged.

The calculation of the sensitivity kernels on the basis of eq. (11) and eq. (12) is impractical as

it involves the energy density E(r; r′) that originates from a source at r′ which can be anywhere

in the domain. To avoid the necessity of simulating sources throughout the medium we use the

reciprocity relation of transport theory discussed in Appendix C. It allows to replace the large

number of simulation to obtain the signals recorded from sources everywhere in the medium at

one particular receiver by a single simulation with a source at the original receiver and a large

number of receivers everywhere in the medium. Using eq. (C.6) to replace E(r; r′) we obtain the

following expressions for the elastic travel time sensitivity kernels:

αKtt
Y X (r′, t; r, r0) =

Sd
∫
Sd

∫ t

0

E†PY (r′, t− t′,−n′; r)EPX (r′, t′,n′; r0) dt′dn′

EY X (r, t; r0)

(14)

βKtt
Y X (r′, t; r, r0) =

Sd
∫
Sd

∫ t

0

E†SY (r′, t− t′,−n′; r)ESX (r′, t′,n′; r0) dt′dn′

EY X (r, t; r0)

(15)

Both kernels describe waves that are launched in mode X and recorded in mode Y .

To illustrate the kernel calculation, we employ the specific energy density results of the mod-

eling in the statistically homogeneous model. The traveltime sensitivity kernels are shown in Fig-

ure 11 and Figure 12 for P- and S-wave source, respectively. Although the kernels are obviously

affected by the positions of the source and the receiver and the lapse time, they are also sensitive to

the scattering process. αKtt
PP describes the effect of a local perturbation of P-wave velocity on the
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P-wave recording from a P-wave source. The result is symmetric since the source and the receiver

have the same type which means that we can interchange the locations. βKtt
PP has the same reason

for its symmetry but the effect of S-wave velocity leads to its value is much weaker than αKtt
PP .

Because it must at least convert twice before arriving at the receiver. αKtt
SP and βKtt

SP highlight the

role of P-wave and S-wave velocity perturbations, respectively, observed with an S-wave record-

ing from a P-excitation. Since the source excites the P-waves, the simplest case is that there is only

one energy conversion. But for αKtt
SP the conversion happens after passing through dV (r′) while

for βKtt
SP it occurs before. This is why the higher sensitivity is closer to the source for αKtt

SP but for

βKtt
SP it is closer to the receiver, resulting in a strong asymmetry. Figure 12 shows the traveltime

sensitivity kernels for an S-wave source. It reveals the same type of asymmetry as discussed above

for a P-wave source. The apparent asymmetry of βKtt
SS at 5 s lapse time is due to poor sampling

prior to the arrival of ballistic S-energy. The excited S-energy has to be converted to P in order to

reach the receiver prior to the ballistic S-phase, but it has to be converted back to S-energy before

being recording which makes these events very unlikely. The comparably high amplitude of αKtt
SS

is due to the normalization by a very small total energy density.

5.2 Decorrelation Sensitivity Kernels

We now turn to the decorrelation sensitivity kernels εKdc
Y X that describe the decorrelation between

two wavefield measurements as defined by Planès et al. (2014) due to a change of the mechanical

properties of the medium. We assume that the change in the mechanical properties can be described

as a change in the fractional variation ε of the fluctuations of the medium. This means that the

change only influences the amplitude of the power spectrum. The angular pattern of the scattering

coefficient is not affected by the change.

The definition and expression of the decorrelation coefficient given by Margerin et al. (2016)

in the case of scalar waves may be extended to the vectorial case as follows:

dc(t) =1− 〈ui(t)ũi(t)〉√
〈ui(t)ui(t)〉〈ũi(t)ũi(t)〉

≈ 〈(ui(t)− ũi(t))(ui(t)− ũi(t))〉
2〈ui(t)ui(t)〉

,

(16)
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Figure 11. Traveltime sensitivity kernels in uniform model: αKtt
PP (the 1st column), βKtt

PP (the 2nd col-

umn), αKtt
SP (the 3rd column) and βKtt

SP (the 4th column) at different lapse times with P-wave source. Note

the 2nd column has a different color scale and all scales are nonlinear. Source r0: x = 25 km, y = 15 km

and receiver r: x = 25 km, y = 35 km.
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Figure 12. Traveltime sensitivity kernels in uniform model: αKtt
PS (the 1st column), βKtt

PS (the 2nd column),
αKtt

SS (the 3rd column) and βKtt
SS (the 4th column) at different lapse times with S-wave source. Note the

3rd column in each row has the different color scale and all scales are nonlinear.
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where ui(t) and ũi(t) refer to the i-th component of the wavefield before and after the pertur-

bation, respectively. In Eq.(16) we have assumed that the difference between ui(t) and ũi(t) is

small and uncorrelated with ui(t). Note that the Einstein summation convention is employed in

Eq.(16). In the second equality, we recognize (up to a constant pre-factor equal to the product

ρω2 of local mass density and squared circular frequency) the extra energy density emitted by the

scattering perturbation. Similarly, the denominator 〈u2(t)〉 is up to the same pre-factor the total

energy density of the wavefield.

The extra energy scattered by the local change in ε observed in the lapse time interval (t′, t′ +

dt′) is given by

δEWX(r′, t′,n; r0) =∑
V=P,S

∫
Sd

dt′ cV
∣∣gV�W (n,n′; ε̃2(r′))− gV�W (n,n′; ε2(r′))

∣∣
× EV X(r′, t′,n′; r0)dn′

(17)

The summation over wave mode V takes care of the fact that both the P and S phonons that are

incident on the volume element at r′ contribute to the decorrelation. cV is the velocity of the wave

mode V and cP ≡ α0, cS ≡ β0. n′ and n denote the incoming and outgoing direction, respectively.

ε̃ is the fractional fluctuation after the perturbation. Since the scattering coefficient is proportional

to ε2, we obtain

δEWX(r′, t′,n; r0)

=
∑
V=P,S

∫
Sd

dt′ cV
|δε2(r′)|
ε2(r′)

gV�W (n,n′; ε2(r′))

× EV X(r′, t′,n′; r0)dn′

=
∑
V=P,S

∫
Sd

dt′ cV
|δε2(r′)|
ε2(r′)

ε2(r′)

ε2
0

gV�W
0 (ε2

0)

× fV�W (n,n′)EV X(r′, t′,n′; r0)dn′

(18)

Here the definition of δε(r′)2 is the perturbation of local scattering strength which is defined as

δε2 (r′) = ε̃2(r′) − ε2(r′). ε2(r′)/ε2
0 is the ratio between the local value and the homogeneous

background which describes the structure of the model. gV�W
0 (ε2

0) is the total scattering coefficient

of the background which determines the probability of scattering. The superscript V � W in
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gV�W
0 (ε2

0) indicate the wave mode conversion from mode V to W . Here we define

fV�W (n,n′) =
gV�W (n,n′; ε2

0)

gV�W
0 (ε2

0)
(19)

where fV�W (n,n′) is the normalized differential scattering cross-section (Sato et al. 2012). In

another words fV�W (n,n′) is the probability density for an incoming V phonon propagating in

direction n′ to be mode converted to a W phonon propagating in direction n.

Propagating this extra energy that acts as a secondary source at r′ further to the receiver at r

and integrating over time t′ at which the phonons visit the perturbed volume yields

δEY (r, t; r′; r0) =∑
W=P,S

∫
Sd

∫ t

0

EYW (r, t− t′; r′,n)δEWX(r′, t′,n; r0)dt′dn
(20)

The quantity δEY (r, t; r′; r0) depends on the location of the perturbation and has to be integrated

over space V d to obtain the total change of energy.

Inserting eq. (20) in the numerator of eq. (16) yields for the decorrelation of the two wavefields

recorded before and after the perturbation of the mechanical properties

dcY X(t) =
δEY (r, t; r′; r0)

2EY X(r, t; r0)

=
1

2ε2
0

∫
V d

∣∣δε2(r′)
∣∣ εKdc

Y X(r′, t; r, r0)dV (r′)

(21)

where:

εKdc
Y X(r′, t; r, r0) =

Sd
∑
W

∑
V

∫
Sd

∫
Sd

∫ t

0

cV g
V�W
0 (ε2

0)

× E†WY (r′, t− t′,−n; r)fV�W (n,n′)EV X(r′, t′,n′; r0)

EY X(r, t; r0)

× dt′dn′dn

(22)

Here we have used again the reciprocity relation eq. (C.6) and the summation over modes W and

V corresponds to the four different modes of scattering that connect incident P- and S-waves each

to outgoing P- and S-waves.

The illustration of decorrelation sensitivity kernels in a statistically homogeneous model are

shown in Figure 13. The single scattering ellipse with the highest sensitivity in εKdc
PP is clearly
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Figure 13. Decorrelation sensitivity kernels in uniform model: εKdc
PP (the 1st column), εKdc

SP (the 2nd

column), εKdc
PS (the 3rd column) and εKdc

SS (the 4th column) at different lapse times. Note all scales are

nonlinear.

marked since the strongest influence on P-wave recordings from a P-wave source comes from

single-scattering. This interpretation also holds for the ellipse in εKdc
SS of S- into S-wave single-

scattering. The regions of higher sensitivity in εKdc
SP and εKdc

PS have the same explanation but due

to the change of modes which propagate with different velocities they are not elliptical. It is also

easy to understand that εKdc
SP is symmetrical to εKdc

PS due to the interchange of the source and the

receiver.

5.3 Energy Sensitivity Kernels for Changes in Scattering and Intrinsic Attenuation

In this section we derive sensitivity kernels for energy observations, i.e. the spatio temporal dis-

tribution of coda wave energy. Since this observable is influenced by variations of attenuation as

well as in scattering strength we will calculate the kernels QKE
Y X and εKE

Y X .

A perturbation of scattering properties in a local volume dV (r′) has two effects on the propaga-

tion of energy (Margerin et al. 2016). Temporarily ignoring the intrinsic attenuation and assuming
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a local increase in scattering strength eq. (5) and eq. (6) reveal that one effect is the loss of energy

due to the stronger scattering ofEY X (r′, t′,n; r0) into directions other than n′, and the other effect

is the increase of energy by scattering from other direction n′ into direction n. The second effect

has been discussed in eq. (18) when we derived the decorrelation sensitivity kernels. In the follow-

ing we denote the energy increase due to scattering described in eq. (18) by 2δEWX(r′, t′,n; r0).

The first mentioned effect of a local increase in scattering strength -the decrease of ballistic energy

across the volume element- dV (r′) is given by:

1δEWX(r′, t′,n; r0) =

−
∑
V=P,S

dt′ cW
δε2(r′)

ε2(r′)

ε2(r′)

ε2
0

gW�V
0 (ε2

0)EWX(r′, t′,n; r0)
(23)

Considering both effects, we add eq. (18) and eq. (23) to obtain the secondary source at r′. This

energy further propagates to the receiver at r. We obtain the seismic energy change at r due to a

local weak perturbation of scattering properties:

δEY X(r, t; r′; r0) =∑
W=P,S

∫
Sd

∫ t

0

EYW (r, t− t′; r′,n)

× [1δEWX(r′, t′,n; r0) + 2δEWX(r′, t′,n; r0)]dt′dn .

(24)

This expression is a combination of the traveltime and decorrelation sensitivity kernels given by

eq. (14), eq. (15) and eq. (22). By substituting them into eq. (24), the perturbation of energy in the

coda may be expressed as:

δEY X
EY X

(r, t; r0) =
1

ε2
0

∫
V d

δε2(r′) εKE
Y X(r′, t; r, r0)dV (r′) (25)

where the scattering sensitivity kernels may in turn be expressed in terms of the travel time and

decorrelation kernels as follows:

εKE
Y X(r′, t; r, r0) = εKdc

Y X(r′, t; r, r0)

− [α0(gP�P
0 (ε2

0) + gP�S
0 (ε2

0)) αKtt
Y X (r′, t; r, r0)

+ β0(gS�P
0 (ε2

0) + gS�S
0 (ε2

0)) βKtt
Y X (r′, t; r, r0)]

(26)

Figure 14 shows the sensitivity kernels calculated from eq. (26). Positive (resp. negative) val-
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Figure 14. Scattering sensitivity kernels in uniform model: εKE
PP (the 1st column), εKE

SP (the 2nd column),
εKE

PS (the 3rd column) and εKE
SS (the 4th column) at different lapse times. The color of white indicates the

value of 0, the red is positive and the blue is negative.

ues of the kernel are shown in red (resp. blue). Similar to the decorrelation sensitivity kernels,

the positive sensitivity is dominated by single-scattering where an increase of scattering strength

causes more scattered energy to be recorded at the receiver. Negative sensitivity indicates that in-

creased scattering strength decreases the recorded energy due to multiple scattering that spreads

out energy in space.

We now consider the effect of changes in intrinsic attenuation on the recorded energy. Accord-

ing to eq. (5) and eq. (6), a local change of intrinsic attenuation affects the weight of the phonons

propagating through the perturbation, independent of the direction. From this consideration, we

deduce the change of energy due to a perturbation of attenuation in the volume dV (r′):

δEWX(r′, t′,n; r0) =

−
∑

W=P,S

dt′ωδQ−1
W (r′)EWX(r′, t′,n; r0)

(27)

where δQ−1
W (r′) = Q̃−1

W (r′) − Q−1
W (r′) and Q̃−1

W (r′) denotes the local intrinsic quality factors af-
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ter the perturbation. So the perturbation of energy density at r caused by a local perturbation of

intrinsic attenuation δQ−1
P (r′) and δQ−1

S (r′) is:

δEY X
EY X

(r, t; r0) =

−ω
∫
V d

[δQ−1
P (r′) QPKE

Y X(r′, t; r, r0)+

δQ−1
S (r′) QSKE

Y X(r′, t; r, r0)]dV (r′)

(28)

As could be anticipated, the attenuation sensitivity kernels are identical to the traveltime sensitivity

kernels:

QPKE
Y X (r′, t; r, r0) = αKtt

Y X (r′, t; r, r0) (29)

QSKE
Y X (r′, t; r, r0) = βKtt

Y X (r′, t; r, r0) (30)

5.4 Combination of Sensitivity Kernels

We derived different sensitivity kernels for the same perturbation depending on the different modes

of excitation (X) and recording (Y ). These expressions are derived theoretically but might not be

practical in applications since P- and S -energy density are usually jointly excited and recorded.

We will first consider the combination of kernels in a simple scenario where an idealized source

emits a single type of energy but the P and S waves cannot be separated at the receiver. In a second

step the results will be generalized to arbitrary source and detection.

The energy density detected at receiver is a mixture of P and S modes and is given byERX (r, t; r0) =

EPX (r, t; r0) + ESX (r, t; r0), where X denotes a single emission mode (P or S) and R is the

recorded energy density. After proper normalization, the energy densities EPX and ESX can be

interpreted as the probability of detection of a P or S mode at the receiver. Hence the key quan-

tity for the combination of kernels is the ratio of the two types of energies RSP = ESX/EPX

which depends in general on the lapse-time in the coda. The sensitivity of the measurement that

combines the different detection modes can now be obtained as a weighted sum of the P and S

wave sensitivities with relative weights that depend on the ratio RSP . For this ratio one can either

assume a reasonable value or it can be obtained directly from the simulations used to calculate the
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sensitivity kernels. For example the traveltime sensitivity kernel for a measurement that mixes P

and S modes can be written as:

αKtt
RX = WP

αKtt
PX +WS

αKtt
SX

(31)

and

βKtt
RX = WP

βKtt
PX +WS

βKtt
SX , (32)

where WP = 1/(1 + RSP ) and WS = RSP/(1 + RSP ). For large lapse times we can assume

wave propagation in the diffusion regime. In this case gP�S
0 = γ0g

S�P
0 where γ0 = α0/β0. Since

the energy ratio of S- to P-waves obeys RSP = (gP�S
0 α0)/(gS�P

0 β0) (Sato et al. 2012, pp. 241),

RSP = γ2
0 . So eq. (31) and eq. (32) have the same meaning as the expression of the velocity

change weighted average of changes in the P- and S-wave velocities by Snieder (2006). The other

sensitivity kernels can be combined in the same way:

εKdc
RX = WP

εKdc
PX +WS

εKdc
SX

(33)

εKE
RX = WP

εKE
PX +WS

εKE
SX . (34)

The sensitivity kernels we derived before are very general which means that we can combine some

of them for different specific situations, for instance, if we can assume that the perturbations of P-

and S-wave velocities are the same i.e.:

δα (r)

α0

=
δβ (r)

β0

. (35)

This allows us to simplify the inversion problem.

In the case of a general source which emits simultaneously P- and S- waves in proportions SP ,

SS (with SP + SS = 1), we further generalize the decomposition of the kernels into elementary

components. The procedure is best explained with the aid of an example. For the general travel

time sensitivity kernel we write:

vKtt =
∑
Y=P,S

∑
X=P,S

∑
v=α,β

WY X
vKtt

Y X , (36)
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where the time-dependent weight of each mode Y X is given by

WY X =
SXEY X∑

X=P,S

∑
Y=P,S

SXEY X
. (37)

Using these weights a single sensitivity kernel can be obtained that appears similar to the kernel

in the acoustic case for one wave mode and one velocity. However, the weights are lapse time

dependent which changes the relative contribution of the different elastic kernels over time.

For further work like inversion, our new sensitivity kernels provide options to include informa-

tion about the wave mode which can be obtained from array observations or other measurements

of wavefield gradients for example with rotation sensors (Gaebler et al. 2015).

5.5 Computation of Sensitivity Kernels in Scattering Anomaly Model

Previous works have obtained sensitivity kernels with different assumptions about the scattering

process (Pacheco & Snieder 2006; Larose et al. 2010; Obermann et al. 2013b; Planès et al. 2014).

However, most previous studies assumed that the scattering and attenuation properties are spatially

homogeneous. Locations within stronger heterogeneity tend to concentrate seismic energy and

thereby alter the sensitivity of the wavefield to perturbations in that region. Our approach is based

on the energy density obtained from the radiative transfer simulations and allows take this change

of the sensitivity into account by calculating the sensitivity kernels in media with spatial variations

of the attenuation and scattering properties. To demonstrate this influence we calculate sensitivity

kernels in a model with an anomaly in the scattering properties shown in Figure A3.

Figure 15 and Figure 16 show the resulting traveltime sensitivity kernels. Compared with Fig-

ure 11 and Figure 12, βKtt
PP and αKtt

SS show significant differences in the areas of anomalous

scattering. Please note that figures 15 and 16 show the kernels also at 13 s when the ballistic

S-wave has passed through the anomalous regions. To intuitively understand these differences, we

take βKtt
PP as an example in which the modes of excitation (X) and recording (Y ) are both P-wave

used to observe changes in S-wave velocity β. As discussed in section 5.1, the simplest case to

create this sensitivity requires two conversion scattering events to happen, one before and the other

after passing through dV (r′). The probability of such an event must be higher in the anomaly area
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with stronger scattering which leads to more sensitivity to changes in S-wave velocity. It is dif-

ferent from αKtt
PP since there is no conversion needed. αKtt

SP and βKtt
SP require a single scattering

event only and are thus only weakly affected by local changes of the scattering properties. The

same explanation applies to the kernels representing the traveltime sensitivity of measurements

employing an S-wave source as shown in figure 16.

Decorrelation and energy sensitivity kernels for changes in fluctuation strength in this model

with the spatially varying scattering are shown in Figure 17 and Figure 18, respectively. Compared

with Figure 13 and Figure 14 showing the kernels in the statistically homogeneous model, the dif-

ferences of all decorrelation and energy sensitivity kernels are minor. But since εKE
Y X considers not

only extra energy gained from more scattering with fW�V (n,n′)EV X(r′, t′,n′; r0) which εKdc
Y X

only considered but also the loss of energy due to the stronger scattering on EY X (r′,n, t′; r0), the

scattering sensitivity kernels are more affected by scattering perturbation. Notice that at t = 5 s

εKdc
SS and εKE

SS in the anomaly model looks stronger than in the homogeneous model since the

direct S-wave has not arrived and the denominator of expressions has more influence on kernels.

6 DISCUSSION

The scattering sensitivity kernels express the relation between a local change in the medium and

an observation made on the wavefield. They describe how strongly an observation responds to a

change at a particular location. We derive a number of kernels that relate different types of changes

in the medium to different types of observations leading to a multitude of possible combinations.

However, the equation of radiative transfer does only allow for two distinct mechanism to perturb

the wavefield. The wave can be perturbed (A) during ballistic propagation and (B) while being

scattered. Both mechanisms have their own spatial sensitivities, but all sensitivity kernels can be

related to these two fundamental forms.

Mechanism A, i.e. the perturbation of wavefield attributes during unperturbed propagation is

described by the passive kernel (Margerin et al. 2016). The travel time kernel vKtt
X,Y and the atten-

uation kernel QKE
X,Y share the spatial shape of the passive kernel which describes the time that the

waves have spent in a certain volume. The active kernel (Margerin et al. 2016) describes changes
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Figure 15. Traveltime sensitivity kernels in medium with scattering anomaly: αKtt
PP (the 1st column), βKtt

PP

(the 2nd column), αKtt
SP (the 3rd column) and βKtt

SP (the 4th column) at different lapse times with P-wave

source. Note the 3rd column has a different color scale and all scales are nonlinear.
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Figure 16. Traveltime sensitivity kernels in medium with scattering anomaly: αKtt
PS (the 1st column), βKtt

PS

(the 2nd column), αKtt
SS (the 3rd column) and βKtt

SS (the 4th column) at different lapse times with S-wave

source. Note the 3rd column in each row has the different color scale and all scales are nonlinear.
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Figure 17. Decorrelation sensitivity kernels in medium with scattering anomaly: εKdc
PP (the 1st column),

εKdc
SP (the 2nd column), εKdc

PS (the 3rd column) and εKdc
SS (the 4th column) at different lapse times. Note

all scales are nonlinear.

introduced by the mechanism B in which the attributes are unchanged but the wave propagation

is perturbed. The decorrelation εKdc
X,Y has the shape of the active kernel. The energy kernels for

changes in the scattering properties (εKE
X,Y ) involve both, the active and the passive kernels. While

the passive kernel describes the loss/gain of ballistic energy due to an increase/decrease of energy

by scattering from the current (n) into new propagation directions (n′), the active kernel describes

the increase/decrease of energy due to increased/decreased scattering from all other propagation

directions (n′) into the current direction (n). Consequently εKE
X,Y = Kactive −Kpassive.

The sensitivity kernels that we compute here are very detailed in terms of the wave mode that

is excited and recorded. Since this degree of detail can hardly be used in any practical application,

we give the recipe for combining the kernels to describe realistic situations. However, the kernels

are derived independently of the incident direction as K(r′, t). Since all computations are based

on the specific energy density which contains all information about propagation direction of the

wavefield, we could easily derive expressions for kernels of the form K(r′, n, t) that describe
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Figure 18. Scattering sensitivity kernels in medium with scattering anomaly: εKE
PP (the 1st column), εKE

SP

(the 2nd column), εKE
PS (the 3rd column) and εKE

SS (the 4th column) at different lapse times. The color of

white indicates the value of 0, the red is positive and the blue is negative.

the spatial sensitivity of a measurement performed on the specific energy density in a particular

direction n. Such information can be used to investigate the scattered field with seismic arrays and

beamforming as it is typically used to study scattering in the deep Earth (Lay & Garnero 2011).

Compared with the previous studies (Mayor et al. 2014; Margerin et al. 2016) in the acoustic

case, the elastic sensitivity kernels shown in Figures 11 through 14 constitute a major extension.

The energy conversion and anisotropic scattering considered in this study result in an energy dis-

tribution that is very different from the previous work in the acoustic approximation. However, for

example αKtt
PP , εKdc

PP and εKE
PP show similar features as the acoustic case (Mayor et al. 2014),

demonstrating that the acoustic approximation is reasonable. On the other hand the importance of

treating anisotropic scattering was demonstrated by Margerin et al. (2016). Moreover, the acoustic

approximation ignores conversion scattering which is especially important at short lapse times and

results in asymmetric kernels. Together with the presence of two different wave speeds this causes

four separate single-scattering ellipses which have strongly focused sensitivities in the active ker-
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nels. Considering only one of these ellipses in the acoustic approximation necessarily affects the

tomographic inversion. To what extent a tomography is affected needs to be tested in a separate

investigation, for which our work provides the means.

Implications of our results for previous studies that used sensitivity kernels derived from diffu-

sion, multiple scattering or even based on empirical considerations are numerous (Sketsiou et al.

2020; Del Pezzo & Ibáñez 2020). However in simplistic inversion approaches like imaging with

space weighting functions or least square inversions of model misfit, the dependence of the results

on the precise nature of the kernels is usually rather weak and we expects that the use the elastic

kernels would not have a major impact. But the method developed in the present paper allows for

an iterative tomography in which the kernels are successively adapted to the improving model. In

such an inverse problem the sensitivities need to be calculated with an accuracy that is comparable

to the solution of the forward problem.

The elastic scattering process is complex and controlled by many parameters. In the present

paper, we only consider changes of scattering strength in the form of the strength of the fluctua-

tions. The correlation distance a and the wavenumber m directly affect the angular distribution of

scattering angles. Since the PSDF is φ (m) = 2πε2a2 (1 + a2m2)
−3/2, it tends to a constant when

am� 1 and the scattering is isotropic. When the scattering becomes isotropic, the traveltime sen-

sitivity kernels we proposed approach the expression of Snieder et al. (2019). The PSDF here is

the Fourier transform of an exponential ACF. Other possibilities are the Gaussian or von Kármán

ACFs. The choice of the ACF influences the scattering process but our approach for the calculation

of the sensitivity kernels is unaffected and can be applied with different ACFs.

The simulation is done in an infinite 2-D model and we do not consider the structure of the

background velocity and density model either. Reflection and transmission will happen due to the

impedance differences in a more complicated background structure. This is not to be confused

with the stochastic scattering process used in section 3.1 and 5.5. Large-scale structure in the

background velocity model can be included in the Monte-Carlo model as in Sanborn (2017); Sens-

Schönfelder et al. (2009); Takeuchi (2016); Sens-Schönfelder et al. (2020).
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7 CONCLUSIONS

With elastic radiative transfer theory, we simulate the propagation of seismic energy in the pres-

ence of wave scattering. The Monte-Carlo method is used to numerically solve the radiative trans-

fer equations. Here we assume that the random velocity and density fluctuations of the medium

have an exponential ACF and the scattering is anisotropic. In order to simulate energy transport

in the presence of spatially variable fluctuation strength and intrinsic attenuation we separate the

effects of fluctuation strength and ACF on the scattering coefficients and allow for location de-

pendent fluctuation strength and quality factors. Two models are shown with spatially variable

scattering and intrinsic attenuation to be compared with the statistically homogeneous model. The

effects of stronger scattering and attenuation can be clearly observed in the two anomaly models.

As a further development we present the simulation of the specific energy density of the wave-

field. The specific energy density EY X (r,n, t) describes the angularly resolved energy density at

position r at time t with the propagation direction n. In the elastic case the mode of excitation X

and recording Y can either be P- or S-wave. This quantity provides complete information about the

energy transfer in an elastic medium with spatially variable randomness and intrinsic attenuation.

The complete information about the energy propagation allows for the computation of sensi-

tivity kernels of scattered elastic waves including ballistic and scattered waves. For the efficient

computation of the kernels we employ the reciprocity relation of an adjoint transport equation.

We investigate sensitivity kernels in the form ψKφ
Y X , where ψ denotes the medium perturbation, φ

denotes observable and Y,X denote the excited wave mode X and recorded wave mode Y . Both,

the observable and medium property need to be specified to identify the kernels. αKtt
Y X and βKtt

Y X

are traveltime-velocity sensitivity kernels to describe the effect of P- and S-wave velocity pertur-

bation in space on the traveltime perturbations of the seismogram. The derivation of these kernels

is based on Bayes’ theorem with a probabilistic interpretation of specific energy density and the

reciprocity relation in transport theory. It leads to an expression that involves the convolution of

the forward propagating field that is excited at the source and the adjoint propagating specific en-

ergy density that is excited at the receiver. By considering all combinations of the modes at source,

receiver and perturbed location, the elastic sensitivity kernels turn out to be more complicated than
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the ones in the acoustic case proposed by Margerin et al. (2016). We show the eight possible types

of traveltime sensitivity kernels that result from the propagation of the two elastic wave modes.

Changes in the strength of random velocity and density fluctuations ε can be observed as

changes of the trace envelopes and decorrelation of the waveforms leading to the energy-scattering

kernel εKE
Y X and the decorrelation-scattering kernel εKdc

Y X . It is interesting to note that the energy-

scattering kernel εKE
Y X has positive and negative polarity whereas the decorrelation-scattering ker-

nel εKdc
Y X is strictly positive since any change in the scattering coefficient ε (independent of its

sign) will lead to an increase in decorrelation. Based on the observation of the decorrelation alone,

it is thus not possible to discern an increase and a decrease of heterogeneity.

The functional form of the energy-attenuation kernels QKE
Y X is the same as that of the velocity

kernels. We also obtain eight different kernels for the combinations of the quality factors for P-

and S-waves and the modes of excitation and recording. If the actual sources in an experiment emit

both, P- and S-waves simultaneously or/and the receiver does not separate between P- and S-waves

the different kernels can be superimposed with the suitable weighting which can be obtained from

the simulation of the specific energy density.

We demonstrate the effect of spatial variations in scattering strength by comparing sensitivity

kernels in a statistically homogeneous model with kernels calculated in a model that contains

anomalies of the scattering properties. Obvious differences between kernels in the homogeneous

and anomaly models exist in αKtt
SS and βKtt

PP which are strongly affected by the scattering process

because of the required mode conversion.

Localization of property changes still remains the challenge in the crust and in volcanic struc-

tures. However, inversion of the spatial perturbation of properties can be considered as an intuitive

solution. Our work provides the technical basis for a probabilistic approach to tomography using

the scattered elastic wavefield.
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APPENDIX A: BORN APPROXIMATION OF SCATTERING COEFFICIENTS IN 2-D

IN-PLANE ELASTODYNAMICS

In this Appendix, we outline the computation of the scattering coefficients in a 2-D random elastic

medium based on the Born approximation. Our starting point is the following perturbed elastic

wave equation for the 2-D displacement field ui at circular frequency ω and position x:

−ρ0ω2ui(x)− C0
ijkl∂j∂kul(x)−

∫
S

Vij(x,x
′)uj(x

′)d2x′ = 0 (A.1)

where ρ0 and C0
ijkl denote, respectively, the density and elastic tensor of the homogeneous back-

ground medium. Indices {i, j, · · · } refer to components of a vector or tensor in a 2-D cartesian

system and the Einstein summation convention is adopted. Below, we also employ the latine let-

ters p, q and the greek letter α to denote indices. V represents the scattering potential of the random

fluctuations superposed on the background. These fluctuations are assumed to be enclosed in the

surface S. V may be expressed in terms of the density and elastic tensor fluctuations, denoted by

δρ(x) and δCijkl(x), as follows:

Vij(x,x
′) = δρ(x)ω2δ(x− x′)δij + ∂p (δCipqj(x)δ(x− x′)∂q′) (A.2)

The symbol ∂q′ indicates that the partial derivative acts on the qth coordinate of the position vector

x′.

We seek solutions to Eq. (A.1) of the form u = u0 + usc where u0 is a solution of the elas-

todynamic Eq. in the homogeneous background -i.e., a solution of (A.1) with V = 0- and usc is

the field scattered by the inhomogeneities contained in S. The formal solution to this problem is

known as the Lippman-Schwinger Eq.:

uα(r) = u0
α(r) +

∫
S

G0
αi(r,x)Vij(x,x

′)uj(x
′)d2x′ (A.3)

where G0 denotes the elastodynamic Green’s function of the background medium and r is the

observation point which we take at a large distance from the surface S. For sufficiently weak

perturbations (to be further discussed below), the field u in the inhomogeneous region may be

replaced by the unperturbed wavefield u0. This is known as the Born approximation in the literature

and it forms the basis of our calculation of the scattering coefficients. After substituting in Eq. (A.3)
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the scattering potential V by its expression (A.2), we perform an integration by part to remove the

partial derivative from the elastic perturbations and obtain the following formal expression for the

scattered field usc in the Born approximation:

uscα (r) =ω2

∫
S

G0
αi(r,x)δρ(x)ui(x)d2x

−
∫
S

∂jG
0
αi(r,x)δCijkl(x)∂ku

0
l (x)d2x,

(A.4)

where the partial derivatives act on the x variable. In the case of an isotropic background medium

with longitudinal and shear waves speeds given by cp,s, the far-field Green’s function (r → ∞) is

given by (Domı́nguez & Abascal 1984):

G0
αi

(r,x) ≈ ir̂αr̂i
4ρ0c2

p

√
2

πkpr
eikp(r−r̂·x)−iπ/4

+
iθ̂αθ̂i
4ρ0c2

s

√
2

πksr
eiks(r−r̂·x)−iπ/4,

(A.5)

where kp,s = ω/cp,s and r̂ indicates a unit vector in the direction of r. The symbol θ̂ denotes a

unit vector perpendicular to r. Eq. (A.5) splits the far-field Green’s tensor into its longitudinal and

transverse parts. In the case where the unperturbed field is a plane wave with polarization vector

p̂, wavenumber kin ∈ kp, ks and propagation direction k̂, we write:

u0(x) = p̂eik
ink̂·x (A.6)

The scattered waves detected in the far-field with polarization vector ŝ ∈ {r̂, θ̂}, wave number

kout ∈ {kp, ks} and corresponding propagation speed cout ∈ {cp, cs} will be noted uin�out(r).

The superscripts {in, out} are shortcuts for the ‘incoming’ and ‘outgoing’ wave modes. Using Eq.

(A.4)-(A.6), we find:

uin�out
α (r) =

ŝα
4ρ0(cout)2

√
2

πkoutr
eik

outr−iπ/4

×
∫
S

(
δρ(x)ω2ŝ · p̂− kinkoutδCijkl(x)ŝir̂j k̂kp̂l

)
× ei(kink̂−koutr̂)·xd2x

(A.7)

It is worth noting that Eq. (A.7) is valid for an arbitrary elastic perturbations δC. We now specialize

to the isotropic case. By substituting the following expression:

δCijkl(x) = δλ(x)δijδkl + δµ(x)(δikδjl + δilδjk) (A.8)
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into Eq. (A.7), computing the inner products of the polarization and wave propagation vectors with

the elastic perturbation tensor and making slight re-arrangements, we obtain:

uin�out
α (r) =ŝα

√
(kout)3

8πr
eik

outr−iπ/4

×
∫
S

[
δρ(x)

ρ0
ŝ · p̂− δλ(x)

ρ0cincout
(̂s · r̂)(p̂ · k̂)

− δµ(x)

ρ0cincout
((̂s · k̂)(r̂ · p̂) + (̂s · p̂)(r̂ · k̂))

]
ei(k

ink̂−koutr̂)·xd2x

(A.9)

Eq.(A.9) is the most general form of Born’s approximation in 2-D isotropic in-plane elastodynam-

ics. In seismologcal applications, it is common to assume that certain correlations exist between

the elastic parameters. To facilitate the application of this assumption, broadly known as ‘Birch

law’ in the literature, we adopt {ρ, cp, cs} as new independent variables. This is simply achieved by

making the following substitutions: δλ � (c2
p−2c2

s)δρ+2ρ0cpδcp−4ρ0csδcs, δµ � c2
sδρ+2ρ0csδcs

in Eq. (A.9). Furthermore, we make the assumption that the fluctuations of velocities and density

may be described by a single zero-mean random function φ(x) with variance 〈ε2〉. We may never-

theless allow for different level of fluctuations for the density and velocities by writing:

δρ(x)

ρ0

= λρφ(x) ,
δcp,s(x)

cp,s
= λcp,sφ(x). (A.10)

In other words, the fluctuations of velocities and density are supposed to be perfectly correlated

but have possibly different variances. This assumption allows us to factorize the expression of the

scattered field as follows:

uin�out
α (r) =ŝα

√
(kout)3

8πr
X in�out(θ)eik

outr−iπ/4

×
∫
S

φ(x)ei(k
ink̂−koutr̂)·xd2x,

(A.11)

where θ denotes the angle between k̂ and r̂ and X in�out(θ) are scattering patterns that depend

solely on the velocities and density perturbations. As suggested by logging data (Wu et al. 1994),

we will further assume that P and S velocity fluctuations share the same variance 〈ε2〉, i.e. λcs =

λcp = 1, and introduce a parameter ν = λρ/λcp,s that determines the relative amplitude of density

and velocity perturbations. Below, we detail out the scattering patterns for all possible incoming
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and outgoing modes:

Xp�p(θ) =λρ(cos θ + 2γ−2 sin2 θ − 1) + 4γ−2λcs sin2 θ − 2λcp

=
[
ν cos θ + (2 + ν)(2γ−2 sin2 θ − 1)

]
Xp�s(θ) =λρ sin θ(2γ−1 cos θ − 1) + 4λcsγ

−1 sin θ cos θ

= sin θ
[
2γ−1(2 + ν) cos θ − ν

]
Xs�p(θ) =λρ sin θ(1− 2γ−1 cos θ)− 4λcsγ

−1 sin θ cos θ

=− sin θ
[
2γ−1(2 + ν) cos θ − ν

]
Xs�s(θ) =λρ(cos θ + 2 cos2 θ − 1) + 2λcs(1− 2 cos2 θ)

=
[
ν cos θ + (ν + 2)(2 cos2 θ − 1)

]

, (A.12)

where γ = cp/cs. We note that the scattering patterns involving mode conversions differ only by a

sign as a consequence of reciprocity. For each of the scattering patterns, the first Eq. allows one to

keep track of the contributions of each type of perturbation separately. It could be used to introduce

more general hypotheses than the simple Birch law employed in our work. The next step in the

derivation is the calculation of the mean-squared fields. Since all the terms in front of the integral

in Eq. (A.9) are deterministic, the key is to evaluate the following multiple integral:

I =

∫
S

∫
S

〈φ(x)φ(y)〉ei(kink̂−koutr̂)·x−i(kink̂−koutr̂)·yd2xd2y (A.13)

Assuming that the random process φ is spatially homogeneous, we write the spatial correlation

function:

〈φ(x)φ(y)〉 = C(x− y) (A.14)

It is then natural to introduce a new set of barycentric coordinates such that:

x =ξ + ∆/2

y =ξ −∆/2

(A.15)

It may be verified that the determinant of the Jacobian of the transformation (A.15) equals 1.

Assuming that the set S is convex, we may rewrite the integral I as follows:

I =

∫
S

d2ξ

∫
S∆

C(∆)e−i(k
ink̂−koutr̂)·∆d2∆, (A.16)
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where S∆ is the domain of integration for the variable ∆. We now require (1) that the typical

linear dimension L of the domain S (and therefore also S∆) be much larger than the correlation

length a of the fluctuations; (2) that L is sufficiently small for the perturbative approach to apply.

Physically, this requires the following scaling relation: a � L � g−1
p,s , where gp,s is the total

scattering coefficient of P, S waves. This relation is known to break down in the high-frequency

limit (ω → ∞). When assumptions (1) applies, we may extend the domain of integration of the

variable ∆ over the entire plane to obtain:

I ≈ SΦ(kink̂− koutr̂) (A.17)

where Φ is the power spectrum of the fluctuations, i.e., the Fourier transform of the spatial cor-

relation function C. In the case of a statistically isotropic random medium, Φ depends solely on

the modulus of its argument. As an illustration, in the popular case of a 2-D exponential random

medium with correlation length a, one has:

Φ(|m|) =
2πa2〈ε2〉

(1 + a2m2)3/2
(A.18)

We now define the scattering coefficients gin�out(r̂, k̂) as the ensemble averaged energy scattered

per unit time and unit angle into direction r̂, normalized by the incident energy flux density and

the area S of the inhomogeneous zone. This quantity has the unit of inverse length in 2-D and

may be interpreted as the attenuation factor of the incident plane wave due to the presence of

the inhomogeneities. In the case of a statistically isotropic medium, g is a function of the angle

θ between r̂ and k̂ only. In the far-field of the inhomogeneous zone, we may locally use a plane

wave approximation for the scattered wave and write its flux of energy across an elementary line

element dl = rdθ as follows:

dEin�out

dt
=
ρ0ω2cout〈|uin�out(r)|2〉dl

2
(A.19)

After normalization by the incident energy flux J = ρ0ω2cin/2, angular aperture dθ, and surface S,

we find with the aid of the intermediate results (A.9), (A.17) and (A.19) the following expressions
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of the scattering coefficients for all possible mode conversions:

gp�p(θ) =
k3
pX

p�p(θ)2

8π
Φ(2kp sin(θ/2))

gp�s(θ) =
k3
sX

p�s(θ)2

8πγ
Φ
(√

k2
p − 2kpks cos(θ) + k2

s

)
gs�p(θ) =

γk3
pX

s�p(θ)2

8π
Φ
(√

k2
p − 2kpks cos(θ) + k2

s

)
gs�s(θ) =

k3
sX

s�s(θ)2

8π
Φ (2ks sin(θ/2))

(A.20)

APPENDIX B: MONTE-CARLO METHOD

For numerically solving the radiative transfer equations we use the Monte-Carlo method. The

idea of the Monte-Carlo method is based on the concept of wave packets or seismic phonons

that carry information about the wave energy but neglect phase information. The propagation of

these phonons is governed by ray theory during unperturbed propagation and by the scattering

coefficients upon the occurrence of scattering events. Large numbers of particles are propagated

through the model to obtain a smooth representation of the energy distribution. The wave energy

is represented by the number density of particles N (r,n, t), their propagation mode and their

weight, which decays during propagation due to intrinsic attenuation.

The left-hand side of eq. (1) is the material derivative of the specific energy density around the

propagation direction n. For clarity, we recall that the material derivative is the rate of change of a

physical quantity followed on its path. With the Monte-Carlo method, it is modeled by the change

of the number of particles tracked during a time interval dt along their propagation path of length

∆l such that:

∆l = dl = vdt . (B.1)

Defining ∆NP (r,n, t) = NP (r + n∆lP ,n, t+ dt)−NP (r,n, t), we rewrite the radiative transfer
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equation for a P-phonon:

∆NP (r,n, t) =

−∆lP

(
gP�P

0

(
ε2(r)

)
+ gP�S

0

(
ε2(r)

)
+

ω

α0QP (r)

)
NP (r,n, t)

+ ∆lP

∫
2π

gP�P (θ, ε2(r)
)
NP (r,n′, t)

+ ∆lS

∫
2π

gS�P (θ, ε2(r)
)
NS (r,n′, t) .

(B.2)

The analogous expression for S-phonons is obtained by interchanging the indices P and S. Eq. (B.2)

expresses the change of particle numbers as they propagate during a time dt through the medium.

The first term on the right hand describes the number of particles lost by the scattering and intrinsic

attenuation per unit distance. The second and third terms describe the increase of particle numbers

by scattering from all other directions into direction n of P-wave and S-wave, respectively.

The strategy of the MC simulation is to calculate NV (r,n, t) not sequentially in time for the

whole spatial domain as done in time domain wavefield simulations, but rather propagate the seis-

mic phonons one by one through the domain and accumulate their contribution to NV (r,n, t).

Propagating many phonons with stochastically distributed scattering events leads to an increas-

ingly better estimation of NV (r,n, t).

Figure A1 shows a flowchart of the Monte-Carlo algorithm. In the beginning, a particle is ini-

tialized and launched at the source with either P or S mode and a take-off direction. We use an

isotropic source meaning that the initial direction is drawn from a uniform distribution. The propa-

gation mode follows a Bernouilli probability law with the parameter: fraction of P (or equivalently

S) energy released at the source. The particle is then moved in this direction at the speed corre-

sponding to its mode for one time increment. At the new position, NV (r,n, t) is updated with the

weight of the present phonon and the local total scattering coefficient is evaluated. This coefficient

determines whether scattering occurs or not. This is achieved by simulating a Bernouilli random

variable with parameter gV dl, where V is the propagation mode, dl the path length travelled by

the particle during dt and gV =
∑

W gV�W .

If no scattering occurs and the total simulation time is not reached yet, the particle continues

to move with the previous propagation direction. If scattering occurs, the scattering coefficients
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are used to determine which type of scattering occurs, i.e., if the mode of the particle is converted

or remains unchanged. This is done again by simulating a Bernouilli random variable with the

parameter: conversion rate from mode V to mode W .

The scattering coefficient of the selected scattering type determines the probability distribution

for selecting the scattering angle and consequently the new propagation direction of the particle.

The selection of the angle uses a trial and reject method to generate angles with the required prob-

ability distributions (Sens-Schönfelder et al. 2009). This cycle will be repeated for all particles.

Since we recorded the position in each time step for all particles, we obtain the number of parti-

cles N (r,n, t) moving in direction n at the position r at any time t. Actually we also record the

propagation direction through the simulation to obtain N (r,n, t).

As a stochastic method the Monte-Carlo simulations converge to a stable solution but exhibit

fluctuations. These fluctuations determine the accuracy of the energy density estimates and we

cannot hope to resolve structure in the medium when its effect on the envelopes is smaller than

the fluctuations from the Monte-Carlo solution. However, the fluctuations of the solution are con-

trolled by the number of particles used in the simulation. We provide a test for the amplitude of

the fluctuations as a function of the number of particles in figure A2. It shows the coefficient of

variation, i.e. the ratio of standard deviation and mean value obtained for 24 identical simulations

in the uniformly heterogeneous model from section 3.1. Figure A2 shows that the coefficient of

variation decreases with increasing number of particles. 108 particles are used in the simulations

of this paper for which the coefficient of variation is about 5%.

APPENDIX C: RECIPROCITY THEOREM

We have shown how the radiative transfer equations in the 2D elastic random media can be solved

by directly simulating the scattering process. This solves the forward problem of the inversion

process which requires to estimate the energy field everywhere in space as it is created by a source

at r0. As will be shown in section 5 the inverse problem requires to calculate the specific energy

density at the receiver location r excited by a source at r′, where r′ can be anywhere in space.

Direct simulations are infeasible as they would require a separate simulation for a source at every
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Figure A1. Flowchart of Monte-Carlo simulation.
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Figure A2. Coefficient of variation changed with different number of particles.

point in space. In waveform tomography this problem is solved using the adjoint equation which

effectively allows to interchange source and receiver (Tromp et al. 2005; Fichtner et al. 2006)

thereby solving the problem for all points in space with a single simulation in which the adjoint

source is placed at the location of the receiver. Here we introduce reciprocity relations of the

radiative transfer equation that serve the same purpose for the tomographic inversion of envelope

observations. Following Margerin (2017), adjoint transport equations are introduced by:(
∂

∂t
+ nα0 · ∇

)
E†P (r,n, t) =

−
(
α0g

P�P
0 (ε2(r)) + α0g

†P�S
0 (ε2(r)) +

ω

QP

)
E†P (r,n, t)

+

∫
2π

α0g
P�P (θ, ε2(r)

)
E†P (r,n′, t) dn′

+

∫
2π

β0g
†S�P (θ, ε2(r)

)
E†S (r,n′, t) dn′

(C.1)
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(
∂

∂t
+ nβ0 · ∇

)
E†S (r,n, t) =

−
(
β0g

S�S
0 (ε2(r)) + β0g

†S�P
0 (ε2(r)) +

ω

QS

)
E†S (r,n, t)

+

∫
2π

β0g
S�S (θ, ε2(r)

)
E†S (r,n′, t) dn′

+

∫
2π

α0g
†P�S (θ, ε2(r)

)
E†P (r,n′, t) dn′

(C.2)

Different from the wave equations in FWI, radiative transfer equations describe the scattering

process depending on scattering coefficients. The probability of scattering per time is given by the

mean free time 1/(cV g
V�W
0 (ε2(r)). Each scattering event happening in the forward and adjoint

wavefield must have the same probability leading to cV g
V�W = cWg

†W�V . Consequently we

have:

g†P�S (θ, ε2(r)
)

=
β0

α0

gS�P (θ, ε2(r)
)

(C.3)

g†S�P (θ, ε2(r)
)

=
α0

β0

gP�S (θ, ε2(r)
)

(C.4)

We note that our definition of the adjoint transport equation does not follow the one adopted in

mathematical treatments. It is indeed well known that the formal adjoints of the operators ∂/∂t

and n · ∇ are −∂/∂t and −n · ∇ . However, whereas the relation (11) is physically essential,

the sign differences for the partial derivative operators is not. It only entails notational changes

in the symmetry relations between forward and adjoint intensities to be derived below. Using the

representation theorem given in Margerin (2017), we gain the following reciprocity theorem:

E†XY (r1, t,−n1; r2,−n2) = EY X (r2, t,n2; r1,n1) (C.5)

For an omnidirectional receiver at r which integrates the specific energy density over directions

we rewrite the reciprocity relation as:

E†XY (r′, t,−n′; r) =
1

Sd
EY X (r, t; r′,n′) (C.6)

The normalization 1/Sd results from the different sources and receivers on the left and right hand

side. Sd is the area of the unit sphere in space dimension d. In 2-D case, Sd = 2π.
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Upon noticing thatE†P , β
2
0E
†
S solve the forward transport equations with source terms sP , β2

0sS/α
2

provided that they solve the adjoint equation with source terms sP , sS , we deduce:

EXY (r1, t,−n1; r2,−n2) = constXY · EY X (r2, t,n2; r1,n1) (C.7)

where we have introduced:

constXY =

 1 X = Y

(α0/β0)2 X = S, Y = P
(C.8)

To verify the reciprocity relations numerically, we used the anomaly model shown in Fig-

ure A3. The background value of the fluctuation is ε = 0.05 and the other simulation parameters

are the same as discussed above for the uniform model. However, there are two anomalous areas,

one of which has stronger fluctuations (blue square, ε = 0.09) and the other area has weaker fluc-

tuations (light blue square, ε = 0.02). The simulation of the forward energy fieldEY X (r0, t; r
′,n′)

is generated from a unit source with mode X at r′ with initial direction n′. Since the bin width we

used for recording the directional dependence of the energy density is 5◦, we use the same angular

range for the initial direction. The simulation of the adjoint wavefield E†XY (r′, t,n′; r0) is gener-

ated from an isotropic unit source at the receiver location r0 with mode Y employing eqs. C.1 and

C.2.

For the comparison of the different simulations in Figure A4, we select r′ within the strongly

scattering anomaly region (c.f. Figure A3). Energy densities are shown for the North and South

directions in Figure A4(a) and (b), respectively. For reference the panels in Figure A4 include

the curves of constXY · EY X (r2, t,n2; r1,n1) and the modes X and Y are given in the legend

of each panel. The agreement between the three curves in each panel confirms the reciprocity

relations C.5 and C.7. Differences between the curves can be attributed to the stochastic nature of

the simulations and vanish for more accurate simulations with larger numbers of particles.

APPENDIX D: SCATTERING PATTERNS

The angular probability distributions of scattering directions i.e. the scattering patterns are defined

by scattering coefficients eq. (A.20). To verify the implementation in the scattering in simulation
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Figure A3. Illustrations of the scattering anomaly model. The background of ε is 0.05. The light blue and

the dark blue colors indicate areas with ε of 0.02 and 0.09, respectively. Source r0: x = 25 km, y = 15 km,

receiver r: x = 25 km, y = 35 km and one position r′: x = 35 km, y = 25 km

and to illustrate the functioning of the Monte-Carlo simulations, we design a special model for

numerically comparing the implemented scattering coefficients with the theoretical expressions. In

this model the background is homogeneous (ε = 0) but there is a point-like heterogeneous region

with ε = 0.05 in the center of the model. Scattering can only occur in this region. Other parameters

are as discussed in section 4. All particles from the source have the same initial direction towards

the scatterer. Counting the particles scattered into different directions from the scatterer, we can

compute the numerical scattering coefficients by normalization for the total number of particles.

Note that the direct wave has the same direction as the forward scattered wave. We therefore

remove the particles representing the direct waves without scattering. The result is shown for the
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Figure A4. The comparisons between forward wavefield EY X (r, t; r′,n′) /Sd, (blue curves) and adjoint

wavefield E†XY (r′, t,−n′; r) (orange curves) in the anomaly model. EXY (r′, t,−n′; r) (green curves) is

also compared for reference. The direction is respectively (a)n′ = 0◦ and (b)n′ = 180◦.

different types of scattering in Figure A5 verifying that our implementation is in good agreement

with the theoretical values.

APPENDIX E: EQUIPARTITION RATIO IN SCATTERING SIMULATIONS

Energy equipartitioning is the intrinsic property of scattered wavefields that the ratio of S-wave to

P-wave energy approaches constant value at large lapse time. Equipartition is thus a useful check
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Figure A5. The polar plot of scattering patterns for the mode conversions P � P , P � S, S � P ,

S � S (from top to bottom). The left column shows the numerical results generated from the Monte-Carlo

scattering simulation. The middle column shows the theoretical values, and the right column shows the

distribution of scattered energy at time t = 5s which was used to evaluate the angular distribution. The red

star and the white point in the right column indicate the source and the scatterer, respectively.
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for simulations of wave scattering. In 2-D elastic case the P/S energy ratio obeys:

RPS =
ES
EP

=
gP�S

0 α0

gS�P
0 β0

= γ2
0 . (E.1)

The values of the total scattering coefficients in our simulations are gP�P
0 = 4.953 × 10−3 km−1,

gP�S
0 = 1.256 × 10−3 km−1, gS�P

0 = 7.24 × 10−4 km−1 and gS�S
0 = 1.3418 × 10−2 km−1.

Figure A6 shows the temporal evolution of the P to S energy ratio in the region for long lapse time

simulations with a P and a S-wave source. In both cases the ratio approaches the blue dashed line

which indicates the theoretical prediction of γ2
0 . This verifies the correct energy equipartition of

our scattering simulation.

APPENDIX F: UNITS OF SENSITIVITY KERNELS

Sensitivity kernels derived in section 5 have physical units. Table A1 therefore gives the units of the

quantities involved in the calculation of the sensitivity kernels. The energy density is considered

as the probability density of of energy carrying particles. According to this table, we can confirm

the units of the traveltime and decorrelation sensitivity kernels:[
vKtt

Y X

]
= rad× m−2 · rad−1 ×m−2 · rad−1 × s× rad

m−2

= s ·m−2

(F.1)

[
εKdc

Y X

]
=rad× m · s−1 ×m−1 ×m−2 · rad−1 × rad−1 ×m−2 · rad−1

m−2

× s× rad× rad

=m−2

(F.2)

where [·] denotes Unit of ·. The unit of attenuation sensitivity kernel is the same as that of the

traveltime which together with the additional factor ω in equation 28 leads to the proper unit of

relative energy density change. The units of the scattering sensitivity kernels are same as those of

the decorrelation kernel.
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Figure A6. Development of the ratio of S to P energy as a function of time. The black and gray lines are

respectively the total energy of P-wave and S-wave. The scale of energy is on the left. The blue dashed line

indicates the theoretical value of γ2
0 and the red line shows the ratio of gray to black lines. The scale for the

energy ratios is on the right.

Table A1. The unit of different parameters.

Parameters EY X(r, t; r0) EY X (r′, t′,n′; r0) cW gV�W
0 fV�W (n,n′) Sd dt dn dV (r′)

Unit m−2 m−2 · rad−1 m · s−1 m−1 rad−1 rad s rad m2


