Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations - Archive ouverte HAL
Article Dans Une Revue Chemistry - A European Journal Année : 2010

Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations

Résumé

Experimental measurements and molecular simulations were conducted for two zeolitic imidazolate frameworks, ZIF‐8 and ZIF‐76. The transferability of the force field was tested by comparing molecular simulation results of gas adsorption with experimental data available in the literature for other ZIF materials (ZIF‐69). Owing to the good agreement observed between simulation and experimental data, the simulation results can be used to identify preferential adsorption sites, which are located close to the organic linkers. Topological mapping of the potential‐energy surfaces makes it possible to relate the preferential adsorption sites, Henry constant, and isosteric heats of adsorption at zero coverage to the nature of the host–guest interactions and the chemical nature of the organic linker. The role played by the topology of the solid and the organic linkers, instead of the metal sites, upon gas adsorption on zeolite‐like metal–organic frameworks is discussed.

Domaines

Chimie

Dates et versions

hal-03161220 , version 1 (05-03-2021)

Identifiants

Citer

Javier Pérez-Pellitero, Hedi Amrouche, Flor r. Siperstein, Gerhard Pirngruber, Carlos Nieto-Draghi, et al.. Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry - A European Journal, 2010, 16 (5), pp.1560-1571. ⟨10.1002/chem.200902144⟩. ⟨hal-03161220⟩
61 Consultations
0 Téléchargements

Altmetric

Partager

More