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We solve the problem of super-hedging European or Asian options for discrete-time financial market models where executed prices are uncertain. The risky asset prices are not described by single-valued processes but measurable selections of random sets that allows to consider a large variety of models including bid-ask models with order books, but also models with a delay in the execution of the orders. We provide a dynamic programming principle under a weak no-arbitrage condition, the so-called AIP condition, under which the prices of the non negative European options are non negative. This condition is weaker than the existence of a risk-neutral martingale measure but it is sufficient to numerically solve completely the super-hedging problem. We illustrate our method by a numerical example.

Introduction

As observed in practice, the executed value of an asset may depend on the order sent by the trader and, also, on the quantities offered by the order book. Among the possible causes of the well-known slippage phenomenon, delays in the execution of the orders, liquidity disorders, market impacts, or transaction costs may influence the executed value. An approach to overcome this difficulty is to assume that we do not know by advance the traded prices. In that case, as proposed in the paper, the order that the trader sends is a mapping that associates to each possible price offered by the market a quantity to sell or buy. This is exactly what we generally observe in practice, in a presence of an order book for example, since there is no single prices.

On the contrary, it is traditional in mathematical finance to suppose that we first observe a (new) single market price and, then, we choose almost instantaneously the number of assets to sell or buy in order to revise the portfolio. This means that the last traded price keep constants long enough in the order book. Moreover, it coincides with a bid and ask price so that the buy and sell orders are executed at the same value.

In the real life, there may be delayed information, see the recent paper [START_REF] Agram | A financial market with singular drift and no arbitrage[END_REF] or [START_REF] Øksendal | Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations[END_REF], [START_REF] Saporito | Stochastic control with delayed information and related nonlinear master equation[END_REF] among others on stochastic control. The delayed information in the problem of pricing is sometimes modeled through incomplete or restricted information as in [START_REF] Ichiba | Option pricing with delayed information[END_REF], [START_REF] Kazmerchuk | The pricing of options for securities markets with delayed response[END_REF], [START_REF] Valière | No-arbitrage properties for financial markets with transaction costs and incomplete information[END_REF], [START_REF] Dahl | Pricing of claims in discrete time with partial information[END_REF] or using a two filtrations setting as in [START_REF] Cuchiero | A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting[END_REF].

Another type of uncertainty is due the choice of the model supposed to approximate the real financial market [START_REF] Bertsimas | Data-driven robust optimization[END_REF]. Model risk may lead to price misevaluations that are studied in recent papers, in the growing field of robust finance. Since the seminal work of Knight [START_REF] Knight | Uncertainty, and Profit[END_REF], it is now broadly accepted that uncertainty may be described by a parametrized family of models, instead of considering only one model, if there is a lack of information on the parameters, see [START_REF] Pham | Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach[END_REF] , [START_REF] Burzoni | Viability and arbitrage under Knightian uncertainty[END_REF], [START_REF] Neufeld | Superreplication under volatility uncertainty for measurable claims[END_REF], [START_REF] Becherer | Good deal hedging and valuation under combined uncertainty about drift and volatility[END_REF], [START_REF] Becherer | Hedging under generalized good-deal bounds and model uncertainty[END_REF], [START_REF] Fadina | Affine processes under parameter uncertainty[END_REF], [START_REF] Tevzaze | Robust utility maximization for a diffusion market model with misspecified coefficients[END_REF]. Other models consider that the market is driven by a family of probability measures in such a way that uncertainty stems from the existence of several possible reference probability measures determining which events are negligible, see [START_REF] Quenez | Optimal portfolio in a multiple-priors model[END_REF], [START_REF] Hobson | Robust hedging of the lookback option[END_REF], [START_REF] Cheredito | Duality formulas for robust pricing and hedging in discrete time[END_REF], [START_REF] Bouchard | Arbitrage in nondominated discrete-time models[END_REF], [START_REF] Biagini | Robust fundamental theorem for continuous processes[END_REF], [START_REF] Burzoni | Universal arbitrage aggregator in discrete-time markets under uncertainty[END_REF], [START_REF] Jan | Robust estimation of superhedging prices[END_REF], [START_REF] Carassus | The robust superreplication problem: a dynamic approach[END_REF].

In any case, uncertainty is taken into account in the literature by considering either several probabilistic structures, e.g. a family of reference probability measures and filtrations for the same price process or a family of price process models on the same stochastic basis. In the recent paper [START_REF] Rásonyi | On utility maximisation under model uncertainty in discrete-time markets[END_REF], the choice is made to fix only one filtered probability space on which a collection of stochastic processes describes the possible dynamics of the stock prices. We follow this alternative approach. Precisely, we consider a unique stochastic basis but we suppose that, in discrete time, the next stock prices at any time are not modeled by a unique vector-valued random variable as it is usual to do. Instead, we assume that the next stock prices belong to a collection of possible processes. The approach we adopt in our paper is slightly different from [START_REF] Rásonyi | On utility maximisation under model uncertainty in discrete-time markets[END_REF] in the sense that the collections of possible prices we consider are connected from time to time in such a way that it is possible to represent

Formulation of the problem

Let (Ω, (F t ) t∈{0,...,T } , F T , P ) be a filtered complete probability space where T is the time horizon. We do not suppose that F 0 is the trivial σ-algebra. We also consider a complete sub-filtration (G t ) t∈{0,...,T } where G t represents the market information available at time t. We suppose that G 0 is the trivial σ-algebra containing all the negligible sets and G t ⊆ F t for all t ∈ {0, . . . , T }. The typical case we shall consider is when F t = G t . The financial market we consider is composed of d risky assets and a bond S 0 . We assume without loss of generality that S 0 = 1.

Let us consider, for each t ≤ T , Λ t ⊆ L 0 (R d + , F t ) a collection of F tmeasurable random variables representing the possible executed prices for the risky assets at time t. We suppose that, at time t, the set Λ t may depend on the observed traded prices before time t, i.e. to each vector of prices (S u ) u≤t-1 , we associate a set Λ t = Λ t ((S u ) u≤t-1 ) representing the possible next prices at time t given that we have observed the executed prices (S u ) u≤t-1 at time t. We adopt the financial principle that the executed price S t is only known strictly after the order is sent at time t but before time t + 1.

Definition 2.1. A price process is an (F t ) t=0,••• ,T -adapted non-negative pro- cess (S t ) t=-1,••• ,T such that S t ∈ Λ t ((S u ) u≤t-1 ) for all t = 1, • • • , T and S -1 ∈ R is given .
Recall that S t represents the prices (S 1 t , • • • , S d t ) of d ≥ 1 risky assets proposed by the market to the portfolio manager when selling or buying. A typical case could be Λ t = L 0 (I t , F t ) with

I t = Π d j=1 [S bj t , S aj t ],
where (S bj ) j=1,••• ,d and (S aj ) j=1,••• ,d are respectively the bid and the ask price processes observed in the market at time t that may depend on (S u ) u≤t-1 . They are not necessary the best bid/ask prices as, in practice, the real transaction price may be a convex combination of bid and ask prices. Indeed, a transaction is generally the result of an agreement between sellers and buyers but it also depends on the traded volume. Clearly, the portfolio manager does not benefit in general from the last traded price observed in the market when sending an order. On the contrary, he should face an uncertain price S t which depends on the type of order (which may be not executed) but it also depends on some random events he does not control, e.g. slippage. A simple way to model this phenomenon is to suppose that the executed prices obtained by the manager belong to random intervals.

Another interesting case is when Λ t = {S θ t : θ ∈ Θ} is a parametrized family of random variables. For instance, consider fixed processes (ξ u ) u≤T and (m u ) u≤T adapted to (F t ) t=0,••• ,T and independent of F t-1 . Let C be a compact subset of R and suppose that S -1 is given. We define recursively

Λ t ((S u ) u≤t-1 ) = {S t-1 exp(σξ t + m t ) : S t-1 ∈ Λ t-1 , σ ∈ C} , t ≤ T.
In this model, there is an uncertainty on prices because of the unknown parameter (volatility) σ. This is a classical problem in robust finance, see for example [START_REF] Neufeld | Superreplication under volatility uncertainty for measurable claims[END_REF].

A portfolio strategy is an (F t ) t=0,••• ,T -adapted process θ = (θ 0 , θ) where, for all t = 0, • • • , T , θ t ∈ R d (resp. θ 0 t ∈ R) describes the quantities of risky assets (resp. the bond) held in the portfolio between time t and time t + 1. Since the strategies are not supposed to be adapted to (G t ) t=0,••• ,T , the manager is not supposed to control the quantity of assets he wants to sell or buy. This is what happens in practice because the orders are not necessarily executed, for instance in the case of limit stock market orders. For such a strategy θ, we define the portfolio process with initial endowment V 0 ∈ L 0 (R, F 0 ), as the liquidation value:

V V 0 , θ = θ 0 + θS = θ 0 + d i=1 θ i S i .
Recall that S t is observed strictly after the portfolio manager sends an order for θ t at time t. This is why F t is not the information available on the market at time t but the information the portfolio manager has strictly after t once he knows whether his order has been executed or not and once he knows the executed price as well. Nevertheless, the portfolio manager may send an order which depends on the uncertain price. For instance, such an order could be Buy at most 1000 units at a price less than or equal to 145 euros so that the strategies and the executed prices are linked.

In the following, we only consider self-financing portfolio processes V x, θ, i.e. they satisfy by definition:

∆V x, θ t := V x, θ t -V x, θ t-1 = θ t-1 ∆S t ,
where ∆S t := S t -S t-1 . Notice that this dynamics holds if and only if -(θ 0 t -θ 0 t-1 )S 0 t = (θ t -θ t-1 )S t . This means that the cost of the new portfolio allocation (θ 0 t , θ t ), i.e. buying or selling the quantities (|θ i t -θ i t-1 |) d i=0 , at the executed price S t is charged to the cash account. Therefore,

V V 0 , θ t = V 0 + t u=1 θ u-1 ∆S u . (2.1)
It is then natural by (2.1) to write V V 0 ,θ = V V 0 , θ. Our goal is to solve the following problem: Construct the minimal super hedging strategy of an Asian option whose payoff is g(S 0 , • • • , S T ) for some convex deterministic function on (R d ) T +1 . Because of price uncertainty, this means that we shall construct a self-financing strategy θ and we shall determine the minimal initial endowment V 0 such that V V 0 ,θ T ≥ g(S 0 , S 1 , • • • , S T ) whatever the executed prices S t ∈ Λ t ((S u ) u≤t-1 ) are for t ≤ T . As the filtration does not correspond to the current information (G t ) t=0,••• ,T of the market, contrarily to [START_REF] Baptiste | Pricing without martingale measures[END_REF], one more step is necessary to deduce the initial endowment P 0 . Indeed, the initial value of any portfolio process is F 0 -measurable contrarily to P 0 which has to be G 0 -measurable, i.e. P 0 is a constant or equivalently P 0 ≥ ess sup G 0 (V 0 ).

The super-hedging problem

The one time step resolution

We first introduce the basic tools and theoretical results we need in this section. A set Λ of measurable random variables is said F-decomposable if for any finite partition (F i ) i=1,••• ,n ⊆ F of Ω, and for every family

(γ i ) i=1,••• ,n of Λ, we have n i=1 γ i 1 F i ∈ Λ.
In the following, we denote by Σ(Λ) the F-decomposable envelop of Λ, i.e. the smallest F-decomposable family containing Λ. Notice that

Σ(Λ) = n i=1 γ i 1 F i : n ≥ 1, (γ i ) i=1,••• ,n ⊆ Λ, (F i ) i=1,••• ,n ⊆ F s.t. n i=1 F i = Ω . The closure Σ(Λ) in probability of Σ(Λ) is decomposable even if Λ is not decomposable. By [26, Theorem 2.4], there exists a F-measurable closed ran- dom set σ(Λ) such that Σ(Λ) = L 0 (σ(Λ), F) is the set of all F-measurable selectors of σ(Λ).
We now introduce the general one step problem between the dates t -1 and t for t ≥ 1. To do so, we suppose that after time t -1 but strictly before time t the portfolio manager observes the price S t-1 , as a consequence of her/his order, see Definition 2.1. More precisely, the portfolio manager knows (S u ) u≤t-2 at time t -1 and sends an order at time t -1 which is executed with a delay so that the executed price S t-1 ∈ Λ t-1 ((S u ) u≤t-2 ) is only observed strictly after t -1. In the following, we consider the σ-algebra

F t-1 = σ(S u : u ≤ t -1) for all t ≥ 1.
Let us consider a random function g t defined on (R d ) t+1 , t ≥ 1. We assume that the mapping (ω, z)

→ g t (S 0 (ω), • • • , S t-1 (ω), z) is F t-1 × B(R d )- measurable and z → g t (S 0 , S 1 , • • • , S t-1 , z) is lower-semicontinuous (l.s.c.) almost surely whatever the price process (S u ) u≤t-1 is. The first goal is to characterise the set P t-1 of all V t-1 ∈ L 0 (R, F t-1 ) such that V t-1 + θ t-1 ∆S t ≥ g t (S 0 , • • • , S t ), a.s. for all S t ∈ Λ t ((S u ) u≤t-1 ), (3.2) for some θ t-1 ∈ L 0 (R d , F t-1 ) 1 . Note that V t-1 depends on (S u ) u≤t-1 .
We observe by lower-semicontinuity that (3.2) holds if and only if

V t-1 + θ t-1 ∆S t ≥ g t (S 0 , • • • , S t ), for all S t ∈ Σ(Λ t ((S u ) u≤t-1 )). (3.3)
This means that we may suppose w.l.o.g. that Σ(Λ t ((S u ) u≤t-1 )) = Λ t ((S u ) u≤t-1 ).

In the following, we denote by I t ((S u ) u≤t-1 ) the F t -measurable closed random set such that Σ(Λ t ((S u ) u≤t-1 )) = L 0 (I t ((S u ) u≤t-1 ), F t ), see [START_REF] Lépinette | Conditional cores and conditional convex hulls of random sets[END_REF]Theorem 2.4].

By [START_REF] Mansour | Conditional interior and conditional closure of a random set[END_REF]Theorem 3.4], we deduce that (3.2) is equivalent to V t-1 ≥ p t-1 where p t-1 = p t-1 ((S u ) u≤t-1 , θ t-1 ) is given by

p t-1 = θ t-1 S t-1 + sup z∈cl (It((Su) u≤t-1 )|F t-1 ) (g t (S 1 , • • • , S t-1 , z) -θ t-1 z) , = θ t-1 S t-1 + f * t-1 (-θ t-1 ).
In the formula above, cl (I t ((S u ) u≤t-1 )|F t-1 ) is the conditional closure of I t ((S u ) u≤t-1 ), i.e. the smallest F t-1 -measurable closed random set which contains I t ((S u ) u≤t-1 ) almost surely. We refer the readers to [START_REF] Mansour | Conditional interior and conditional closure of a random set[END_REF]Theorem 3.4] for the existence and uniqueness of such conditional random set. Moreover,

f * t-1 (y) = sup z∈R d (yz -f t-1 (z)) is the Fenchel-Legendre conjugate function of f t-1 defined as f t-1 (z) := -g t (S 0 , • • • , S t-1 , z) + δ cl (It((Su) u≤t-1 )|F t-1 ) (z),
where δ cl (It((Su) u≤t-1 )|F t-1 ) ∈ {0, ∞} is infinite on the complimentary of cl (I t ((S u ) u≤t-1 )|F t-1 ) and 0 otherwise. Notice that f * t-1 is convex and l.s.c. as a supremum (on cl (I t ((S u ) u≤t-1 )|F t-1 )) of convex and l.s.c. functions. Moreover, by [START_REF] Mansour | Conditional interior and conditional closure of a random set[END_REF]Theorem 3.4

], (ω, y) → f * t-1 (ω, y) is F t-1 × B(R d )-measurable. Therefore, Dom f * t-1 := {y : f * t-1 (ω, y) < ∞} is an F t-1
-measurable random set. We deduce that the F t-1 -measurable prices at time t -1 are given by

P t-1 ((S u ) u≤t-1 ) = θ t-1 S t-1 + f * t-1 (-θ t-1 ) : θ t-1 ∈ L 0 (R d , F t-1 ) +L 0 (R + , F t-1
). The second step is to determine the infimum super-hedging price as

p t-1 ((S u ) u≤t-1 ) = ess inf F t-1 P t-1 ((S u ) u≤t-1 ).
To do so, we use the arguments of [2, Theorem 2.8] and we obtain that:

p t-1 ((S u ) u≤t-1 ) = ess inf F t-1 θ t-1 S t-1 + f * t-1 (-θ t-1 ) : θ t-1 ∈ L 0 (R d , F t-1 ) , = ess inf F t-1 -θ t-1 S t-1 + f * t-1 (θ t-1 ) : θ t-1 ∈ L 0 (R d , F t-1 ) , = -ess sup F t-1 θ t-1 S t-1 -f * t-1 (θ t-1 ) : θ t-1 ∈ L 0 (R d , F t-1 ) , = -ess sup F t-1 θ t-1 S t-1 -f * t-1 (θ t-1 ) : θ t-1 ∈ L 0 (Dom f * t-1 , F t-1 ) , = -sup z∈Dom f * t-1 zS t-1 -f * t-1 (z) , = -sup z∈R d zS t-1 -f * t-1 (z) , = -f * * t-1 (S t-1 ).

Main properties satisfied by the one time step infimum super-hedging price

In the following, we suppose that, for all price process (S u ) u≤t-1 , there exists

α t-1 ∈ L 0 (R d , F t-1 ) and β t-1 ∈ L 0 (R, F t-1 ) that depend on (S u ) u≤t-1 such that g t (S 0 , • • • , S t-1 , x) ≤ α t-1 x + β t-1 , ∀x ∈ cl (I t ((S u ) u≤t-1 )|F t-1 ). (3.4)
This is the case for Asian options whose payoffs are for example of the form

k(S 0 + S 1 + • • • + S t -K) + , k ≥ 0. By [2, Theorem 2.8], we know that p t-1 ((S u ) u≤t-1 ) = (3.5) inf {αS t-1 + β : αx + β ≥ g t (S 0 , • • • , S t-1 , x), ∀x ∈ cl (I t ((S u ) u≤t-1 )|F t-1 )} .
We first establish the following result:2 Proposition 3.1. Let (S u ) u≤t-1 be a price process. Suppose that the mapping

(ω, z) → g t (S 0 (ω), • • • , S t-1 (ω), z) is F t-1 × B(R d )-measurable and the func- tion z → g t (S 0 , • • • , S t-1 , z) is l.s.c. almost surely. If S t-1 / ∈ conv cl (I t |F t-1 ), then p t-1 (((S u ) u≤t-1 )) = -∞. Moreover, if z → g t (S 0 , • • • , S t-1 , z) is a.s. convex, then p t-1 ((S u ) u≤t-1 ) ≥ g t (S 0 , • • • , S t-1 , S t-1 ) if S t-1 ∈ conv cl (I t |F t-1 ). At last, if g t (S 0 , • • • , S t-1 , •) is bounded from below by m t-1 ∈ L 0 (R, F t-1 ) on cl (I t |F t-1 ), then p t-1 (((S u ) u≤t-1 )) ≥ m t-1 if S t-1 ∈ conv cl (I t |F t-1 ). Proof. Suppose that S t-1 / ∈ conv cl (I t |F t-1 )
. By the Hahn-Banach separation theorem and a measurable selection argument, there exists

α * t-1 in L 0 (R d \ {0}, F t-1 ) and c 1 t-1 , c 2 t-1 ∈ L 0 (R d , F t-1
) such that we have the inequality

α * t-1 y < c 1 < c 2 < α * t-1 S t-1 for all y ∈ cl (I t |F t-1
). Multiplying the inequality by a sufficiently large positive multiplier, we may suppose that α * t-1 (S t-1 -y) ≥ n where n ∈ N is arbitrarily chosen. Let us introduce αt-1 = α t-1 -α * t-1 and βn

t-1 = β t-1 + α * t-1 S t-1 -n, n ≥ 1. By construc- tion, α t-1 x + β t-1 ≤ αt-1 x + βn t-1 for all x ∈ cl (I t |F t-1 ). It follows that αt-1 x + βn t-1 ≥ g t (S 1 , • • • , S t-1 , x), for all x ∈ cl (I t |F t-1 )
. By (3.5), we deduce that p

t-1 ≤ αt-1 S t-1 + βn t-1 = α t-1 + β t-1 -n. As n → ∞, we deduce that p t-1 = -∞. Suppose that z → g t (S 1 , • • • , S t-1 , z
) is a.s. convex and, furthermore, S t-1 ∈ conv cl (I t |F t-1 ). By Proposition 3.12,

p t-1 ((S u ) u≤t-1 ) ≥ g t (S 0 , • • • , S t-1 , S t-1 ). At last, suppose that z → g t (S 0 , S 1 , • • • , S t-1 , z) is bounded from below by m t-1 ∈ L 0 (R, F t-1 ) on cl (I t |F t-1
) and S t-1 ∈ conv cl (I t |F t-1 ). Then, S t-1 = lim n→∞ S n where S n ∈ conv cl (I t |F t-1 ), i.e. S n = Jn i=1 α i,n x i,n where α i,n ≥ 0 with Jn i=1 α i,n = 1 and x i,n ∈ cl (I t |F t-1 ) for all i, n. Consider (α, β) such that αx + β ≥ g t (S 0 , • • • , S t-1 , x) for all x ∈ cl (I t |F t-1 ). Then, αS t-1 + β = lim n→∞ (αS n + β) with

αS n + β = Jn i=1 α i,n (αx i,n + β) ≥ Jn i=1 α i,n g t (S 1 , • • • , S t-1 , x i,n ) ≥ m t-1 .
We deduce that αS t-1 + β ≥ m t-1 hence p t-1 ≥ m t-1 by (3.5). 2 Corollary 3.2. Let (S u ) u≤t-1 be a price process. Suppose that the mapping

(ω, z) → g t (S 0 (ω), • • • , S t-1 (ω), z) is F t-1 × B(R d )-measurable and the func- tion z → g t (S 0 , • • • , S t-1 , z
) is l.s.c. a.s. and convex or bounded from above by m t-1 ∈ L 0 (R, F t-1 ) on cl (I t ((S u ) u≤t-1 )|F t-1 ). Then, p t-1 ((S u ) u≤t-1 ) = -∞ if and only if S t-1 ∈ conv cl (I t |F t-1 ). In particular, the infimum superhedging price of any non negative payoff function is finite if and only if it is non negative or equivalently if S t-1 ∈ conv cl (I t (S u ) u≤t-1 |F t-1 ).

As studied in [START_REF] Baptiste | Pricing without martingale measures[END_REF], the non negativity of the prices for the zero claim or more generally for non negative European call options corresponds to a weak no arbitrage condition (AIP) which is naturally observed in practice. Adapted to our setting, we introduce the following definition: Definition 3.3. We say that condition AIP holds between t -1 and t if the prices at time t -1 of the time t zero claim is non negative for every price process (S u ) u≤t-1 . Moreover, we say that the condition AIP holds when AIP holds at any time step.

As observed in [START_REF] Baptiste | Pricing without martingale measures[END_REF] and above, when AIP fails, the infimum of the zero claim, and more generally of non negative payoffs, may be -∞. In that case, the dynamic programming principle we develop in this paper is still valid but unrealistic and non-implementable in practice. By Corollary 3.2, we have: Corollary 3.4. The condition AIP holds between t -1 and t if and only if S t-1 ∈ conv cl (I t ((S u ) u≤t-1 )|F t-1 ) for any price process (S u ) u≤t-1 , i.e.

I t-1 ((S u ) u≤t-2 ) ⊆ conv cl (I t (S u ) u≤t-1 |F t-1 ) if t ≥ 1.
In the following, if g is a function defined on R d and D is a subset of R d , we denote by conc(g, D) the (relative) concave envelope of g on D, i.e. the smallest concave function defined on R d which dominates g only on D. Observe that g ≤ h on D is equivalent to g -δ D ≤ h on R d . Therefore, conc(g, D) always exists as soon as g is dominated by an affine function on D.

Lemma 3.5. Let (S u ) u≤t-1 be a price process. Suppose that the mapping

(ω, z) → g t (S 0 (ω), • • • , S t-1 (ω), z) is F t-1 × B(R d )-measurable and the func- tion z → g t (S 0 , • • • , S t-1 , z) is l.s.c. almost surely. Consider the concave envelope h(x) = conc (g t (S 0 , • • • , S t-1 , •), cl (I t ((S u ) u≤t-1 )|F t-1 )) (x).
Then,

p t-1 ((S u ) u≤t-1 ) (3.6) = inf {αS t-1 + β : αx + β ≥ h(x), for all x ∈ cl (I t ((S u ) u≤t-1 )|F t-1 )} .
Proof. By definition, h is the smallest concave function which dominates g. We deduce that the set of all affine functions dominating g coincides with the set of all affine functions dominating h. By (3.5) we deduce that (3.6) holds.

Proposition 3.6. Suppose that AIP holds. Let (S u ) u≤t-1 be a price process. Suppose that the mapping (ω, z)

→ g t (S 0 (ω), • • • , S t-1 (ω), z) is F t-1 ×B(R d )- measurable and z → g t (S 0 , • • • , S t-1 , z) is l.s.c
. almost surely. Moreover, suppose that there exists α t-1 ∈ L 0 (R d , F t-1 ) and β t-1 ∈ L 0 (R, F t-1 ) such that g t (S 0 , • • • , S t-1 , z) ≤ α t-1 z + β t-1 for all z ∈ conv cl (I t ((S u ) u≤t-1 )|F t-1 ) and consider the concave envelope h(x) = conc (g t (S 0 , • • • , S t-1 , •), cl (I t ((S u ) u≤t-1 )|F t-1 )) (x).

(3.7)

We have

p t-1 ((S u ) u≤t-1 ) ∈ [g t (S 0 , • • • , S t-1 , S t-1 ), α t-1 S t-1 + β t-1 ]
. Moreover, if the super-differential ∂h(S t-1 ) = ∅ , then p t-1 ((S u ) u≤t-1 ) = h(S t-1 ) is a price, i.e. p t-1 ((S u ) u≤t-1 ) ∈ P t-1 ((S u ) u≤t-1 ) with the super-replicating strategies θ t-1 ∈ ∂h(S t-1 ).

Proof. It is clear by Lemma 3.5 that p t-1 ((S u ) u≤t-1 ) ≥ h(S t-1 ) when S t-1 belongs to cl (I t ((S u ) u≤t-1 )|F t-1 ). By definition, for all r t-1 ∈ ∂h(S t-1 ) = ∅, for all x ∈ conv cl (I t (S u ) u≤t-1 |F t-1 ), h(x) ≤ h(S t-1 ) + r t-1 (x -S t-1 ) =: δ(r t-1 , x).

(3.8)

Therefore, p t-1 ((S u ) u≤t-1 ) ≤ δ(r t-1 , S t-1 ) = h(S t-1 ), and finally

p t-1 ((S u ) u≤t-1 ) = h(S t-1 ).
At last, applying (3.8) with x = S t ∈ I t ((S u ) u≤t-1 ) ⊆ cl (I t ((S u ) u≤t-1 )|F t-1 ), we deduce that

p t-1 ((S u ) u≤t-1 ) + r t-1 ∆S t ≥ h(S t ) ≥ g t (S 0 , • • • , S t-1 , S t ).
Since x → g t (S 0 , • • • , S t-1 , x) is l.s.c., we consider the following random set:

G t-1 := {(ω, r t-1 ) : δ(r t-1 , x) ≥ g t (S 0 , • • • , S t-1 , x), ∀x ∈ conv cl (I t (S u ) u≤t-1 |F t-1 )}, = {(ω, r t-1 ) : δ(r t-1 , γ n t-1 ) ≥ g t (S 0 , • • • , S t-1 , γ n t-1 ), ∀n ∈ N},
where (γ n t-1 ) n≥1 is a Castaing representation of conv cl (I t (S u ) u≤t-1 |F t-1 ). Since G t-1 is F t-1 × B(R d )-measurable and G t-1 = ∅ a.s, it admits a measurable selection which is a measurable strategy θ t-1 for the price p t-1 ((S u ) u≤t-1 ). 2 Remark 3.7. As the function h in (3.7) is concave and finite a.s. on the conditional closure conv cl (I t (S u ) u≤t-1 |F t-1 ), see proof of Proposition 3.1, the super-differential ∂h(S t-1 ) of h at the point S t-1 is not empty when S t-1 belongs to the interior of conv cl (I t (S u ) u≤t-1 |F t-1 ).

The following result proves the measurability of the infimum super-hedging price p t-1 ((S u ) u≤t-1 ): Proposition 3.8. Suppose that cl (I t ((S u ) u≤t-1 )|F t-1 ) admits a Castaing representation (ξ m t-1 ) m≥1 where ξ m t-1 = x m ((S u ) u≤t-1 ), for all m ≥ 1, and x m are Borel functions on (R d ) t independent of (S u ) u≤t-1 . Then, there exist a Borel function φ t-1 on (R d ) t such that p t-1 ((S u ) u≤t-1 ) = φ t-1 ((S u ) u≤t-1 ).

Proof. Let (S u ) u≤t-1 be a price process. We denote by S (t-1) = (S u ) u≤t-1 and I t-1 = cl (I t (S (t-1) )|F t-1 ).

Recall that

p t-1 (S (t-1) ) = inf (α,β) αS t-1 + β : αx + β ≥ g t (S (t-1) , x), for all x ∈ I t-1 .
By assumption x m is a Borel function on (R d ) t independent of the price process (S u ) u≤t-1 . So:

p t-1 (S (t-1) ) = inf (α,β) αS t-1 + β : αx m (S (t-1) ) + β ≥ g t (S (t-1) , x m (S (t-1) )), ∀m = inf α αS t-1 + f * t-1 (-α, S (t-1) )
such that f * t-1 (-α, S (t-1) ) = sup m g t (S (t-1) , x m (S (t-1) )) -αx m (S (t-1) ) . 1) ) . We claim that p t-1 (S (t-1) ) = φ t-1 (S (t-1) ).

Let us denote

Q d = {α n = (α n 1 , ..., α n d ), n ≥ 1, α i ∈ Q} and define the real- valued mapping φ t-1 as φ t-1 (S (t-1) ) = inf n α n S t-1 + f * t-1 (-α n , S (t-
(3.9)

It is clear that p t-1 (S (t-1) ) ≤ φ t-1 (S (t-1) ). Conversely, let α ∈ R d , and α n ∈ Q d a sequence such that for arbitrary fixed ∈ int(R d + ), we have α n ≥ α and α > α n -componentwise. Then, by definition of f * t-1 , we have :

f * t-1 (-α, S (t-1) ) ≥ g t (S (t-1) , x m (S (t-1) )) -αx m (S (t-1) ), ∀m ≥ 1 ≥ g t (S (t-1) , x m (S (t-1) )) -α n x m (S (t-1) ) +(α n -α)x m (S (t-1) ), ∀m ≥ 1. Notice that x m (S (t-1) ) ∈ R d + because x m (S (t-1) ) ∈ I t-1 . So, f * t-1 (-α, S (t-1) ) ≥ g t (S (t-1) , x m (S (t-1) )) -α n x m (S (t-1) ), ∀m ≥ 1, ∀n ≥ 1 ≥ f * t-1 (-α n , S (t-1) ), ∀n ≥ 1.
Hence,

αS t-1 + f * t-1 (-α) ≥ αS t-1 + f * t-1 (-α n ), ∀n ≥ 1 ≥ α n S t-1 + f * t-1 (-α n ) -S t-1 , ∀n ≥ 1 ≥ α n S t-1 + f * t-1 (-α n ) -S t-1 , ∀n ≥ 1 ≥ φ t-1 (S (t-1) ) -S t-1 .
As → 0, we get αS t-1 + f * t-1 (-α) ≥ φ t-1 (S (t-1) ). Therefore, we deduce that p t-1 (S (t-1) ) ≥ φ t-1 (S (t-1) ). Hence, the equality (3.9) holds, which proves that the infimum superhedging price p t-1 ((S u ) u≤t-1 ) is measurable with respect to the argument (S u ) u≤t-1 .

The rest of this section aims to prove that, under some technical conditions, the mapping (S u ) u≤t-1 -→ p t-1 ((S u ) u≤t-1 ) is lower-semicontinuous. Definition 3.9. We say that the mapping

I t : (S u ) u≤t-1 -→ cl (I t ((S u ) u≤t-1 )|F t-1 ) z ∈ cl (I t ((S n u ) u≤t-1 )|F t-1
) in the ball B(z, ) of center z and radius , we have:

g t ((S u ) u≤t-1 , z) ≤ g t ((S n u ) u≤t-1 , z) + |α t-1 | × |((S u ) u≤t-1 , z) -((S n u ) u≤t-1 , z)|, g t ((S u ) u≤t-1 , z) ≤ g t ((S n u ) u≤t-1 , z) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | , g t ((S u ) u≤t-1 , z) ≤ h (n) (z) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | , (3.10) 
where h (n) is an arbitrary affine function satisfying

h (n) ≥ g t ((S n u ) u≤t-1 , •) on cl (I t ((S n u ) u≤t-1 )|F t-1 ). Let us define h(n) (z) = inf z∈ B(z, )∩cl (It((S n u ) u≤t-1 )|F t-1 ) h (n) (z) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | . By convention, we set inf ∅ = -∞. Let us show that h(n) is concave. To see it, observe that z ∈ B(z, ) ∩ cl (I t ((S n u ) u≤t-1 )|F t-1 ) if and only if z = z + u where u ∈ E n (z) = B(0, ) ∩ (cl (I t ((S n u ) u≤t-1 )|F t-1 ) -z) . Therefore, h(n) (z) = inf u∈E n (z) h (n) (z + u) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | . Let z = λz 1 +(1-λ)z 2 .
We only need to consider the case where E n (z 1 ) = ∅ and E n (z 2 ) = ∅. We deduce that E n (z) = ∅. Moreover, by assumption, any u ∈ E n (z) may be written as u = αu 1 + (1 -α)u 2 where u i ∈ E n (z i ), i = 1, 2. Therefore,

h (n) (z + u) = αh (n) (z 1 + u 1 ) + (1 -α)h (n) (z 2 + u 2 ), ≥ α h(n) (z 1 ) + (1 -α) h(n) (z 2 ).
Taking the infimum in the right hand side of the inequality above, we deduce that h(n

) (λz 1 + (1 -λ)z 2 ) ≥ α h(n) (z 1 ) + (1 -α) h(n) (z 2 ), i.e. h(n) is concave. By (3.10), we deduce that p t-1 ((S u ) u≤t-1 ) ≤ h(n) (S t ) for all h (n) . As S n t-1 ∈ E n (S t-1
), for n large enough, under AIP, we deduce that

p t-1 ((S u ) u≤t-1 ) ≤ h (n) (S n t-1 ) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | .
Taking the infimum over all affine functions h (n) , we get that for n large enough:

p t-1 ((S u ) u≤t-1 ) ≤ p t-1 ((S n u ) u≤t-1 ) + |α t-1 | sup u≤t-1 |S n u -S u | + |α t-1 | .
As is arbitrarily chosen, we may conclude that

p t-1 ((S u ) u≤t-1 ) ≤ lim inf n p t-1 ((S n u ) u≤t-1 ). 3.3. Case where x → g t (S 0 , • • • , S t-1 , x) is a convex function
We shall prove that p t-1 ((S u ) u≤t-1 ) is a convex function of the price process (S u ) u≤t-1 if so Λ t-1 is. In the following, we say that the mapping

Λ t-1 : (S u ) u≤t-1 -→ Λ t-1 ((S u ) u≤t-1 ) := conv (cl (I t ((S u ) u≤t-1 )|F t-1 )) is convex for the inclusion if, for λ ∈ [0, 1], Λ t-1 ((λ((S u ) u≤t-1 )+(1-λ)(( Su ) u≤t-1 ) ⊆ λΛ t-1 ((S u ) u≤t-1 )+(1-λ)Λ t-1 (( Su ) u≤t-1 ),
for all price process (S u ) u≤t-1 , ( Su ) u≤t-1 .

Proposition 3.12. Suppose that the mapping (ω, z) → g t (S 0 , S 1 (ω), ..., S t-1 (ω), z) is F t-1 ⊗ B(R d ) measurable, non negative and z → g t (S 0 , S 1 , ..., S t-1 , z) is lower semi-continuous and convex almost surely and suppose that the mapping Λ t-1 : (S u ) u≤t-1 -→ Λ t-1 ((S u ) u≤t-1 ) is convex. Then, the mapping (S u ) u≤t-1 → p t-1 ((S u ) u≤t-1 ) is convex .

Proof. Let (S u ) u≤t-1 , (S u ) u≤t-1 be two price processes. Let us define the following price process (S u

) u≤t-1 = λ(S u ) u≤t-1 + (1 -λ) (S u ) u≤t-1 for λ ∈ [0, 1].
We consider the following random sets:

Λ t-1 = conv (cl (I t ((S u ) u≤t-1 )|F t-1 )) , t ≥ 1, Λt-1 = conv cl (I t ( (S u ) u≤t-1 )|F t-1 ) , t ≥ 1, Λ t-1 = conv cl (I t ((S u ) u≤t-1 )|F t-1 ) , t ≥ 1.
By assumption, we have Λ t-1 ⊆ λΛ t-1 + (1 -λ) Λt-1 for λ ∈ [0, 1]. Let h and h be two affine functions such that:

h(x) ≥ g t ((S u ) u≤t-1 , x), ∀x ∈ Λ t-1 . h(x) ≥ g t (( Su ) u≤t-1 , x), ∀x ∈ Λt-1 .
Thus, for λ ∈]0, 1[, we have

λh(x) + (1 -λ) h(x) ≥ λg t ((S u ) u≤t-1 , x) + (1 -λ)g t (( Su ) u≤t-1 , x) ≥ g t (λ((S u ) u≤t-1 ) + (1 -λ)(( Su ) u≤t-1 ), λx + (1 -λ)x).
Let x ∈ Λ t-1 such that x = λx + (1 -λ)x. By above, we have:

λh(x) + (1 -λ) h(x) ≥ g t ((S u ) u≤t-1 ), x) =: ĝt (x).
Now, let us consider

E x = λ -1 λ Λt-1 + 1 λ x, λ ∈]0, 1[ ∩ Λ t-1 .
Observe that αE

x 1 + (1 -α)E x 2 = E αx 1 +(1-α)
x 2 for all α ∈ [0, 1], and x 1 , x 2 ∈ R d . Then, with x = αx 1 + (1 -α)x 1 , any x ∈ E x may be written as

x = αx 1 + (1 -α)x 2 , where x i ∈ E x i , i = 1, 2. As (x, x) → h( 1 1-λ (x -λx)) is affine, we deduce that λh(x) + (1 -λ) h( 1 1 -λ (x -λx)) ≥ α λh(x 1 ) + (1 -λ) h( 1 1 -λ (x 1 -λx 1 )) +(1 -α) λh(x 2 ) + (1 -λ) h( 1 1 -λ (x 2 -λx 2 )) , λh(x) + (1 -λ) h( 1 1 -λ (x -λx)) ≥ α ĥ(x 1 ) + (1 -α) ĥ(x 2 ),
where ĥ(x) = inf

x∈Ex {λh(x) + (1 -λ) h( 1 1-λ (x -λx))}.
Therefore, taking the infimum in the right side of the inequality above, we deduce that ĥ is a (non negative) concave function with finite values. So, it is continuous and we have ĥ(x) ≥ ĝt (x) for all x ∈ Λ t-1 . We deduce that p t-1 ((S u ) u≤t-1 ) ≤ ĥ(S t-1 )

≤ λh(S t-1 ) +

(1 -λ) h( St-1 ), ∀S t-1 ∈ Λ t-1 , St-1 ∈ Λt-1 .
Taking the infimum over all the affine functions h and h, we deduce that

p t-1 ((S u ) u≤t-1 ) ≤ λp t-1 ((S u ) u≤t-1 ) + (1 -λ)p t-1 (( Su ) u≤t-1 )
and the conclusion follows.

Remark 3.13. Suppose that the AIP condition holds and that (3.4) holds. 

Consider φ t-1 (u) = inf n α n u t-1 + f * t-1 (-α n , u) , u = (u 0 , ..., u t-1 ) ∈ (R d ) t , where f * t-1 (-α, u) = sup m [g t (u, x m (u)) -αx m (u)].
, M t-1 ∈ L 0 ([0, ∞], F t-1 ) such that conv (cl (I t ((S u ) u≤t-1 )|F t-1 )) = [m t-1 , M t-1 ].
By Lemma 3.5, we deduce that under (AIP)

p t-1 ((S u ) u≤t-1 ) = g t (S 0 , • • • , S t-1 , m t-1 ) (3.11) + g t (S 0 , • • • , S t-1 , M t-1 ) -g t (S 0 , • • • , S t-1 , m t-1 ) M t-1 -m t-1 (S t-1 -m t-1 ).
If we suppose that m t-1 = k d t-1 S t-1 and M t-1 = k u t-1 S t-1 as in [START_REF] Baptiste | Pricing without martingale measures[END_REF], where k d t-1 and k u t-1 are deterministic coefficients, then p t-1 ((S u ) u≤t-1 ) = g t-1 ((S u ) u≤t-1 ) with

g t-1 (x 0 , • • • , x t-1 ) = λ t-1 g t (x 0 , • • • , x t-1 , k d t-1 x t-1 )+(1-λ t-1 )g t (x 0 , • • • , x t-1 , k u t-1 x t-1 )
,

where λ t-1 = k u t-1 -1 k u t-1 -k d t-1
and g T is the payoff function.

The multistep backward procedure

The main results of Section 3.2 for the one step model may be applied recursively, starting from time T , as the payoff function g T is known. Consider the case where the conditional support cl (I t ((S u ) u≤t-1 )|F t-1 ) admits a Castaing representation (ξ m ) m≥1 where ξ m = x m ((S u ) u≤t-1 ), for all m ≥ 1, and x m are Borel functions on (R d ) t . Then, by Proposition 3.8, we know that the infimum price at time T -1 is a Borel function g T -1 of the prices S 0 , • • • , S T -1 . Then, we may repeat the procedure if we are in position to verify that g T -1 is also l.s.c. This is the case by Proposition 3.12 and Remark 3.13, under convexity conditions.

Numerical illustration

Formulation of the problem with d = 1

In this section we consider the example of the European call option at time T = 2, i.e. with the payoff function g(S 2 ) = (S 2 -K) + , K > 0. Let (S t ) t=0,1,2 be the executed price process. Recall that S t belongs to the random set Λ t , for t = 0, 1, 2, respectively. We suppose that the risk-free asset is given by S 0 . Recall that there exist F t -measurable closed random sets I t = I t ((S u ) u≤t-1 ) such that:

Σ(Λ t ((S u ) u≤t-1 )) = L 0 (I t ((S u ) u≤t-1 ), F t ), t = 0, 1, 2.
We may suppose that Λ = Σ(Λ) so that S t ∈ I t a.s. for t = 0, 1, 2. At each step, we shall apply the procedure we have developed in the sections above. In particular, we seek for the strategy θ and we deduce the portfolio value V associated to the executed price process S. Then, we may estimate the error between the terminal value of V 2 and the payoff g 2 (S 2 ) that we denote by 2 = V 2 -g 2 (S 2 ). We start from a known price S -1 at time t = 0, which corresponds to the last traded price. We suppose that I t = [S t-1 m t , S t-1 M t ], t = 0, 1, 2, where the two random variables m t and M t are independent of S t-1 and are uniformly distributed as m t ∼ U[0.7, 1] and M t = m t + spr t such that spr t ∼ U[0, 0.4] is independent of m t . Observe that m - t = 0.7 and M + t = 1.4. At time t = 0, we suppose that there is a single asset price S 0 in L 0 (I 0 , F 0 ). We choose in our model to pick randomly S 0 in the interval I 0 . Precisely, S 0 = S -1 m 0 + k 0 S -1 (M 0 -m 0 ), where k 0 is a random variable such that k 0 ∼ U[0, 1]. We may interpret this choice as if the bid and ask prices of the market were the same and S 0 is the market price. The order we sent is of the form buy or sell the quantity θ 0 (S 0 ) at the price S 0 .

At time t = 1, we choose to model the bid and ask prices S bid 1 , S ask 

Explicit computation of the strategy

We deduce the portfolio value and the strategy value at any time by dominating the payoff function by the smallest affine function on the conditional support of S, as mentioned in (3.5). We consider the terminal payoff function g(S T ) = (S T -K) + for several strikes. 

1 respectively as: S bid 1 = S 0 m 1 and S ask 1 = S 0 M 1 .S ask 1 ≤ S * 1 (Fig 1 2 = S bid 2 ∈
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  Recall that, by Proposition 3.8, p t-1 ((S u ) u≤t-1 ) = φ t-1 ((S u ) u≤t-1 ). When g t is convex, then φ t-1 is convex by Proposition 3.12. Moreover, if g t ≥ 0, 0 ≤ φ t-1 < ∞ by Proposition 3.6. Then, dom φ t-1 = (R d ) t and we deduce that φ t-1 is continuous on (R d ) t . Remark 3.14. Let us denote by conv (cl (I t ((S u ) u≤t-1 )|F t-1 )) the closed convex envelop of cl (I t ((S u ) u≤t-1 )|F t-1 ). By a measurable selection argument, we may show that there exists m t-1

  m - 1 ) * 10 -6 1, 9 * 10 -7 5.975 * 10 -8 0 max( R )

	K	50	75	100	125	150
	E(S 0 )	95.002	94.983	95.006	94.98	95.001
	E(S 1 )	99.56	94.94	87.085	82.104	81.736
	E(S 2 )	94.56	90.180	82.716	78.01	77.664
	E(V 0 )	46.503	29.357	16.960	11.244	6.7
	max V 0	89.677	66.72	49.726	33.05	22.562
	E(V (S 0 )/S -1 )	0.465	0.294	0.170	0.112	0.067
	E(V (S 0 )/S 0 )	0.483	0.300	0.173	0.114	0.066
	min(V (S 0 )/S 0 )	0.359	0.163	0.098	0.032	0
	max(V (S 0 )/S 0 ) 0.642	0.479	0.358	0.237	0.162
	E( R )	0.017	0.077	0.076	0.064	0.039
	σ( R )	0.024	0.045	0.04	0.037	0.0317
	min R	0 2.23 0.18 0.19	0.195	0.187	0.187
	E(θ 0 S 0 /V 0 )	199%	255%	322%	333%	313%
	E(θ 1 S 1 /V 1 )	205%	230%	134%	32%	3%

Note that the condition V t-1 ∈ L 0 (R, F t-1 ) is not sufficient for the portfolio manager to observe it when t = 1 as V 0 is not G 0 -measurable.

The notation conv (A) designates the closed convex hull of A, i.e. the smallest convex closed set containing A.

is lower-semicontinous if the following property holds: For all sequence of price processes ((S n u ) u≤t-1 ) n≥1 converging a.s. to a process (S u ) u≤t-1 , and for all z ∈ cl (I t ((S u ) u≤t-1 )|F t-1 ), there exists a sequence (z n ) n≥1 such that lim n z n = z and z n ∈ cl (I t ((S n u ) u≤t-1 )|F t-1 ) for all n ≥ 1. Example 3.10. Suppose that d = 1 and

where m t-1 , M t-1 ∈ L 0 (R + , F t-1 ) and m t-1 ≤ M t-1 .

Consider z ∈ cl (I t ((S u ) u≤t-1 )|F t-1 ), i.e. z = α t m t-

and

In the following, we define the closed convex random sets

where B(z, ) is the closed ball of center z = 0 and radius > 0. We say that the mapping z → E t-1 ((S u ) u≤t-1 , z) is convex if, for all α ∈ [0, 1], and z 1 , z 2 ∈ R d , we have

Note that this convexity property above is automatically satisfied if d = 1.

Proposition 3.11. Consider a payoff function g t defined on (R d ) t+1 such that, there exists

. By assumption, we know that for all z ∈ cl (I t ((S u ) u≤t-1 )|F t-1 ), there exists a sequence z n ∈ cl (I t ((S n u ) u≤t-1 )|F t-1 ) such that lim n z n = z. We may suppose that |z -z n | ≤ where > 0 is arbitrarily fixed. By assumption, for all

The dominating affine function ϕ 1 , see Figure 2, is given by:

and

.

A simple computation shows that: 

In this case, we have

Observe that the dominating affine function ϕ 1 coincides with the x-axis on the support [S 1 m - 2 , S 1 M + 2 ], see Figure 4. Therefore, V 1 (S 1 ) = g 1 (S 1 ) := 0 and we deduce that θ 1 (S 1 ) = 0.

We finally deduce that

The graph of the payoff function g 1 is represented in Figure 4.

The strategy at time t = 0

In order to determine the strategy θ 0 , we compute the smallest affine function ϕ 0 that dominates g 1 on the conditional support cl(I 1 (S 0 )|F 0 ).

We have V 0 (S 0 ) = g 0 (S 0 ) = 0 and θ 0 (S 0 ) = 0, see Figure 5.

We find that (see Figure 6): 

=: g 0 (S 0 ), and

.

We have, see Figure 7: We obtain that (see Figure 9):

x

. Then,

.

We have V 0 (S 0 ) = (S 0 -K) + =: g 0 (S 0 ) and θ 0 (S 0 ) = 1, see Figure 10.

Empirical results

For an observed price S -1 at time t = 0 (which corresponds to the last traded price), and for different strike values K, we test the infimum super hedging strategy by computing the relative error R from a data set of 10 6 simulated prices S t for t ∈ 0, 1, 2. To do so, we wrote a script in Python. The relative error is given by

In the following table 11, empirical results are presented for different values of the strike K and a sample of 10 6 scenarios.

We observe that the executed prices depend on the strike K > 0. Indeed, as expected, the orders we send depend on the payoff function. As K increases, the payoff decreases and, as expected, the option price V 0 decreases. The distribution of S 1 admits two regimes as seen in Figure 13 that correspond to the bid and ask prices.

Notice that the proportion of the portfolio value invested in the risky assets at time t = 1 decreases as the payoff decreases. We also observe that this proportion decreases (resp. increases) when the price S decreases (resp. increases) between time t = 0 and t = 1, i.e. when ∆S 1 < 0 (resp. ∆S 1 ≥ 0). At last, the empirical results obtained for the relative error confirm the efficiency of the super-hedging strategy, see Figure 15.