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Abstract: We solve the problem of super-hedging European or Asian
options for discrete-time financial market models where executed prices
are uncertain. The risky asset prices are not described by single-valued
processes but measurable selections of random sets that allows to con-
sider a large variety of models including bid-ask models with order books,
but also models with a delay in the execution of the orders. We provide
a dynamic programming principle under a weak no-arbitrage condition,
the so-called AIP condition, under which the prices of the non negative
European options are non negative. This condition is weaker than the
existence of a risk-neutral martingale measure but it is sufficient to nu-
merically solve completely the super-hedging problem. We illustrate our
method by a numerical example.
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1. Introduction

As observed in practice, the executed value of an asset may depend on the
order sent by the trader and, also, on the quantities offered by the order
book. Among the possible causes of the well-known slippage phenomenon,
delays in the execution of the orders, liquidity disorders, market impacts, or
transaction costs may influence the executed value. An approach to overcome
this difficulty is to assume that we do not know by advance the traded prices.
In that case, as proposed in the paper, the order that the trader sends is
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a mapping that associates to each possible price offered by the market a
quantity to sell or buy. This is exactly what we generally observe in practice,
in a presence of an order book for example, since there is no single prices.

On the contrary, it is traditional in mathematical finance to suppose that
we first observe a (new) single market price and, then, we choose almost
instantaneously the number of assets to sell or buy in order to revise the
portfolio. This means that the last traded price keep constants long enough
in the order book. Moreover, it coincides with a bid and ask price so that the
buy and sell orders are executed at the same value.

In the real life, there may be delayed information, see the recent paper [1]
or [29], [36] among others on stochastic control. The delayed information in
the problem of pricing is sometimes modeled through incomplete or restricted
information as in [22], [21], [15], [14] or using a two filtrations setting as in
[13].

Another type of uncertainty is due the choice of the model supposed to
approximate the real financial market [6]. Model risk may lead to price mis-
evaluations that are studied in recent papers, in the growing field of robust
finance. Since the seminal work of Knight [24], it is now broadly accepted
that uncertainty may be described by a parametrized family of models, in-
stead of considering only one model, if there is a lack of information on the
parameters, see [31] , [10], [28], [4], [5], [17], [37]. Other models consider that
the market is driven by a family of probability measures in such a way that
uncertainty stems from the existence of several possible reference probability
measures determining which events are negligible, see [33], [19], [12], [8], [7],
[9], [30], [11].

In any case, uncertainty is taken into account in the literature by consider-
ing either several probabilistic structures, e.g. a family of reference probability
measures and filtrations for the same price process or a family of price pro-
cess models on the same stochastic basis. In the recent paper [34], the choice
is made to fix only one filtered probability space on which a collection of
stochastic processes describes the possible dynamics of the stock prices. We
follow this alternative approach. Precisely, we consider a unique stochastic
basis but we suppose that, in discrete time, the next stock prices at any time
are not modeled by a unique vector-valued random variable as it is usual to
do. Instead, we assume that the next stock prices belong to a collection of
possible processes. The approach we adopt in our paper is slightly different
from [34] in the sense that the collections of possible prices we consider are
connected from time to time in such a way that it is possible to represent
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them through measurable random sets.
Moreover, a less common type of uncertainty is introduced in this paper.

Recall that it is usual in the literature, even in the recent papers on robust
finance, to suppose that the transactions are executed at a price which is
known by advance. For example, in the Black and Scholes model, the delta-
hedging strategy for the European Call option at time t is a function Φ(t, St)
of the single price St observed at time t. In practice, the strategy is discretized
at some dates (ti)i=0,··· ,n with n→ +∞ so that the number of stocks to trade
at time ti is ∆Φti = Φ(ti, Sti)−Φ(ti−1, Sti−1

). In the case where ∆Φti < 0, the
executed price at time ti should be a bid price in the order book and an ask
price otherwise, i.e. there should be at least two possible prices. We take into
account this ambiguity or uncertainty in our paper by assuming that there
may be several possible executed prices at the next instant. This means in
particular that we do not know by advance the price when we send an order
to be executed. This is illustrated in our numerical example where the stock
price is modeled by a pair of bid and ask prices.

This article addresses the super-hedging problem of European or Asian
options under uncertainty and may be easily adapted to American options
in discrete time. The advantage of the approach we consider is its flexibility,
including a large variety of possible models, e.g. with transaction costs or
limit order books. Contrarily to the classical approach, we do not suppose
the existence of a risk-neutral probability measure but we work under the
AIP condition of [2], i.e. we suppose that the super-hedging prices of the
non-negative European claims are non-negative, as it is easily observed in
the real financial market. We recall that the AIP condition is weaker than
the usual NA condition but it is sufficient to deduce numerically tractable
pricing estimations, as illustrated in our numerical example.

The first contribution of our paper is to solve the one time step super-
hedging problem in Section 3. We follow the analytical approach developed
in [2], using the recent result of [16], see Section 3.1. Then, we formulate
some important results in Section 3.2 that allows us to backwardly imple-
ment the dynamic programming principle established in the one time step
model. Indeed, we prove that under some reasonable conditions, the infimum
super-hedging price in the one step model inherits from the same properties
than the Asian payoff of consideration, in particular lower semi-continuity
and convexity are preserved. We also formulate a condition under which the
infimum super-hedging price is a price and we characterize the no-arbitrage
condition AIP in our framework.
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2. Formulation of the problem

Let (Ω, (Ft)t∈{0,...,T},FT , P ) be a filtered complete probability space where
T is the time horizon. We do not suppose that F0 is the trivial σ-algebra.
We also consider a complete sub-filtration (Gt)t∈{0,...,T} where Gt represents
the market information available at time t. We suppose that G0 is the trivial
σ-algebra containing all the negligible sets and Gt ⊆ Ft for all t ∈ {0, . . . , T}.
The typical case we shall consider is when Ft 6= Gt. The financial market we
consider is composed of d risky assets and a bond S0. We assume without
loss of generality that S0 = 1.

Let us consider, for each t ≤ T , Λt ⊆ L0(Rd
+,Ft) a collection of Ft-

measurable random variables representing the possible executed prices for the
risky assets at time t. We suppose that, at time t, the set Λt may depend on
the observed traded prices before time t, i.e. to each vector of prices (Su)u≤t−1,
we associate a set Λt = Λt((Su)u≤t−1) representing the possible next prices
at time t given that we have observed the executed prices (Su)u≤t−1 at time
t. We adopt the financial principle that the executed price St is only known
strictly after the order is sent at time t but before time t+ 1.

Definition 2.1. A price process is an (Ft)t=0,··· ,T -adapted non-negative pro-
cess (St)t=−1,··· ,T such that St ∈ Λt((Su)u≤t−1) for all t = 1, · · · , T and
S−1 ∈ R is given .

Recall that St represents the prices (S1
t , · · · , Sdt ) of d ≥ 1 risky assets

proposed by the market to the portfolio manager when selling or buying. A
typical case could be Λt = L0(It,Ft) with

It = Πd
j=1[Sbjt , S

aj
t ],

where (Sbj)j=1,··· ,d and (Saj)j=1,··· ,d are respectively the bid and the ask price
processes observed in the market at time t that may depend on (Su)u≤t−1.
They are not necessary the best bid/ask prices as, in practice, the real trans-
action price may be a convex combination of bid and ask prices. Indeed, a
transaction is generally the result of an agreement between sellers and buy-
ers but it also depends on the traded volume. Clearly, the portfolio manager
does not benefit in general from the last traded price observed in the market
when sending an order. On the contrary, he should face an uncertain price
St which depends on the type of order (which may be not executed) but it
also depends on some random events he does not control, e.g. slippage. A
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simple way to model this phenomenon is to suppose that the executed prices
obtained by the manager belong to random intervals.

Another interesting case is when Λt = {Sθt : θ ∈ Θ} is a parametrized
family of random variables. For instance, consider fixed processes (ξu)u≤T
and (mu)u≤T adapted to (Ft)t=0,··· ,T and independent of Ft−1. Let C be a
compact subset of R and suppose that S−1 is given. We define recursively

Λt((Su)u≤t−1) = {St−1 exp(σξt +mt) : St−1 ∈ Λt−1, σ ∈ C} , t ≤ T.

In this model, there is an uncertainty on prices because of the unknown
parameter (volatility) σ. This is a classical problem in robust finance, see for
example [28].

A portfolio strategy is an (Ft)t=0,··· ,T -adapted process θ̂ = (θ0, θ) where, for
all t = 0, · · · , T , θt ∈ Rd (resp. θ0

t ∈ R) describes the quantities of risky assets
(resp. the bond) held in the portfolio between time t and time t + 1. Since
the strategies are not supposed to be adapted to (Gt)t=0,··· ,T , the manager is
not supposed to control the quantity of assets he wants to sell or buy. This
is what happens in practice because the orders are not necessarily executed,
for instance in the case of limit stock market orders. For such a strategy θ̂,
we define the portfolio process with initial endowment V0 ∈ L0(R,F0), as
the liquidation value:

V V0,θ̂ = θ0 + θS = θ0 +
d∑
i=1

θiSi.

Recall that St is observed strictly after the portfolio manager sends an order
for θt at time t. This is why Ft is not the information available on the market
at time t but the information the portfolio manager has strictly after t once
he knows whether his order has been executed or not and once he knows the
executed price as well. Nevertheless, the portfolio manager may send an order
which depends on the uncertain price. For instance, such an order could be
Buy at most 1000 units at a price less than or equal to 145 euros so that the
strategies and the executed prices are linked.

In the following, we only consider self-financing portfolio processes V x,θ̂,
i.e. they satisfy by definition:

∆V x,θ̂
t := V x,θ̂

t − V x,θ̂
t−1 = θt−1∆St,

5



where ∆St := St − St−1. Notice that this dynamics holds if and only if
−(θ0

t − θ0
t−1)S0

t = (θt− θt−1)St. This means that the cost of the new portfolio
allocation (θ0

t , θt), i.e. buying or selling the quantities (|θit − θit−1|)di=0, at the
executed price St is charged to the cash account. Therefore,

V V0,θ̂
t = V0 +

t∑
u=1

θu−1∆Su. (2.1)

It is then natural by (2.1) to write V V0,θ = V V0,θ̂. Our goal is to solve the
following problem: Construct the minimal super hedging strategy of an Asian
option whose payoff is g(S0, · · · , ST ) for some convex deterministic function
on (Rd)T+1. Because of price uncertainty, this means that we shall construct
a self-financing strategy θ and we shall determine the minimal initial endow-
ment V0 such that V V0,θ

T ≥ g(S0, S1, · · · , ST ) whatever the executed prices
St ∈ Λt((Su)u≤t−1) are for t ≤ T . As the filtration does not correspond to
the current information (Gt)t=0,··· ,T of the market, contrarily to [2], one more
step is necessary to deduce the initial endowment P0. Indeed, the initial value
of any portfolio process is F0-measurable contrarily to P0 which has to be
G0-measurable, i.e. P0 is a constant or equivalently P0 ≥ ess supG0(V0).

3. The super-hedging problem

3.1. The one time step resolution

We first introduce the basic tools and theoretical results we need in this sec-
tion. A set Λ of measurable random variables is said F -decomposable if for
any finite partition (Fi)i=1,··· ,n ⊆ F of Ω, and for every family (γi)i=1,··· ,n
of Λ, we have

∑n
i=1 γi1Fi

∈ Λ. In the following, we denote by Σ(Λ) the
F -decomposable envelop of Λ, i.e. the smallest F -decomposable family con-
taining Λ. Notice that

Σ(Λ) =

{
n∑
i=1

γi1Fi
: n ≥ 1, (γi)i=1,··· ,n ⊆ Λ, (Fi)i=1,··· ,n ⊆ F s.t.

n∑
i=1

Fi = Ω

}
.

The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not
decomposable. By [26, Theorem 2.4], there exists a F -measurable closed ran-
dom set σ(Λ) such that Σ(Λ) = L0(σ(Λ),F) is the set of all F -measurable
selectors of σ(Λ).
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We now introduce the general one step problem between the dates t − 1
and t for t ≥ 1. To do so, we suppose that after time t − 1 but strictly
before time t the portfolio manager observes the price St−1, as a consequence
of her/his order, see Definition 2.1. More precisely, the portfolio manager
knows (Su)u≤t−2 at time t − 1 and sends an order at time t − 1 which is
executed with a delay so that the executed price St−1 ∈ Λt−1((Su)u≤t−2) is
only observed strictly after t− 1. In the following, we consider the σ-algebra
Ft−1 = σ(Su : u ≤ t− 1) for all t ≥ 1.

Let us consider a random function gt defined on (Rd)t+1, t ≥ 1. We as-
sume that the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1 × B(Rd)-
measurable and z 7→ gt(S0, S1, · · · , St−1, z) is lower-semicontinuous (l.s.c.)
almost surely whatever the price process (Su)u≤t−1 is. The first goal is to
characterise the set Pt−1 of all Vt−1 ∈ L0(R,Ft−1) such that

Vt−1 + θt−1∆St ≥ gt(S0, · · · , St), a.s. for allSt ∈ Λt((Su)u≤t−1), (3.2)

for some θt−1 ∈ L0(Rd,Ft−1) 1. Note that Vt−1 depends on (Su)u≤t−1. We
observe by lower-semicontinuity that (3.2) holds if and only if

Vt−1 + θt−1∆St ≥ gt(S0, · · · , St), for allSt ∈ Σ(Λt((Su)u≤t−1)). (3.3)

This means that we may suppose w.l.o.g. that Σ(Λt((Su)u≤t−1)) = Λt((Su)u≤t−1).
In the following, we denote by It((Su)u≤t−1) the Ft-measurable closed random
set such that Σ(Λt((Su)u≤t−1)) = L0(It((Su)u≤t−1),Ft), see [26, Theorem 2.4].

By [16, Theorem 3.4], we deduce that (3.2) is equivalent to Vt−1 ≥ pt−1

where pt−1 = pt−1((Su)u≤t−1, θt−1) is given by

pt−1 = θt−1St−1 + sup
z∈cl (It((Su)u≤t−1)|Ft−1)

(gt(S1, · · · , St−1, z)− θt−1z) ,

= θt−1St−1 + f ∗t−1(−θt−1).

In the formula above, cl (It((Su)u≤t−1)|Ft−1) is the conditional closure of
It((Su)u≤t−1), i.e. the smallest Ft−1-measurable closed random set which con-
tains It((Su)u≤t−1) almost surely. We refer the readers to [16, Theorem 3.4]

1Note that the condition Vt−1 ∈ L0(R,Ft−1) is not sufficient for the portfolio manager
to observe it when t = 1 as V0 is not G0-measurable.
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for the existence and uniqueness of such conditional random set. Moreover,
f ∗t−1(y) = supz∈Rd(yz − ft−1(z)) is the Fenchel-Legendre conjugate function
of ft−1 defined as

ft−1(z) := −gt(S0, · · · , St−1, z) + δcl (It((Su)u≤t−1)|Ft−1)(z),

where δcl (It((Su)u≤t−1)|Ft−1) ∈ {0,∞} is infinite on the complimentary of
cl (It((Su)u≤t−1)|Ft−1) and 0 otherwise. Notice that f ∗t−1 is convex and l.s.c. as
a supremum (on cl (It((Su)u≤t−1)|Ft−1)) of convex and l.s.c. functions. More-
over, by [16, Theorem 3.4], (ω, y) 7→ f ∗t−1(ω, y) is Ft−1 × B(Rd)-measurable.
Therefore, Dom f ∗t−1 := {y : f ∗t−1(ω, y) <∞} is an Ft−1-measurable random
set. We deduce that the Ft−1-measurable prices at time t− 1 are given by

Pt−1((Su)u≤t−1) =
{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
+L0(R+,Ft−1).

The second step is to determine the infimum super-hedging price as

pt−1((Su)u≤t−1) = ess infFt−1 Pt−1((Su)u≤t−1).

To do so, we use the arguments of [2, Theorem 2.8] and we obtain that:

pt−1((Su)u≤t−1) = ess infFt−1

{
θt−1St−1 + f ∗t−1(−θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= ess infFt−1

{
−θt−1St−1 + f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= − ess supFt−1

{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ L0(Rd,Ft−1)

}
,

= − ess supFt−1

{
θt−1St−1 − f ∗t−1(θt−1) : θt−1 ∈ L0(Dom f ∗t−1,Ft−1)

}
,

= − sup
z∈Dom f∗t−1

(
zSt−1 − f ∗t−1(z)

)
,

= − sup
z∈Rd

(
zSt−1 − f ∗t−1(z)

)
,

= −f ∗∗t−1(St−1).

3.2. Main properties satisfied by the one time step infimum
super-hedging price

In the following, we suppose that, for all price process (Su)u≤t−1, there exists
αt−1 ∈ L0(Rd,Ft−1) and βt−1 ∈ L0(R,Ft−1) that depend on (Su)u≤t−1 such
that

gt(S0, · · · , St−1, x) ≤ αt−1x+ βt−1, ∀x ∈ cl (It((Su)u≤t−1)|Ft−1). (3.4)
8



This is the case for Asian options whose payoffs are for example of the form
k(S0 + S1 + · · ·+ St −K)+, k ≥ 0. By [2, Theorem 2.8], we know that

pt−1((Su)u≤t−1) = (3.5)

inf {αSt−1 + β : αx+ β ≥ gt(S0, · · · , St−1, x), ∀x ∈ cl (It((Su)u≤t−1)|Ft−1)} .

We first establish the following result:2

Proposition 3.1. Let (Su)u≤t−1 be a price process. Suppose that the mapping
(ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1×B(Rd)-measurable and the func-
tion z 7→ gt(S0, · · · , St−1, z) is l.s.c. almost surely. If St−1 /∈ conv cl (It|Ft−1),
then pt−1(((Su)u≤t−1)) = −∞. Moreover, if z 7→ gt(S0, · · · , St−1, z) is a.s.
convex, then pt−1((Su)u≤t−1) ≥ gt(S0, · · · , St−1, St−1) if St−1 ∈ conv cl (It|Ft−1).
At last, if gt(S0, · · · , St−1, ·) is bounded from below by mt−1 ∈ L0(R,Ft−1) on
cl (It|Ft−1), then pt−1(((Su)u≤t−1)) ≥ mt−1 if St−1 ∈ conv cl (It|Ft−1).

Proof. Suppose that St−1 /∈ conv cl (It|Ft−1). By the Hahn-Banach sep-
aration theorem and a measurable selection argument, there exists α∗t−1 in
L0(Rd \ {0},Ft−1) and c1

t−1, c
2
t−1 ∈ L0(Rd,Ft−1) such that we have the in-

equality α∗t−1y < c1 < c2 < α∗t−1St−1 for all y ∈ cl (It|Ft−1). Multiplying the
inequality by a sufficiently large positive multiplier, we may suppose that
α∗t−1(St−1 − y) ≥ n where n ∈ N is arbitrarily chosen. Let us introduce

α̃t−1 = αt−1 − α∗t−1 and β̃nt−1 = βt−1 + α∗t−1St−1 − n, n ≥ 1. By construc-

tion, αt−1x + βt−1 ≤ α̃t−1x + β̃nt−1 for all x ∈ cl (It|Ft−1). It follows that

α̃t−1x + β̃nt−1 ≥ gt(S1, · · · , St−1, x), for all x ∈ cl (It|Ft−1). By (3.5), we de-

duce that pt−1 ≤ α̃t−1St−1 + β̃nt−1 = αt−1 + βt−1 − n. As n → ∞, we deduce
that pt−1 = −∞.

Suppose that z 7→ gt(S1, · · · , St−1, z) is a.s. convex and, furthermore,
St−1 ∈ conv cl (It|Ft−1). By Proposition 3.12,

pt−1((Su)u≤t−1) ≥ gt(S0, · · · , St−1, St−1).

At last, suppose that z 7→ gt(S0, S1, · · · , St−1, z) is bounded from below
by mt−1 ∈ L0(R,Ft−1) on cl (It|Ft−1) and St−1 ∈ conv cl (It|Ft−1). Then,
St−1 = limn→∞ Sn where Sn ∈ conv cl (It|Ft−1), i.e. Sn =

∑Jn
i=1 αi,nxi,n where

αi,n ≥ 0 with
∑Jn

i=1 αi,n = 1 and xi,n ∈ cl (It|Ft−1) for all i, n. Consider

2The notation conv (A) designates the closed convex hull of A, i.e. the smallest convex
closed set containing A.
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(α, β) such that αx + β ≥ gt(S0, · · · , St−1, x) for all x ∈ cl (It|Ft−1). Then,
αSt−1 + β = limn→∞(αSn + β) with

αSn + β =
Jn∑
i=1

αi,n(αxi,n + β) ≥
Jn∑
i=1

αi,ngt(S1, · · · , St−1, xi,n)

≥ mt−1.

We deduce that αSt−1 + β ≥ mt−1 hence pt−1 ≥ mt−1 by (3.5). 2

Corollary 3.2. Let (Su)u≤t−1 be a price process. Suppose that the mapping
(ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1×B(Rd)-measurable and the func-
tion z 7→ gt(S0, · · · , St−1, z) is l.s.c. a.s. and convex or bounded from above by
mt−1 ∈ L0(R,Ft−1) on cl (It((Su)u≤t−1)|Ft−1). Then, pt−1((Su)u≤t−1) 6= −∞
if and only if St−1 ∈ conv cl (It|Ft−1). In particular, the infimum super-
hedging price of any non negative payoff function is finite if and only if it is
non negative or equivalently if St−1 ∈ conv cl (It(Su)u≤t−1|Ft−1).

As studied in [2], the non negativity of the prices for the zero claim or more
generally for non negative European call options corresponds to a weak no
arbitrage condition (AIP) which is naturally observed in practice. Adapted
to our setting, we introduce the following definition:

Definition 3.3. We say that condition AIP holds between t− 1 and t if the
prices at time t − 1 of the time t zero claim is non negative for every price
process (Su)u≤t−1. Moreover, we say that the condition AIP holds when AIP
holds at any time step.

As observed in [2] and above, when AIP fails, the infimum of the zero
claim, and more generally of non negative payoffs, may be −∞. In that case,
the dynamic programming principle we develop in this paper is still valid but
unrealistic and non-implementable in practice. By Corollary 3.2, we have:

Corollary 3.4. The condition AIP holds between t − 1 and t if and only
if St−1 ∈ conv cl (It((Su)u≤t−1)|Ft−1) for any price process (Su)u≤t−1, i.e.
It−1((Su)u≤t−2) ⊆ conv cl (It(Su)u≤t−1|Ft−1) if t ≥ 1.

In the following, if g is a function defined on Rd and D is a subset of
Rd, we denote by conc(g,D) the (relative) concave envelope of g on D, i.e.
the smallest concave function defined on Rd which dominates g only on D.
Observe that g ≤ h on D is equivalent to g − δD ≤ h on Rd. Therefore,
conc(g,D) always exists as soon as g is dominated by an affine function on
D.
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Lemma 3.5. Let (Su)u≤t−1 be a price process. Suppose that the mapping
(ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1×B(Rd)-measurable and the func-
tion z 7→ gt(S0, · · · , St−1, z) is l.s.c. almost surely. Consider the concave
envelope

h(x) = conc (gt(S0, · · · , St−1, ·), cl (It((Su)u≤t−1)|Ft−1)) (x).

Then,

pt−1((Su)u≤t−1) (3.6)

= inf {αSt−1 + β : αx+ β ≥ h(x), for allx ∈ cl (It((Su)u≤t−1)|Ft−1)} .

Proof. By definition, h is the smallest concave function which dominates g.
We deduce that the set of all affine functions dominating g coincides with
the set of all affine functions dominating h. By (3.5) we deduce that (3.6)
holds.

Proposition 3.6. Suppose that AIP holds. Let (Su)u≤t−1 be a price process.
Suppose that the mapping (ω, z) 7→ gt(S0(ω), · · · , St−1(ω), z) is Ft−1×B(Rd)-
measurable and z 7→ gt(S0, · · · , St−1, z) is l.s.c. almost surely. Moreover, sup-
pose that there exists αt−1 ∈ L0(Rd,Ft−1) and βt−1 ∈ L0(R,Ft−1) such that
gt(S0, · · · , St−1, z) ≤ αt−1z + βt−1 for all z ∈ conv cl (It((Su)u≤t−1)|Ft−1) and
consider the concave envelope

h(x) = conc (gt(S0, · · · , St−1, ·), cl (It((Su)u≤t−1)|Ft−1)) (x). (3.7)

We have pt−1((Su)u≤t−1) ∈ [gt(S0, · · · , St−1, St−1), αt−1St−1 + βt−1]. More-
over, if the super-differential ∂h(St−1) 6= ∅ , then pt−1((Su)u≤t−1) = h(St−1)
is a price, i.e. pt−1((Su)u≤t−1) ∈ Pt−1((Su)u≤t−1) with the super-replicating
strategies θt−1 ∈ ∂h(St−1).

Proof. It is clear by Lemma 3.5 that pt−1((Su)u≤t−1) ≥ h(St−1) when St−1

belongs to cl (It((Su)u≤t−1)|Ft−1). By definition, for all rt−1 ∈ ∂h(St−1) 6= ∅,
for all x ∈ conv cl (It(Su)u≤t−1|Ft−1),

h(x) ≤ h(St−1) + rt−1(x− St−1) =: δ(rt−1, x). (3.8)

Therefore, pt−1((Su)u≤t−1) ≤ δ(rt−1, St−1) = h(St−1), and finally

pt−1((Su)u≤t−1) = h(St−1).

11



At last, applying (3.8) with x = St ∈ It((Su)u≤t−1) ⊆ cl (It((Su)u≤t−1)|Ft−1),
we deduce that

pt−1((Su)u≤t−1) + rt−1∆St ≥ h(St) ≥ gt(S0, · · · , St−1, St).

Since x 7→ gt(S0, · · · , St−1, x) is l.s.c., we consider the following random set:

Gt−1 := {(ω, rt−1) : δ(rt−1, x) ≥ gt(S0, · · · , St−1, x), ∀x ∈ conv cl (It(Su)u≤t−1|Ft−1)},
= {(ω, rt−1) : δ(rt−1, γ

n
t−1) ≥ gt(S0, · · · , St−1, γ

n
t−1), ∀n ∈ N},

where (γnt−1)n≥1 is a Castaing representation of conv cl (It(Su)u≤t−1|Ft−1).
Since Gt−1 is Ft−1×B(Rd)-measurable and Gt−1 6= ∅ a.s, it admits a measur-
able selection which is a measurable strategy θt−1 for the price pt−1((Su)u≤t−1).
2

Remark 3.7. As the function h in (3.7) is concave and finite a.s. on the
conditional closure conv cl (It(Su)u≤t−1|Ft−1), see proof of Proposition 3.1,
the super-differential ∂h(St−1) of h at the point St−1 is not empty when St−1

belongs to the interior of conv cl (It(Su)u≤t−1|Ft−1).

The following result proves the measurability of the infimum super-hedging
price pt−1((Su)u≤t−1):

Proposition 3.8. Suppose that cl (It((Su)u≤t−1)|Ft−1) admits a Castaing
representation (ξmt−1)m≥1 where ξmt−1 = xm((Su)u≤t−1), for all m ≥ 1, and
xm are Borel functions on (Rd)t independent of (Su)u≤t−1. Then, there exist
a Borel function φt−1 on (Rd)t such that pt−1((Su)u≤t−1) = φt−1((Su)u≤t−1).

Proof. Let (Su)u≤t−1 be a price process. We denote by

S(t−1) = (Su)u≤t−1 and It−1 = cl (It(S(t−1))|Ft−1).

Recall that

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αx+ β ≥ gt(S(t−1), x), for allx ∈ It−1

}
.

By assumption xm is a Borel function on (Rd)t independent of the price
process (Su)u≤t−1. So:

pt−1(S(t−1)) = inf
(α,β)

{
αSt−1 + β : αxm(S(t−1)) + β ≥ gt(S(t−1), xm(S(t−1))),∀m

}
= inf

α

{
αSt−1 + f ∗t−1(−α,S(t−1))

}
12



such that f ∗t−1(−α,S(t−1)) = sup
m

[
gt(S(t−1), xm(S(t−1)))− αxm(S(t−1))

]
.

Let us denote Qd = {αn = (αn1 , ..., α
n
d), n ≥ 1, αi ∈ Q} and define the real-

valued mapping φt−1 as φt−1(S(t−1)) = inf
n

{
αnSt−1 + f ∗t−1(−αn,S(t−1))

}
. We

claim that

pt−1(S(t−1)) = φt−1(S(t−1)). (3.9)

It is clear that pt−1(S(t−1)) ≤ φt−1(S(t−1)). Conversely, let α ∈ Rd, and
αn ∈ Qd a sequence such that for arbitrary fixed ε ∈ int(Rd

+), we have
αn ≥ α and α > αn − ε componentwise. Then, by definition of f ∗t−1, we have
:

f ∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αxm(S(t−1)), ∀m ≥ 1

≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1))

+(αn − α)xm(S(t−1)), ∀m ≥ 1.

Notice that xm(S(t−1)) ∈ Rd
+ because xm(S(t−1)) ∈ It−1. So,

f ∗t−1(−α,S(t−1)) ≥ gt(S(t−1), xm(S(t−1)))− αnxm(S(t−1)), ∀m ≥ 1, ∀n ≥ 1

≥ f ∗t−1(−αn,S(t−1)), ∀n ≥ 1.

Hence,

αSt−1 + f ∗t−1(−α) ≥ αSt−1 + f ∗t−1(−αn), ∀n ≥ 1

≥ αnSt−1 + f ∗t−1(−αn)− εSt−1, ∀n ≥ 1

≥ αnSt−1 + f ∗t−1(−αn)− εSt−1, ∀n ≥ 1

≥ φt−1(S(t−1))− εSt−1.

As ε→ 0, we get αSt−1 +f ∗t−1(−α) ≥ φt−1(S(t−1)). Therefore, we deduce that
pt−1(S(t−1)) ≥ φt−1(S(t−1)). Hence, the equality (3.9) holds, which proves that
the infimum superhedging price pt−1((Su)u≤t−1) is measurable with respect
to the argument (Su)u≤t−1.

The rest of this section aims to prove that, under some technical conditions,
the mapping (Su)u≤t−1 7−→ pt−1((Su)u≤t−1) is lower-semicontinuous.

Definition 3.9. We say that the mapping

It : (Su)u≤t−1 7−→ cl (It((Su)u≤t−1)|Ft−1)
13



is lower-semicontinous if the following property holds: For all sequence of
price processes ((Snu )u≤t−1)n≥1 converging a.s. to a process (Su)u≤t−1, and
for all z ∈ cl (It((Su)u≤t−1)|Ft−1), there exists a sequence (zn)n≥1 such that
limn z

n = z and zn ∈ cl (It((S
n
u )u≤t−1)|Ft−1) for all n ≥ 1.

Example 3.10. Suppose that d = 1 and

cl (It((Su)u≤t−1)|Ft−1) = [mt−1St−1,Mt−1St−1]

where mt−1,Mt−1 ∈ L0(R+,Ft−1) and mt−1 ≤Mt−1.

Consider z ∈ cl (It((Su)u≤t−1)|Ft−1), i.e. z = αtmt−1St−1+(1−αt)Mt−1St−1

where αt ∈ L0([0, 1],Ft−1). Let us define zn = αtmt−1S
n
t−1 +(1−αt)Mt−1S

n
t−1

for all n ≥ 1. Then, zn ∈ cl (It((S
n
u )u≤t−1)|Ft−1) and

|zn − z| ≤ 2Mt−1|Snt−1 − St−1|

hence limn z
n = z.

In the following, we define the closed convex random sets

Eε
t−1((Su)u≤t−1, z) = B̄(0, ε) ∩ (cl (It((Su)u≤t−1)|Ft−1)− z) ,

where B̄(z, ε) is the closed ball of center z = 0 and radius ε > 0. We say
that the mapping z 7→ Eε

t−1((Su)u≤t−1, z) is convex if, for all α ∈ [0, 1], and
z1, z2 ∈ Rd, we have

Eε
t−1((Su)u≤t−1, αz1+(1−α)z2) ⊆ αEε

t−1((Su)u≤t−1, z1)+(1−α)Eε
t−1((Su)u≤t−1, z2).

Note that this convexity property above is automatically satisfied if d = 1.

Proposition 3.11. Consider a payoff function gt defined on (Rd)t+1 such
that, there exists αt−1 ∈ L0((Rd)t+1,Ft) such that gt(x)−gt(y) ≥ αt−1(x−y),
x, y ∈ (Rd)t+1. Suppose that It : (Su)u≤t−1 7−→ cl (It((Su)u≤t−1)|Ft−1) is
lower-semicontinous and that z 7→ Eε

t−1((Snu )u≤t−1, z) ∈ It((Su)u≤t−1)|Ft−1)
is convex for all n ≥ 1 and (Snu )u≤t−1. Then, (Su)u≤t−1 7−→ pt−1((Su)u≤t−1)
is lower-semicontinuous, i.e. pt−1((Su)u≤t−1) ≤ lim infn pt−1((Snu )u≤t−1) if
((Snu )u≤t−1)n≥1 converges a.s. to (Su)u≤t−1.

Proof. Suppose that ((Snu )u≤t−1)n≥1 converges a.s. to (Su)u≤t−1. By assump-
tion, we know that for all z ∈ cl (It((Su)u≤t−1)|Ft−1), there exists a se-
quence zn ∈ cl (It((S

n
u )u≤t−1)|Ft−1) such that limn zn = z. We may suppose

that |z − zn| ≤ ε where ε > 0 is arbitrarily fixed. By assumption, for all
14



z̃ ∈ cl (It((S
n
u )u≤t−1)|Ft−1) in the ball B̄(z, ε) of center z and radius ε, we

have:

gt((Su)u≤t−1, z) ≤ gt((S
n
u )u≤t−1, z̃) + |αt−1| × |((Su)u≤t−1, z)− ((Snu )u≤t−1, z̃)|,

gt((Su)u≤t−1, z) ≤ gt((S
n
u )u≤t−1, z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε,

gt((Su)u≤t−1, z) ≤ h(n)(z̃) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε, (3.10)

where h(n) is an arbitrary affine function satisfying h(n) ≥ gt((S
n
u )u≤t−1, ·) on

cl (It((S
n
u )u≤t−1)|Ft−1). Let us define

h̄(n)(z) = inf
z̃∈B̄(z,ε)∩cl (It((Sn

u )u≤t−1)|Ft−1)
h(n)(z̃) + |αt−1| sup

u≤t−1
|Snu − Su|+ |αt−1|ε.

By convention, we set inf ∅ = −∞. Let us show that h̄(n) is concave. To see
it, observe that z̃ ∈ B̄(z, ε) ∩ cl (It((S

n
u )u≤t−1)|Ft−1) if and only if z̃ = z + u

where u ∈ En(z) = B̄(0, ε) ∩ (cl (It((S
n
u )u≤t−1)|Ft−1)− z) . Therefore,

h̄(n)(z) = inf
u∈En(z)

h(n)(z + u) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

Let z = λz1+(1−λ)z2. We only need to consider the case where En(z1) 6= ∅
and En(z2) 6= ∅. We deduce that En(z) 6= ∅. Moreover, by assumption, any
u ∈ En(z) may be written as u = αu1 +(1−α)u2 where ui ∈ En(zi), i = 1, 2.
Therefore,

h(n)(z + u) = αh(n)(z1 + u1) + (1− α)h(n)(z2 + u2),

≥ αh̄(n)(z1) + (1− α)h̄(n)(z2).

Taking the infimum in the right hand side of the inequality above, we deduce
that h̄(n)(λz1 + (1− λ)z2) ≥ αh̄(n)(z1) + (1− α)h̄(n)(z2), i.e. h̄(n) is concave.

By (3.10), we deduce that pt−1((Su)u≤t−1) ≤ h̄(n)(St) for all h(n). As Snt−1 ∈
En(St−1), for n large enough, under AIP, we deduce that

pt−1((Su)u≤t−1) ≤ h(n)(Snt−1) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.

Taking the infimum over all affine functions h(n), we get that for n large
enough:

pt−1((Su)u≤t−1) ≤ pt−1((Snu )u≤t−1) + |αt−1| sup
u≤t−1

|Snu − Su|+ |αt−1|ε.
15



As ε is arbitrarily chosen, we may conclude that

pt−1((Su)u≤t−1) ≤ lim inf
n

pt−1((Snu )u≤t−1).

3.3. Case where x 7→ gt(S0, · · · , St−1, x) is a convex function

We shall prove that pt−1((Su)u≤t−1) is a convex function of the price process
(Su)u≤t−1 if so Λt−1 is. In the following, we say that the mapping

Λt−1 : (Su)u≤t−1 7−→ Λt−1((Su)u≤t−1) := conv (cl (It((Su)u≤t−1)|Ft−1))

is convex for the inclusion if, for λ ∈ [0, 1],

Λt−1((λ((Su)u≤t−1)+(1−λ)((S̃u)u≤t−1) ⊆ λΛt−1((Su)u≤t−1)+(1−λ)Λt−1((S̃u)u≤t−1),

for all price process (Su)u≤t−1, (S̃u)u≤t−1.

Proposition 3.12. Suppose that the mapping

(ω, z) 7→ gt(S0, S1(ω), ..., St−1(ω), z) is Ft−1 ⊗ B(Rd) measurable,

non negative and

z 7→ gt(S0, S1, ..., St−1, z) is lower semi-continuous and convex almost surely

and suppose that the mapping Λt−1 : (Su)u≤t−1 7−→ Λt−1((Su)u≤t−1) is convex.
Then, the mapping (Su)u≤t−1 7→ pt−1((Su)u≤t−1) is convex .

Proof. Let ˜(Su)u≤t−1, (Su)u≤t−1 be two price processes. Let us define the fol-

lowing price process (Su)u≤t−1 = λ(Su)u≤t−1 + (1− λ) ˜(Su)u≤t−1 for λ ∈ [0, 1].
We consider the following random sets:

Λt−1 = conv (cl (It((Su)u≤t−1)|Ft−1)) , t ≥ 1,

Λ̃t−1 = conv
(

cl (It( ˜(Su)u≤t−1)|Ft−1)
)
, t ≥ 1,

Λt−1 = conv
(
cl (It((Su)u≤t−1)|Ft−1)

)
, t ≥ 1.
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By assumption, we have Λt−1 ⊆ λΛt−1 + (1 − λ)Λ̃t−1 for λ ∈ [0, 1]. Let h
and h̃ be two affine functions such that:

h(x) ≥ gt((Su)u≤t−1, x), ∀x ∈ Λt−1.

h̃(x̃) ≥ gt((S̃u)u≤t−1, x̃), ∀x̃ ∈ Λ̃t−1.

Thus, for λ ∈]0, 1[, we have

λh(x) + (1− λ)h̃(x̃) ≥ λgt((Su)u≤t−1, x) + (1− λ)gt((S̃u)u≤t−1, x̃)

≥ gt(λ((Su)u≤t−1) + (1− λ)((S̃u)u≤t−1), λx+ (1− λ)x̃).

Let x ∈ Λt−1 such that x = λx+ (1− λ)x̃. By above, we have:

λh(x) + (1− λ)h̃(x̃) ≥ gt((Su)u≤t−1), x) =: ĝt(x).

Now, let us consider

Ex =

{
λ− 1

λ
Λ̃t−1 +

1

λ
x, λ ∈]0, 1[

}
∩ Λt−1.

Observe that αEx1 + (1 − α)Ex2 = Eαx1+(1−α)x2 for all α ∈ [0, 1], and
x1, x2 ∈ Rd. Then, with x = αx1 + (1− α)x1, any x ∈ Ex may be written as
x = αx1 + (1− α)x2, where xi ∈ Exi , i = 1, 2. As (x, x) 7→ h̃( 1

1−λ(x− λx)) is
affine, we deduce that

λh(x) + (1− λ)h̃(
1

1− λ
(x− λx)) ≥ α

(
λh(x1) + (1− λ)h̃(

1

1− λ
(x1 − λx1))

)
+(1− α)

(
λh(x2) + (1− λ)h̃(

1

1− λ
(x2 − λx2))

)
,

λh(x) + (1− λ)h̃(
1

1− λ
(x− λx)) ≥ αĥ(x1) + (1− α)ĥ(x2),

where ĥ(x) = inf
x∈Ex

{λh(x) + (1 − λ)h̃( 1
1−λ(x − λx))}. Therefore, taking the

infimum in the right side of the inequality above, we deduce that ĥ is a (non
negative) concave function with finite values. So, it is continuous and we have
ĥ(x) ≥ ĝt(x) for all x ∈ Λt−1. We deduce that

pt−1((Su)u≤t−1) ≤ ĥ(St−1)

≤ λh(St−1) + (1− λ)h̃(S̃t−1), ∀St−1 ∈ Λt−1, S̃t−1 ∈ Λ̃t−1.
17



Taking the infimum over all the affine functions h and h̃, we deduce that

pt−1((Su)u≤t−1) ≤ λpt−1((Su)u≤t−1) + (1− λ)pt−1((S̃u)u≤t−1)

and the conclusion follows.

Remark 3.13. Suppose that the AIP condition holds and that (3.4) holds.
Consider φt−1(u) = inf

n

{
αnut−1 + f ∗t−1(−αn, u)

}
, u = (u0, ..., ut−1) ∈ (Rd)t,

where f ∗t−1(−α, u) = sup
m

[gt(u, x
m(u))− αxm(u)]. Recall that, by Proposition

3.8, pt−1((Su)u≤t−1) = φt−1((Su)u≤t−1). When gt is convex, then φt−1 is con-
vex by Proposition 3.12. Moreover, if gt ≥ 0, 0 ≤ φt−1 < ∞ by Proposition
3.6. Then, domφt−1 = (Rd)t and we deduce that φt−1 is continuous on (Rd)t.

Remark 3.14. Let us denote by conv (cl (It((Su)u≤t−1)|Ft−1)) the closed con-
vex envelop of cl (It((Su)u≤t−1)|Ft−1). By a measurable selection argument, we
may show that there exists mt−1,Mt−1 ∈ L0([0,∞],Ft−1) such that

conv (cl (It((Su)u≤t−1)|Ft−1)) = [mt−1,Mt−1].

By Lemma 3.5, we deduce that under (AIP)

pt−1((Su)u≤t−1) = gt(S0, · · · , St−1,mt−1) (3.11)

+
gt(S0, · · · , St−1,Mt−1)− gt(S0, · · · , St−1,mt−1)

Mt−1 −mt−1

(St−1 −mt−1).

If we suppose that mt−1 = kdt−1St−1 and Mt−1 = kut−1St−1 as in [2], where
kdt−1 and kut−1 are deterministic coefficients, then pt−1((Su)u≤t−1) = gt−1((Su)u≤t−1)
with

gt−1(x0, · · · , xt−1) = λt−1gt(x0, · · · , xt−1, k
d
t−1xt−1)+(1−λt−1)gt(x0, · · · , xt−1, k

u
t−1xt−1),

where λt−1 =
kut−1−1

kut−1−kdt−1
and gT is the payoff function.

3.4. The multistep backward procedure

The main results of Section 3.2 for the one step model may be applied recur-
sively, starting from time T , as the payoff function gT is known.

Consider the case where the conditional support cl (It((Su)u≤t−1)|Ft−1) ad-
mits a Castaing representation (ξm)m≥1 where ξm = xm((Su)u≤t−1), for all
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m ≥ 1, and xm are Borel functions on (Rd)t. Then, by Proposition 3.8, we
know that the infimum price at time T − 1 is a Borel function gT−1 of the
prices S0, · · · , ST−1. Then, we may repeat the procedure if we are in posi-
tion to verify that gT−1 is also l.s.c. This is the case by Proposition 3.12 and
Remark 3.13, under convexity conditions.

4. Numerical illustration

4.1. Formulation of the problem with d = 1

In this section we consider the example of the European call option at time
T = 2, i.e. with the payoff function g(S2) = (S2−K)+, K > 0. Let (St)t=0,1,2

be the executed price process. Recall that St belongs to the random set Λt,
for t = 0, 1, 2, respectively. We suppose that the risk-free asset is given by S0.
Recall that there exist Ft-measurable closed random sets It = It((Su)u≤t−1)
such that:

Σ(Λt((Su)u≤t−1)) = L0(It((Su)u≤t−1),Ft), t = 0, 1, 2.

We may suppose that Λ = Σ(Λ) so that St ∈ It a.s. for t = 0, 1, 2. At each
step, we shall apply the procedure we have developed in the sections above.
In particular, we seek for the strategy θ and we deduce the portfolio value V
associated to the executed price process S. Then, we may estimate the error
between the terminal value of V2 and the payoff g2(S2) that we denote by
ε2 = V2 − g2(S2).

We start from a known price S−1 at time t = 0, which corresponds to
the last traded price. We suppose that It = [St−1mt, St−1Mt], t = 0, 1, 2,
where the two random variables mt and Mt are independent of St−1 and
are uniformly distributed as mt ∼ U [0.7, 1] and Mt = mt + sprt such that
sprt ∼ U [0, 0.4] is independent of mt. Observe that m−t = 0.7 and M+

t = 1.4.
At time t = 0, we suppose that there is a single asset price S0 in L0(I0,F0).

We choose in our model to pick randomly S0 in the interval I0. Precisely,
S0 = S−1m0 + k0S−1(M0 − m0), where k0 is a random variable such that
k0 ∼ U [0, 1]. We may interpret this choice as if the bid and ask prices of the
market were the same and S0 is the market price. The order we sent is of the
form buy or sell the quantity θ0(S0) at the price S0.

At time t = 1, we choose to model the bid and ask prices Sbid1 , Sask1

respectively as: Sbid1 = S0m1 and Sask1 = S0M1. Notice that the order of

19



buying or selling depends on the bid-ask values, see Figure 1. If Sbid1 ≤ Sask1 ≤
S∗1 (in the green zone {S1 : ∆θ1(S1) ≤ 0}), then S1 = Sbid1 since ∆θ1 ≤ 0. If
S∗1 ≤ Sbid1 ≤ Sask1 , (the yellow zone,) then S1 = Sask1 as ∆θ1 > 0. Otherwise,
if Sbid < S∗1 < Sask1 , we may arbitrarily choose S1 = Sask1 or S1 = Sbid1 . In our
model, we make the (arbitrary) choice that, if |S∗1 −Sbid1 | ≤ |S∗1 −Sask1 |, then
S1 = Sask1 and S1 = Sbid1 otherwise.

Fig 1

At last, we choose S2 = Sask2 = Sbid2 ∈ I2 = [m2S1,M2S1] accordingly to
the formula S2 = S1m2 +k2S1(M2−m2) where k2 a uniform random variable
in the interval [0, 1].

4.2. Explicit computation of the strategy

We deduce the portfolio value and the strategy value at any time by domi-
nating the payoff function by the smallest affine function on the conditional
support of S, as mentioned in (3.5). We consider the terminal payoff function
g(ST ) = (ST −K)+ for several strikes.

4.2.1. The strategy at time t = 1

Recall that S2 ∈ Λ2(S1) ∼ I2 = [S1 ∗ m2, S1 ∗ M2]. In order to compute
the strategy θ1 = θ1(S1) we first compute the function ϕ1 given by (3.5)
which dominates the the pay-off function g2 on the conditional support
cl (I2(S1)|F1) = [S1m

−
2 , S1M

+
2 ].
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1st case: K ∈ [S1m
−
2 , S1M

+
2 ]⇔ S1 ∈ [ K

M+
2

, K
m−

2

] .

The dominating affine function ϕ1, see Figure 2, is given by:

ϕ1(x) =
(S1M

+
2 −K)(x− S1m

−
2 )

S1(M+
2 −m−2 )

.

So,

V1(S1) = p1(S1) = ϕ1(S1) =
(S1M

+
2 −K)(1−m−2 )

M+
2 −m−2

=: g1(S1),

and

θ1(S1) =
S1M

+
2 −K

S1(M+
2 −m−2 )

.

A simple computation shows that:

V2 = V1(S1) + θ1(S1)(S2 − S1) = ϕ1(S2) ≥ g2(S2).

Fig 2 Fig 3

2nd case: K ≤ S1m
−
2 ⇔ S1 ≥ K

m−
2

.

In this case, we have ϕ1(x) = (x−K)+ for all x ∈ [S1m
−
2 , S1M

+
2 ], see Figure

3. Hence, V1(S1) = (S1 −K)+ =: g1(S1) and θ1(S1) = 1.
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Fig 4

3rd case: K ≥ S1M
+
2 ⇔ S1 ≤ K

M+
2

.

Observe that the dominating affine function ϕ1 coincides with the x-axis on
the support [S1m

−
2 , S1M

+
2 ], see Figure 4. Therefore, V1(S1) = g1(S1) := 0

and we deduce that θ1(S1) = 0.

We finally deduce that

g1(x) =
(xM+

2 −K)(1−m−2 )

M+
2 −m−2

1[
K

M+
2

, K

m+
2

](x) + (x−K)+1[
K

m+
2

,∞
)(x).

The graph of the payoff function g1 is represented in Figure 4.

4.2.2. The strategy at time t = 0

In order to determine the strategy θ0, we compute the smallest affine function
ϕ0 that dominates g1 on the conditional support cl(I1(S0)|F0).

1st case: S0M
+
1 ≤ K

M+
2

, i.e. S0 ≤ K
M+

1 M
+
2

.

We have V0(S0) = g0(S0) = 0 and θ0(S0) = 0, see Figure 5.

2nd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ∈ [ K

M+
2

, K
m−

2

], i.e.

S0 ∈ [ K
M+

1 M
+
2

, K
m−

1 M
+
2

∧ K
m−

2 M
+
1

].

We find that (see Figure 6):

ϕ0(x) =
(S0M

+
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m−1 )(M+

2 −m−2 )
(x− S0m

−
1 ).
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Fig 5 Fig 6

So,

V0(S0) = ϕ0(S0) =
(S0M

+
1 M

+
2 −K)(1−m−2 )(1−m−1 )

(M+
2 −m−2 )(M+

1 −m−1 )
=: g0(S0),

and

θ0(S0) =
(S0M

+
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m−2 )(M+

1 −m−1 )
.

3rd case: S0m
−
1 ≤ K

M+
2

and S0M
+
1 ≥ K

m−
2

, i.e. S0 ∈ [ K
m−

2 M
+
1

, K
m−

1 M
+
2

].

We have, see Figure 7:

ϕ0(x) =
S0M

+
1 −K

S0(M+
1 −m−1 )

(x− S0m
−
1 ).

Fig 7 Fig 8
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So,

V0(S0) = ϕ0(S0) =
(S0M

+
1 −K)(1−m−1 )

M+
1 −m−1

=: g0(S0), θ0(S0) =
S0M

+
1 −K

S0(M+
1 −m−1 )

.

4th case: S0m
−
1 ∈ [ K

M+
2

, K
m−

2

] and S0M
+
1 ∈ [ K

M+
2

, K
m−

2

], i.e.

S0 ∈ [ K
m−

1 M
+
2

, K
m−

2 M
+
1

].

We have ϕ0(x) = g1(x), for all x ∈ cl(I1(S0)|F0), see Figure 8. Therefore,

V0(S0) = ϕ0(S0) =
(S0M

+
2 −K)(1−m−2 )

M+
2 −m−2

=: g0(S0), θ0(S0) =
M+

2 (1−m−2 )

M+
2 −m−2

.

5th case: S0m
−
1 ∈ [ K

M+
2

, K
m−

2

] and S0M
+
1 ≥ K

m−
2

, i.e.

S0 ∈ [ K
m−

1 M
+
2

∨ K
m−

2 M
+
1

, K
m−

1 m
−
2

].

We obtain that (see Figure 9):

ϕ0(x) =
(S0M

+
1 −K)(M+

2 −m−2 )− (S0m
−
1 M

+
2 −K)(1−m−2 )

S0(M+
1 −m−1 )(M+

2 −m−2 )
x

+
−m−1 (S0M

+
1 −K)(M+

2 −m−2 ) +M+
1 (S0m

−
1 M

+
2 −K)(1−m−2 )

(M+
1 −m−1 )(M+

2 −m−2 )
.

Fig 9 Fig 10
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Then,

V0(S0) = ϕ0(S0) =: g0(S0)

=
(S0M

+
1 −K)(M+

2 −m−2 )(1−m−1 )− (S0m
−
1 M

+
2 −K)(1−m−2 )(1−M+

1 )

(M+
1 −m−1 )(M+

2 −m−2 )

and

θ0(S0) =
(S0M

+
1 −K)(M+

2 −m−2 )− (S0m
−
1 M

+
2 −K)(1−m−2 )

S0(M+
2 −m−2 )(M+

1 −m−1 )
.

6th case: S0m
−
1 ≥ K

m−
2

and S0M
+
1 ≥ K

m−
2

, i.e. S0 ≥ K
m−

2 m
−
1

.

We have V0(S0) = (S0 −K)+ =: g0(S0) and θ0(S0) = 1, see Figure 10.

4.3. Empirical results

For an observed price S−1 at time t = 0 (which corresponds to the last traded
price), and for different strike values K, we test the infimum super hedging
strategy by computing the relative error εR from a data set of 106 simulated
prices St for t ∈ 0, 1, 2. To do so, we wrote a script in Python. The relative
error is given by

εR =
V2 − (S2 −K)+

S2

.

In the following table 11, empirical results are presented for different values
of the strike K and a sample of 106 scenarios.

We observe that the executed prices depend on the strike K > 0. Indeed, as
expected, the orders we send depend on the payoff function. As K increases,
the payoff decreases and, as expected, the option price V0 decreases. The
distribution of S1 admits two regimes as seen in Figure 13 that correspond
to the bid and ask prices.

Notice that the proportion of the portfolio value invested in the risky
assets at time t = 1 decreases as the payoff decreases. We also observe that
this proportion decreases (resp. increases) when the price S decreases (resp.
increases) between time t = 0 and t = 1, i.e. when ∆S1 < 0 (resp. ∆S1 ≥
0). At last, the empirical results obtained for the relative error confirm the
efficiency of the super-hedging strategy, see Figure 15.
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K 50 75 100 125 150

E(S0) 95.002 94.983 95.006 94.98 95.001
E(S1) 99.56 94.94 87.085 82.104 81.736
E(S2) 94.56 90.180 82.716 78.01 77.664

E(V0) 46.503 29.357 16.960 11.244 6.7
maxV0 89.677 66.72 49.726 33.05 22.562

E(V (S0)/S−1) 0.465 0.294 0.170 0.112 0.067
E(V (S0)/S0) 0.483 0.300 0.173 0.114 0.066
min(V (S0)/S0) 0.359 0.163 0.098 0.032 0
max(V (S0)/S0) 0.642 0.479 0.358 0.237 0.162

E(εR) 0.017 0.077 0.076 0.064 0.039
σ(εR) 0.024 0.045 0.04 0.037 0.0317
min εR 0 2.23 ∗ 10−6 1, 9 ∗ 10−7 5.975 ∗ 10−8 0
max(εR) 0.18 0.19 0.195 0.187 0.187

E(θ0S0/V0) 199% 255% 322% 333% 313%
E(θ1S1/V1) 205% 230% 134% 32% 3%

Fig 11: The empirical results.

Fig 12 Fig 13: K=100.
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[30] Oblój Jan and Wiesel J. Robust estimation of superhedging prices.
Annals of Statistics, 49, 1, 508-530, 2021.

[31] Pham H., Wei X. and Zhou C. Portfolio diversification and model un-
certainty: a robust dynamic mean-variance approach. Article on ArXiv:
https://arxiv.org/abs/1809.01464, 2018.

[32] Platen E. and Rungaldier W.J. A benchmark approach to portfolio
optimization under partial information. Asia-Pacific Financial Markets,
14, 25-43, 2007.

[33] Quenez M-C. Optimal portfolio in a multiple-priors model. Seminar
on Stochastic Analysis, Random Fields and Applications IV, Progr.
Probab., 58, 291-321, Birkhuser, Basel, 2004.
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