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Abstract: We study the convergence of N—particle systems described by SDEs driven by
Brownian motion and Poisson random measure, where the coefficients depend on the empirical
measure of the system. Every particle jumps with a jump rate depending on its position and
on the empirical measure of the system. Jumps are simultaneous, that is, at each jump time,
all particles of the system are affected by this jump and receive a random jump height that
is centred and scaled in N~=1/2. This particular scaling implies that the limit of the empirical
measures of the system is random, describing the conditional distribution of one particle in the
limit system. We call such limits conditional McKean-Vlasov limits. The conditioning in the
limit measure reflects the dependencies between coexisting particles in the limit system such
that we are dealing with a conditional propagation of chaos property. As a consequence of the
scaling in N=1/2 and of the fact that the limit of the empirical measures is not deterministic the
limit system turns out to be solution of a non-linear SDE, where not independent martingale
measures and white noises appear having an intensity that depends on the conditional law of
the process.

MSC 2010 subject classifications: 60K35, 60G09, 60H40, 60F05.
Keywords and phrases: Martingale measures, McKean-Vlasov equations, Mean field inter-
action, Interacting particle systems, Propagation of chaos, Exchangeability.

1. Introduction

McKean-Vlasov equations are stochastic differential equations where the coefficients depend on
the distribution of the solution. Such equations typically arise as limits of mean field N —particle
systems, where the coefficients depend on the empirical measure of the system. These kind of limits
are referred to as McKean-Viasov limits (see e.g. Géartner (1988), Graham (1992) and Andreis,
Dai Pra and Fischer (2018)).

In this paper we extend these limits to a rather general class of conditional McKean-Viasov
limits. More precisely, we consider the system of interacting particles with a diffusive term and
jumps, given by

ax" = b(XNﬁut dt + o(X, u )dp;

+ — U(X, % X, )]lz d7r(tzu)1<z<N,
‘N 1211#1 Ry xE ! ¢ = {e<r(x 28}

(1)
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starting from the initial condition ‘
(X0 N<ien ~ V.

Here pl¥ = N_lzjil 6XtN,j is the empirical measure of the system, 3* (i > 1) are i.i.d. one-
dimensional standard Brownian motions and 7% (k > 1) i.i.d. Poisson measures on R, x Ry x E,
where E = RN*, N* = {1,2,3,...}. Each 7* has intensity ds-dz-v(du), with v a product probability
measure on F. The initial distribution vy is a probability measure on R having a finite second
moment. We assume that the Poisson measures, the Brownian motions and the initial conditions
are independent. Since the jumps are scaled in N~/2, to prevent the jump term from exploding,
we suppose that the height of the jump term is centred (see Assumption 3 below), that is, for all
x,y € R, for all probability measures m on R,

J U(x,y,m,u', u?)dv(u) = 0.
E

Our model is close to the one considered in Andreis, Dai Pra and Fischer (2018). As there, any
particle in position z jumps at a rate f(z,m), whenever m is the common state of the system,
that is, the current value of the empirical measure. Mainly motivated by applications coming from
neuroscience (where jumps are spikes of the neurons leading to an increase of the potential of all
other neurons, see e.g. De Masi et al. (2015) and Fournier and Locherbach (2016), or Duarte, Ost
and Rodriguez (2015) for a spatially structured model), jumps are simultaneous, that is, all particles
in the system are affected by any of the jumps. More precisely, the random jump height depends
both on the current position y of the particle receiving the jump and on the position = of the
particle that causes the jump. Notice that contrarily to Andreis, Dai Pra and Fischer (2018) we do
not include auto-interactions induced by jumps in the equation (1), i.e. terms of the type

XN N w1 ; i .
JR+xE@( =t O g e iy A (8 2 0)

Indeed, such terms would survive in the large population limit leading to discontinuous trajectories,
and the presence of the indicator ]1{Z<f(XN,i )} requires to work both in L' and in L? (see Graham
<FX2

(1992), see also Erny, Locherbach and Loukianova (2020) where we dealt both with simultaneous
small jumps and big ones). In the present paper, we decided to disregard these big jumps to focus
on the very specific form of the limit process given in (3) below.

Coming back to Andreis, Dai Pra and Fischer (2018), the main difference to our work is that
there the averaging regime is considered: the common contribution of all particles to the dynamic
of a given particle, represented in (1) by the sum of the stochastic integrals with respect to the
Poisson random measures, is scaled in N~!. In this situation it was shown in Andreis, Dai Pra and
Fischer (2018) that the Propagation of chaos phenomenon holds: the coordinates are i.i.d. in the
limit. Moreover, the limit of the empirical measures is the distribution of any coordinate of the limit
system, and the dynamic of one coordinate is described by a classical McKean-Vlasov equation.

The novelty of the present paper is that we consider (1) in a diffusive regime, where the common
contribution of all particles to the dynamic of a given particle is scaled in N2, It has already
been observed that this diffusive scaling gives rise to the Conditional propagation of chaos property
(see Erny, Locherbach and Loukianova (2020)): a common noise appears in the limit system, and
the coordinates of the limit system are conditionally i.i.d given this common noise. Moreover the
limit of the empirical measures is shown to be the conditional distribution of any coordinate of the
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limit system, given the common noise. In Erny, Locherbach and Loukianova (2020) the common
noise is a Brownian motion created by the contribution of the jumps of all particles in the dynamic
of a given particle, as a consequence of the scaling 1/ \/N and the central limit theorem.

It turns out that in the present work, to describe the precise dynamic of the limit, and in particular
to identify the common noise, we need to rely on martingale measures and white noises (see Walsh
(1986) and El Karoui and Méléard (1990)) as driving measures. More precisely, the limit system will
be shown to be solution of a non-linear SDE driven by (white noise) martingale measures having
an intensity that depends on the conditional law of the system itself. These martingale measures
do only appear in the limit system as a consequence of the central limit theorem and the joint
contribution of all small and centered jumps. The main reason for the appearance of the martingale
measures instead of the Brownian motion is the spatial correlation of the finite system, i.e. the
dependence on the positions both of the particle giving and the one receiving the input.

To the best of our knowledge, this is the first time that McKean-Vlasov limits are considered
where the underlying driving martingale measures are only present in the limit system, but not
at the level of the N—particle system. We refer however to Chevallier and Ost (2020) who work
in the averaging regime and study the fluctuations of a stochastic system, associated to spatially
structured Hawkes processes, around its mean field limit, and where particles in the mean field limit
are still independent.

Processes driven by martingale measures having an intensity that depends on the law of the pro-
cess itself have already appeared in the literature related to particle approximations of Boltzmann’s
equation, starting with the classical article by Tanaka (1978) that gave rise to a huge literature (to
cite juste a few, see Graham and Méléard (1997), Meleard, Sylvie (1998), Fournier and Meleard
(2002), Fournier and Mischler (2016)). In these papers, the underlying random measure is Poisson,
and the dependence on the law arises at the level of the particle system that is designed to ap-
proximate Boltzmann’s equation. In our work, the underlying random measure is white noise since
jumps disappear in the limit, and the dependence on the (conditional) law of the process does only
appear in the limit, as an effect of the conditional propagation of chaos.

Let us now describe the limit system associated to (1). To find its precise form, we mainly need
to understand the limits of the martingales which are the jump terms of the system, given by

N
N,i N,k N,i N k k
t=— WX 8 X0 g, u' )y oenn dr”(s, z,u).
k VN kzlz,l]v;éi [0,t] xRy x E {e=r20u}

s—

In what follows we consider some concrete examples of ¥ and give the limits of the corresponding
predictable quadratic covariations of JtN "’ to have a better understanding of its limit. We shall always
assume that the jump rate function f is bounded. Let us begin with a situation close to that of Erny,
Locherbach and Loukianova (2020), where in the limit system each coordinate shares a common
Brownian motion W.

Example 1. Suppose that V(x,y, m,u',u?) = ¥(u'). Then we have, for all 1 <i,j < N,

Ni N\ _ L S ‘ kN2 p/ v Nk N k
T >t—N Z ), R\I/(u)f(Xs s )dvr (u®)ds

k=1,k#1,j

t t
= | [ sl s + o).
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since f is bounded, with ¢% := S U (ut)2dvy (u ) and vy the projection of v on the first coordinate.
Denote i the limit of the empzmcal measures 1. Then the angle brackets process should converge

as N goes to infinity to
t
CZJ J f(x, ps)ps(dr)ds.
0 Jr

As the limit quadratic covariations are non-null, in the limit system there will be a common Brow-
nian motion W underlying each particle’s motion. Thus, the limit system is given by

R

where W is a standard one-dimensional Brownian motion. We will also show that p = LX1 W),
since p is necessarily the directing measure of (X*)i=1. In particular, the conditioning in p reflects
the presence of some common noise, which is W here.

Now, let us consider an opposite situation where, in the limit system, each coordinate has its
own Brownian motion W*, and where these Brownian motions are independent.

Example 2. In this example, we assume that ¥(z,y, m,u’,u?) = ¥(u?). As in the previous exam-

ple, we begin by computing the angle brackets of the jump terms between particles i and j. Here we
distinguish two cases: i # j and i = j. If i # j, using the fact that v is a product measure and that
U is centered (Assumption 3),

<JN»2JNJ>t=% Z f J VF(XNF uNYdu(u)ds = 0.

k=1,k+#i,j

Moreover, if i = j,

(N = NZJ[ 2P (s = [ [ o (a1 + O,

As the quadratic covariations between different particles are null, there will be no common noise
in the limit system. So, instead of having one common Brownian motion W as in the previous
example, here, each particle is driven by its own Brownian motion. More precisely, in this example
the limit system is

R

where W* (i > 1) are mdependent standard one-dimensional Brownian motions, independent of 3°
(i = 1), and where p = L(X?) is deterministic in this particular case.

Finally let us show an example where, as in Example 1, each particle shares a common Brownian
motion W, and, as in Example 2, each particle has also its own Brownian motion W*, and where
both W and W* are produced by the common contribution of the small jumps.



X. Erny et al./Conditional McKean-Vlasov limit 5

Example 3. Here we assume that ¥(x,y,m,u’,u?) = W(u',u?). The angle brackets of the jump
terms of the particles i and j are, if i # j,

<JN’i,JN’j>t=% 2 JJ (u*, )W (P, 0!) (X, plY ) dv (u)ds

k=1,k+#i,j5
_ o2 Ny, N t
=& [ [ s s+ o)

where we know that & := §, U(u', u?)@(u',u?)dv(u) = 0 since it is the covariance of the infinite

exchangeable sequence (W(UY,U%))rsa, where (UF)p=1 ~ v. And if i = 7,

IV = 1 3 ” (ut, XN’“,ug)dV()s—cfffﬁrus)uq(dx)dHO( )

k=1,k#1

where ¢ = § U(u', u?)?dv(u).

As in Example 1, there must be a common Brownian motion since the quadratic covariations
between different particles are not zero. But, here (JN:', JN:3%, # (JNW, if j # i. That is why there
must be additional Brownian motions. Formally, the limit system in this example is

dX} =b(X{, pe)dt + o (X}, ) dB; (2)

+ 5\/f f(@, pe) pe(dz) AWy + \/(c2 - SQ)J f (@, pe) pe () dWY,
R R

where we know that ¢2 > £2 by Cauchy-Schwarz’s inequality. As before, W,W* (i = 1) are in-
dependent standard one-dimensional Brownian motions, and p = L(X|W) is random in this
case. Note that in the case where ¥(x,y,m,u’,u?) = ¥(uy), we have 2 = <%, and in the case
U(z,y,m,ut,u?) = V(uz), we have €2 = 0, hence this ezample covers both Example (1) and Ezam-

ple (2).
Before defining the limit system in the general case, let us explain the main difficulty that arises.

If we apply the same reasoning as in Examples 1, 2 and 3 to the general model given in (1), we
obtain for two different particles

<JN’i JN’j>t =

N Z ffXN’%us f\If(X?”’f,Xﬁ”,uiV,u’“,ui)wXéV”f,Xé”,uiV,u’“,uf>u(du)ds
k=1,k#i,j

- f jf(x,u% f W, XN o) X ! o) (da)ds + O(c),
0 JR E

under appropriate conditions on ¥, see Assumption 3 below. And for the quadratic variation of
the jump term of a single particle we get

t
V=[] ) [ w0 G o) d)ds,
0 JR E
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still up to an error term of order 1/N.

Contrarily to the situation of the previous examples, the quadratic covariations depend on the
positions of the particles ¢ and j and can only be written as integrals of products where this
integration involves, among others, the empirical measure of the process. This is the reason why
we need to use martingale measures and white noises instead of Brownian motions, as introduced
in Walsh (1986), confer also to El Karoui and Méléard (1990).

Let us briefly explain why using martingale measures is well adapted to our problem. If M is a
martingale measure on R, x F (with (F, F) some measurable space), having intensity dt - m(dy),
then for all A, Be F, M;(A) := M([0,t] x A);t > 0 is a square-integrable martingale and

QLW MB), = | | Lanswm,dyis

Having this remark in mind, it is natural to write the limit system in a similar way as (2),
but replacing the Brownian motions by martingale measures. More precisely, under appropriate
conditions on the coefficients, the limit system (X*);>1 of (1) will be shown to be of the form

dXi = b(X}, pe)dt + o(X], pue)dBi + f j N (@, 1)Uz, X7, g, 0)dM (¢, 2, v), (3)
+J V f(xnut)n(vatiaMt)dMi(t,‘T)a i 21,
R
*

(X3)iz1 ~ v
In the above formula,
Mt :C(X“W)? (4)

\i/(x,y,m,v) = J}R U(z,y, m,v,u)dv (u'), (5)
K(z,y,m)? :=J,E U(z,y, m,u, u®)?dv(u) — J’R \i/(x,y,m,v)Qdul(v)
=J’ U(z,y,m,u, u?)dv(u) — J’ U(z,y,m,u', u®)U(z,y,m,u', u®)dv(u).  (6)
E E

Notice that the expression (6) is positive by Cauchy-Schwarz’s inequality.

In the above equations, M (dt,dx,dv) and M?(dt,dz) are orthogonal martingale measures on
R; xR x R (R} x R respectively) with respective intensities dt - p:(dz) - v1(dv) and dt - p;(dx),
defined as

t

LaA(F7 (p))dW' (s, p) and My(A x B) := L La(F (p)Lp(v)dW (s,p,0),  (T)

t
M= |

0
with W a white noise on R% xR with intensity d¢-dp-dvy (v), and W' (i > 1) independent white noises
on R2, independent from W, with intensity dt - dp. In the above formula, Fy(z) := P (X; < £L'|W)
is the conditional distribution function, conditionally on W, and F;! is the generalized inverse of
F;. Asin (1), we assume that the Brownian motions, the white noises and the initial conditions are
independent.
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In the case where W (x,y, m,ur, uz) = ¥(uy,usz), we see that k? = ¢2—¢2 is a constant and that T
does only depend on v such that we can represent the two integrals with respect to the martingale
measures in (3) as two integrals against Brownian motions, recovering all previous examples.

Let us give some comments on the above system of equations. We have already argued that, in
general, 11, is a random measure because of the scaling N~/2. We shall prove that y, is actually the
law of X! conditionally on the common noise of the system. This common noise is the white noise
W underlying the martingale measure M. It is not immediately obvious that the definition of the
martingale measures M and M* in (7) and the limit system (3) are well-posed. In what follows, we
shall give conditions ensuring that equation (3) admits a unique strong solution. This is the content
of our first main theorem, Theorem 2.3. To prove this theorem, we propose a Picard iteration in
which we construct a sequence of martingale measures whose intensities depend on the conditional
law of the instance of the process within the preceding step. One main ingredient of the proof is the
well-known fact that the Wasserstein-2—distance of the laws of two real-valued random variables
is given by the L?— distance of their inverse distribution functions - we apply this fact here to the
conditional distribution functions.

Using arguments that are inspired by Erny, Locherbach and Loukianova (2020), we then show
in our second main theorem, Theorem 2.5, that the finite particle system converges to the limit
system, that is, (X™V');<;<n converges to (X%);>1 in distribution in D(R,, R)N*. This convergence
is the consequence of the well-posedness of an associated martingale problem. Contrarily to Erny,
Locherbach and Loukianova (2020) the finite system here depends on the empirical measure, and the
conditions on the regularity of its coefficients are formulated in terms of the Wasserstein distance.
To reconcile the convergence in distribution of the empirical measure with the Wasserstein-Lipschitz
continuity of the coeficients gives an additional technical difficulty to the proof.

Organization of the paper. In Section 2, we state the assumptions and formulate the main
results. Section 3 is devoted to the proof of Theorem 2.3. The proofs of Theorems 2.4 and 2.5 are
gathered in Section 4. Finally, in Section 5 we discuss extensions of our results to the frame of
multi-populations where the particles are organized within clusters.

General notation. Throughout this paper we shall use the following notation. Given any mea-
surable space (5,S), P(S) denotes the set of all probability measures on (5, S), endowed with the
topology of weak convergence. For p € N*, P,(R) denotes the set of probability measures on R
that have a finite moment of order p. For two probability measures v1, vo € Pp(R), the Wasserstein
distance of order p between v, and vs is defined as

1/p
W) = it ([ [ e sratanan)

where 7 varies over the set II(rq,12) of all probability measures on the product space R x R
with marginals 11 and v5. Notice that the Wasserstein distance of order p between v; and vo can
be rewritten as the infimum of E[|X — Y|P]'/P over all possible couplings (X,Y) of the random
elements X and Y distributed according to vy and vy respectively, i.e.

W, (11, ) = inf {E [[X = YIP]Y? : £(X) = vy and L(Y) = uz} .
Moreover, D(R;,R) (or just D for short) denotes the space of cadlag functions from R, to R,

endowed with the Skorokhod metric, and C' and K denote arbitrary positive constants whose
values can change from line to line in an equation. We write Cy and Ky if the constants depend on
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some parameter §. Finally, for any n,p € N*, we note C}'(RP) (resp. C}'(RP, R )) the set of real-
valued functions g (resp. non-negative functions ¢) defined on R? which are n times continuously
differentiable such that ¢(*) is bounded for each 0 < k < n.

2. Assumptions and main results.
2.1. Assumptions

We start imposing a hypothesis under which equation (1) admits a unique strong solution and
which grants a Lipschitz condition on the coefficients of the SDE.

Assumption 1.
i) For all x,y € R,m,m’ € P;(R),
|b(z,m) — by, m)| + |o(z, m) — o(y,m")| < C(|lx — y| + Wi(m,m')).

i) f is bounded and strictly positive, and /[ is Lipschitz, that is, for all z,y € R,m, m’' € P;(R),
IV F(@,m) =y, m)| < Clz = y| + Wi(m,m)).

it1) For all x,z',y,y',u,v € R,m,m' € P;(R),
|\D(xay,m7u7v) - \P(wlﬁy/?ml7u7v)| < M(U7’l))(|.’17 - $I| + |y - y/| + Wl(m’ml))a
where M : R? — R satisfies §, M(u', u?)?dv(u) < oo.

i)
sup J |U (2, y, m,u', u?)|dv(u) < o,
zymJE
Notice that f bounded together with «/f Lipschitz implies that f is Lipschitz as well. As a
consequence, relying on Theorem 2.1 of Graham (1992), Assumption 1 implies that equation (1)
admits a unique strong solution.

In order to prove the well-posedness of the limit equation (3), we need additional assumptions.
Recall that k2 has been introduced in (6) above.

Assumption 2.

i)
inf k(z,y,m) >0,

zy,m
i)
sup J U(z,y, m,u',u?)?dv(u) < .
zy,mJE

Remark 2.1. Using the third point of Assumption 1 we can prove that k2 is Lipschitz continuous
with Lipschitz constant proportional to

1/2
(J M?(u,v)dv(u,v) x sup f \112(x,y,m,u7v)dl/(u,v)> .

Assumption 2.i) allows then to prove that k is Lipschitz continuous. Assumption 2.ii) gives that
5] = SUD, 4 m k(z,y,m) < .
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To prove the convergence of the particle system (X'!); <;<x to the limit system, we need further
assumptions on the function W.

Assumption 3.
i) For all x,y € R,m € P;(R),
| womat v = o
E

i)
f sup |¥(x,y, m,u', u?)Pdv(u) < .
E z,y,m

i11) b and o are bounded.

Remark 2.2. We assume the functions b and o to be bounded to simplify the proofs of Lemmas 6.1
and 6.2. However the results of these lemmas still hold true under the following weaker assumption:
there exists C > 0 such that, for all x € R,m € P(R),

[b(z, m)| + |o(z,m)| < C(1 + |z]).

In other words, b and o are bounded w.r.t. the measure variable and sublinear w.r.t. the space
variable.

Let us give an example of a function ¥ that satisfies all our assumptions and where the random
quantity W depends on the difference of the states of the jumping and the receiving particle as well
as on the average state of the system as follows

U(z,y,m,u,v) = uv (E + g + arctan(z — y + f zdm(z))) ,
R

with v = RO and R = 1(6_1 + 041) the Rademacher distribution. In the formula above, the
variables u and v can be seen as spins such that the receiving particle is excited if the orientation
of its spin is the same as the spin of the sending particle, and inhibited otherwise. ¥ satisfies the
Lipschitz condition of Assumption 1 because arctan is Lipschitz continuous. The hypothesis on the
moments of ¥ are also satisfied since A/ (0, 1) has finite third moments and is centered. Finally, the
first point of Assumption 2 holds true, because

U,y m, u'yu?)2dv(u) — f W,y m, u, w2z, y,m, b, o) du(w)
E

(ayom)? = |

E

=(e+g+M%m@—yﬁ&ﬁﬂ@02(kﬁﬁf@m%iLuW%%%ﬂm>

R E

zdnﬂz»>2.

T
= <5++arctan(a:—y+J
2 R

2.2. Main results

Our first main result is the well-posedness of the limit equation.
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Theorem 2.3. Under Assumptions 1 and 2, equation (3) admits a unique strong solution X* that
possesses finite second moments. This solution also has finite fourth moments.

Our second main result states the convergence of (X™);1<i<n to (X%)iz1.

Theorem 2.4. Under Assumptions 1, 2 and 3, (X™N'!)1<i<n converges to (X');>1 in distribution
in D(Rp, RN,

In the above statement, we implicitly define )_(Nvi :=01ifi > N.
As the systems (X™);<;<n (N € N¥) and (X?);»; are exchangeable, Theorem 2.4 is equivalent
to

Theorem 2.5. Under Assumptions 1, 2 and 3, the system (X%)i=1 is exchangeable with directing
measure p = L(XY W), where W is as in (7). Moreover, the sequence of empirical measures

N
,uN =N Z 6XN,i
=1

converges in law, as P(D(Ry,R))- valued random variables, to p.

Remark 2.6. In Theorem 2.5, it is easy to prove that L(XYW) is the directing measure of the
system (X)i=1. Indeed, it is sufficient to notice that conditionally on W, the variables X* (i > 1)
are i.i.d. and to apply Lemma (2.12) of Aldous (1983).

The proof of Theorem 2.5 is similar to the proof of Theorem 1.7 of Erny, Loécherbach and
Loukianova (2020). It consists in showing that (u’¥)y is tight on P(D(R.,R)), and that each
converging subsequence converges to the same limit, using a convenient martingale problem. For
this reason, in what follows we just give the proofs that substantially change compared to our
previous paper. For the other proofs, we just give the main ideas and cite precisely the corresponding
statement of Erny, Locherbach and Loukianova (2020) that allows to conclude.

3. Proof of Theorem 2.3

The following Lemma shows that the definition (7) indeed defines the right martingale measures.

Lemma 3.1. Let vy be a probability measure on R. Moreover, let (2, A, P) be a probability space,
(Gi)t be a filtration on it, (F;)¢ be a sub-filtration of (G¢); and W (resp. W) be a (G;);—white noise
on Ry x[0,1] xR (resp. Ry x[0,1]) of intensity dt-dp-v1(dv) (resp. dt-dp). Let X be a continuous
R—wvalued process which is (Gy)i-adapted and Fs(x) := P(Xs < x|Fs). Moreover, we suppose that
for all s > 0, P(X; < z|Fs) = P(Xs < z|Fy), where o, = o{F, t = 0}.

Define for any A, B € B(R),

M} (4) =f f LA((F) ™ (0)dW (s.p), My(Ax B) =f f jRnA«Fs)—l(p))]lB(v)dW(s,p,v)

Then M' and M are martingale measures with respective intensities dt-p;(dx) and dt-p;(dz)-vi(dv),
where py = L(X¢|F).

Proof. We only show the result for the martingale measure M!. The main part of the proof consists
in showing that the process (w,s,p) € Q x Ry x [0,1] = (Fs)~(p) is P ® B([0, 1])—measurable,
with P the predictable sigma field related to the filtration (G;);.
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To begin with, let us prove that (w, s, ) — Fs(z) is P ® B(R)—measurable. We write

Fs(x) = P(Xs < $|f5) = E[(p(m,Xs)|.7:s],

where p(z,y) := ;<. As ¢ is product measurable and bounded, it is the limit of functions of
the form N

> cwpr (@) (y)

k=1

where the functions ¢y, ¥, (1 < k < n) are Borel measurable and bounded. This limit can be taken
to be increasing such that, by monotone convergence,

Ep(e, X)IF] = lim Y crpn(@E [0(X.) 7]

k=1

Then, as 9y is a bounded and Borel function, it can be approximated by an increasing sequence of
bounded and continuous functions %y .. Then, as for every n, m, the process

(w, s,7) Z ik (T)E [Yr,m (Xs) | Fs] = Z ik (T)E [Yr,m (Xs) | For ]

is continuous in s and (Fs)s—, whence (Gs)s—adapted, it is P ® B(R)—measurable.
Let 2 € R be fixed. It is sufficient to show that {(w,s,p) : (Fs)~!(p) = x} is measurable. Let us
write

{(w,5,p) : (Fs) 7' (p) = 2} = {(w,5,p) : Fo(@) <p} = {(w, 5,p) : 9(Fs(2),p) > 0},

where ¢(z,p) := 1;<p) is product measurable.

Then, the measurability of {(w,s,p) : (Fs)~'(p) = z} is a consequence of that of (w,s,p) —
o(Fy(x),p) wr.t. PQB(0, 1]).

As a consequence, the process (w, s,p) € QxR x [0,1] = (F,)~1(p) is P@B([0, 1])—measurable.
The rest of the proof consists in writing

t
Ay = jfm “p)dpds = [ ().
0
The last inequality above is a classical property of the generalized inverse of the distribution function
(see e.g. Fact 1 in Section 8 of Major (1978)). O

3.1. Comnstruction of a strong solution of (3) - proof of Theorem 2.3

We construct a strong solution of (3) using a Picard iteration. Let 3%,i € N* be independent one-
dimensional Brownian motions. Let W, W?, i € N*  be independent white noises on respectively
Ry x [0,1] x R and Ry x [0, 1] with respective intensities dt - dp - v1(dv) and dt - dp, independent
of the 3¢. We suppose that all these processes are defined on the same probability space (2, F, P)
carrying also i.i.d. random variables X{¢, i € N*, which are independent of the 3%, W, W. Define for
allt > 0,

Gi = oa{ B W(u,v] x A x B); W'(Ju,v] x A); 0 <u <v <t; Ae B(R); Be B([0,1]); i e N* };
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Wy i=o{W(Ju,v] x Ax B)ju<v <t AeB(R),BeB([0,1]) };
W = o{W;; t = 0}.

Step 1. Fix an ¢ € N* and introduce

xPO =X,
Ti=L(x3), FM(2) = P(Xo <zW),

t 1
MIV[0,1] x A x B) = f f J.R]lA((Fg[o])’l(p))lls(v)dW(s,p7v)
MN[0, 1] x A) = j j La((FI 1 (p))dW (5, p).

Assuming everything is defined at order n € N, we introduce
xotn Jt p(XHT 0] g +Jt (X lely g0 (8)
JJJ-\/ xus U (z, X0 pyan™ (s, 2, v)
j j m (e, X By g (. ),

[n+1] '—L’(Xl [n+1] W), [n+1]( )= (X;,[n+1] < zW),
MU([0,4] x A x B) f j f FI ) )1 (0)dW (s, p, v),

M ([0, 4] x A) JJ FIY 1 () dW (s, p).

Note that V¢ > 0,
W = a(Ws; Wiksol)

where

Witoop i= o{]W (Ju,v] x A); ,t <u <wv; Ae B(R)}.
Remember also that white noises are processes with independent increments, more precisely, for all
A, A" in B([0,1]), for all B, B’ in B(R), W(Ju,v] x A x B) and W(]Ju',v’'] x A’ x B’) are independent
if Ju;v]n]u'sv'] = &.

Using this last remark, we see that by construction X, Bl

is independent from W}, ., and as
a consequence, (X" < z)w) = P < 2)W,). Taking F, = W, and F,, = W we see
that all assumptions of Lemma (3.1) are satlsﬁed Hence, for each n € N; i € N* the martingale
measures M and M5["] are well defined and have respectively the intensities dt - ul™ (dz) - v (dv)
and dt - i (dz), where pi" = (X“"HW) = c(x"w,) .

) , 2
In what follows, we shall consider u[ nl [(th’["H] - X, ’["]> ] . Let us introduce

hz,y,m,v) := f(x,m)\i/(x,y,m, v) and g(z,y,m) :=/ f(x,m)x(x,y, m).
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Note that the assumptions of the theorem guarantee that h and g are Lipschitz continuous. Indeed,
using Assumption 1 (i7) and (%), for all z,y, 2", y',v € R, m,m’ € P1(R),

|h(xvy7mvv) - h(xlvylvmlﬂvﬂ < C(v)(|x - :E/| + |y - y,| + Wl(mam/))v

where
Cv) := J M (u,v)v(du) +J |V (z,y, m,v,u)|v(du).
E E
Using Jensen’s inequality together with Assumptions 1 (i) and 2 (i7) we see that C satisfies
SR )2dv < 0. Moreover, using Assumption 1 (i) together with Remark 2.1, for all x,2’,y,’ €

RmmE’Pl( ),

lg(x,y,m) — g(z',y/,m)| < K(|z — 2’| + [y — ¢/| + Wi(m,m)),

where K < C(|k]+ + A/Ilf )
Step 2. We now prove that our Picard scheme converges. Classical arguments imply the existence
of a constant C' > 0 such that

6( i.[n+1] th:[n])z<

2 . 2
B O = o, =) ) ([ (o) o )
1
(f [ [ ne st wyanet sy - [ h(x,Xi’["”,uL"”w)dM[””(s,x,v))
0 JR JR
" 2
# ([ ] e xi i anr .0 - [ [ e xi0o0, a0, 0)
0 JR 0 JR
t ) ) 2 t ) ) )
<t [ (o) - et =) s ([ o) - o(xit, )
0
([ [ [ 0, %0040, 00 = =740, K=l ) )

2

([ [t .20l = (el D | ) )

VY

2

2

2

Using Burkholder-Davis-Gundy’s inequality to control the expectation of the stochastic integrals
above, and using the fact that for all u,v € Pa(R),

Wl(,u7’/) < W2(/.,L7I/),

we have that

t

t
JdM < e —I—t)f

E [(X;}[”] - X;V["*ﬂ)?] ds + C(1+1) J
0

E [ Wl ule 102 ] as
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t 1
[n]y—1 _ [n—1]y—1 2 3.
e f E[ f (FI) 1 (p) — (FI" )L p))%dp| ds. (10)

A classical result (see e.g. Theorem 8.1 of Major (1978)) states that, if F,G are two distribution
functions with associated probability measure p and v, respectively, then

1
[ o -crwpra=  nt Bl00-v7] = W),
0 w,Y ~v

where the infimum is taken over all possible couplings (X,Y") of u and v.
This implies that

J (EE) ) — (R ) )R = Wl plr 0,
0

Since X“["] and X%["~1] conditionally on W, are respectively realizations of F*["l and F["—1]
we have that, for every s > 0, almost surely,

Wa(ul), =12 < B (x50 = X312

Integrating with respect to W implies that
1
E [ | @y - (E!””)l@))?@] <E[(xil - xiin-iye)
0

Consequently, we have shown that there exists some constant C' > 0 such that, for all £ > 0,
t
uE"] <C(1+ t)f ulr = ds. (11)
0

Classical computations then give

[n] n nﬁ
up - < C™'(1+1) o
Now, introducing vl := 274" we have that
Z ol < .
n=0

Hence, using that for all € R, e > 0, |z| < max(e, 2?/e) < e+a2 /e, and applying this with e = 1/2"
and z = XZ’[nH] — XZ’["], we have

S E[Ix - ] < 2% + 3 o <o,
n=0 n=0 n=0

As a consequence, we can define, almost surely,

Xi= X0+ Dt - x Py < oo,

n=0
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and we know that E [|X§ — XZ [l |] vanishes as n goes to infinity, and that XZ [l converges almost
surely to X;.

Step 3. Let us prove that X has finite fourth moments. Let w!"! := E [(XZ’[n])4] .

By equation (8), we have

1 i\ * ! i,[n—1] , [n—1] ! ! i,[n=1] , [n—1]\ 740
& () < ([ sttty ) (] ot e tag,
0 0

+ 4
# ([ ] pe vl antte s )
0 JRJR

+ 4
+ (J f g(w,Xi’[”_”,uL"‘l])dMi’[”_ll(s,x)>
0 JR
=: A+ Ay + A3z + Ay (12)

4

First of all, let us note that our Lipschitz assumptions allow to consider the following control:
for any z € R,m € P1(R),

b, )| < (b, m) — B(0,80)] + (0, 60)] < C(1 + [z] + Wi (1, b)) = C (1 +lal + | |y|dm(y>) |
R
and similar controls for the functions o, h, g. Using this control and Jensen’s inequality, we have

t
E[A;] <t* J E [b(X;v[”‘”, uE”‘”)‘*] ds

0

t 4
<Ct3J <1+w£”‘1] +E l(j Iylu£"‘1](dy)) D ds
0 R

<Ct? Lt (1 + wgn_l]) ds.

We can obtain a similar control for the expressions As, A3 and A, using Burkholder-Davis-
Gundy’s inequality noticing that the stochastic integrals involved are local martingales. We just
give the details for A,.

t 2
E[As] <E W a(X;v["—”,uL”—”)ZdQ 1
0

t t
<E [tf a(X;’["”,u?”)‘*ds] < th (1 + wg"*]) ds,
0 0

where the last inequality can be obtained with the same reasoning as the one used to control E [4,].
With the same reasoning, we have the following controls for A3 and Ay :

t
E[As] + E [Ad < th (1+wl 1) ds.

0
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Using the previous control in the inequality (12), we have that for all ¢ > 0,

t

w" <o+ + 00+ t3)J wlds,

0
whence n
Z ck 1+ 8% < C(1 4 3)eCt0+)
k:l
Consequently
sup sup E [(X;"["])‘l] < 0, (13)
neN 0<s<t
for some constant C' > 0. Then Fatou’s lemma implies the result: for all ¢ > 0,
sup E [()_(2)4] < 0. (14)
0<s<t

Step 4. Finally, we conclude the proof showing that X’ is solution to the limit equation. Roughly
speaking, this step consists in letting n tend to infinity in (8).
We want to prove that, for all t > 0,

= Gi(X", ), (15)

where

Gi(X ) j B, pis)ds + j o(X, 1s) B!

Jf ,[ XL, pis,v)dW (s, p,v)
J f X1, ps)dW (s, p),

where the functions h and g have been introduced in Step 1, p; := L(X{|W), and F; ' is the
generalized inverse of
Fy(z) =P (X} <z|W).
Let us note that G? has to be understood as a notation, we do not use its functional properties.
By construction, we have
xp b = gt ), (16)

We have proved in Step 2 that Xt[nﬂ] converges to X/ in L!. In other words, the LHS of (16)
converges to the LHS of (15) in L. Now, it is sufficient to prove that the RHS converges in L2.
This will prove that the equation (15) holds true.

With the same computations as the ones used to obtain (11) (recalling that this inequality relies
on (9) and (10)), we have

A o 2 ¢ _ N 2
E [(G;(XZ,M) - G;(X“[”],u["])) ] <C(1 +t)f E [(X; _X;»["J) ] ds.
0
This proves that G&(X [ ") converges to G(X*, 1) in L? by dominated convergence: indeed,
we know that for all s < t, X" converges to X! almost surely thanks to Step 2., and (13) and (14)
give the uniform integrability.
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3.2. Trajectorial uniqueness

We continue the proof of Theorem 2.3 by proving the uniqueness of the solution. For that sake, let
X" and X"* be two strong solutions defined with respect to the same initial condition X{ and the
same white noises W and W*. Let

u =E [(XZ — X';)2] .

According to the computation of the previous subsection, there exists a constant C' > 0 such

that for all £ > 0,
t

u < C(1+ t)f usds.
0

Then Gronwall’s lemma implies that u; = 0 for all ¢ > 0, implying the uniqueness.

4. Proof of Theorems 2.4 and 2.5

The proof of Theorem 2.5 follows the same steps as the proof of Theorem 1.7 of Erny, Locherbach
and Loukianova (2020): in a first time, we prove that the sequence (1) y is tight on P(D(R,R)),
and then we prove that each converging subsequence of (u™)y converges to the same limit, by
proving that the limits of such subsequences are solutions to some martingale problem which is
well-posed.

4.1. Tightness of (u™N)n

The proof that the sequence () y is tight on P(D(R,R)), is almost the same as that of Propo-
sition 2.1 in Erny, Locherbach and Loukianova (2020). As the systems (XV'');<;<n (N € N*) are
exchangeable, it is equivalent to the tightness of the sequence (X™'1)x on D(R,R) (see Proposi-
tion 2.2-(ii) of Sznitman (1989)).

The tightness of (X™1)y is straightforward using Aldous’ criterion (see Theorem 4.5 of Ja-
cod and Shiryaev (2003)), observing that, under our conditions, supy E [sup,<, |XV'!|] < o0 (see
Lemma 6.1).

4.2. Martingale problem

To identify the structure of any possible limit of the sequence (u” )y, we introduce a convenient
martingale problem. We have already used such a kind of martingale problem in a similar context
in Section 2.2 of Erny, Locherbach and Loukianova (2020). Since our limit system is necessarily
an infinite exchangeable system, the martingale problem is constructed such that it reflects the
correlations between the particles. It is therefore stated in terms of couples of particles.

Consider a probability measure @ € P(P(D(R,,R))). In what follows the role of @ will be to be
the law of any possible limit x of x/V. Our martingale problem is stated on the canonical space

Q =P(D(R,,R)) x D(R,,R)?.
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We endow (2 with the product of the associated Borel sigma-fields and with the probability measure
defined for all A e B(P(D(R.,R))), B e B(D(R,,R)?) by

Po(A x B) := ,[ Ta(m)m @ m(B)Q(dm). (17)
P1(D(R4,R))

We write an atomic event w € Q as w = (m,y) with y = (y)i=0 = (¥}, 9?)i=0. We write p and
Y = (Y1,Y?) for the random variables ;(w) = m and Y (w) = y. The definition (17) implies that Q
is the distribution of j, and that conditionally on x, Y' and Y2 are i.i.d. with distribution p. More
precisely, 1 ® p is a regular conditional distribution of (Y'!,Y?2) given p.

For t > 0 we write m; for the t-th marginal of m : m;(C) = m(Y € D*(Ry,R); v, € C); Ce€
B(R). We denote p; the r.v. p(w) = my and consider the filtration (G;)i>0 given by

G =0(Ys,s <t) vo(us(A); Ae B(R), s<t).

For all g € CZ(R?), define

Lg(y,m,z,v) =b(y",m)o, g(y) + b(y*, m)d,2g(y) (18)
1 1
+ 50y m)* 05 g(y) + 5o (y®,m)*d59(y)
1 1
+ if(x,m)fﬁ(x,yl,m)%jlg(y) + if(xam)ﬁ(x7y27m)26529(y)
1 2 = 5
+ 5f(177m) Zlql(x7y 7m7v)\p($’y ,m,v) ylyﬂg(y)a
i,j=
and put for all £ > 0
t
MY = MY Y) = 90 — 9000 - | [ [ ZoWVepemomldo(dnyas. (19
0 JRJR

Definition 4.1. Q is solution to the martingale problem (M) if

o QQ—almost surely, po = vy,
e for all g € CE(R?), (M{)i=0 is a (Pg,(Gt)t)—martingale.

Let us state a first result that allows us to partially recover our limit equation (3) from the
martingale problem (M). It is the equivalent of Lemma 2.4 of Erny, Locherbach and Loukianova
(2020) in the framework of white noises.

Lemma 4.2. Grant Assumptions 1, 2 and 3. Let Q be a solution of (M).Using the notation above,
there exist on an extension of (0, F,(Gt)t=0, Pg) two Brownian motions B, 3% and three white
noises WY, W2 W; defined on (Ry x [0,1], B(Ry x [0,1]), dt ® dp) for W%, i = 1,2; and on
(Ry x [0,1] xR, B(Ry x [0,1]) x R), dt®dp®@v1(dv)) for W, such that B*, 32, W, W2, W are all
independent and such that (Y;) admits the representation

AV} =b(Y', pe)dt + o (Y, ue)dy

+j j FE (), i) BES (9), Y0, 0)AW (£, p,v)
0 JR



X. Erny et al./Conditional McKean-Vlasov limit 19

f \ N Y, pe)dW(t, p),

dY;” =b(Y; 2 u)dt + o (Y, f ,,ut)dﬁt

f f \/7*“ Y2, e, v)dW (¢, p,v)
f VFE @), p)s(E, (). Y2 ) AW (1),

where Fy is the distribution function related to s, and F71 its generalized inverse.

Proof. Theorem 11.2.42 of Jacod and Shiryaev (2003) implies that Y is a continuous semimartingale
with characteristics (B, C) given by

t
B! =J b(Y, ps)ds, 1<i<2,
0

et = [ otimas + [ [ sopdnte i atanas
ffjfxus (2, Y, ps, v)?v1 (dvo)ps(dz)ds, 1<i<2,

0 = [ [ [ 10 Be ¥ s B0. 2 e s o).
As we are interested in finding five white noises, we need to have five local martingales. This is
why we introduce artificially Y;' := 0 for 3 < i < 5. The rest of the proof is then an immediate
consequence of Theorem III-10 and Theorem III-6 of El Karoui and Méléard (1990). More precisely,

Theorem ITI-10 implies the existence of five orthogonal martingale measures M* (1 < i < 5) on
Ry x R x R with intensity dt - u(dx) - v1(dv) such that

Ay} =b(Y;', pe)dt + JR JR o (Y, pe)dM* (¢, z, v)
+JR JR V@, ) ¥ (2, Y, e, 0)dMP(t, 2, v)
N JR JR VI @, w)r(@, Y ) dMP(t,p, v),

dY2 =b(Y2, j)dt + JR JR o (Y, p)dMP(t, 2, v)
+JRJRm@(x,}ff,m,v)dM5(t,x,v)
+LJRmﬁ(x,ﬁ,ut)dM“(t,x,v).

Then, B! := M([0,t] x R x R) (i = 1,2) are standard one-dimensional Brownian motions, and
Theorem II1-6 of El Karoui and Méléard (1990) allows us to write M (3 < i < 5) as

t

M([0.] x A x B) =f 1a(F; ()L (0)dW (s, p. v)

0
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t

M3<[o,t]xAxB>=jnA< H(p))dW (5, p)
0

MA([0,1] x A x B) = j LA(F (p)dW (s, p),

where W1, W2 W are white noises with respective intensities dt - dp, dt - dp and dt - dp - vy (dv). O

We now prove a key result for the proof of our main results. Recall that the martingale problem
(M) is given by definition (4.1).

Theorem 4.3. Grant Assumptions 1, 2 and 3. Then the law of every limit in distribution of the
sequence () is solution of the martingale problem (M).

Proof. Let p be the limit in distribution of some subsequence of (1) and let Q = Qu be its law.
In the following, we still note this subsequence (u'V). Firstly, we clearly have that pu® = 9. For
0< 81 <. <8k <8 U1, ¥k € CL(PR)); @1, 01 € Co(R?); p € C3(R?) define the following
functional on P(D(R4,R)) :

F(p) i= 1 (psy) -t (s ) L(R - 1 ® p(dy)er(vsy) - - - ok (vse ) [MY (1 v) = ML (12, 7)]

where (M (p,7)): is given by (19). To show that (M (u1,7))i=0 is a (Pg,,(G:):) martingale, we
have to show that
| Fm)Qu(dm) = E[F(1)] =0,
P(D(R4,R))
where the expectation E [-] is taken with respect to Pg, = Pg. Note that the first equality is just
the transfer formula, and hence the expectation is taken on the probability space where p is defined.
Step 1. We show that

E[F(u™)] - E[F()] (20)

as N — oo0. This statement is not immediately clear since the functional F' is not continuous. The
main difficulty comes from the fact that u” converges to p in distribution for the topology of the
weak convergence, but the terms appearing in the function F require the convergence of ul¥ to py
for the topology of the metric Wj.

The proof (20) is actually quite technical, therefore we postpone it to the Appendix in Lemma 6.2.

Step 2. In this step we show that E [F is equal to 0. Applying F to u?N gives
P p M q pplying weg

N
F(u) = 1 () r (1)) 3 Z V(XD XN Lo (X E X D)

N,i N,j ,i J
[go(Xt LX) = (X, XN

S S

t t
| B 0 X XN — [ B ) (X X
t

1 , , , 1 . . ,
- if O'(XiVJ’MiV)zaa%l@(XrN’laXivVJ)dr - 5] U(XTNJ’Miv)Zaa%%p(XrN’laX7]‘V7j)dr
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with iy = i and iy = j. Denote #*(dr,dz,du) := n(dr,dz,du) — dr - dz - v(du) the compensated

version of 7. For (i,5) € [1,...,N]?, s <t let us define
N : t . . . . t . . . .
MG = f o (X, 1) (X, XVI)dB, + f o (X, ) a2p(X,, XV9)dBY; (22)
N
WSI\;JJ J o p(x N
) k=LZk¢zj 1s,t] xRy x E { <A}
. 1 . _ . ,
N,i N,k N, N k i N,j N,k N,j N k
QD(XT* + 7\11(er 7Xr7 s Hp—y U, U )v er + = (er 7X s Hp—y U, W ))
VN VN

(XN XN’J)] 7 (dr, dz, du);  (23)

r—

ISV Y I ¥ (> NS

) ) 1 .
XNty 1y XNk XN N kot XN (xR XN N R
[eoe + )X+ il k)
(XN X! J)] v(du)dr (24)
and
FN,i,j _ AN,i,j
f j fXNWV)T@(XN,XN“,uii,uk,u’l)aMXNXﬁﬂ)u(du)dr
1,k#

2
2 1 4 A , ,
-3 f [ % O ORS00 R OEN X Y )
=1 k 1, k4,5

P2 p (XN, XN (du)dr,  (25)
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with again 71 = ¢ and is = j
Applying Ito’s formula, we have

P(X X = (XN X 4 M+ W+ AT

t t
n f DX )0, (XN, XN dr j

S

b(XgV)]vquﬂv)arﬂp(er’v’lvXr{VJ)dT

t t
, , , 1
w3 | o Rt X+

o (XN, 1 )02 o(X N0 XN )dr.

Note that thanks to Assumption (3) ¢), the term in the second line of (2
using the definitions (5) and (6)

(26)

5) is zero. Again, if i # j,

f BN XN N o WX XN N b ) (du)
E

= J GXNF XN N ) O(XNT XN N vy (do)
R
and

J W(XNE XN N R a2 u(du) = k(XNE XN N2 4 f G(XNE XN N 0)20 (do)
E R

This implies that the last line of (25) is equal to the sum of three last lines of (21), up to an
error term which is of order O(¢/N) if we include the terms k = ¢,j in (25)

As a consequence, plugging (26) in (21), using the definitions (23), (22), (25) and the previous
remark we obtain

1
F(MN) = wl(ui\i)ﬁ}k(:u’sk)]vg (Xgl7XNj) (XNZ XNJ

N )[MN13+WN13+FN,Z,J:|

?Mz

1
Using (26) we see that (M SR WN Y, ot

s, is a martingale with respect to the filtration
(FX™ Ym0 with FXY 1= o4, XN,

$ u < t) on the space where X N is defined. Hence using
that @, and v, are bounded, and that p? is (.EXN)t>0 adapted,

E[F(u")] -E[E [F(uN>|f§N]] -

S1 7

N
El%(uéﬁ) () N2 Z (XL X7 (XéZZ,XNJ)JE[Fif?”lffv“]}

<3 D[], e

implying that

| N,1,1|

E[FG)]| < CE |02+ 22

s,t | +
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Taylor-Lagrange’s inequality gives for all i # 7,
E|r|

w2, 2

k=1,k#i,j n=0"%

t
lf E [\I/(sz’kszv’ia,u'ivaukaui)nq](XgV’k?XgV’jaﬂr{vaukauj)gin] V(du)d?”’
E

N t
1 .
<c_ % ”E[nmxz“k,xzw,uiv, P UEE, X N )] v(du)dr
NVN  _ 1,k#i,j Vs Y

<C—,

and a similar result holds for I‘Z;l’l. Consequently,
E[F(a")] ] < ON7I2,

implying together with (20) that

4.3. Proof of Theorem 2.5

The beginning of the proof is similar to the proof of Theorem 2.6 of Erny, Loicherbach and
Loukianova (2020). It mainly consists in applying Lemma 4.2 and Theorem 4.3.

Let p be the limit in distribution of some converging subsequence of (1) (that we still note
(u™V)). Then, by Proposition (7.20) of Aldous, y is the directing measure of an exchangeable system
(YH);>1, and (XN'");<;<n converges in distribution to (Y?);;.

According to Theorem 4.3 and Lemma 4.2 for every i # j, there exist, on an extension, Brownian
motions 371, 3542 and white noises W51, W32 WWiJ with respective intensities dt - dp, dt - dp
and dt - dp - v1(dv) all independent such that

dY b(Yt ’:u’t)dt + J( t ’/‘t)dﬂzj !

J J\/im@ Y, e, 0)dWH (8, p, )
f \/7’” VY )W (8, ),

dYtJ =b(Y/, pg)dt + o(Y; ,ut)dﬁ ]2

R \/i“t B(ET (p), VY s 0)d W (1, )
Jm Y )W (8, p),
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where F is the distribution function related to y, and F ! its generalized inverse. We can construct
this extension in a global way such that it works for all couples (i, j) simultaneously.

As the system (Y?);>; is exchangeable, we know that Wi/l = Wi Wii2 = Wi, Wi = W,
BH3t =: B¢ and B2 =: BI.

It remains to identify the structure of y; appearing above as the one prescribed in (4) as con-
ditional law. This is what we are going to do now. To do so, we introduce the following auxiliary
system

A2 W E N+ o2

1
+L f \/f((Ff’N)‘l(p)7utZ’N)‘i’((FsZ’N)’l(p),Z AN )dW (¢, p, v)

j VHEZN =1 (), 1NV a(FZ2N ) (), 2 PN Yaw' (8, p),

where p#V = N1 Zf\il dyn.i, FZN is the distribution function related to p% . In addition, in
the rest of the proof, let u~ := L(X'|W) and u¥ be the directing measure of (Y?);>; that was
denoted by p so far in this proof.

With similar computations as in Theorem 2.3, one can prove that, for all t > 0,

t

B[z - Xj?] <o+ 1 Lt E[(ZN* - X)?]ds + C(1 + 1) JO E [Wh (i, 122 ds.

. . . 1N
Besides, introducing pX := N~1 Y1 0%, we have

E[Wi(ud nZN)?] <2E Wi (i, 1 N)?] + 2B [Wa (uN, u2™)?]

<O [Wh (i, iXN)?] + 2B [| 20 - XLT°
<2E [Wy (', pa N)?] + 2B [(2F — X1)?].

As a consequence, we obtain the following inequality, for all ¢t > 0,

t

E|(z% - X)?| <c+1) j B2~ X)]ds + € j E [Wi (', uN)?) ds,

with C; a constant depending on ¢. Gronwall’s lemma now implies that, for all ¢ > 0,
t
E [(ZtN” —Xg‘)?] < CtJ E[W (X, X)) ds. (28)
0

Now, let us prove that the expression above vanishes by dominated convergence. Note that pX-V
converges weakly to uX a.s. by Glivenko-Cantelli’s theorem (applying the theorem conditionally
on W) recalling that the variables X7 are conditionally i.i.d. given W. And pX*"(|z|) converges
to uX(|z|) a.s. as a consequence of the strong law of large numbers applied conditionally on W
(once again because of the conditional independence property). Hence the characterization (i) of
Definition 6.8 and Theorem 6.9 of Villani (2008) implies that W1 (uX", uX) vanishes a.s. as N goes
to infinity for every s = 0.
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We also have, by Jensen’s inequality and the definition of W, for all ¢ > 0,

E [W1(M§7 N§7N)4] < CE [uf(x‘*)] +CE [ﬂf’N(x‘l)] =CE [(Xsl)ﬂ +E [

==
=
=

Consequently
sup B [Wi (ud, p5N)'] < C sup E[(X)'] < oo,
0<s<t 0<s<t
recalling (14).
So we have just proven that the sequence of variables Wy (uX, uX*V)? vanishes a.s. and for every
s = 0, and that this sequence is uniformly integrable on Q x [0,¢] for any ¢ > 0. This implies, by
dominated convergence, that

t
X X,N\2
LE[W1(MS7MS )]dSI\:fLO-

Recalling (28), we have that

E [(ZtN’i - )‘(;‘)2] — . (29)
With the same reasoning, we can prove that for all t > 0,
B[z - 7)) — o (30)
N—>w

Finally, using (29) and (30), we have that, for all ¢ > 0,
B[V, - X)] =0,

This proves that the systems (X%);>1 and (Y?);>1 are equal. Hence, recalling that p =: p* is a
limit of xV and also the directing measure of (Y*);>1, it is also the directing measure of (X*);>1,
which is puX = L(XW).

4.4. Proof of Theorem 2./

The proof of Theorem 2.4 is now a direct consequence of Theorem 2.5 and Proposition (7.20) of
Aldous (1983).

5. Model of interacting populations

The aim of this section is to generalize the previous model, considering n populations instead of
one. Within each population, the particles interact as in the previous model, and, in addition, there
are interactions at the level of the populations. The chaoticity properties of this kind of model have
been studied by Graham (2008). Two examples of such systems are given in Figure 1.

If we consider a number of N particles, we note, for each 1 < k < n, N the number of particles
of the k—th population. In particular N = Ny + ... + N,,. We assume that, for all 1 < k < n, Ni/N
converges to some positive number, such that each population survives in the limit system.
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FIGURE 1. Two examples of interacting populations.

Forall1 < k < n,let I(k) € [1,n] be the set of populations that are “inputs” of the population k,
that is, such that particles within these populations have a direct influence on those in population
k. The dynamic of the N—particle system (XV**%) | <1<, is governed by the following SDEs.

1<i< N

dX Nk _ pk (XtN,k,z Nk) dt + o (XtN’k’i,,uiv’k) dﬁf’z

ut,

N, N,kji N, Nk 1,
+ Z J‘ \Illk X J X Z,Mtf 7Mt— , U b ’LL )1{z<fl(XNlJ
R.{_XE'"

}dw J(t, 2, u).
lelI(k

J)# k i)

In the above equation,
Ny,
= Nk_l Z 5XN,k',j7
t
j=1

7l (1 <1 < n,j = 1) are independent Poisson measures of intensity dtdzv(du), where v is a
probability measure on (RN* )™ which is of the form

v = (V1,1)®N* ® (V2,1)®N* ®..® (Vn,1)®N*.

The associated limit system (X*?); <<, is given by
i>1

axtt bt (X1 k) de + o* (X5 k) agt

+ Z JJ‘\/flxﬂt ‘Ijlkxszyﬂtaﬂty )AM'(t, z, v)

leI(k)

+ Z J’ \/fl lkxszaHtaﬂt)dMl ( ),

leI(k)
with
\ijlk(xvyamlvaav) = J. \I/lk(x’y,mhmg,v,w)dl/k’l(w)7
R
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’ilk(337y7m17m2)2 = J \Illk(x7y= my,ma, ul717uk72)2dy(u) - J \i/lk(w,y, m, U)Qdyl’l(’l))
R

n

= J \I/lk.(m7 Y, my,ma, ul’17 uk,z)QdV(u) - J \Ijlk(x7 Yy,m, ul,la uk72)\ljlk(m7 Yy,m, ul’la uk,S)dy(u))
and

‘ ¢ ‘ ¢

My (A) = j La((F) ™ () AW (s, p) and M{(A x B) = J La((F) ™ @)L (0)dW! (s, p,v)-
0 0

In the above formulas, ¥ := £ <th’1|a (Ulel(k) Wl)) and (F!)~! is the generalized inverse of the

function F!(z) := P(X\! < z). Finally, WhE and W! (1 <1< n,ke I(l),i > 1) are independent

white noises of respective intensities dsdp and dsdpv"!(dv), and

W= o{W!'(Ju,v] x A x B);u <v<t; AeB([0,1]),B e B(R)};

W= a{Wi t > 0}.

Both previous systems are “multi-exchangeable” in the sense that each population is “internally
exchangeable” as in Corollary (3.9) of Aldous (1983). With the same reasoning as in the proof of
Theorem 2.3, we can prove the existence of unique strong solutions (X V%) 1<r<, and (X% 1<ren

1<i< Ny, i=1
as well as the convergence of the N —particle system to the limit system:
Theorem 5.1. The following convergence in distribution in P(D(Ry,R))"™ holds true:

N,1 , N2
b) b

(,U/ 2 "'7:uN7n) - (ﬂ17ﬂ27”‘7/j’n) ’
as N — 0.
Before giving a sketch of the proof of Theorem 5.1, we quickly state the following result.

Proposition 5.2. Let r < n and 1 < ky < ... < k. < n. If the sets 1(k;) (1 <i < r) are disjoint,
then the random variables p* (1 <i < r) are independent.

Proof. For any 1 < k < n, the system (X*?);>; is conditionally i.i.d. given o (Uld(k) Wl) . So, by
Lemma (2.12) of Aldous (1983), p* is o (Ule[(k) Wl) —measurable. O

Remark 5.3. In the two evamples of Figure 1, all the variables i (1 < k < n) are independent.

Coming back to Theorem 5.1, its proof is similar to the proof of Theorem 2.5. The main argument
relies on a generalization of the martingale problem discussed in Section 4.2. Let us formulate it.

Consider
n

O := P(D(R,R)" x (D(Ry,R)?)",

and write any atomic event w’ € ) as
W' = (:ulﬂ lu2a ) ;un’ Yl)lﬂ Y1727 Y2717 Y2727 ey Yn)la Yn)2) = (1“7 Y)v

p=(p . p),Y = (YY)
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For @ € P(P1(D(R4,R))™), consider the law P’ on Q' defined by

P'(Ax By x..xB,) = Ta(m)m' @ m*(By)..m™ @ m™(B,)Q(dm),

JP(D(R+,R))“

with A a Borel set of P(D(R4,R))" and By, ..., B,, Borel sets of D(R,,R)?.
Then, we say that @ is solution to our martingale problem if, for all g € CZ((R*)"),

t
g(¥:) — g(¥o) j j j Lo(Yor o2, 0 @ . @ W (d2)™ @ .. @ 0™ (d)
0 n n

is a martingale, where

k=11:=1 k=11i=1
1 n
+35 Dt mhst gt ml mF)? a2 g(y)
k=11lel(k)i=1
2
+1 i 2 fl(.'L'l ml)\lllkl(]}l ykl,n ml mkl Ul)
2 b b )

ijlk(z (xlv ka’iQ ) ml7 ka’ ul)a?/klvil yk2,i2 g(y)

N,l7 N,n)

Sketch of proof of Theorem 5.1. To prove the convergence in distribution of (u vy N, We
begin by proving its tightness. Following the same reasoning as in Section 4.1, we can prove
that, for each 1 < k < n, the sequence (u™V'*¥)y is tight on P(D(R,,R)). Hence, the sequence
(uNr o pN ) v on P(D(R4,R))™.

Then a generalization of Lemma 4.2 allows to prove that the distribution of (fil,..., z") is the
unique solution of the martingale problem defined above.

Finally, we can conclude the proof showing that the law of any limit of a converging subsequence
of (u™N1, ..., u™™) y is solution to the martingale problem using similar computations as the one in
the proof of Theorem 4.3. O

6. Appendix
6.1. A priori estimates

Lemma 6.1. Grant Assumptions 1, 2 and 3. For all T > 0,

2
sup E [sup XtN’l‘ ] < 0.
neN*  [t<T

Proof. Notice that

sup | XM < (Xg) + [[Bl ot + sup

0<s<t 0<s<t

1
+ —— sup |[MY|,
S 1M

O<s<t

| ot yas:
0
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where MY is the local martingale

N

MY = g(xNk x N1 ui,v_,uk,ul)]l{zgf(xiw«,“i\i)}dﬂk(s,z,u).

s— S— 7

k=29 J‘[O,t]xR_,_ xE -

Consequently, by Burkholder-Davis-Gundy’s inequality and Assumption 3,

N-—-1
B sup [XUE| < € OIS + ol el S [ sup wayom, vt
E

0<s<t Z,y,m

This proves the result. O

6.2. Proof of (20)

Lemma 6.2. Grant Assumptions 1, 2 and 3. With the notation introduced in the proof of Theo-
rem 4.3, we have

E[F(u™)] — E[F(u)].

N—x

Proof. Let us recall that ¥ denotes the empirical measure of (X™V%);<;<n and that yu is the limit
in distribution of (a subsequence of) u'.

Step 1. We first show that almost surely, u is supported by continuous trajectories. For that
sake, we start showing that PV := E [p] = £(X ') is C—tight. This follows from Prop VI. 3.26
in Jacod and Shiryaev (2003), observing that

lim E [sup |AX;V’1|3] =0,
N—wxc s<T

which follows from our conditions on 1. Indeed, writing * (u', u?) := supmyyym'z/)(x,y,m,ul,uz),
we can stochastically upper bound

sup |AX;V’1|3 < ]‘:’u]g |1/)*(Uk’1, Uk’2)|3/N3/2,
<

s<T

where K ~ Poiss(NT| f|.) is Poisson distributed with parameter NT f| ., and where (U*!, U*:2),
is an i.i.d. sequence of v; ® vy —distributed random variables, independent of K. The conclusion
then follows from the fact that due to our Assumption 3, E [[¢*(U*!, U*?)|3] < oo such that we
can upper bound

1 K
w77k L T7R,2Y|3 7 A73/2 % prk, 1 77k,2Y13
B [sup o (@4, UR) P ]sElNg/gkzlw N
E [Jo* (U1, UF2)] E [Jo* (U1, UF2)]

as N — 0.
As a consequence of the above arguments, we know that E[u(-)] is supported by continuous
trajectories. In particular, almost surely, p is also supported by continuous trajectories. Indeed,
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w(C(Ry,R)) is a r.v. taking values in [0, 1], and its expectation equals one. Thus pu(C(R.,R))
equals one a.s.

We now turn to the heart of this proof and show that E [F ()] — E [F (] . The latter expression
contains terms like

t
| ot ) v ¥

for some bounded smooth function p. However, by our assumptions, the continuity of m — b(x, m)
is expressed with respect to the Wasserstein 1—distance. Yet, we only have information on the
convergence of Y to ju, for the topology of the weak convergence.

In what follows we make use of Skorokhod’s representation theorem and realize all random
measures 1V and g on an appropriate probability space such that we have almost sure convergence
of these realizations (we do not change notation), that is, we know that almost surely,

N -

as N — o0. (Recall that we have already chosen a subsequence in the beginning of the proof of
Theorem 4.3). Since p is almost surely supported by continuous trajectories, we also know that
almost surely, ul¥ — u; weakly for all ¢ (this is a consequence of Theorem 12.5.(i) of Billingsley
(1999)).

Step 2. In a first time, let us prove that, a.s., for all 7, u¥ converges to ju, for the metric ;.
Thus we need to show additionally that almost surely, for all t > 0, {|z|dul (z) — §|z|dp:(z).

To prove this last fact, it will be helpful to consider rather the convergence of the triplets
(uN, XN N (Jx])). Since the sequence of laws of these triplets is tight as well (the tightness of
(V)N and (XN1)y have been stated in Section 4.1, and the tightness of (uV (|z|)n) is classical
from Aldous’ criterion since u (Jx|) = N~! 22[:1 |XV¥|), we may assume that, after having chosen
another subsequence and then a convenient realization of this subsequence, we dispose of a sequence
of random triplets such that almost surely, as N — oo,

(N, XN N () = (1, Y, A),

where A = (A;); is some process having cadlag trajectories. In addition, it can be proven that
the sequence (u™(|x]))n is C'—tight (for similar reasons as (X™1)y), hence A has continuous
trajectories.

Taking a bounded and continuous function ® : D(R,,R) — R, we observe that, as N — oo,

EU @dﬂl <_1EU ddu™’
D(R4,R) D(R4,R)

such that E [pu] = L(Y).
Notice that from the above follows that Y is necessarily a continuous process, since E [u] is
supported by continuous trajectories. Notice also that for the moment we do not know if A = u(]z|).

=E[o(X"h)] - E[2(Y)],

Using that supy E [supth |XtN’1|2] < 00 (see our a priori estimates Lemma 6.1), we deduce

that the sequence (sup,<r |XV113/2) y is uniformly integrable. Therefore, E [supth |XtN’1|3/2] -

E [sup,<7 [Y3]3?] < c0. In particular, we also have that

E [sup ,ut(|ac|3/2)] <o and thus  sup . (|z[*?) < oo almost surely,
t<T

t<T
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for all T, since

E [sup ut(|$|3/2)] —E [sup j le?’/zu(dv)] <E [ j sup |%|3/2u(dv)1
t<T t<T JD(R4 R) D(R4 R) t<T

=E [sup |Yt|3/2] < o0.

t<T

We know that, a.s., u~ converges weakly to p and pu(C(R4,R)) = 1. Let us fix some w € ) for
which the two previous properties hold. In the following, we omit this w in the notation. Let € > 0,
t < T and choose M such that {|z| A Mdu, > {|x|du, — e. Then, as N — oo, almost surely,

j el > f 2 A M — f 2] A Mdp,.

Thus
limNian lz| dul = f|x|d,ut —¢,
such that
limNian|33| dulN > J|x|dut. (31)

Fatou’s lemma implies that
. N . N o N,1
E [thlan‘|x| dp; ] < thmfIE [f || dp; ] = thlnf]E [|Xt ' |] =E[V}]] =E [J |1:|d,ut] .
Together with (31) this implies that, almost surely,
limNinff lz| duly = J|x|d,ut.

Finally, since {|z|du” — A and since A is continuous, for all ¢,
limNinff lz| dul = limsupf|x| duly = J|z|dut.
N

This implies that almost surely, for all ¢ > 0, § |z|dul’ (z) — §|z|dp:(z) = A; < 0. In particular,
almost surely, for all ¢ > 0,
Wl (Mzzfva Nt) -0

(see e.g. Theorem 6.9 of Villani (2008)).
Step 3. Now we prove that E[F(u™)] converges to E [F(u)], where we recall that

F() = ¥r(tey) - -~ i) f 1 ® 1(d)or(ver) - - 0 (150

D(R4 R)?

[@(%) —o(7s) — f JR JR Lp(Yrs prs v)Vl(dv)ur(dx)dr] ,
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where 9; € C,(P(R)), ;i € Cp(R?) (1 < i < k) and ¢ € CP(R?). Let us recall some facts: by the
boundedness of the functions #; (1 < i < k) and our boundedness Assumption 3, it is sufficient to
prove the two following convergence:

B[ (gy) - ndy) = Yrsy) - dulis)l] =2 0, (32)
E[IG(u™) = Gl] = 0, (33)

G(n) :=f 1@ p(dy)e1(vsy) - - - pr(Vsi )
D(R4 R)?

¢
[@(%) —o(7s) = f JR JR Lo(vps pirs @, v)vl(dv)m(dw)dr] :
Indeed, since the functions v¢; (1 < i < k) and G are bounded, we have

E[|F(u™) = F(u)]] < CE [[a(pd) - (i) = ¥a(ie) - nlps, )]
+CE[IG(™) - 6]
The convergence (32) follows from dominated convergence and the fact that the function
m € P(D(R4,R)) — ¢1(msg,)..¢0(ms, ) €R

is bounded and continuous at pu, since p is supported by continuous trajectories.
To prove the convergence (33), let us recall that we have already shown that

—_

sup sup B [ (|2?)] < o0,

<s<t

suptE [pe(|22?)] < oo,

2
0<s<

3. p(C(R4,R)) =1 a.s.

4. a.s. Vr, ul¥ converges to ju,. for the metric Wy,

5. for all x,2" € R, y,y' € RZ,m,m' € P1(R),v € R,

|Le(y, m, z,0) = Lo(y',m', 2", 0)] < C)([ly = /Il + |z — 2| + Wi (m, m"),

such that {, C(v)vi(dv) < oo,

J sup Lo(y, m, z,v)v1(dv) < 0.
R

x,y,m

In order to simplify the presentation, let us assume that the function G is of the form

G = | non() f || 2otm . optaonun oy

Now, let us show that E [|G(u") — G(u)|] vanishes as N goes to infinity.

6 =6 <6 = [ ot ([ [ [ Letrmmam @@
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AT ( | t [ ] zetmna v)l/l(dv)ur(dw)dr)
— JDZ pN @ ™ (dy) <J’t JR JR Lo(Yr, prs @, )1 (dv) (dx)dr> ‘

+ ‘G(MN) - Jm 1™ @ p™ (dvy) (f JR JR Lo(vr, pir, @, 0)11 (dv)ﬂiv(dl‘)drﬂ
=: A} + Az + As. ‘

+

We first show that A; vanishes a.s. (this implies that E [A;] vanishes by dominated convergence).
A is of the form

A1=\ [ pouamne) - e @ne)
D2 D2

with ;
H:yeD?— J J J Lo(Ye, por, T, v)v1 (dv) p- (dz)dr € R.
s JR JR

We just have to prove that H is continuous and bounded. The boundedness is obvious, so let us
verify the continuity.
Let (7™), converge to v in D(R,,R)2. We have

|H(v) — H(Y")| SJ JRJR | H (s pors w,0) = H(Y,!s o, 2, 0) |1 (do) e (da)dre
<J,s JR J]R )l = lh (dv)pr (da)dr

t
<0j [T

which vanishes by dominated convergence: the integrand vanishes at every continuity point r of ~
(whence for a.e. 7), and, for n big enough, sup,.<, ||77|l1 < 2sup,<; ||7r|l1-
Now we show that E[Az] vanishes. We have

Ay < J pN @ pN (dv)
D2

(I “)

Since the function = € R — §, Lo(vy, i, 2, v)v1(dv) is Lipschitz continuous (with Lipschitz con-
stant independent of +, and p, ), we have, by Kantorovich-Rubinstein duality (see e.g. Remark 6.5
of Villani (2008)),

Leo(yrs iy @, 0)vr (dv) pr (dv) — Le(yr, pir, @, v)va (do) sy (da)
LI I

t t
As < CJ Y ®uN(dv)f Wiy, ) dr = CJ Wi (' ) dr.
D2 s s

Hence .

B[Ax] < C [ E[W) ()] dr,

S
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which vanishes by dominated convergence: the integrand vanishes thanks to Step 2, and the uniform
integrability follows from the fact that

t
sup f E[Wa(u, )2 | dr < C(t = s)sup sup E [ (le)¥2] + C(t = 5) sup E [ps(lo)*2] .

N Js N 0<s<t 0<s<t

We finally show that E[A3] vanishes.
t
tas [ o @) ([ [ [ 1Betrn o) = LoGrna. | o @)

< JD2 N @ N (d) (Lt JR JR CYWy (i, p)vr (dv) (dac)dr) .

Then,
t
E[As] < C j E Wy (a2 1,)] dr,

which vanishes for the same reasons as in the previous step where we have shown that E[As]
vanishes. O
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