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Abstract

The Pyramid of Complexity (PoC) is a multi-levels structure classifying our knowledge of the matter from
particles to more complex organisms [1]. We are here introducing the PoC using the family of energy opera-
tors defined in our previous works [3, 5, 6]. To do so, we formulate three postulates to define the application
of the energy operator theory to the PoC. We also associate a PoC with a specific space-time metric which
is the basis to define the energy operators in a specific referential. The theory is then applied using two
examples related to the electromagnetic and gravitational coupling defined in [3]. The first example is
related to an electromagnetic cavity, whereas the second one is based on the human heart.

1. Introduction

1.1. General Concept of the Pyramid of Complexity

The Pyramid of Complexity (PoC) is a multi-levels structure defined in [1] and classify our knowledge of
the matter from the basic elements and particles (quarks, nucleons, ..) at the bottom of the pyramid, to
the multi-level complexity defining advanced organisms in the highest level of the PoC. We call advanced
organisms, those ones constituted with various levels of the PoC, i.e. cells, biomolecules, atoms, . . . etc.
With our expanding knowledge and understanding of our environment, the PoC is always subject to changes
from both the top and the bottom of the pyramid. Therefore, we can wonder what is the structure smaller
than the quark (or the precedent level in the PoC). At the opposite what are the most complex structures
(solar system, cluster of galaxies, . . . ) at the top of the pyramid?

The PoC has been introduced in relationship with the entropy of the universe [1]. Structures or elements
in the PoC arise, because the process cannot occur fast enough in the expanding universe to maintain
equilibrium. The second assumption is that each type of fundamental forces would always form the objects
which are the most stable from its own perspective. For example, strong forces would turn all nuclei into
iron; electric force would turn all atoms into noble gases [1]. Beyond the definition of the PoC, some works
have argued in favor of a multiverse where the PoC should be defined for various subsets constituting it.
This work does not include the multiverse versus universe debate.

Note that fundamental forces are here defined as the four forces, which are the interactions that do
not appear to be reducible to more basic interactions. Namely, the gravitational and electromagnetic
interactions, which produce significant long-range forces whose effects can be seen directly at the macroscale;
and the strong and weak interactions, which produce forces at microscale or subatomic distances governing
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nuclear interactions. Furthermore, the PoC associates each element with a scale magnitude, i.e. a quark is
in the magnitude of 10−20 cm, the human being is around 102 cm, whereas our planetary system orbiting
the sun is in the 1015 cm [1]. Each structure or object within a level of the PoC can interact with other
structures in the other levels of the PoC. In the following, the structures or objects can be called observers.
This work is the development of these three postulates.

Postulate 1. Each level of the PoC classifying a type of structure can be associated with an energy level in
relationship with its interaction between one and several fundamental forces.

Postulate 2. The PoC is an energy lattice associated with a nominated space-time referential and a class
of energy operators.

Postulate 3. Each structure within a PoC is intrinsically defined by a variation of energy resulting from
its interaction with one or several fundamental forces.

In the following, we discuss and define in details the formulation of these postulates.

1.2. Work Overview and Relationship with the Energy Operators

The energy operators are a generalization of the Teager-Kaiser energy operators, first introduced in the
measure of instant energy of a periodic signal and found various signal processing applications [18]. The
generalized energy operators with their conjugates were then redefined on the mathematical basis of the
Schwartz space [5, 6] subspace of the L2-space [2, 7, 9]. With this definition, the generalized energy operators
found some applications in the solutions of the wave equation [5, 6], linear and non-linear partial differential
equations (NL/LPDEs) [2]) and more recently in the definition of an electromagnetic and gravitational
coupling [3].

This work starts with the definition of the generalized energy operators associated with a particular space-
time metric extending the previous definition given in [6]. Subsequently, [2] defined the concept of multi-
plicity of solutions where additional solutions of a given PDE are generated using the properties of these
subspaces. Here, the different class of energy operators are used to define the PoC with different energy
levels, hence following the general definition of an energy lattice. Note that the energy operators are intro-
duced in the equation formalism by assuming that there is a variation of energy quantity associated with a
given structure as described with Postulate 3.

1.3. Notation and Symbols

In this work, several symbols are used. The set of integer numbers Z is sometimes called only for the positive
integer such as Z+ or Zm+ (for a space with dimension m). When the integer 0 is not included, it is explicitly
mentioned such as Z+ − {0}. The set of natural numbers is N, with only the positive numbers defined as
N+. R is the set of real numbers. Also, the Schwartz space is here called S−(Rm) which is the notation
used in previous works such as [2] and [3]. Several notations describe the relationship between spaces such
as intersection (

⋂
), union (

⋃
), inclusion (⊂, inclusion without the equality (, inclusion with equality ⊆).

Reader can refer to [9] or advanced mathematical textbooks for more explanations.

2. Mathematical formulation

2.1. L-2 norm and Schwartz space

Here, we are recalling some definitions and results developed in [3] where the Schwartz space was defined
using the L-2 norm (p equal to 2 for the Lp norm). It allows to state the Plancherel identity ∀ f ∈ L2(Rm)
: ∫

Rm

|f |2dt =

∫
Rm

|F(f)(ξ)|2dξ (1)

2
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We restrict our work to the functions belonging to the Schwartz space f ∈ S−(Rm) ⊂ L2(Rm). In other
words, these functions are finite energy function described in (see Remark1 of [3]). The Schwartz space
S−(Rm) is defined as ( for m ∈ [1, 2] [2, 6], for m ∈ Z+ [3]:

S−(Rm) = {f ∈ C∞(Rm)|‖f‖α,β <∞, ∀α, β ∈ Zm+} (2)

where α, β are multi-indices and
‖f‖α,β = supt∈Rm |tβDαf(t)| (3)

Note that one can define S−(Rm) with ∀α, β ∈ Zm, but we decide to use Zm+ following the development
in the next sections. In [3] (see Properties 1 ), the properties of S−(Rm) are developed and discussed, in
particular the stability with Fourier transform. It then leads to recall the equation:

for f ∈ S−(Rm), k ∈ N

supξ∈Rm{|(1 + |ξ|2)k/2F(f)(ξ)|} < ∞

↔ ∃a ∈ R, |(1 + |ξ|2)k/2F(f)(ξ)| ≤ a

1 + |ξ|2
(4)

Now, let us recall the definition of the Hilbert spaces Hk,p(Rm) (Sobolev spaces W k,2(Rm) = W k(Rm) ( see
[3] Definition I.1) :

W k(Rm) = Hk(Rm) := {f ∈ S∗,−(Rm)|
(
1 + |ξ|2)k/2F(f) ∈ L2(Rm)} (5)

Note that S∗,−(Rm) is the space of tempered distributions, dual of S−(Rm) via the Fourier transform. A
function belongs to L2(Rm) if and only if its Fourier transform belongs to L2(Rm) and the Fourier transform
preserves the L2-norm. As a result, the Fourier transform provides a simple way to define L2-Sobolev spaces
on Rm (including ones of fractional and negative order m [8]). Finally, the stability via Fourier transform
is the key for S−(Rm) ( Hk(Rm).

Remark (3) Following the remark (Remark 3.4 in [10] ) and the general properties of the Fourier transform,
one can state the equivalence relationship in L2(Rm)

f ∈ Hk(Rm)↔ Dαf ∈ L2(Rm)∀|α| ≤ k ↔ F(Dαf) ∈ L2(Rm)∀|α| ≤ k
↔ ξαF(f) ∈ L2(Rm)∀|α| ≤ k ↔ (1 + |ξ|2)|α|/2F(Dαf) ∈ L2(Rm)∀|α| ≤ k

Using the definition of Hk(Rm) and the properties of the Fourier transform, it is also possible to show that
for k > k′, Hk(Rm) ⊂ Hk′(Rm) [21], and the relationship H0(Rm) = L2(Rm). It is also possible to define
H∞(Rm) =

⋂
k∈N Hk(Rm) with S−(Rm) ⊂ H∞(Rm), and to extend this equality to k ∈ R following [10].

2.2. Energy Operators and a Flat Space-Time Metric

2.2.1 Definition and properties of the Energy operators in S−(Rm)

Let us call the set F(S−(Rm),S−(Rm)) all Schwartz functions (or operators) defined such as γ : S−(Rm)→
S−(Rm). For f ∈ S−(Rm), let us define ∂ki f (k ∈ Z, i ∈ [1, ...,m]), with f defined with the vector parameter
T = [t1, t2, ..., tm] ∈ Rm such as

∂ki f = ∂kf
∂tki

, ∀i ∈ [1, ...,m], ∀k ∈ Z+ − {0}
∂ki f =

∫ ti
−∞

(
...
( ∫ τ2
−∞ f(t1, t2, .., τ1, ti+1, ..., tm)dτ1

)
...
)
dτk,

∀i ∈ [1, ...,m], ∀k ∈ Z− − {0}
∂0i f = f, ∀i ∈ [1, ...,m]

(6)

Combining multiple integrals and derivatives justify the use of the Schwartz space S−(Rm) and echoes the
choice made previously in [5] (see equation (10)). The definitions and results given in [5] and [6] in the case
S−(R) are now formulated for S−(Rm). Section 2 in [5] and Section 4 in [6] defined the energy operators

3
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Ψ+
k , Ψ−k (k in Z) and the generalized energy operators [[.]p]+k and [[.]p]−k (p in Z+). Following [6], let us

define the energy operators with multi-index derivative:

Ψ+
k (.) =

m∑
i=1

∂1i .∂
k−1
i .+ ∂0i .∂

k
i .

Ψ+
k (.) =

m∑
i=1

ψ+
k,i(.)

[., .]+k = Ψ+
k (.)

[., .]+k,i = ψ+
k,i(.)

(7)

Further more, we also use the short notation [., .]+k = [.]+k in the remainder of this work. Note that Ψ−k is
the conjugate operator of Ψ+

k and ψ−k,i respectively to ψ+
k,i.

Remark (4) The families of (generalized) energy operators ([[.]p]+k )k∈Z and ([[.]p]−k )k∈Z (p in Z+) are also
called families of differential energy operator (DEO) [5] [6].

Furthermore, [6] defined the generalized energy operators [[.]1]+k and [[.]1]−k (k ∈ Z):

[[., .]+k,i, [., .]
+
k,i]

+

k,i
= ∂1i ψ

+
k,i(.)∂

k−1
i ψ+

k,i(.) + ∂0i ψ
+
k,i(.)∂

k
i ψ

+
k,i(.)

[[., .]+k,i, [., .]
+
k,i]

+

k,i
= ∂1i [[.]0]+k,i∂

k−1
i [[.]0]+k,i + ∂0i [[.]0]+k,i∂

k
i [[.]0]+k,i

[[., .]+k , [., .]
+
k ]

+

k
=

m∑
i=1

[[., .]+k,i, [., .]
+
k,i]

+

k,i

[[., .]+k , [., .]
+
k ]

+

k
=

m∑
i=1

[[.]1]+k,i

= [[.]1]+k
(8)

By iterating the bracket [.], [6] defined the generalized operator [[.]p]−k,i and the conjugate [[.]p]+k,i with p in

Z+. Note that [[f ]p]−1,i = 0 ∀ p in Z+ and i in Z.
Now, the derivative chain rule property and bilinearity of the energy operators and generalized operators
(for i in [1, 2]) are shown respectively in[5], Section 2 and [6], Proposition 3. The generalisation of this
property to i in [1, ..,m] for the operators ψ+

k,i(.), ψ
−
k,i(.), [[.]p]−k,i and [[.]p]+k,i (k ∈ Z, p ∈ Z+) is trivial due to

the linearity of the derivatives and integrals when defining ∂ki in (6). Due to the linearity of the sum, the
bilinearity property is also generalized to Ψ+

k (.), Ψ−k (.), [[.]1]+k and [[.]1]−k (k ∈ Z, p ∈ Z+).

2.2.2 Association with a Space Time Metric

For the following sections related to the physical meaning of the energy operators, we introduce a space-time
metric. In other words, we need to associate the energy operators definition with a metric. Therefore, we
restrict Rm, with specific value of m in Z+. The spacetime metric captures all the geometric and causal
structure of spacetime in the theory of general relativity [23], being used to define notions such as time,
distance, volume, curvature, angle, and separating the future and the past. As a first example, We are
interested in the four dimension associating 3D space and time with a signature (−,+,+,+) also called a
flat space time defined as:

ds2 = −c2dt2 + dx2 + dy2 + dz2 (9)

where interval ds2 imparts information about the causal structure of spacetime. When ds2 < 0, the interval
is time like and the square root of the absolute value of ds2 is an incremental proper time. Only time like

4
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intervals can be physically traversed by a massive object. When ds2 = 0, the interval is lightlike, and can
only be traversed by light. When ds2 > 0, the interval is spacelike and the square root of ds2 acts as an
incremental proper length [23]. Thus, one can write the partial differential equation:

ds =
∂s

∂t
dt+

∂s

∂x
dx+

∂s

∂y
dy +

∂s

∂z
dz (10)

In [5, 3], the generalized energy operators are defined omitting the cross-derivatives. Thus, one can
define the energy operator with the space time metric s following the previous section:

ψ+
k,x(.) = ∂1x.∂

k−1
x .+ ∂0x.∂

k
x

Ψ+
k,s(.) = ψ+

k,x(.) + ψ+
k,y(.) + ψ+

k,z(.) + ψ+
k,t(.)

[., .]+k,x = ψ+
k,x(.)

[., .]+k,s = Ψ+
k,s(.)

(11)

Now, let us take another example, the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric. The FLRW
metric starts with the assumption of homogeneity and isotropy of space. It also assumes that the spatial
component of the metric can be time-dependent, defined as (in Cartesian coordinates):

−c2ds2 = −c2dt2 + a(t)2dΣ2

ds2 = dt2 − a(t)2

c2
dΣ2

dΣ2 = dx2 + dy2 + dz2 (12)

where dΣ ranges over a 3D space of uniform curvature, that is, elliptical space, Euclidean space, or hyper-
bolic space. It is normally written as a function of three spatial coordinates as shown above in Cartesian
coordinates. Note that all of the time dependence is in the function a(t), known as the scale factor. For
more information, a reader can refer to [23]. Now, we can define the energy operators as above using the
same space time basis (i.e. Ψ+

k,s(.)). Thus, we can conclude that with the choice of a given metric associated
with a specific space-time referential, we then define the energy operators.

2.2.3 Energy Spaces, Subspaces of the Hilbert space

The energy spaces and their properties were defined in [2] and [3]. Here are the main definitions based only
on the formalism in [3]. Properties and theorems are recalled in the appendices.

Definition 3 [2], Definition 3 : The energy space Ep ( S−(Rm), with p in Z+, is equal to Ep =⋃
v∈Z+∪{0}Mv

p.

with Mv
p ( S−(Rm) for v in Z+ defined as

Mv
p = {g ∈ S−(Rm)| g = ∂ki

([
[f ]p

]+
1

)n
,
[
[f ]p

]+
1
∈ S−(Rm), k ∈ Z+, ∀k ≤ v, n ∈ Z+ − {0}, i ∈ [1, ...,m]}

(13)

The energy spaces, S−p (Rm) and s−p (Rm) (p ∈ Z+) , cited in Lemma 2 (in [3] and recall in the appendices)
and Theorem 2 (in [3] and recall in the appendices) are defined:

S−p (Rm) = {Ep =
⋃

i∈Z+∪{0}

Mi
p}

s−p (Rm) = {f ∈ S−p (Rm)|f /∈ ∪i∈[1,...,m]

(
∪k∈Z Ker([[f ]p]+k,i) ∪ (∪k∈Z−{1}Ker([[f ]p]−k,i

)
}

(14)

5
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Now, let us recall Properties 2 in [3]where it was shown in this previous work the relationship with the
Hilbert spaces Hk(Rm).

Properties 2: ∀ v in Z+, and in particular v1, v2 in Z+ (with v1 < v2), p in Z+, we have the following
inclusions:

1- Mv
p ( Hv(Rm)

2- Mv2
p ( Mv1

p

3- Ep =
⋃
v∈Z+∪{0}Mv

p ( H0(Rm)

Remark From [3] (Definition I.1), let us recall the definition of the Hilbert space on Rm .

Hv(Rm) = {f ∈ L2(Rm)|Dαf ∈ L2(Rm), ∀|α| ≤ v} (15)

Looking at the definition of the energy space Mv
p and Hv(Rm), one can notice the similitude. However ,

the multi-index derivative Dα ([22])contains also the cross-derivatives (e.g., ∂2

∂t1∂t2
), whereas there are no

cross-derivatives in the definition of ∂vi in [3] (Appendix I). Thus, the energy spaces Mv
p (p ∈ Z+, v

∈ Z+ − {0}) is defined without the cross-derivatives.

Now, we call a class of energy operators, all energy operators (or the family of energy operators) associated
with the energy subspace Ep with p in Z+ defined above. In other words, p defines the class of energy
operators. To recall Postulate 2, the definition of the energy operators with a space-time metric and what
we call class of energy operators, we then implicitly associate an energy space (Ep) to a given PoC.

Remark X1 Furthermore, Postulate 1 and Postulate 2 also imply that for each level of the PoC defining
specific structures at a nominated scale, the class of energy operators is associated with each structure. This
definition is based on Postulate 3, where we assume that each structure is associated with an intrinsic energy
variation (due to one or several interactions with the fundamental forces) and thus directly related to the
energy operators. The relationship with an energy variation is formulated in the general case by Proposition
1 in [3] and recalled in the appendices as Proposition I.1. Therefore there is a direct relationship between
the structures and the energy spaces via the energy operators.

3. Discussions Using Examples with the Electromagnetic and Gravita-
tional Coupling

In this section, we discuss two examples based on the EM and Gravitational (EM & G) coupling which
was defined in [3] based on the Woodward effect. The Woodward effect, also referred to as a Mach effect,
is part of a hypothesis proposed by James F. Woodward in 1990 [4]. The hypothesis states that transient
mass fluctuations arise in any object that absorbs internal energy while undergoing a proper acceleration.
Note that the Woodward effect is derived in [4] using the FLRW metric (see Section 2).

Recently, the Woodward effect was applied to asymmetric EM cavities (i.e. frustum) due to EM waves
reflected on the cavity’s wall, and creating a momentum [3, 11]. The assumption is that the EM energy
density variation results from the evanescent waves taking place in the skin depth of the asymmetric EM
cavity’s walls.

The second example is the human heart where we also apply the hypothesis of the EM & G coupling.

3.1. Example of EM Cavity

The Woodward effect is based on a formula which the author implicitly assumed that the rest mass of the
piezoelectric material via the famous Einstein’s relation in special relativity E = mc2 (E the rest energy
associated with the rest mass m) and its variation via electrostrictive effect. In order to apply this formula
to an asymmetric EM cavity, the author in [3] formulated the hypothesis that the EM excitation on the
walls creates electric charges (i.e. electrons) which makes the rest mass varying with time. The Woodward

6
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effect can be mathematically derived in various ways [13, 14, 17]. Note that in the appendices, we also show
a derivation based on the model of a point mass particle moving in an electric field.

If we define the mass density such as ρ = m/V , then from [17], one can write the elementary mass
variation per unit of volume

δρ =
δm

V
∼ dρ (infinitesimally small variation)

dρ =
1

4πG

[1
ρ
∂2t ρ−

1

ρ2
(∂tρ)2

]
(16)

Let us define the the rest energy E = ρc2, then

dρ =
1

4πG

[ 1

ρc2
∂2t E −

1

(ρc2)2
(∂tE)2

]
dρ =

1

4πG

[ 1

E
∂2t E −

1

(E)2
(∂tE)2

]
(17)

In some particular cases such as an EM cavity, we assume that the variation in time of the rest energy
is equal to the variation of EM energy density u (i.e. ∂tE ' ∂tu ), but the rest energy is much bigger than
the EM energy density E >> u. It allows then to state the relationship between the Woodward effect and
the EM energy density

dρ =
1

4πG

[ 1

E
∂2t u−

1

(E)2
(∂tu)2

]
(18)

The EM energy density u follows the general definition of the sum of energy density from the electric (uE)
and magnetic (uB)fields [12]. Note that in [3], the author defines the Electro magnetic and gravitational
coupling using equation (18).

Discussion (2) The above equation shows that the variation of mass density is a linear relationship
with the first and second derivative of the EM energy density. To recall [3], we underline the relationship
between the order of the derivatives of the EM energy density and the energy spaces. As we are dealing
with evanescent waves (functions in S−(Rm) ⊂ L2(Rm) with m = 4, with 3D space and time) in the skin
layer of the EM cavity, we can apply the results of Example 2 in [3] and [11], with the multiplicity of the
solutions (i.e.Theorem 1 ). The interpretation of the Woodward effect using the energy parallax is that the
solutions are in Mk

0 (k in {0, 1, 2}) using the same definitions as in Section 2. In other words, we need to
take into account the evanescent waves associated with the electric and magnetic fields and their first and
second derivative in time.

3.2. The Heart Modelled as an EM and Gravitational Coupling

Electric fields due to all muscle cells produce voltage variations in the body that are sensed by Electro
Cardiogram (ECG). The voltages vary with time indicating the depolarization ( contraction) of the right
and left ventricles during systole (QRS complex), the repolarization of the atria masked by this, and the
repolarization of the ventricles (T wave). The difference in potential across the cell membrane of the cardiac
muscle cells changes during the depolarization and subsequent repolarization of artial and ventricular heart
muscles during each cycle, and this changes the electric potential near the heart.

Some works have investigated to model this depolarization and subsequent polarization sequences as a
capacitor at the cell level and inside the heart tissues. Here, we base our assumptions on a multipole heart
model following [16]. The capacitor model is generally formulated at the single cell level (ventricular) and

7
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the heart tissue following:

dV

dt
= −Iion + Istim

Cm
(single cell)

Cm
dV

dt
= −(Iion + Istim) +∇.(D∇V ) (tissu model) (19)

dV

dt
=

I

C
(20)

where V is the voltage across the membrane, t is time, Iion is the total transmembrane current, Istim is
the stimulus current applied externally, and Cm is the capacitance of the cell. D is the diffusion tensor
describing the conductivities of the tissue along different directions. Thus, the equation for the single cell
(first equation in Eq. (19)) is a direct analogy at a capacitance when comparing with the general equation
of the capacitor Eq. (20), whereas the tissue model is nonlinear with the diffusion term ∇.(D∇V ). For
the general purpose of our comparison of the heart cycle with a charge/discharge capacitance, we will not
go into the modelling of this diffusion phenomenon. In addition, we consider the heart as a multipole due
to each cell charging and discharging following the heart cycle. Now, one can consider each cell with a
capacitance Ci and a charge qi. The total voltage is then equal to:

V (t) =
N∑
i=1

qi(t)

Ci

V (t) =
q(t)

C
+
dq(t)

C.dt
(21)

Therefore, the heart is now considered as a relativistic capacitor as defined in [11]. Here, the variations of
charge is assumed to be over each ECG cycle due to possible in homogeneity of the cells [15], hence creating
a slight variations in to the average voltage over a cycle.

Before discussing the application of the Woodward effect to heart modeled as a capacitance using the
EM & G coupling, one need to carefully recall some important hypothesis how the Woodward effect was
derived in the first place. From [17], it is stated that the lowest order of mass-energy density moment
possible to trigger any dynamics in general relativity is the quadrupole. Nothing can then be triggered with
a monopole or a dipole. The reason for the non-existence of monopole and dipole gravitational waves is
that the quanta of gravitation (assuming the quantization of general relativity), the ”graviton”, would be
a massless particle with spin 2, and therefore it is impossible to put a graviton in a state consistent with
monopole or dipole radiation. A graviton can have only two helicity states (the projection of the graviton’s
spin onto its direction of momentum). Some works, i.e. [13] , have discussed an alternative way using the
Hoyle-Narlikar theory, where an additional scalar field is introduced, the so-called mass field. An equivalent
term of the original Woodward effect is then derived. This theory supports the excitation of monopole
waves, positing the existence of a (unverified) particle called the ”dilaton”.

Various models of the human heart have been developed such as the dipole, quadrupole [19] and multipole
[20]. Our example does not investigate these different models. In our above description of the heart, we
justify the use of a multipole in our assumption due to the cells charging/discharging along the cycle such
as capacitors, hence postulating that the existence of the Woodward effect.

Based on the previous example, the Woodward effect can only take place if there is a variation of energy
quantity. We then need to make the assumption that the charge/discharge of electricity in each cell along
the heart cycle, can be formulated in terms of variation of EM energy density and then induce a variation
of mass via an EM & G coupling with Eq. (17). This assumption is formulated such as a variation of mass
of a capacitance similar to the relative capacitance model in [11] described with Eq. (21). Now, we would
like to give an order of magnitude of this effect for this specific case. However, modeling each cell with the
relative capacitance model is not straightforward. Instead, we will consider the whole heart cycle modeled

8
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as a relative capacitance. This gross approximation allows us to give an order of magnitude to the terms in
the original Woodward equation [17]. Therefore, we quantify the Woodward effect following [11] such as:

δρ0(t) =
1

4πG
[

1

ρ0c2
∂2t E − (

1

ρ0c2
)2(∂tE)2]

δρ0(t) '
1

4πG
[

1

ρ0c2
∂2t E ] (22)

ρ0 is the transient mass source and c speed of light. Considering a rest energy E , roughly the energy of the
capacitor at rest, one can state the famous Einstein’s relationship in special relativity between E and the
rest mass m, E = mc2. In [3] and [11], we justify the assumption that the variation with time of E equal the
variation of EM energy density with the capacitor model and replacing the transient mass source ρ0 with
the mass density δρ = δm

V . Therefore, if we give an order of magnitude of ∂2t E ∼ 1 [ mV], c2 ∼ 9.1016[ m/s],
ρ0 ∼ 101 to 105 [ Kg/L] (adult), and 1

4πG ∼ 1/(6.10−10), we obtain δρ0 ∼ [ 2.10−9 - 2.10−13]. This is a very
small mass variation for an adult (70 Kg, with a heart volume of 1 L).

Finally, [24] concluded in his study of the Woodward effect that to see any fluctuations due to a Machian
effect one needs to take into account the ratio of the mass of the device divided by a general approxima-
tion of the total mass of the matter in our observable universe (1054 Kg). Knowing that the mass of the
human heart is around 0.3 to 0.4 Kg, we can quickly see that the above ratio is infinitesimally small, hence
practically insignificant and therefore down-scaling the possibility of measuring such effect at the human
scale. Note that [25] and [26] have argued against this development quoting [24] claims that such rest mass
fluctuations with significant magnitude, save in the vicinity of black holes, are not to be found in general
relativity notwithstanding that they appear in the relativistic Newtonian approximation. [24] is mistaken in
this claim, as I have already explained at some length in [25].
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Appendix I : Some Definitions

Definition I.1 [5] : ∀ f in S−(Rm), ∀ v ∈ Z+ − {0}, ∀ n ∈ Z+ and n > 1, the family of operators (Gk)k∈Z
(with (Gk)k∈Z ⊆ F(S−(Rm),S−(Rm))) decomposes ∂vi f

n in Rm (i ∈ [1, ...,m]), if it exists (Nj)j∈Z+∪{0} ⊆
Z+, (Cl)

Nj

l=−Nj
⊆ R, and it exists (αj) and r in Z+∪{0} (with r < v) such as ∂vi f

n =
∑v−1

j=0

(v−1
j

)
∂v−1−ji fn−r∑Nj

u=−Nj
CuGu(∂αu

i f).

In addition, one has to define s−(Rm) as:

s−(Rm) = {f ∈ S−(Rm)|f /∈ (∪k∈ZKer(Ψ+
k )) ∪ (∪k∈Z−{1}Ker(Ψ−k ))} (23)

or with the energy operators ψ+
k,i and ψ−k,i defined in (7)

s−(Rm) = {f ∈ S−(Rm)|f /∈ ∪i∈[1,...,m]

(
∪k∈Z Ker(ψ+

k,i(f)) ∪ (∪k∈Z−{1}Ker(ψ−k,i(f))
)
} (24)

Ker(.) is the notation for the kernel associated here with the operators Ψ+
k , Ψ−k , ψ+

k,i and ψ−k,i (k in Z) (see

[5], Properties 1 and 2). By definition, one can state that s−(Rm) ( S−(Rm). Following Definition 1, the
uniqueness of the decomposition in s−(Rm) with the families of differential operators can be stated as:

Proposition I.1 (Proposition 1 in [3] ): If for n ∈ Z+, fn ∈ S−(Rm) and analytic; for any (pi,qi) ∈ R2

and τi ∈ [qi, pi] (∀i ∈ [1, ...,m]), and E(fn) is analytic, where

E(fn(τi)) =

∫ τi

qi

|fn(ti)|2dti <∞ (25)

9
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then

E(fn(pi)) = E(fn(qi)) +
∞∑
k=0

∂kti(f
n(qi))

2 (pi − qi)k

k!
<∞

(26)

is a convergent series.
Note that the proof is given in P.4 of [2] and discuss in P.9 of [3].
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