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Abstract: We study the convergence of N�particle systems described by SDEs driven by
Brownian motion and Poisson random measure, where the coefficients depend on the empirical
measure of the system. Every particle jumps with a jump rate depending on its position and
on the empirical measure of the system. Jumps are simultaneous, that is, at each jump time,
all particles of the system are affected by this jump and receive a random jump height that
is centred and scaled in N�1{2. This particular scaling implies that the limit of the empirical
measures of the system is random, describing the conditional distribution of one particle in the
limit system. We call such limits conditional McKean-Vlasov limits. The conditioning in the
limit measure reflects the dependencies between coexisting particles in the limit system such
that we are dealing with a conditional propagation of chaos property. As a consequence of the
scaling in N�1{2 and of the fact that the limit of the empirical measures is not deterministic the
limit system turns out to be solution of a non-linear SDE, where not independent martingale
measures and white noises appear having an intensity that depends on the conditional law of
the process.

MSC 2010 subject classifications: 60K35, 60G09, 60H40, 60F05.
Keywords and phrases: Martingale measures, McKean-Vlasov equations, Mean field inter-
action, Interacting particle systems, Propagation of chaos, Exchangeability.

1. Introduction

McKean-Vlasov equations are stochastic differential equations where the coefficients depend on
the distribution of the solution. Such equations typically arise as limits of mean field N�particle
systems, where the coefficients depend on the empirical measure of the system. These kind of limits
are referred to as McKean-Vlasov limits (see e.g. Gärtner (1988), Graham (1992) and Andreis,
Dai Pra and Fischer (2018)).

In this paper we extend these limits to a rather general class of conditional McKean-Vlasov
limits. More precisely, we consider the system of interacting particles with a diffusive term and
jumps, given by

dXN,i
t � bpXN,i

t , µNt qdt� σpXN,i
t , µNt qdβit

� 1?
N

Ņ

k�1,k�i

»
R��E

ΨpXN,k
t� , XN,i

t� , µNt�, u
k, uiq1tz¤fpXN,kt� ,µNt�qudπ

kpt, z, uq, 1 ¤ i ¤ N,

(1)

1
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starting from the initial condition
pXN,i

0 q1¤i¤N � νbN0 .

Here µNt � N�1
°N
j�1 δXN,jt

is the empirical measure of the system, βi (i ¥ 1) are i.i.d. one-

dimensional standard Brownian motions and πk (k ¥ 1) i.i.d. Poisson measures on R� � R� � E,

where E � RN� , N� � t1, 2, 3, . . .u. Each πk has intensity ds �dz �νpduq, with ν a product probability
measure on E. The initial distribution ν0 is a probability measure on R having a finite second
moment. We assume that the Poisson measures, the Brownian motions and the initial conditions
are independent. Since the jumps are scaled in N�1{2, to prevent the jump term from exploding,
we suppose that the height of the jump term is centred (see Assumption 3 below), that is, for all
x, y P R, for all probability measures m on R,»

E

Ψpx, y,m, u1, u2qdνpuq � 0.

Our model is close to the one considered in Andreis, Dai Pra and Fischer (2018). As there, any
particle in position x jumps at a rate fpx,mq, whenever m is the common state of the system,
that is, the current value of the empirical measure. Mainly motivated by applications coming from
neuroscience (where jumps are spikes of the neurons leading to an increase of the potential of all
other neurons, see e.g. De Masi et al. (2015) and Fournier and Löcherbach (2016), or Duarte, Ost
and Rodŕıguez (2015) for a spatially structured model), jumps are simultaneous, that is, all particles
in the system are affected by any of the jumps. More precisely, the random jump height depends
both on the current position y of the particle receiving the jump and on the position x of the
particle that causes the jump. Notice that contrarily to Andreis, Dai Pra and Fischer (2018) we do
not include auto-interactions induced by jumps in the equation (1), i.e. terms of the type»

R��E
ΘpXN,i

t� , µNt�, u
iq1tz¤fpXN,it� ,µNt�qudπ

ipt, z, uq.

Indeed, such terms would survive in the large population limit leading to discontinuous trajectories,
and the presence of the indicator 1tz¤fpXN,it� ,µNt�qu requires to work both in L1 and in L2 (see Graham

(1992), see also Erny, Löcherbach and Loukianova (2020) where we dealt both with simultaneous
small jumps and big ones). In the present paper, we decided to disregard these big jumps to focus
on the very specific form of the limit process given in (3) below.

Coming back to Andreis, Dai Pra and Fischer (2018), the main difference to our work is that
there the averaging regime is considered: the common contribution of all particles to the dynamic
of a given particle, represented in (1) by the sum of the stochastic integrals with respect to the
Poisson random measures, is scaled in N�1. In this situation it was shown in Andreis, Dai Pra and
Fischer (2018) that the Propagation of chaos phenomenon holds: the coordinates are i.i.d. in the
limit. Moreover, the limit of the empirical measures is the distribution of any coordinate of the limit
system, and the dynamic of one coordinate is described by a classical McKean-Vlasov equation.

The novelty of the present paper is that we consider (1) in a diffusive regime, where the common
contribution of all particles to the dynamic of a given particle is scaled in N�1{2. It has already
been observed that this diffusive scaling gives rise to the Conditional propagation of chaos property
(see Erny, Löcherbach and Loukianova (2020)): a common noise appears in the limit system, and
the coordinates of the limit system are conditionally i.i.d given this common noise. Moreover the
limit of the empirical measures is shown to be the conditional distribution of any coordinate of the
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limit system, given the common noise. In Erny, Löcherbach and Loukianova (2020) the common
noise is a Brownian motion created by the contribution of the jumps of all particles in the dynamic
of a given particle, as a consequence of the scaling 1{?N and the central limit theorem.

It turns out that in the present work, to describe the precise dynamic of the limit, and in particular
to identify the common noise, we need to rely on martingale measures and white noises (see Walsh
(1986) and El Karoui and Méléard (1990)) as driving measures. More precisely, the limit system will
be shown to be solution of a non-linear SDE driven by (white noise) martingale measures having
an intensity that depends on the conditional law of the system itself. These martingale measures
do only appear in the limit system as a consequence of the central limit theorem and the joint
contribution of all small and centered jumps. The main reason for the appearance of the martingale
measures instead of the Brownian motion is the spatial correlation of the finite system, i.e. the
dependence on the positions both of the particle giving and the one receiving the input.

To the best of our knowledge, this is the first time that McKean-Vlasov limits are considered
where the underlying driving martingale measures are only present in the limit system, but not
at the level of the N�particle system. We refer however to Chevallier and Ost (2020) who work
in the averaging regime and study the fluctuations of a stochastic system, associated to spatially
structured Hawkes processes, around its mean field limit, and where particles in the mean field limit
are still independent.

Processes driven by martingale measures having an intensity that depends on the law of the pro-
cess itself have already appeared in the literature related to particle approximations of Boltzmann’s
equation, starting with the classical article by Tanaka (1978) that gave rise to a huge literature (to
cite juste a few, see Graham and Méléard (1997), Meleard, Sylvie (1998), Fournier and Meleard
(2002), Fournier and Mischler (2016)). In these papers, the underlying random measure is Poisson,
and the dependence on the law arises at the level of the particle system that is designed to ap-
proximate Boltzmann’s equation. In our work, the underlying random measure is white noise since
jumps disappear in the limit, and the dependence on the (conditional) law of the process does only
appear in the limit, as an effect of the conditional propagation of chaos.

Let us now describe the limit system associated to (1). To find its precise form, we mainly need
to understand the limits of the martingales which are the jump terms of the system, given by

JN,it � 1?
N

Ņ

k�1,k�i

»
r0,ts�R��E

ΨpXN,k
s� , XN,i

s� , µNs�, u
k, uiq1tz¤fpXN,ks� ,µNs�qudπ

kps, z, uq.

In what follows we consider some concrete examples of Ψ and give the limits of the corresponding
predictable quadratic covariations of JN,it to have a better understanding of its limit. We shall always
assume that the jump rate function f is bounded. Let us begin with a situation close to that of Erny,
Löcherbach and Loukianova (2020), where in the limit system each coordinate shares a common
Brownian motion W .

Example 1. Suppose that Ψpx, y,m, u1, u2q � Ψpu1q. Then we have, for all 1 ¤ i, j ¤ N,

xJN,i, JN,jyt � 1

N

Ņ

k�1,k�i,j

» t
0

»
R

Ψpukq2fpXN,k
s , µNs qdν1pukqds

� ς2
» t

0

»
R
fpx, µNs qµNs pdxqds�Op t

N
q,
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since f is bounded, with ς2 :� ³
R Ψpu1q2dν1pu1q and ν1 the projection of ν on the first coordinate.

Denote µ the limit of the empirical measures µN . Then the angle brackets process should converge
as N goes to infinity to

ς2
» t

0

»
R
fpx, µsqµspdxqds.

As the limit quadratic covariations are non-null, in the limit system there will be a common Brow-
nian motion W underlying each particle’s motion. Thus, the limit system is given by

dX̄i
t � bpX̄i

t , µtqdt� σpX̄i
t , µtqdβit � ς

d»
R
fpx, µtqµtpdxqdWt,

where W is a standard one-dimensional Brownian motion. We will also show that µ � LpX̄1|W q,
since µ is necessarily the directing measure of pX̄iqi¥1. In particular, the conditioning in µ reflects
the presence of some common noise, which is W here.

Now, let us consider an opposite situation where, in the limit system, each coordinate has its
own Brownian motion W i, and where these Brownian motions are independent.

Example 2. In this example, we assume that Ψpx, y,m, u1, u2q � Ψpu2q. As in the previous exam-
ple, we begin by computing the angle brackets of the jump terms between particles i and j. Here we
distinguish two cases: i � j and i � j. If i � j, using the fact that ν is a product measure and that
Ψ is centered (Assumption 3),

xJN,i, JN,jyt � 1

N

Ņ

k�1,k�i,j

» t
0

»
E

ΨpuiqΨpujqfpXN,k
s , µNs qdνpuqds � 0.

Moreover, if i � j,

xJN,iyt � 1

N

Ņ

k�1,k�i

» t
0

»
R

Ψpuiq2fpXN,k
s , µNs qdν1puiqds � ς2

» t
0

»
R
fpx, µNs qµNs pdxqds�Op t

N
q.

As the quadratic covariations between different particles are null, there will be no common noise
in the limit system. So, instead of having one common Brownian motion W as in the previous
example, here, each particle is driven by its own Brownian motion. More precisely, in this example
the limit system is

dX̄i
t � bpX̄i

t , µtqdt� σpX̄i
t , µtqdβit � ς

d»
R
fpx, µtqµtpdxqdW i

t ,

where W i (i ¥ 1) are independent standard one-dimensional Brownian motions, independent of βi

(i ¥ 1), and where µ � LpX̄1q is deterministic in this particular case.

Finally let us show an example where, as in Example 1, each particle shares a common Brownian
motion W , and, as in Example 2, each particle has also its own Brownian motion W i, and where
both W and W i are produced by the common contribution of the small jumps.
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Example 3. Here we assume that Ψpx, y,m, u1, u2q � Ψpu1, u2q. The angle brackets of the jump
terms of the particles i and j are, if i � j,

xJN,i, JN,jyt � 1

N

Ņ

k�1,k�i,j

» t
0

»
E

Ψpuk, uiqΨpuk, ujqfpXN,k
s , µNs qdνpuqds

� ξ2

» t
0

»
R
fpx, µNs qµNs pdxqds�Op t

N
q,

where we know that ξ2 :� ³
E

Ψpu1, u2qΨpu1, u3qdνpuq ¥ 0 since it is the covariance of the infinite

exchangeable sequence pΨpU1, Ukqqk¥2, where pUkqk¥1 � ν. And if i � j,

xJN,iyt � 1

N

Ņ

k�1,k�i

» t
0

»
E

Ψpui, ukq2fpXN,k
s , µNs qdνpuqds � ς2

» t
0

»
R
fpx, µNs qµNs pdxqds�Op t

N
q,

where ς2 � ³
E

Ψpu1, u2q2dνpuq.
As in Example 1, there must be a common Brownian motion since the quadratic covariations

between different particles are not zero. But, here xJN,i, JN,jyt � xJN,iyt if j � i. That is why there
must be additional Brownian motions. Formally, the limit system in this example is

dX̄i
t �bpX̄i

t , µtqdt� σpX̄i
t , µtqdβit (2)

� ξ

d»
R
fpx, µtqµtpdxqdWt �

d
pς2 � ξ2q

»
R
fpx, µtqµtpdxqdW i

t ,

where we know that ς2 ¥ ξ2 by Cauchy-Schwarz’s inequality. As before, W,W i (i ¥ 1) are in-
dependent standard one-dimensional Brownian motions, and µ � LpX̄1|W q is random in this
case. Note that in the case where Ψpx, y,m, u1, u2q � Ψpu1q, we have ξ2 � ς2, and in the case
Ψpx, y,m, u1, u2q � Ψpu2q, we have ξ2 � 0, hence this example covers both Example (1) and Exam-
ple (2).

Before defining the limit system in the general case, let us explain the main difficulty that arises.
If we apply the same reasoning as in Examples 1, 2 and 3 to the general model given in (1), we
obtain for two different particles

xJN,i, JN,jyt �
1

N

Ņ

k�1,k�i,j

» t
0

fpXN,k
s , µNs q

»
E

ΨpXN,k
s , XN,i

s , µNs , u
k, uiqΨpXN,k

s , XN,j
s , µNs , u

k, ujqνpduqds

�
» t

0

»
R
fpx, µNs q

»
E

Ψpx,XN,i
s , µNs , u

1, u2qΨpx,XN,j
s , µNs , u

1, u3qνpduqµNs pdxqds�Op t
N
q,

under appropriate conditions on Ψ, see Assumption 3 below. And for the quadratic variation of
the jump term of a single particle we get

xJN,iyt �
» t

0

»
R
fpx, µNs q

»
E

Ψpx,XN,i, µNs , u
1, u2q2νpduqµNs pdxqds,
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still up to an error term of order 1{N.
Contrarily to the situation of the previous examples, the quadratic covariations depend on the

positions of the particles i and j and can only be written as integrals of products where this
integration involves, among others, the empirical measure of the process. This is the reason why
we need to use martingale measures and white noises instead of Brownian motions, as introduced
in Walsh (1986), confer also to El Karoui and Méléard (1990).

Let us briefly explain why using martingale measures is well adapted to our problem. If M is a
martingale measure on R� � F (with pF,Fq some measurable space), having intensity dt �mtpdyq,
then for all A,B P F , MtpAq :�Mpr0, ts �Aq; t ¥ 0 is a square-integrable martingale and

xM�pAq,M�pBqyt �
» t

0

»
F

1AXBpyqmspdyqds.

Having this remark in mind, it is natural to write the limit system in a similar way as (2),
but replacing the Brownian motions by martingale measures. More precisely, under appropriate
conditions on the coefficients, the limit system pX̄iqi¥1 of (1) will be shown to be of the form

dX̄i
t � bpX̄i

t , µtqdt� σpX̄i
t , µtqdβit �

»
R

»
R

a
fpx, µtqΨ̃px, X̄i

t , µt, vqdMpt, x, vq, (3)

�
»
R

a
fpx, µtqκpx, X̄i

t , µtqdM ipt, xq, i ¥ 1,

pX̄i
0qi¥1 � νbN�

0 .

In the above formula,

µt :�LpX̄i
t |W q, (4)

Ψ̃px, y,m, vq :�
»
R

Ψpx, y,m, v, u1qdν1pu1q, (5)

κpx, y,mq2 :�
»
E

Ψpx, y,m, u1, u2q2dνpuq �
»
R

Ψ̃px, y,m, vq2dν1pvq

�
»
E

Ψpx, y,m, u1, u2q2dνpuq �
»
E

Ψpx, y,m, u1, u2qΨpx, y,m, u1, u3qdνpuq. (6)

Notice that the expression (6) is positive by Cauchy-Schwarz’s inequality.
In the above equations, Mpdt, dx, dvq and M ipdt, dxq are orthogonal martingale measures on

R� � R � R (R� � R respectively) with respective intensities dt � µtpdxq � ν1pdvq and dt � µtpdxq,
defined as

M i
t pAq :�

» t
0

1ApF�1
s ppqqdW ips, pq and MtpA�Bq :�

» t
0

1ApF�1
s ppqq1BpvqdW ps, p, vq, (7)

withW a white noise on R2
��R with intensity dt�dp�dν1pvq, andW i (i ¥ 1) independent white noises

on R2
�, independent from W, with intensity dt � dp. In the above formula, Fspxq :� P

�
X̄i
s ¤ x|W �

is the conditional distribution function, conditionally on W, and F�1
s is the generalized inverse of

Fs. As in (1), we assume that the Brownian motions, the white noises and the initial conditions are
independent.
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In the case where Ψpx, y,m, u1, u2q � Ψpu1, u2q, we see that κ2 � ς2�ξ2 is a constant and that Ψ̃
does only depend on v such that we can represent the two integrals with respect to the martingale
measures in (3) as two integrals against Brownian motions, recovering all previous examples.

Let us give some comments on the above system of equations. We have already argued that, in
general, µt is a random measure because of the scaling N�1{2. We shall prove that µt is actually the
law of X̄1 conditionally on the common noise of the system. This common noise is the white noise
W underlying the martingale measure M. It is not immediately obvious that the definition of the
martingale measures M and M i in (7) and the limit system (3) are well-posed. In what follows, we
shall give conditions ensuring that equation (3) admits a unique strong solution. This is the content
of our first main theorem, Theorem 2.3. To prove this theorem, we propose a Picard iteration in
which we construct a sequence of martingale measures whose intensities depend on the conditional
law of the instance of the process within the preceding step. One main ingredient of the proof is the
well-known fact that the Wasserstein-2�distance of the laws of two real-valued random variables
is given by the L2� distance of their inverse distribution functions - we apply this fact here to the
conditional distribution functions.

Using arguments that are inspired by Erny, Löcherbach and Loukianova (2020), we then show
in our second main theorem, Theorem 2.5, that the finite particle system converges to the limit
system, that is, pXN,iq1¤i¤N converges to pX̄iqi¥1 in distribution in DpR�,RqN� . This convergence
is the consequence of the well-posedness of an associated martingale problem. Contrarily to Erny,
Löcherbach and Loukianova (2020) the finite system here depends on the empirical measure, and the
conditions on the regularity of its coefficients are formulated in terms of the Wasserstein distance.
To reconcile the convergence in distribution of the empirical measure with the Wasserstein-Lipschitz
continuity of the coefficients gives an additional technical difficulty to the proof.

Organization of the paper. In Section 2, we state the assumptions and formulate the main
results. Section 3 is devoted to the proof of Theorem 2.3. The proofs of Theorems 2.4 and 2.5 are
gathered in Section 4. Finally, in Section 5 we discuss extensions of our results to the frame of
multi-populations where the particles are organized within clusters.

General notation. Throughout this paper we shall use the following notation. Given any mea-
surable space pS,Sq, PpSq denotes the set of all probability measures on pS,Sq, endowed with the
topology of weak convergence. For p P N�, PppRq denotes the set of probability measures on R
that have a finite moment of order p. For two probability measures ν1, ν2 P PppRq, the Wasserstein
distance of order p between ν1 and ν2 is defined as

Wppν1, ν2q � inf
πPΠpν1,ν2q

�»
S

»
S

|x� y|qpπpdx, dyq

1{p

,

where π varies over the set Πpν1, ν2q of all probability measures on the product space R � R
with marginals ν1 and ν2. Notice that the Wasserstein distance of order p between ν1 and ν2 can
be rewritten as the infimum of Er|X � Y |ps1{p over all possible couplings pX,Y q of the random
elements X and Y distributed according to ν1 and ν2 respectively, i.e.

Wppν1, ν2q � inf
!
E r|X � Y |ps1{p : LpXq � ν1 and LpY q � ν2

)
.

Moreover, DpR�,Rq (or just D for short) denotes the space of càdlàg functions from R� to R,
endowed with the Skorokhod metric, and C and K denote arbitrary positive constants whose
values can change from line to line in an equation. We write Cθ and Kθ if the constants depend on
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some parameter θ. Finally, for any n, p P N�, we note Cnb pRpq (resp. Cnb pRp,R�q) the set of real-
valued functions g (resp. non-negative functions g) defined on Rp which are n times continuously
differentiable such that gpkq is bounded for each 0 ¤ k ¤ n.

2. Assumptions and main results.

2.1. Assumptions

We start imposing a hypothesis under which equation (1) admits a unique strong solution and
which grants a Lipschitz condition on the coefficients of the SDE.

Assumption 1.

i) For all x, y P R,m,m1 P P1pRq,
|bpx,mq � bpy,m1q| � |σpx,mq � σpy,m1q| ¤ Cp|x� y| �W1pm,m1qq.

ii) f is bounded and strictly positive, and
?
f is Lipschitz, that is, for all x, y P R,m,m1 P P1pRq,

|
a
fpx,mq �

a
fpy,m1q| ¤ Cp|x� y| �W1pm,m1qq.

iii) For all x, x1, y, y1, u, v P R,m,m1 P P1pRq,
|Ψpx, y,m, u, vq �Ψpx1, y1,m1, u, vq| ¤Mpu, vqp|x� x1| � |y � y1| �W1pm,m1qq,

where M : R2 Ñ R� satisfies
³
E
Mpu1, u2q2dνpuq   8.

iv)

sup
x,y,m

»
E

|Ψpx, y,m, u1, u2q|dνpuq   8.

Notice that f bounded together with
?
f Lipschitz implies that f is Lipschitz as well. As a

consequence, relying on Theorem 2.1 of Graham (1992), Assumption 1 implies that equation (1)
admits a unique strong solution.

In order to prove the well-posedness of the limit equation (3), we need additional assumptions.
Recall that κ2 has been introduced in (6) above.

Assumption 2.

i)
inf
x,y,m

κpx, y,mq ¡ 0,

ii)

sup
x,y,m

»
E

Ψpx, y,m, u1, u2q2dνpuq   8.

Remark 2.1. Using the third point of Assumption 1 we can prove that κ2 is Lipschitz continuous
with Lipschitz constant proportional to�»

E

M2pu, vqdνpu, vq � sup
x,y,m

»
E

Ψ2px, y,m, u, vqdνpu, vq

1{2

.

Assumption 2.iq allows then to prove that κ is Lipschitz continuous. Assumption 2.iiq gives that
}κ}8 :� supx,y,m κpx, y,mq   8.
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To prove the convergence of the particle system pXN,iq1¤i¤N to the limit system, we need further
assumptions on the function Ψ.

Assumption 3.

i) For all x, y P R,m P P1pRq, »
E

Ψpx, y,m, u1, u2qdνpuq � 0,

ii) »
E

sup
x,y,m

|Ψpx, y,m, u1, u2q|3dνpuq   8.

iii) b and σ are bounded.

Remark 2.2. We assume the functions b and σ to be bounded to simplify the proofs of Lemmas 6.1
and 6.2. However the results of these lemmas still hold true under the following weaker assumption:
there exists C ¡ 0 such that, for all x P R,m P PpRq,

|bpx,mq| � |σpx,mq| ¤ Cp1� |x|q.

In other words, b and σ are bounded w.r.t. the measure variable and sublinear w.r.t. the space
variable.

Let us give an example of a function Ψ that satisfies all our assumptions and where the random
quantity Ψ depends on the difference of the states of the jumping and the receiving particle as well
as on the average state of the system as follows

Ψpx, y,m, u, vq � uv

�
ε� π

2
� arctanpx� y �

»
R
zdmpzqq



,

with ν � RbN� and R � 1
2 pδ�1 � δ�1q the Rademacher distribution. In the formula above, the

variables u and v can be seen as spins such that the receiving particle is excited if the orientation
of its spin is the same as the spin of the sending particle, and inhibited otherwise. Ψ satisfies the
Lipschitz condition of Assumption 1 because arctan is Lipschitz continuous. The hypothesis on the
moments of Ψ are also satisfied since N p0, 1q has finite third moments and is centered. Finally, the
first point of Assumption 2 holds true, because

κpx, y,mq2 �
»
E

Ψpx, y,m, u1, u2q2dνpuq �
»
E

Ψpx, y,m, u1, u2qΨpx, y,m, u1, u3qdνpuq

�
�
ε� π

2
� arctanpx� y �

»
R
zdmpzqq


2�»
E

pu1u2q2dνpuq �
»
E

u1u2u1u3dνpuq



�
�
ε� π

2
� arctanpx� y �

»
R
zdmpzqq


2

.

2.2. Main results

Our first main result is the well-posedness of the limit equation.
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Theorem 2.3. Under Assumptions 1 and 2, equation (3) admits a unique strong solution X̄i that
possesses finite second moments. This solution also has finite fourth moments.

Our second main result states the convergence of pXN,iq1¤i¤N to pX̄iqi¥1.

Theorem 2.4. Under Assumptions 1, 2 and 3, pXN,iq1¤i¤N converges to pX̄iqi¥1 in distribution

in DpR�,RqN� .
In the above statement, we implicitly define XN,i :� 0 if i ¡ N.
As the systems pXN,iq1¤i¤N (N P N�) and pX̄iqi¥1 are exchangeable, Theorem 2.4 is equivalent

to

Theorem 2.5. Under Assumptions 1, 2 and 3, the system pX̄iqi¥1 is exchangeable with directing
measure µ � LpX̄1|W q, where W is as in (7). Moreover, the sequence of empirical measures

µN :� N�1
Ņ

i�1

δXN,i

converges in law, as PpDpR�,Rqq- valued random variables, to µ.

Remark 2.6. In Theorem 2.5, it is easy to prove that LpX̄1|W q is the directing measure of the
system pX̄iqi¥1. Indeed, it is sufficient to notice that conditionally on W, the variables X̄i (i ¥ 1)
are i.i.d. and to apply Lemma (2.12) of Aldous (1983).

The proof of Theorem 2.5 is similar to the proof of Theorem 1.7 of Erny, Löcherbach and
Loukianova (2020). It consists in showing that pµN qN is tight on PpDpR�,Rqq, and that each
converging subsequence converges to the same limit, using a convenient martingale problem. For
this reason, in what follows we just give the proofs that substantially change compared to our
previous paper. For the other proofs, we just give the main ideas and cite precisely the corresponding
statement of Erny, Löcherbach and Loukianova (2020) that allows to conclude.

3. Proof of Theorem 2.3

The following Lemma shows that the definition (7) indeed defines the right martingale measures.

Lemma 3.1. Let ν1 be a probability measure on R. Moreover, let pΩ,A, P q be a probability space,
pGtqt be a filtration on it, pFtqt be a sub-filtration of pGtqt and W (resp. W 1) be a pGtqt�white noise
on R��r0, 1s�R (resp. R��r0, 1s) of intensity dt �dp �ν1pdvq (resp. dt �dp). Let X be a continuous
R�valued process which is pGtqt-adapted and Fspxq :� PpXs ¤ x|Fsq. Moreover, we suppose that
for all s ¡ 0, PpXs ¤ x|Fsq � PpXs ¤ x|F8q, where F8 � σtFt, t ¥ 0u.

Define for any A,B P BpRq,

M1
t pAq :�

» t
0

» 1

0

1AppFsq�1ppqqdW 1ps, pq, MtpA�Bq :�
» t

0

» 1

0

»
R
1AppFsq�1ppqq1BpvqdW ps, p, vq

Then M1 and M are martingale measures with respective intensities dt�µtpdxq and dt�µtpdxq�ν1pdvq,
where µt :� LpXt|Ftq.
Proof. We only show the result for the martingale measure M1. The main part of the proof consists
in showing that the process pω, s, pq P Ω � R� � r0, 1s ÞÑ pFsq�1ppq is P b Bpr0, 1sq�measurable,
with P the predictable sigma field related to the filtration pGtqt.
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To begin with, let us prove that pω, s, xq ÞÑ Fspxq is P b BpRq�measurable. We write

Fspxq � P pXs ¤ x|Fsq � E rϕpx,Xsq|Fss ,
where ϕpx, yq :� 1tx¤yu. As ϕ is product measurable and bounded, it is the limit of functions of
the form

ņ

k�1

ckϕkpxqψkpyq,

where the functions ϕk, ψk (1 ¤ k ¤ n) are Borel measurable and bounded. This limit can be taken
to be increasing such that, by monotone convergence,

E rϕpx,Xsq|Fss � lim
n

ņ

k�1

ckϕkpxqE rψkpXsq|Fss .

Then, as ψk is a bounded and Borel function, it can be approximated by an increasing sequence of
bounded and continuous functions ψk,m. Then, as for every n,m, the process

pω, s, xq ÞÑ
ņ

k�1

ckϕkpxqE rψk,mpXsq|Fss �
ņ

k�1

ckϕkpxqE rψk,mpXsq|F8s

is continuous in s and pFsqs�, whence pGsqs�adapted, it is P b BpRq�measurable.
Let x P R be fixed. It is sufficient to show that tpω, s, pq : pFsq�1ppq ¥ xu is measurable. Let us

write

tpω, s, pq : pFsq�1ppq ¥ xu � tpω, s, pq : Fspxq ¤ pu � tpω, s, pq : ϕpFspxq, pq ¡ 0u,
where ϕpx, pq :� 1tx¤pu is product measurable.

Then, the measurability of tpω, s, pq : pFsq�1ppq ¥ xu is a consequence of that of pω, s, pq ÞÑ
ϕpFspxq, pq w.r.t. P b Bpr0, 1sq.

As a consequence, the process pω, s, pq P Ω�R��r0, 1s ÞÑ pFsq�1ppq is PbBpr0, 1sq�measurable.
The rest of the proof consists in writing

xM1
� pAqyt �

» t
0

» 1

0

1AppFsq�1ppqqdpds �
» t

0

µspAqds.

The last inequality above is a classical property of the generalized inverse of the distribution function
(see e.g. Fact 1 in Section 8 of Major (1978)).

3.1. Construction of a strong solution of (3) - proof of Theorem 2.3

We construct a strong solution of (3) using a Picard iteration. Let βi, i P N�, be independent one-
dimensional Brownian motions. Let W,W i, i P N�, be independent white noises on respectively
R� � r0, 1s � R and R� � r0, 1s with respective intensities dt � dp � ν1pdvq and dt � dp, independent
of the βi. We suppose that all these processes are defined on the same probability space pΩ,F , P q
carrying also i.i.d. random variables Xi

0, i P N�, which are independent of the βi,W,W i. Define for
all t ¥ 0,

Gt :� σtβiv; W psu, vs �A�Bq; W ipsu, vs �Aq; 0   u   v ¤ t; A P BpRq; B P Bpr0, 1sq; i P N� u;
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Wt :� σtW psu, vs �A�Bq;u   v ¤ t; A P BpRq, B P Bpr0, 1sq u;
W :� σtWt; t ¥ 0u.

Step 1. Fix an i P N�, and introduce

X
i,r0s
t :�Xi

0,

µ
r0s
t :�LpXi

0q, F r0s
t pxq :� P pX0 ¤ x|Wq ,

M r0spr0, ts �A�Bq :�
» t

0

» 1

0

»
R
1AppF r0s

s q�1ppqq1BpvqdW ps, p, vq

M i,r0spr0, ts �Aq :�
» t

0

» 1

0

1AppF r0s
s q�1ppqqdW ips, pq.

Assuming everything is defined at order n P N, we introduce

X
i,rn�1s
t :�

» t
0

bpXi,rns
s , µrnss qds�

» t
0

σpXi,rns
s , µrnss qdβis (8)

�
» t

0

»
R

»
R

b
fpx, µrnss qΨ̃px,Xi,rns

s , µrnss , vqdM rnsps, x, vq

�
» t

0

»
R

b
fpx, µrnss qκpx,Xi,rns

s , µrnss qdM i,rnsps, xq,

µrn�1s
s :�LpXi,rn�1s

s |Wq, F rn�1s
s pxq :� PpXi,rn�1s

s ¤ x|Wq,

M rn�1spr0, ts �A�Bq :�
» t

0

» 1

0

»
R
1AppF rn�1s

s q�1ppqq1BpvqdW ps, p, vq,

M i,rn�1spr0, ts �Aq :�
» t

0

» 1

0

1AppF rn�1s
s q�1ppqqdW ips, pq.

Note that @t ¡ 0,
W � σpWt; Wst;8rq

where
Wst;8r :� σtsW psu, vs �Aq; , t   u   v; A P BpRqu.

Remember also that white noises are processes with independent increments, more precisely, for all
A,A1 in Bpr0, 1sq, for all B,B1 in BpRq, W psu, vs�A�Bq and W psu1, v1s�A1�B1q are independent
if su; vsXsu1; v1s � H.

Using this last remark, we see that by construction X
i,rn�1s
t is independent from Wst;8r, and as

a consequence, PpXi,rn�1s
s ¤ x|Wq � PpXi,rn�1s

s ¤ x|Wsq. Taking Ft � Wt and F8 � W we see
that all assumptions of Lemma (3.1) are satisfied. Hence, for each n P N; i P N� the martingale

measures M rns and M i,rns are well defined and have respectively the intensities dt �µrnst pdxq � ν1pdvq
and dt � µrnst pdxq, where µ

rns
t :� LpXi,rns

t |Wq � LpXi,rns
t |Wtq .

In what follows, we shall consider u
rns
t :� E

��
X
i,rn�1s
t �X

i,rns
t

	2
�
. Let us introduce

hpx, y,m, vq :�
a
fpx,mqΨ̃px, y,m, vq and gpx, y,mq :�

a
fpx,mqκpx, y,mq.
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Note that the assumptions of the theorem guarantee that h and g are Lipschitz continuous. Indeed,
using Assumption 1 piiq and piiiq, for all x, y, x1, y1, v P R,m,m1 P P1pRq,

|hpx, y,m, vq � hpx1, y1,m1, vq| ¤ Cpvqp|x� x1| � |y � y1| �W1pm,m1qq,

where

Cpvq :�
»
E

Mpu, vqν1pduq �
»
E

|Ψpx, y,m, v, uq|ν1pduq.

Using Jensen’s inequality together with Assumptions 1 piiiq and 2 piiq we see that C satisfies³
R Cpvq2dv   8. Moreover, using Assumption 1 piiq together with Remark 2.1, for all x, x1, y, y1 P
R,m,m1 P P1pRq,

|gpx, y,mq � gpx1, y1,m1q| ¤ Kp|x� x1| � |y � y1| �W1pm,m1qq,

where K ¤ Cp}κ}8 �a}f}8q.
Step 2. We now prove that our Picard scheme converges. Classical arguments imply the existence

of a constant C ¡ 0 such that

1

C

�
X
i,rn�1s
t �X

i,rns
t

	2

¤�» t
0

pbpXi,rns
s , µrnss q � bpXi,rn�1s

s , µrn�1s
s qqds


2

�
�» t

0

pσpXi,rns
s , µrnss q � σpXi,rn�1s

s , µrn�1s
s qqdβis


2

�
�» t

0

»
R

»
R
hpx,Xi,rns

s , µrnss , vqdM rnsps, x, vq �
» t

0

»
R

»
R
hpx,Xi,rn�1s

s , µrn�1s
s , vqdM rn�1sps, x, vq


2

�
�» t

0

»
R
gpx,Xi,rns

s , µrnss qdM i,rnsps, xq �
» t

0

»
R
gpx,Xi,rn�1s

s , µrn�1s
s qdM i,rn�1sps, xq


2

¤ t

» t
0

�
bpXi,rns

s , µrnss q � bpXi,rn�1s
s , µrn�1s

s q
	2

ds�
�» t

0

pσpXi,rns
s , µrnss q � σpXi,rn�1s

s , µrn�1s
s qqdβis


2

�
�» t

0

» 1

0

»
R

�
hppF rns

s q�1ppq, X̄i,rns
s , µrnss , vq � hppF rn�1s

s q�1ppq, X̄i,rn�1s
s , µrn�1s

s , vq
�
dW ps, p, vq


2

�
�» t

0

» 1

0

�
gppF rns

s q�1ppq, X̄i,rns
s , µrnss q � gppF rn�1s

s q�1ppq, X̄i,rn�1s
s , µrn�1s

s q
�
dW ips, pq


2

. (9)

Using Burkholder-Davis-Gundy’s inequality to control the expectation of the stochastic integrals
above, and using the fact that for all µ, ν P P2pRq,

W1pµ, νq ¤W2pµ, νq,

we have that

u
rns
t ¤ Cp1� tq

» t
0

E
�
pXi,rns

s �Xi,rn�1s
s q2

�
ds� Cp1� tq

» t
0

E
�
W2pµrnss , µrn�1s

s q2
�
ds
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� C

» t
0

E
�» 1

0

ppF rns
s q�1ppq � pF rn�1s

s q�1ppqq2dp
�
ds. (10)

A classical result (see e.g. Theorem 8.1 of Major (1978)) states that, if F,G are two distribution
functions with associated probability measure µ and ν, respectively, then» 1

0

pF�1ppq �G�1ppqq2dp � inf
X�µ,Y�ν

E
�pX � Y q2� �W2pµ, νq,

where the infimum is taken over all possible couplings pX,Y q of µ and ν.
This implies that » 1

0

ppF rns
s q�1ppq � pF rn�1s

s q�1ppqq2dp �W2pµrnss , µrn�1s
s q2.

Since Xi,rns and Xi,rn�1s, conditionally on W, are respectively realizations of F i,rns and F i,rn�1s,
we have that, for every s ¥ 0, almost surely,

W2pµrnss , µrn�1s
s q2 ¤ E

�
pXi,rns

s �Xi,rn�1s
s q2|W

�
.

Integrating with respect to W implies that

E
�» 1

0

ppF rns
s q�1ppq � pF rn�1s

s q�1ppqq2dp
�
¤ E

�
pXi,rns

s �Xi,rn�1s
s q2

�
.

Consequently, we have shown that there exists some constant C ¡ 0 such that, for all t ¥ 0,

u
rns
t ¤ Cp1� tq

» t
0

urn�1s
s ds. (11)

Classical computations then give

u
rns
t ¤ Cnp1� tqn t

n

n!
.

Now, introducing v
rns
t :� 2nu

rns
t , we have that¸

n¥0

v
rns
t   8.

Hence, using that for all x P R, ε ¡ 0, |x| ¤ maxpε, x2{εq ¤ ε�x2{ε, and applying this with ε � 1{2n
and x � X

i,rn�1s
t �X

i,rns
t , we have

¸
n¥0

E
�
|Xi,rn�1s

t �X
i,rns
t |

�
¤
¸
n¥0

1

2n
�
¸
n¥0

v
rns
t   8.

As a consequence, we can define, almost surely,

X̄i
t :� Xi

0 �
¸
n¥0

pXi,rn�1s
t �X

i,rns
t q   �8,
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and we know that E
�
|X̄i

t �X
i,rns
t |

�
vanishes as n goes to infinity, and that X

i,rns
t converges almost

surely to X̄i
t .

Step 3. Let us prove that X̄i has finite fourth moments. Let w
rns
t :� E

�
pXi,rns

t q4
�
.

By equation (8), we have

1

C

�
X
i,rns
t

	4

¤
�» t

0

bpXi,rn�1s
s , µrn�1s

s qds

4

�
�» t

0

σpXi,rn�1s
s , µrn�1s

s qdβis

4

�
�» t

0

»
R

»
R
hpx,Xi,rn�1s

s , µrn�1s
s , vqdM rn�1sps, x, vq


4

�
�» t

0

»
R
gpx,Xi,rn�1s

s , µrn�1s
s qdM i,rn�1sps, xq


4

�: A1 �A2 �A3 �A4. (12)

First of all, let us note that our Lipschitz assumptions allow to consider the following control:
for any x P R,m P P1pRq,

|bpx,mq| ¤ |bpx,mq � bp0, δ0q| � |bp0, δ0q| ¤ Cp1� |x| �W1pµ, δ0qq � C

�
1� |x| �

»
R
|y|dmpyq



,

and similar controls for the functions σ, h, g. Using this control and Jensen’s inequality, we have

E rA1s ¤t3
» t

0

E
�
bpXi,rn�1s

s , µrn�1s
s q4

�
ds

¤Ct3
» t

0

�
1� wrn�1s

s � E

��»
R
|y|µrn�1s

s pdyq

4
��

ds

¤Ct3
» t

0

�
1� wrn�1s

s

	
ds.

We can obtain a similar control for the expressions A2, A3 and A4 using Burkholder-Davis-
Gundy’s inequality noticing that the stochastic integrals involved are local martingales. We just
give the details for A2.

E rA2s ¤E
��» t

0

σpXi,rn�1s
s , µrn�1s

s q2ds

2
�

¤E
�
t

» t
0

σpXi,rn�1s
s , µrn�1s

s q4ds
�
¤ Ct

» t
0

�
1� wrn�1s

s

	
ds,

where the last inequality can be obtained with the same reasoning as the one used to control E rA1s .
With the same reasoning, we have the following controls for A3 and A4 :

E rA3s � E rA4s ¤ Ct

» t
0

�
1� wrn�1s

s

	
ds.
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Using the previous control in the inequality (12), we have that for all t ¥ 0,

w
rn�1s
t ¤ Cp1� t3q � Cp1� t3q

» t
0

wrnss ds,

whence

w
rns
t ¤

ņ

k�1

tk�1

pk � 1q!C
kp1� t3qk ¤ Cp1� t3qeCtp1�t3q.

Consequently

sup
nPN

sup
0¤s¤t

E
�
pXi,rns

s q4
�
  8, (13)

for some constant C ¡ 0. Then Fatou’s lemma implies the result: for all t ¥ 0,

sup
0¤s¤t

E
�pX̄i

sq4
�   8. (14)

Step 4. Finally, we conclude the proof showing that X̄i is solution to the limit equation. Roughly
speaking, this step consists in letting n tend to infinity in (8).

We want to prove that, for all t ¥ 0,

X̄i
t � GitpX̄i, µq, (15)

where

GitpX̄i, µq :�
» t

0

bpX̄i
s, µsqds�

» t
0

σpX̄i
s, µsqdβis

�
» t

0

» 1

0

»
R
hpF�1

s ppq, X̄i
s, µs, vqdW ps, p, vq

�
» t

0

» 1

0

gpF�1
s ppq, X̄i

s, µsqdW ips, pq,

where the functions h and g have been introduced in Step 1, µt :� LpX̄i
t |Wq, and F�1

t is the
generalized inverse of

Ftpxq :� P
�
X̄i
t ¤ x

��W�
.

Let us note that Git has to be understood as a notation, we do not use its functional properties.
By construction, we have

X
i,rn�1s
t � GitpXi,rns, µrnsq. (16)

We have proved in Step 2 that X
rn�1s
t converges to X̄i

t in L1. In other words, the LHS of (16)
converges to the LHS of (15) in L1. Now, it is sufficient to prove that the RHS converges in L2.
This will prove that the equation (15) holds true.

With the same computations as the ones used to obtain (11) (recalling that this inequality relies
on (9) and (10)), we have

E
��
GitpX̄i, µq �GitpXi,rns, µrnsq

	2
�
¤ Cp1� tq

» t
0

E
��
X̄i
s �Xi,rns

s

	2
�
ds.

This proves that GitpXrns,i, µrnsq converges to GitpX̄i, µq in L2 by dominated convergence: indeed,

we know that for all s ¤ t, X
rns,i
s converges to X̄i

s almost surely thanks to Step 2., and (13) and (14)
give the uniform integrability.
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3.2. Trajectorial uniqueness

We continue the proof of Theorem 2.3 by proving the uniqueness of the solution. For that sake, let
X̂i and X̌i be two strong solutions defined with respect to the same initial condition Xi

0 and the
same white noises W and W i. Let

ut :� E
�
pX̂i

t � X̌i
tq2
�
.

According to the computation of the previous subsection, there exists a constant C ¡ 0 such
that for all t ¥ 0,

ut ¤ Cp1� tq
» t

0

usds.

Then Grönwall’s lemma implies that ut � 0 for all t ¥ 0, implying the uniqueness.

4. Proof of Theorems 2.4 and 2.5

The proof of Theorem 2.5 follows the same steps as the proof of Theorem 1.7 of Erny, Löcherbach
and Loukianova (2020): in a first time, we prove that the sequence pµN qN is tight on PpDpR�,Rqq,
and then we prove that each converging subsequence of pµN qN converges to the same limit, by
proving that the limits of such subsequences are solutions to some martingale problem which is
well-posed.

4.1. Tightness of pµN qN

The proof that the sequence pµN qN is tight on PpDpR�,Rqq, is almost the same as that of Propo-
sition 2.1 in Erny, Löcherbach and Loukianova (2020). As the systems pXN,iq1¤i¤N (N P N�) are
exchangeable, it is equivalent to the tightness of the sequence pXN,1qN on DpR�,Rq (see Proposi-
tion 2.2-(ii) of Sznitman (1989)).

The tightness of pXN,1qN is straightforward using Aldous’ criterion (see Theorem 4.5 of Ja-
cod and Shiryaev (2003)), observing that, under our conditions, supN E

�
sups¤t |XN,1

s |�   8 (see
Lemma 6.1).

4.2. Martingale problem

To identify the structure of any possible limit of the sequence pµN qN , we introduce a convenient
martingale problem. We have already used such a kind of martingale problem in a similar context
in Section 2.2 of Erny, Löcherbach and Loukianova (2020). Since our limit system is necessarily
an infinite exchangeable system, the martingale problem is constructed such that it reflects the
correlations between the particles. It is therefore stated in terms of couples of particles.

Consider a probability measure Q P PpPpDpR�,Rqqq. In what follows the role of Q will be to be
the law of any possible limit µ of µN . Our martingale problem is stated on the canonical space

Ω � PpDpR�,Rqq �DpR�,Rq2.
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We endow Ω with the product of the associated Borel sigma-fields and with the probability measure
defined for all A P BpPpDpR�,Rqqq, B P BpDpR�,Rq2q by

PQpA�Bq :�
»
P1pDpR�,Rqq

1ApmqmbmpBqQpdmq. (17)

We write an atomic event ω P Ω as ω � pm, yq with y � pytqt¥0 � py1
t , y

2
t qt¥0. We write µ and

Y � pY 1, Y 2q for the random variables µpωq � m and Y pωq � y. The definition (17) implies that Q
is the distribution of µ, and that conditionally on µ, Y 1 and Y 2 are i.i.d. with distribution µ. More
precisely, µb µ is a regular conditional distribution of pY 1, Y 2q given µ.

For t ¥ 0 we write mt for the t-th marginal of m : mtpCq � mpY P D2pR�,Rq; yt P Cq; C P
BpRq. We denote µt the r.v. µtpωq � mt and consider the filtration pGtqt¥0 given by

Gt � σpYs, s ¤ tq _ σpµspAq; A P BpRq, s ¤ tq.

For all g P C2
b pR2q, define

Lgpy,m, x, vq :�bpy1,mqBy1gpyq � bpy2,mqBy2gpyq (18)

� 1

2
σpy1,mq2B2

y1gpyq �
1

2
σpy2,mq2B2

y2gpyq

� 1

2
fpx,mqκpx, y1,mq2B2

y1gpyq �
1

2
fpx,mqκpx, y2,mq2B2

y2gpyq

� 1

2
fpx,mq

2̧

i,j�1

Ψ̃px, yi,m, vqΨ̃px, yj ,m, vqB2
yiyjgpyq,

and put for all t ¥ 0

Mg
t �Mg

t pµ, Y q :� gpYtq � gpY0q �
» t

0

»
R

»
R
LgpYs, µs, x, vqν1pdvqµspdxqds. (19)

Definition 4.1. Q is solution to the martingale problem pMq if

• Q�almost surely, µ0 � ν0,
• for all g P C2

b pR2q, pMg
t qt¥0 is a pPQ, pGtqtq�martingale.

Let us state a first result that allows us to partially recover our limit equation (3) from the
martingale problem pMq. It is the equivalent of Lemma 2.4 of Erny, Löcherbach and Loukianova
(2020) in the framework of white noises.

Lemma 4.2. Grant Assumptions 1, 2 and 3. Let Q be a solution of pMq.Using the notation above,
there exist on an extension of pΩ,F , pGtqt¥0, PQq two Brownian motions β1, β2 and three white
noises W 1,W 2,W ; defined on pR� � r0, 1s, BpR� � r0, 1sq, dt b dpq for W i, i � 1, 2; and on
pR�� r0, 1s �R, BpR�� r0, 1sq �Rq, dtb dpb ν1pdvqq for W , such that β1, β2,W 1,W 2,W are all
independent and such that pYtq admits the representation

dY 1
t �bpY 1

t , µtqdt� σpY 1
t , µtqdβ1

t

�
» 1

0

»
R

b
fpF�1

s ppq, µtqΨ̃pF�1
s ppq, Y 1

t , µt, vqdW pt, p, vq
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�
» 1

0

b
fpF�1

s ppq, µtqκpF�1
s ppq, Y 1

t , µtqdW 1pt, pq,

dY 2
t �bpY 2

t , µtqdt� σpY 2
t , µtqdβ2

t

�
» 1

0

»
R

b
fpF�1

s ppq, µtqΨ̃pF�1
s ppq, Y 2

t , µt, vqdW pt, p, vq

�
»
R

b
fpF�1

s ppq, µtqκpF�1
s ppq, Y 2

t , µtqdW 2pt, pq,

where Fs is the distribution function related to µs, and F�1
s its generalized inverse.

Proof. Theorem II.2.42 of Jacod and Shiryaev (2003) implies that Y is a continuous semimartingale
with characteristics pB,Cq given by

Bit �
» t

0

bpY is , µsqds, 1 ¤ i ¤ 2,

Ci,it �
» t

0

σpY is , µsq2ds�
» t

0

»
R
fpx, µsqκpx, Y is , µsq2µspdxqds

�
» t

0

»
R

»
R
fpx, µsqΨ̃px, Y is , µs, vq2ν1pdvqµspdxqds, 1 ¤ i ¤ 2,

C1,2
t �

» t
0

»
R

»
R
fpx, µsqΨ̃px, Y 1

s , µs, vqΨ̃px, Y 2
s , µs, vqν1pdvqµspdxqds.

As we are interested in finding five white noises, we need to have five local martingales. This is
why we introduce artificially Y it :� 0 for 3 ¤ i ¤ 5. The rest of the proof is then an immediate
consequence of Theorem III-10 and Theorem III-6 of El Karoui and Méléard (1990). More precisely,
Theorem III-10 implies the existence of five orthogonal martingale measures M i (1 ¤ i ¤ 5) on
R� � R� R with intensity dt � µtpdxq � ν1pdvq such that

dY 1
t �bpY 1

t , µtqdt�
»
R

»
R
σpY 1

t , µtqdM1pt, x, vq

�
»
R

»
R

a
fpx, µtqΨ̃px, Y 1

t , µt, vqdM5pt, x, vq

�
»
R

»
R

a
fpx, µtqκpx, Y 1

t , µtqdM3pt, p, vq,

dY 2
t �bpY 2

t , µtqdt�
»
R

»
R
σpY 2

t , µtqdM2pt, x, vq

�
»
R

»
R

a
fpx, µtqΨ̃px, Y 2

t , µt, vqdM5pt, x, vq

�
»
R

»
R

a
fpx, µtqκpx, Y 2

t , µtqdM4pt, x, vq.

Then, βit :� M ipr0, ts � R � Rq (i � 1, 2) are standard one-dimensional Brownian motions, and
Theorem III-6 of El Karoui and Méléard (1990) allows us to write M i (3 ¤ i ¤ 5) as

M5pr0, ts �A�Bq �
» t

0

1ApF�1
s ppqq1BpvqdW ps, p, vq
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M3pr0, ts �A�Bq �
» t

0

1ApF�1
s ppqqdW 1ps, pq

M4pr0, ts �A�Bq �
» t

0

1ApF�1
s ppqqdW 2ps, pq,

where W 1,W 2,W are white noises with respective intensities dt � dp, dt � dp and dt � dp � ν1pdvq.
We now prove a key result for the proof of our main results. Recall that the martingale problem

pMq is given by definition (4.1).

Theorem 4.3. Grant Assumptions 1, 2 and 3. Then the law of every limit in distribution of the
sequence pµN q is solution of the martingale problem pMq.
Proof. Let µ be the limit in distribution of some subsequence of pµN q and let Q � Qµ be its law.
In the following, we still note this subsequence pµN q. Firstly, we clearly have that µ0 � ν0. For
0 ¤ s1 ¤ ... ¤ sk ¤ s; ψ1, ..., ψk P CbpPpRqq; ϕ1, ..., ϕk P CbpR2q; ϕ P C3

b pR2q define the following
functional on PpDpR�,Rqq :

F pµq :� ψ1pµs1q...ψkpµskq
»
DpR�,Rq2

µb µpdγqϕ1pγs1q . . . ϕkpγskq rMϕ
t pµ, γq �Mϕ

s pµ, γqs ,

where pMϕ
t pµ, γqqt is given by (19). To show that pMϕ

t pµ, γqqt¥0 is a pPQµ , pGtqtq martingale, we
have to show that »

PpDpR�,Rqq
F pmqQµpdmq � E rF pµqs � 0,

where the expectation E r�s is taken with respect to PQµ � PQ. Note that the first equality is just
the transfer formula, and hence the expectation is taken on the probability space where µ is defined.

Step 1. We show that
E
�
F pµN q�Ñ E rF pµqs (20)

as N Ñ 8. This statement is not immediately clear since the functional F is not continuous. The
main difficulty comes from the fact that µN converges to µ in distribution for the topology of the
weak convergence, but the terms appearing in the function F require the convergence of µNt to µt
for the topology of the metric W1.

The proof (20) is actually quite technical, therefore we postpone it to the Appendix in Lemma 6.2.

Step 2. In this step we show that E rF pµqs is equal to 0. Applying F to µN gives

F pµN q � ψ1pµNs1q...ψkpµNskq
1

N2

Ņ

i,j�1

ϕ1pXN,i
s1 , XN,j

s1 q...ϕkpXN,i
sk

, XN,j
sk

q
�
ϕpXN,i

t , XN,j
t q � ϕpXN,i

s , XN,j
s q

�
» t
s

bpXN,i
r , µNr qBx1ϕpXN,i

r , XN,j
r qdr �

» t
s

bpXN,j
r , µNr qBx2ϕpXN,i

r , XN,j
r qdr

� 1

2

» t
s

σpXN,i
r , µNr q2B2

x1ϕpXN,i
r , XN,j

r qdr � 1

2

» t
s

σpXN,j
r , µNr q2B2

x2ϕpXN,i
r , XN,j

r qdr
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� 1

2

» t
s

1

N

Ņ

k�1

fpXN,k
r , µNr qκpXN,k

r , XN,i
r , µNr q2B2

x1ϕpXN,i
r , XN,j

r qdr

� 1

2

» t
s

1

N

Ņ

k�1

fpXN,k
r , µNr qκpXN,k

r , XN,j
r , µNr q2B2

x2ϕpXN,i
r , XN,j

r qdr

� 1

2

» t
s

»
R

Ņ

k�1

fpXN,k
r , µNr q

1

N

2̧

h,l�1

Ψ̃pXN,k
r , XN,ih

r , µNr , vqΨ̃pXN,k
r , XN,il

r , µNr , vq�

B2
xhxlϕpXN,i

r , XN,j
r qν1pdvqdr

�
, (21)

with i1 � i and i2 � j. Denote π̃kpdr, dz, duq :� πpdr, dz, duq � dr � dz � νpduq the compensated
version of πk. For pi, jq P J1, . . . , NK2, s   t let us define

MN,i,j
s,t :�

» t
s

σpXN,i
r , µNr qBx1ϕpXN,i

r , XN,j
r qdβir �

» t
s

σpXN,j
r , µNr qBx2ϕpXN,i

r , XN,j
r qdβjr ; (22)

WN,i,j
s,t :�

Ņ

k�1,k�i,j

»
ss,ts�R��E

1tz¤fpXN,kr� , µNr�qu�
ϕpXN,i

r� � 1?
N

ΨpXN,k
r� , XN,i

r� , µ
N
r�, u

k, uiq, XN,j
r� � 1?

N
ΨpXN,k

r� , XN,j
r� , µNr�, u

k, ujqq

�ϕpXN,i
r� , X

N,j
r� q

�
π̃kpdr, dz, duq; (23)

∆N,i,j
s,t :�

Ņ

k�1,k�i,j

» t
s

»
E

fpXN,k
r , µNr�q

�
ϕpXN,i

r� � 1?
N

ΨpXN,k
r� , XN,i

r� , µ
N
r�, u

k, uiq, XN,j
r� � 1?

N
ΨpXN,k

r� , XN,j
r� , µNr�, u

k, ujqq

�ϕpXN,i
r� , X

N,j
r� q

�
νpduqdr (24)

and

ΓN,i,js,t � ∆N,i,j
s,t

�
2̧

l�1

Ņ

k�1,k�i,j

» t
s

»
E

fpXN,k
r , µNr q

1?
N

ΨpXN,k
r� , XN,il

r� , µNr�, u
k, uilqBxlϕpXN,i

r , XN,j
r qνpduqdr

�
2̧

h,l�1

» t
s

»
E

1

N

Ņ

k�1,k�i,j

fpXN,k
r , µNr qΨpXN,k

r , XN,ih
r , µNr , u

k, uihqΨpXN,k
r , XN,il

r , µNr , u
k, uilq

B2
xhxlϕpXN,i

r , XN,j
r qνpduqdr, (25)
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with again i1 � i and i2 � j.
Applying Ito’s formula, we have

ϕpXN,i
t , XN,j

t q � ϕpXN,i
s , XN,j

s q �MN,i,j
s,t �WN,i,j

s,t �∆N,i,j
s,t

�
» t
s

bpXN,i
r , µNr qBx1ϕpXN,i

r , XN,j
r qdr �

» t
s

bpXN,j
r , µNr qBx2ϕpXN,i

r , XN,j
r qdr

� 1

2

» t
s

σpXN,i
r , µNr q2B2

x1ϕpXN,i
r , XN,j

r qdr � 1

2

» t
s

σpXN,j
r , µNr q2B2

x2ϕpXN,i
r , XN,j

r qdr. (26)

Note that thanks to Assumption (3) iq, the term in the second line of (25) is zero. Again, if i � j,
using the definitions (5) and (6)

»
E

ΨpXN,k
r , XN,i

r , µNr , u
k, uiqΨpXN,k

r , XN,j
r , µNr , u

k, ujqνpduq

�
»
R

Ψ̃pXN,k
r , XN,i

r , µNr , vqΨ̃pXN,r, XN,j , µNr , vqν1pdvq,

and»
E

ΨpXN,k
r , XN,i

r , µNr , u
k, uiq2νpduq � κpXN,k

r , XN,i
r , µNr q2 �

»
R

Ψ̃pXN,k
r , XN,i

r , µNr , vq2ν1pdvq.

This implies that the last line of (25) is equal to the sum of three last lines of (21), up to an
error term which is of order Opt{Nq if we include the terms k � i, j in (25).

As a consequence, plugging (26) in (21), using the definitions (23), (22), (25) and the previous
remark we obtain

F pµN q � ψ1pµNs1q...ψkpµNskq
1

N2

Ņ

i,j�1

ϕ1pXN,i
s1 , XN,j

s1 q...ϕkpXN,i
sk

, XN,j
sk

q
�
MN,i,j
s,t �WN,i,j

s,t � ΓN,i,js,t

�
.

Using (26) we see that pMN,i,j
s,t � WN,i,j

s,t q, t ¥ s, is a martingale with respect to the filtration

pFXNt qt¥0 with FXNt :� σpXN,i
u ;XN,j

u ; s ¤ u ¤ tq on the space where XN is defined. Hence, using

that ϕsk and ψsk are bounded, and that µN is pFXNt qt¥0 adapted,

E
�
F pµN q� � E

�
E
�
F pµN q|FXNs

��
�

E

�
ψ1pµNs1q...ψkpµNskq

1

N2

Ņ

i,j�1

ϕ1pXN,i
s1 , XN,j

s1 q...ϕkpXN,i
sk

, XN,j
sk

qE
�
ΓN,i,js,t |FX,µs

��

¤ C

N2

Ņ

i,j�1

E
�
|ΓN,i,js,t |

�
, (27)

implying that

|E �F pµN q� | ¤ CE

�
|ΓN,1,2s,t | � |ΓN,1,1s,t |

N

�
.
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Taylor-Lagrange’s inequality gives for all i � j,

E
�
|ΓN,i,js,t |

�
¤

C
1

N
?
N

Ņ

k�1,k�i,j

3̧

n�0

» t
s

»
E

E
�
ΨpXN,k

r , XN,i
r , µNr , u

k, uiqnΨpXN,k
r , XN,j

r , µNr , u
k, ujq3�n� νpduqdr

¤ C
1

N
?
N

Ņ

k�1,k�i,j

» t
s

»
E

E
�|ΨpXN,k

r , XN,i
r , µNr , u

k, uiq|3 � |ΨpXN,k
r , XN,j

r , µNr , u
k, ujq|3� νpduqdr

¤ C
1?
N
,

and a similar result holds for ΓN,1,1s,t . Consequently,

|E �F pµN q� | ¤ CN�1{2,

implying together with (20) that

E rF pµqs � lim
N

E
�
F pµN q� � 0.

4.3. Proof of Theorem 2.5

The beginning of the proof is similar to the proof of Theorem 2.6 of Erny, Löcherbach and
Loukianova (2020). It mainly consists in applying Lemma 4.2 and Theorem 4.3.

Let µ be the limit in distribution of some converging subsequence of pµN q (that we still note
pµN q). Then, by Proposition (7.20) of Aldous, µ is the directing measure of an exchangeable system
pȲ iqi¥1, and pXN,iq1¤i¤N converges in distribution to pȲ iqi¥1.

According to Theorem 4.3 and Lemma 4.2 for every i � j, there exist, on an extension, Brownian
motions βi,j,1, βi,j,2 and white noises W i,j,1,W i,j,2,W i,j with respective intensities dt � dp, dt � dp
and dt � dp � ν1pdvq all independent such that

dȲ it �bpȲ it , µtqdt� σpȲ it , µtqdβi,j,1t

�
» 1

0

»
R

b
fpF�1

s ppq, µtqΨ̃pF�1
s ppq, Ȳ it , µt, vqdW i,jpt, p, vq

�
» 1

0

b
fpF�1

s ppq, µtqκpF�1
s ppq, Ȳ it , µtqdW i,j,1pt, pq,

dȲ jt �bpȲ jt , µtqdt� σpȲ jt , µtqdβi,j,2t

�
» p

0

»
R

b
fpF�1

s ppq, µtqΨ̃pF�1
s ppq, Ȳ jt , µt, vqdW i,jpt, p, vq

�
»
R

b
fpF�1

s ppq, µtqκpF�1
s ppq, Ȳ jt , µtqdW i,j,2pt, pq,
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where Fs is the distribution function related to µs, and F�1
s its generalized inverse. We can construct

this extension in a global way such that it works for all couples pi, jq simultaneously.
As the system pȲ iqi¥1 is exchangeable, we know that W i,j,1 � W i, W i,j,2 �: W j , W i,j �: W,

βi,j,1 �: βi and βi,j,2 �: βj .
It remains to identify the structure of µt appearing above as the one prescribed in (4) as con-

ditional law. This is what we are going to do now. To do so, we introduce the following auxiliary
system

dZN,it �bpZ̃N,it , µZ,Nt qdt� σpZN,it , µZ,Nt qdβit
�
» 1

0

»
R

b
fppFZ,Ns q�1ppq, µZ,Nt qΨ̃ppFZ,Ns q�1ppq, ZN,it , µZ,Nt , vqdW pt, p, vq

�
» 1

0

b
fppFZ,Ns q�1ppq, µZ,Nt qκppFZ,Ns q�1ppq, ZN,it , µZ,Nt qdW ipt, pq,

where µZ,N :� N�1
°N
i�1 δZN,i , F

Z,N is the distribution function related to µZ,N . In addition, in
the rest of the proof, let µX :� LpX̄1|Wq and µY be the directing measure of pȲ iqi¥1 that was
denoted by µ so far in this proof.

With similar computations as in Theorem 2.3, one can prove that, for all t ¥ 0,

E
�
pZN,it � X̄i

tq2
�
¤Cp1� tq

» t
0

E
�pZN,is � X̄i

sq2
�
ds� Cp1� tq

» t
0

E
�
W1pµXs , µZ,Ns q2� ds.

Besides, introducing µX,N :� N�1
°N
i�1 δX̄i , we have

E
�
W1pµXs , µZ,Ns q2� ¤2E

�
W1pµXs , µX,Ns q2�� 2E

�
W1pµX,Ns , µZ,Ns q2�

¤2E
�
W1pµXs , µX,Ns q2�� 2E

�|ZN,is � X̄i
s|
�2

¤2E
�
W1pµXs , µX,Ns q2�� 2E

�pZN,is � X̄i
sq2
�
.

As a consequence, we obtain the following inequality, for all t ¥ 0,

E
�
pZN,it � X̄i

tq2
�
¤ Cp1� tq

» t
0

E
�pZN,is � X̄i

sq2
�
ds� Ct

» t
0

E
�
W1pµXs , µX,Ns q2� ds,

with Ct a constant depending on t. Grönwall’s lemma now implies that, for all t ¥ 0,

E
�
pZN,it � X̄i

tq2
�
¤ Ct

» t
0

E
�
W1pµXs , µX,Ns q2� ds. (28)

Now, let us prove that the expression above vanishes by dominated convergence. Note that µX,Ns

converges weakly to µXs a.s. by Glivenko-Cantelli’s theorem (applying the theorem conditionally
on W) recalling that the variables X̄j

s are conditionally i.i.d. given W. And µX,Ns p|x|q converges
to µXs p|x|q a.s. as a consequence of the strong law of large numbers applied conditionally on W
(once again because of the conditional independence property). Hence the characterization piq of
Definition 6.8 and Theorem 6.9 of Villani (2008) implies that W1pµX,Ns , µXs q vanishes a.s. as N goes
to infinity for every s ¥ 0.
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We also have, by Jensen’s inequality and the definition of W 1, for all t ¥ 0,

E
�
W1pµXs , µX,Ns q4� ¤ CE

�
µXs px4q�� CE

�
µX,Ns px4q� � CE

�pX̄1
s q4

�� E

�
1

N

Ņ

j�1

pX̄j
s q4

�

¤ CE
�pX̄1

s q4
�
.

Consequently
sup

0¤s¤t
E
�
W1pµXs , µX,Ns q4� ¤ C sup

0¤s¤t
E
�pX̄1

s q4
�   8,

recalling (14).
So we have just proven that the sequence of variables W1pµXs , µX,Ns q2 vanishes a.s. and for every

s ¥ 0, and that this sequence is uniformly integrable on Ω � r0, ts for any t ¥ 0. This implies, by
dominated convergence, that » t

0

E
�
W1pµXs , µX,Ns q2� ds ÝÑ

NÑ8
0.

Recalling (28), we have that

E
�
pZN,it � X̄i

tq2
�
ÝÑ
NÑ8

0. (29)

With the same reasoning, we can prove that for all t ¥ 0,

E
�
pZN,it � Ȳ it q2

�
ÝÑ
NÑ8

0. (30)

Finally, using (29) and (30), we have that, for all t ¥ 0,

E
�pȲ it � X̄i

tq2
� � 0.

This proves that the systems pX̄iqi¥1 and pȲ iqi¥1 are equal. Hence, recalling that µ �: µY is a
limit of µN and also the directing measure of pY iqi¥1, it is also the directing measure of pX̄iqi¥1,
which is µX :� LpX̄1|Wq.

4.4. Proof of Theorem 2.4

The proof of Theorem 2.4 is now a direct consequence of Theorem 2.5 and Proposition (7.20) of
Aldous (1983).

5. Model of interacting populations

The aim of this section is to generalize the previous model, considering n populations instead of
one. Within each population, the particles interact as in the previous model, and, in addition, there
are interactions at the level of the populations. The chaoticity properties of this kind of model have
been studied by Graham (2008). Two examples of such systems are given in Figure 1.

If we consider a number of N particles, we note, for each 1 ¤ k ¤ n, Nk the number of particles
of the k�th population. In particular N � N1 � ...�Nn. We assume that, for all 1 ¤ k ¤ n, Nk{N
converges to some positive number, such that each population survives in the limit system.
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Figure 1. Two examples of interacting populations.

For all 1 ¤ k ¤ n, let Ipkq � J1, nK be the set of populations that are “inputs” of the population k,
that is, such that particles within these populations have a direct influence on those in population
k. The dynamic of the N�particle system pXN,k,iq 1¤k¤n

1¤i¤Nk

is governed by the following SDEs.

dXN,k,i � bk
�
XN,k,i
t , µN,kt

	
dt� σk

�
XN,k,i
t , µN,kt

	
dβk,it

�
¸
lPIpkq

1?
Nl

Nļ

j�1
pl,jq�pk,iq

»
R��En

ΨlkpXN,l,j
t� , XN,k,i

t� , µN,lt� , µ
N,k
t� , ul,j , uk,iq1tz¤f lpXN,l,jt� ,µN,lt� qudπl,jpt, z, uq.

In the above equation,

µN,kt � N�1
k

Nķ

j�1

δXN,k,jt
,

πl,j (1 ¤ l ¤ n, j ¥ 1) are independent Poisson measures of intensity dtdzνpduq, where ν is a

probability measure on pRN�qn which is of the form

ν � pν1,1qbN� b pν2,1qbN� b ...b pνn,1qbN� .

The associated limit system pX̄k,iq1¤k¤n
i¥1

is given by

dX̄k,i �bk
�
X̄k,i
t , µ̄kt

	
dt� σk

�
X̄k,i
t , µ̄kt

	
dβk,it

�
¸
lPIpkq

»
R

»
R

b
f lpx, µ̄ltqΨ̃lkpx, X̄k,i

t , µlt, µ
k
t , vqdM lpt, x, vq

�
¸
lPIpkq

»
R

b
f lpx, µ̄ltqκlkpx, X̄k,i

t , µlt, µ
k
t qdM l,k,ipt, xq,

with

Ψ̃lkpx, y,m1,m2, vq :�
»
R

Ψlkpx, y,m1,m2, v, wqdνk,1pwq,
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κlkpx, y,m1,m2q2 :�
»
En

Ψlkpx, y,m1,m2, u
l,1, uk,2q2dνpuq �

»
R

Ψ̃lkpx, y,m, vq2dνl,1pvq

�
»
En

Ψlkpx, y,m1,m2, u
l,1, uk,2q2dνpuq �

»
En

Ψlkpx, y,m, ul,1, uk,2qΨlkpx, y,m, ul,1, uk,3qdνpuq,

and

M l,k,i
t pAq �

» t
0

1AppF lsq�1ppqqdW l,k,ips, pq and M l
tpA�Bq �

» t
0

1AppF lsq�1ppqq1BpvqdW lps, p, vq.

In the above formulas, µkt :� L
�
X̄k,1
t |σ

��
lPIpkqW l

		
and pF lsq�1 is the generalized inverse of the

function F lspxq :� P pX̄ l,1
s ¤ xq. Finally, W l,k,i and W l (1 ¤ l ¤ n, k P Iplq, i ¥ 1) are independent

white noises of respective intensities dsdp and dsdpνl,1pdvq, and

W l
t :� σtW lpsu, vs �A�Bq;u   v ¤ t; A P Bpr0, 1sq, B P BpRq u;

W l :� σtW l
t ; t ¥ 0u.

Both previous systems are “multi-exchangeable” in the sense that each population is “internally
exchangeable” as in Corollary p3.9q of Aldous (1983). With the same reasoning as in the proof of
Theorem 2.3, we can prove the existence of unique strong solutions pXN,k,iq 1¤k¤n

1¤i¤Nk

and pX̄k,iq1¤k¤n
i¥1

as well as the convergence of the N�particle system to the limit system:

Theorem 5.1. The following convergence in distribution in PpDpR�,Rqqn holds true:�
µN,1, µN,2, ..., µN,n

� ÝÑ �
µ̄1, µ̄2, ..., µ̄n

�
,

as N Ñ8.
Before giving a sketch of the proof of Theorem 5.1, we quickly state the following result.

Proposition 5.2. Let r ¤ n and 1 ¤ k1   ...   kr ¤ n. If the sets Ipkiq (1 ¤ i ¤ r) are disjoint,
then the random variables µki (1 ¤ i ¤ r) are independent.

Proof. For any 1 ¤ k ¤ n, the system pX̄k,iqi¥1 is conditionally i.i.d. given σ
��

lPIpkqW l
	
. So, by

Lemma p2.12q of Aldous (1983), µk is σ
��

lPIpkqW l
	
�measurable.

Remark 5.3. In the two examples of Figure 1, all the variables µk (1 ¤ k ¤ n) are independent.

Coming back to Theorem 5.1, its proof is similar to the proof of Theorem 2.5. The main argument
relies on a generalization of the martingale problem discussed in Section 4.2. Let us formulate it.
Consider

Ω1 :� PpDpR�,Rqqn �
�
DpR�,Rq2

�n
,

and write any atomic event ω1 P Ω1 as

ω1 � �
µ1, µ2, ..., µn, Y 1,1, Y 1,2, Y 2,1, Y 2,2, ..., Y n,1, Y n,2

� � pµ, Y q,

µ � pµ1, . . . , µnq, Y � pY 1, . . . , Y nq.
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For Q P PpP1pDpR�,Rqqnq, consider the law P 1 on Ω1 defined by

P 1pA�B1 � ...�Bnq �
»
PpDpR�,Rqqn

1Apmqm1 bm1pB1q...mn bmnpBnqQpdmq,

with A a Borel set of PpDpR�,Rqqn and B1, ..., Bn Borel sets of DpR�,Rq2.
Then, we say that Q is solution to our martingale problem if, for all g P C2

b ppR2qnq,

gpYtq � gpY0q �
» t

0

»
Rn

»
Rn
LgpYs, µs, x, vqµ1

s b ...b µns pdxqν1,1 b ...b νn,1pdvq

is a martingale, where

Lgpy,m, x, uq �
ņ

k�1

2̧

i�1

bkpyk,i,mkqByk,igpyq �
1

2

ņ

k�1

2̧

i�1

σkpyk,i,mkq2B2
yk,igpyq

� 1

2

ņ

k�1

¸
lPIpkq

2̧

i�1

f lpxl,mlqκlkpxl, yk,i,ml,mkq2B2
yk,igpyq

� 1

2

ņ

k1,k2�1

2̧

i1,i2�1

¸
lPIpk1qXIpk2q

f lpxl,mlqΨ̃lk1pxl, yk1,i1 ,ml,mk1 , ulq�

Ψ̃lk2pxl, yk2,i2 ,ml,mk2 , ulqB2
yk1,i1yk2,i2 gpyq.

Sketch of proof of Theorem 5.1. To prove the convergence in distribution of pµN,1, ..., µN,nqN , we
begin by proving its tightness. Following the same reasoning as in Section 4.1, we can prove
that, for each 1 ¤ k ¤ n, the sequence pµN,kqN is tight on PpDpR�,Rqq. Hence, the sequence
pµN,1, ..., µN,nqN on PpDpR�,Rqqn.

Then a generalization of Lemma 4.2 allows to prove that the distribution of pµ̄1, ..., µ̄nq is the
unique solution of the martingale problem defined above.

Finally, we can conclude the proof showing that the law of any limit of a converging subsequence
of pµN,1, ..., µN,nqN is solution to the martingale problem using similar computations as the one in
the proof of Theorem 4.3.

6. Appendix

6.1. A priori estimates

Lemma 6.1. Grant Assumptions 1, 2 and 3. For all T ¡ 0,

sup
nPN�

E
�
sup
t¤T

���XN,1
t

���2�   8.

Proof. Notice that

sup
0¤s¤t

|XN,1
s | ¤ pXN,1

0 q � ||b||8t� sup
0¤s¤t

����
» s

0

σpXN,1
r , µNr qdβ1

r

����� 1?
N

sup
0¤s¤t

|MN
s |,
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where MN is the local martingale

MN
t :�

Ņ

k�2

»
r0,ts�R��E

ΨpXN,k
s� , XN,1

s� , µNs�, u
k, u1q1tz¤fpXN,ks� ,µNs�qudπ

kps, z, uq.

Consequently, by Burkholder-Davis-Gundy’s inequality and Assumption 3,

E
�

sup
0¤s¤t

|XN,1
s |2

�
¤ C � C||b||28t2 � ||σ||28t� t||f ||8N � 1

N

»
E

sup
x,y,m

Ψpx, y,m, u1, u2q2dνpuq.

This proves the result.

6.2. Proof of (20)

Lemma 6.2. Grant Assumptions 1, 2 and 3. With the notation introduced in the proof of Theo-
rem 4.3, we have

E
�
F pµN q� ÝÑ

NÑ8
E rF pµqs .

Proof. Let us recall that µN denotes the empirical measure of pXN,iq1¤i¤N and that µ is the limit
in distribution of (a subsequence of) µN .

Step 1. We first show that almost surely, µ is supported by continuous trajectories. For that
sake, we start showing that PN :� E

�
µN

� � LpXN,1q is C�tight. This follows from Prop VI. 3.26
in Jacod and Shiryaev (2003), observing that

lim
NÑ8

E
�

sup
s¤T

|∆XN,1
s |3

�
� 0,

which follows from our conditions on ψ. Indeed, writing ψ�pu1, u2q :� supx,y,m ψpx, y,m, u1, u2q,
we can stochastically upper bound

sup
s¤T

|∆XN,1
s |3 ¤ sup

k¤K
|ψ�pUk,1, Uk,2q|3{N3{2,

whereK � PoisspNT }f}8q is Poisson distributed with parameterNT }f}8, and where pUk,1, Uk,2qk
is an i.i.d. sequence of ν1 b ν1�distributed random variables, independent of K. The conclusion
then follows from the fact that due to our Assumption 3, E

�|ψ�pUk,1, Uk,2q|3�   8 such that we
can upper bound

E
�

sup
k¤K

|ψ�pUk,1, Uk,2q|3{N3{2

�
¤ E

�
1

N3{2

Ķ

k�1

|ψ�pUk,1, Uk,2q|3
�

¤ E
�|ψ�pUk,1, Uk,2q|3�

N3{2
E rKs � E

�|ψ�pUk,1, Uk,2q|3�
N3{2

NT }f}8 Ñ 0

as N Ñ 0.
As a consequence of the above arguments, we know that E rµp�qs is supported by continuous

trajectories. In particular, almost surely, µ is also supported by continuous trajectories. Indeed,
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µpCpR�,Rqq is a r.v. taking values in r0, 1s, and its expectation equals one. Thus µpCpR�,Rqq
equals one a.s.

We now turn to the heart of this proof and show that E
�
F pµN q�Ñ E rF pµs . The latter expression

contains terms like » t
s

bpY 1
r , µrqBx1ϕpY 1

r , Y
2
r qdr

for some bounded smooth function ϕ. However, by our assumptions, the continuity of m ÞÑ bpx,mq
is expressed with respect to the Wasserstein 1�distance. Yet, we only have information on the
convergence of µNr to µr for the topology of the weak convergence.

In what follows we make use of Skorokhod’s representation theorem and realize all random
measures µN and µ on an appropriate probability space such that we have almost sure convergence
of these realizations (we do not change notation), that is, we know that almost surely,

µN Ñ µ

as N Ñ 8. (Recall that we have already chosen a subsequence in the beginning of the proof of
Theorem 4.3). Since µ is almost surely supported by continuous trajectories, we also know that
almost surely, µNt Ñ µt weakly for all t (this is a consequence of Theorem 12.5.(i) of Billingsley
(1999)).

Step 2. In a first time, let us prove that, a.s., for all r, µNr converges to µr for the metric W1.
Thus we need to show additionally that almost surely, for all t ¥ 0,

³ |x|dµNt pxq Ñ ³ |x|dµtpxq.
To prove this last fact, it will be helpful to consider rather the convergence of the triplets

pµN , XN,1, µN p|x|qq. Since the sequence of laws of these triplets is tight as well (the tightness of
pµN qN and pXN,1qN have been stated in Section 4.1, and the tightness of pµN p|x|qN q is classical

from Aldous’ criterion since µNt p|x|q � N�1
°N
k�1 |XN,k

t |), we may assume that, after having chosen
another subsequence and then a convenient realization of this subsequence, we dispose of a sequence
of random triplets such that almost surely, as N Ñ8,

pµN , XN,1, µN p|x|qq Ñ pµ, Y,Aq,
where A � pAtqt is some process having càdlàg trajectories. In addition, it can be proven that
the sequence pµN p|x|qqN is C�tight (for similar reasons as pXN,1qN ), hence A has continuous
trajectories.

Taking a bounded and continuous function Φ : DpR�,Rq Ñ R, we observe that, as N Ñ8,

E

�»
DpR�,Rq

Φdµ

�
Ð E

�»
DpR�,Rq

ΦdµN

�
� E

�
ΦpXN,1q�Ñ E rΦpY qs ,

such that E rµs � LpY q.
Notice that from the above follows that Y is necessarily a continuous process, since E rµs is

supported by continuous trajectories. Notice also that for the moment we do not know if A � µp|x|q.
Using that supN E

�
supt¤T |XN,1

t |2
�
  8 (see our a priori estimates Lemma 6.1), we deduce

that the sequence psupt¤T |XN,1
t |3{2qN is uniformly integrable. Therefore, E

�
supt¤T |XN,1

t |3{2
�
Ñ

E
�
supt¤T |Yt|3{2

�   8. In particular, we also have that

E
�
sup
t¤T

µtp|x|3{2q
�
  8 and thus sup

t¤T
µtp|x|3{2q   8 almost surely,
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for all T, since

E
�
sup
t¤T

µtp|x|3{2q
�
� E

�
sup
t¤T

»
DpR�,Rq

|γt|3{2µpdγq
�
¤ E

�»
DpR�,Rq

sup
t¤T

|γt|3{2µpdγq
�

� E
�
sup
t¤T

|Yt|3{2
�
  8.

We know that, a.s., µN converges weakly to µ and µpCpR�,Rqq � 1. Let us fix some ω P Ω for
which the two previous properties hold. In the following, we omit this ω in the notation. Let ε ¡ 0,
t ¤ T and choose M such that

³ |x| ^Mdµt ¥
³ |x|dµt � ε. Then, as N Ñ8, almost surely,»

|x|dµNt ¥
»
|x| ^MdµNt Ñ

»
|x| ^Mdµt.

Thus

lim inf
N

»
|x| dµNt ¥

»
|x|dµt � ε,

such that

lim inf
N

»
|x| dµNt ¥

»
|x|dµt. (31)

Fatou’s lemma implies that

E
�
lim inf
N

»
|x| dµNt

�
¤ lim inf

N
E
�»

|x| dµNt
�
� lim inf

N
E
�
|XN,1

t |
�
� E r|Yt|s � E

�»
|x|dµt

�
.

Together with (31) this implies that, almost surely,

lim inf
N

»
|x| dµNt �

»
|x|dµt.

Finally, since
³ |x|dµN Ñ A and since A is continuous, for all t,

lim inf
N

»
|x| dµNt � lim sup

N

»
|x| dµNt �

»
|x|dµt.

This implies that almost surely, for all t ¥ 0,
³ |x|dµNt pxq Ñ ³ |x|dµtpxq � At   8. In particular,

almost surely, for all t ¥ 0,
W1pµNt , µtq Ñ 0

(see e.g. Theorem 6.9 of Villani (2008)).
Step 3. Now we prove that E

�
F pµN q� converges to E rF pµqs , where we recall that

F pµq � ψ1pµs1q � . . . � ψkpµskq
»
DpR�,Rq2

µb µpdγqϕ1pγs1q . . . ϕkpγskq�
ϕpγtq � ϕpγsq �

» t
s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr

�
,
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where ψi P CbpPpRqq, ϕi P CbpR2q (1 ¤ i ¤ k) and ϕ P C3
b pR2q. Let us recall some facts: by the

boundedness of the functions ψi (1 ¤ i ¤ k) and our boundedness Assumption 3, it is sufficient to
prove the two following convergence:

E
�|ψ1pµNs1q � . . . � ψkpµNskq � ψ1pµs1q � . . . � ψkpµskq|

� ÝÑ
NÑ8

0, (32)

E
�|GpµN q �Gpµq|� ÝÑ

NÑ8
0, (33)

with

Gpµq :�
»
DpR�,Rq2

µb µpdγqϕ1pγs1q . . . ϕkpγskq�
ϕpγtq � ϕpγsq �

» t
s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr

�
.

Indeed, since the functions ψi (1 ¤ i ¤ k) and G are bounded, we have

E
�|F pµN q � F pµq|� ¤ CE

�|ψ1pµNs1q � . . . � ψkpµNskq � ψ1pµs1q � . . . � ψkpµskq|
�

� CE
�|GpµN q �Gpµq|� .

The convergence (32) follows from dominated convergence and the fact that the function

m P PpDpR�,Rqq ÞÑ ψ1pms1q...ψkpmskq P R

is bounded and continuous at µ, since µ is supported by continuous trajectories.
To prove the convergence (33), let us recall that we have already shown that

1. sup
N

sup
0¤s¤t

E
�
µNs p|x|3{2q

�   8,
2. sup

0¤s¤t
E
�
µtp|x|3{2q

�   8,
3. µpCpR�,Rqq � 1 a.s.
4. a.s. @r, µNr converges to µr for the metric W1,
5. for all x, x1 P R, y, y1 P R2,m,m1 P P1pRq, v P R,

|Lϕpy,m, x, vq � Lϕpy1,m1, x1, vq| ¤ Cpvqp||y � y1||1 � |x� x1| �W1pm,m1qq,
such that

³
R Cpvqν1pdvq   8,

6. »
R

sup
x,y,m

Lϕpy,m, x, vqν1pdvq   8.

In order to simplify the presentation, let us assume that the function G is of the form

Gpµq �
»
D2

µb µpdγq
» t
s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr.

Now, let us show that E
�|GpµN q �Gpµq|� vanishes as N goes to infinity.

|Gpµq �GpµN q| ¤
����Gpµq �

»
D2

µN b µN pdγq
�» t

s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr


����
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�
����
»
D2

µN b µN pdγq
�» t

s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr




�
»
D2

µN b µN pdγq
�» t

s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµNr pdxqdr


����
�
����GpµN q �

»
D2

µN b µN pdγq
�» t

s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµNr pdxqdr


����
�: A1 �A2 �A3.

We first show that A1 vanishes a.s. (this implies that E rA1s vanishes by dominated convergence).
A1 is of the form

A1 �
����
»
D2

µb µpdγqHpγq �
»
D2

µN b µN pdγqHpγq
���� ,

with

H : γ P D2 ÞÑ
» t
s

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxqdr P R.

We just have to prove that H is continuous and bounded. The boundedness is obvious, so let us
verify the continuity.

Let pγnqn converge to γ in DpR�,Rq2. We have

|Hpγq �Hpγnq| ¤
» t
s

»
R

»
R
|Hpγr, µr, x, vq �Hpγnr , µr, x, vq|ν1pdvqµrpdxqdr

¤
» t
s

»
R

»
R
Cpvq||γr � γnr ||1ν1pdvqµrpdxqdr

¤C
» t
s

||γr � γnr ||1dr,

which vanishes by dominated convergence: the integrand vanishes at every continuity point r of γ
(whence for a.e. r), and, for n big enough, supr¤t ||γnr ||1 ¤ 2 supr¤t ||γr||1.

Now we show that E rA2s vanishes. We have

A2 ¤
»
D2

µN b µN pdγq�» t
s

����
»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµrpdxq �

»
R

»
R
Lϕpγr, µr, x, vqν1pdvqµNr pdxq

���� dr


.

Since the function x P R ÞÑ ³
R Lϕpγr, µr, x, vqν1pdvq is Lipschitz continuous (with Lipschitz con-

stant independent of γr and µr), we have, by Kantorovich-Rubinstein duality (see e.g. Remark 6.5
of Villani (2008)),

A2 ¤ C

»
D2

µN b µN pdγq
» t
s

W1pµNr , µrqdr � C

» t
s

W1pµNr , µrqdr.

Hence

E rA2s ¤ C

» t
s

E
�
W1pµNr , µrq

�
dr,
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which vanishes by dominated convergence: the integrand vanishes thanks to Step 2, and the uniform
integrability follows from the fact that

sup
N

» t
s

E
�
W1pµNr , µrq3{2

�
dr ¤ Cpt� sqsup

N
sup

0¤s¤t
E
�
µNs p|x|q3{2

�
� Cpt� sq sup

0¤s¤t
E
�
µsp|x|q3{2

�
.

We finally show that E rA3s vanishes.

A3 ¤
»
D2

µN b µN pdγq
�» t

s

»
R

»
R

��Lϕpγr, µNr , x, vq � Lϕpγr, µr, x, vq
�� ν1pdvqµNr pdxqdr




¤
»
D2

µN b µN pdγq
�» t

s

»
R

»
R
CpvqW1pµNr , µrqν1pdvqµNr pdxqdr



.

Then,

E rA3s ¤ C

» t
s

E rW1pµnr , µrqs dr,

which vanishes for the same reasons as in the previous step where we have shown that E rA2s
vanishes.
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