Comparison of the models of prey captured a number

	1			2		3	4	4	:	5
Predictors	IRR	р								
Effect of the tumoral status	1.31	<0.001	1.31	<0.001	1.31	<0.001	1.31	<0.001	1.31	<0.001
AIC	572.826		568.226	5	559.651	l	561.620		570.226	

Comparison of the models of prey captured proportion in limited condition

	1		2		3		4		5	
Predictors	Odds Ratios	р								
Effect of the tumoral status	1.54	0.002	1.55	0.002	1.54	0.002	1.55	0.002	1.55	0.002
AIC	298.600		300.254		300.577		302.254		302.043	

 Table 1: Summary of different statistical modeling of the effect of tumoral phenotype on hydras predation abilities

 AIC: Akaike criterion; IRR: Incidence rate ratio; OR: Odds ratio

1: \sim Status + (1|Batch)

2: ~Status+(1|date)

3: \sim Status+(1|date)+(1|Batch)

4: ~Status+(1|Batch/date)

Figure 1: Residuals diagnostic of the chosen model for the number of prey captured in ad libitum feeding conditions

Figure 3: Power curves of the impact of the sample size on model power in hydra predation abilities models

Figure 2: residuals diagnostic of the chosen model for the proportion of prey captured in restricted feeding condition

	Number of ciliates ~ time		Number of ciliates ~ group		Number of ciliat + group	es ~ time	Number of ciliates ~ time x group	
Predictors	Incidence Rate Ratios	р	Incidence Rate Ratios	р	Incidence Rate Ratios	р	Incidence Rate Ratios	р
Time	1.78	<0.001			1.78	<0.001	1.60	<0.001
Tumoral phenotype			1.32	0.007	1.32	0.007	1.21	0.081
Tumoral phenotype over time							1.19	0.001
ICC	0.41		0.37		0.37		0.37	
Ν	57 _{ID}		57 _{ID}		57 _{ID}		57 _{ID}	
Observations	342		342		342		342	
AIC	1519.968		2041.165		1515.235		1507.181	

 Table 2 : Comparision of different statistical modeling of the density of ciliate per hydra accros time
 AIC: Akaike criterion; IRR: Incidence rate ratio; OR: Odds ratio

Figure 4: residuals diagnostic of the chosen model for the proportion of the density of ciliate per hydra accros time

Figure 5: Power analysis of the density of ciliates per hydra accros time

	~hydra_type		~hydra_type + (1 Batch	Measure)	~hydra_type + (1 batchDay/BatchMeasure)		
Predictors	Incidence Rate Ratios p		Incidence Rate Ratios p		Incidence Rate Ratios	р	
Effect of tumors	0.08	<0.001	0.08	<0.001	0.08	<0.001	
Ν			5 BatchMeasure		5 BatchMeasure		
			4 batchDay				
Observations	28		28		28		
AIC	369.330		375.057		372.069		

Comparison of models of the impact of tumors on the time spend to consume the remaining prey prey

 Table 3: Comparision of different statistical modeling of the density of ciliate per hydra across time

 AIC: Akaike criterion; IRR: Incidence rate ratio

QQ plot residuals

Figure 6: residuals diagnostic of the chosen model for the proportion of the delay of consumption of the second hydra by a fish predator

Figure 7: Power analysis of the delay of consumption of the second hydra by a fish predator