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Discrepancy-Based Active Learning for Domain Adaptation

 we adapt the concept of discrepancy distance between source and target distributions to restrict the maximization over the hypothesis class to a localized class of functions which are performing accurate labeling on the source domain. We derive generalization error bounds for such active learning strategies in terms of Rademacher average and localized discrepancy for general loss functions which satisfy a regularity condition. A practical K-medoids algorithm that can address the case of large data set is inferred from the theoretical bounds. Our numerical experiments show that the proposed algorithm is competitive against other state-of-the-art active learning techniques in the context of domain adaptation, in particular on large data sets of around one hundred thousand images.

Introduction

Machine learning models trained on a labeled data set from a source domain may fail to generalize on new target domains of interest [START_REF] Saenko | Adapting visual category models to new domains[END_REF]. This issue, which can be caused by domain shift, can be handled when no target labels are available through unsupervised domain adaptation methods [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]. Using a small sample of labeled target data can, besides, greatly improve the model performances [START_REF] Motiian | Unified deep supervised domain adaptation and generalization[END_REF]. Acquiring such new labels is often expensive [START_REF] Settles | Active learning literature survey[END_REF] and one seeks to query as few labels as possible. This explains why strategies of optimal labels acquisition, referred as active learning [START_REF] Cohn | Improving generalization with active learning[END_REF] seem very promising for domain adaptation [START_REF] Su | Active adversarial domain adaptation[END_REF].

Active learning is a challenging task and a broad literature exists. On the one hand, some active learning methods introduce heuristic approaches which provide the benefit of using practical algorithm based on simple criteria. For instance, the spatial coverage of the target domain [START_REF] Hu | Off to a good start: Using clustering to select the initial training set in active learning[END_REF][START_REF] Bodó | Active learning with clustering[END_REF] or the minimization of target uncertainties [START_REF] Raychaudhuri | Minimisation of data collection by active learning[END_REF][START_REF] Gal | Deep Bayesian active learning with image data[END_REF] are considered, as well as combination of these heuristics [START_REF] Wei | Submodularity in data subset selection and active learning[END_REF][START_REF] Kaushal | Learning from less data: A unified data subset selection and active learning framework for computer vision[END_REF]. However finding the proper heuristics is not straightforward and previous methods do not link their query strategy with the target risk [START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF]. On the other hand, active learning methods based on distribution matching aim at minimizing a distribution distance between the labeled set and the unlabeled one [START_REF] Balcan | Agnostic active learning[END_REF][START_REF] Wang | Querying discriminative and representative samples for batch mode active learning[END_REF][START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF]. These methods provide theoretical guarantees on the target risk through generalization bounds. However the computation of the distances is either not scalable to large-scale data sets [START_REF] Balcan | Agnostic active learning[END_REF][START_REF] Wang | Querying discriminative and representative samples for batch mode active learning[END_REF][START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF] or based on adversarial training [START_REF] Su | Active adversarial domain adaptation[END_REF][START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF] which involves complex hyper-parameter calibration [START_REF] Kurach | A large-scale study on regularization and normalization in gans[END_REF].

In this work, we propose to address the issue of active learning for general loss functions under domain shift through a distribution matching approach based on discrepancy minimization [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF]. In Section 2, we derive theoretical results by adopting a localized discrepancy distance [START_REF] Zhang | On localized discrepancy for domain adaptation[END_REF] between the labeled and unlabeled empirical distributions. This localized discrepancy is defined as the plain discrepancy considered on a hypothesis space restricted to hypotheses close to the labeling function on the labeled data set. This distance has the benefit to focus only on relevant candidates for approximating the labeling function and thus provides tighter bound of the target risk under some given assumptions [START_REF] Zhang | On localized discrepancy for domain adaptation[END_REF]. Based on this distance and assuming that the labeled function belongs to the hypothesis space, we provide a generalization bound of the target risk involving pairwise distances between sample points (Theorem 1). Inspired by this generalization error bound, we propose in Section 3 an accelerated version of the K-medoids query algorithm with a better scalability. In Section 4, we present the related works and analytically show that our proposed approach displays tighter theoretical control of the target risk than the one provided by recent active learning methods. We finally present in Section 5 the benefit of the proposed approach on several empirical regression and classification active learning problems in the context of domain adaptation.

Discrepancy Based Active Learning

Setup and theory develop in this section mainly focus on regression tasks. Section 5 presents how the algorithm derived from the theoretical results can be extended to classification tasks.

Setup and definitions

Given two subsets X ⊂ R p and Y ⊂ R q and d : X × X → R + a distance on X , we denote the source data set S = {x 1 , ..., x m } ∈ X m and the target data set T = {x 1 , ..., x n } ∈ X n . We consider the domain shift setting where the respective data sets S and T are drawn according to two different distributions Q and P on X . We consider a loss function L : Y × Y → R + and a hypothesis space H of k-Lipschitz functions from X to Y. We denote by L D (h, h ) = E x∼D [L(h(x), h (x))] the average loss (or risk) over any distribution D on X between two hypotheses h, h ∈ H. We also define the expected Rademacher complexity of H for the distribution P as:

R n (H) = E {x i }i∼P E {σi}i∼U sup h∈H 1 n n i=1 σ i h(x i ) ,
with σ i drawn according to U the uniform distribution on {-1, 1}.

We make the covariate-shift assumption [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF][START_REF] Bickel | Discriminative learning under covariate shift[END_REF] stating that the labeling function f : X → Y is the same on the source and target domains, i.e. f returns the true output label for any x ∼ Q or x ∼ P . We further consider the noisy setting adapted from [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] where the labels on Y are recorded through an oracle function g : X → Y with bounded noise of maximal level ≥ 0, i.e. for any x ∈ S ∪ T , L(g(x), f (x)) ≤ . We finally consider the single-shot batch active learning framework [START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF] where all queried data are picked in one single batch of fixed budget of K > 0 queries. In this framework, an active learning algorithm takes as inputs the source data set S along with its corresponding recorded labels {g(x); x ∈ S} as well as the target data set T . The algorithm then returns a batch of K queried target data denoted T K ⊂ T . The corresponding labels for T K are then recorded through the oracle g and used along with the source labeled data to fit an hypothesis h ∈ H. The goal is to select the K target data to label in order to minimize the target risk of h : L P (h, f ).

Localized discrepancy

To formulate the problem of active learning under domain shift as a distribution matching problem, one need to consider a measure of divergence between distributions. Recent interest focuses on the discrepancy [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF] which proves to be useful for domain adaptation [START_REF] Cortes | Domain adaptation and sample bias correction theory and algorithm for regression[END_REF][START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF] and is recently used on the active learning setting [START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF]. However this metric, defined as a maximal difference between domain losses over the whole hypothesis space, is relatively conservative as it includes hypotheses that the learner might not ever consider as candidates for the labeling function [START_REF] Cortes | Adaptation based on generalized discrepancy[END_REF][START_REF] Zhang | On localized discrepancy for domain adaptation[END_REF]. Based on this consideration, we introduce a localized discrepancy [START_REF] Zhang | On localized discrepancy for domain adaptation[END_REF] to restrict the measure of divergence between domains on a set of relevant candidate hypotheses for approximating the labeling function: Definition 1. Localized Discrepancy. Let K > 0 be the number of queries and ≥ 0 the maximal noise level of the oracle function g. Let T K be a queried batch of size K, the empirical distributions of S ∪ T K and T are respectively denoted Q K and P . Let H be a hypothesis space and L a loss function. The localized discrepancy is defined as:

disc H K ( Q K , P ) = max h,h ∈H K |L Q K (h, h ) -L P (h, h )| , (1) 
with

H K = {h ∈ H; L(h(x), g(x)) ≤ ∀x ∼ Q K }
The localized space H K includes hypotheses "consistent" with the recorded labels, i.e. hypotheses fitting the labeled data with an error below the maximal noise level and thus approaching the labeling function f of at most 2 on the labeled set. Notice that if f ∈ H then f is included in H K . In this case, H K is a reduced hypothesis set of potential candidates for f . Under this assumption, a preliminary result is an empirical target risk bound for the localized discrepancy adapted from the one of [START_REF] Mansour | Domain adaptation: Learning bounds and algorithms[END_REF]:

Proposition 1.
Let K > 0 be the number of queries, H a hypothesis space and ≥ 0. Let P and Q K be the empirical distributions of the respective sets T and S ∪ T K of respective size n and m + K. We assume that f ∈ H and that L is a symmetric, µ-Lipschitz and bounded loss function verifying the triangular inequality. We denote by M the bound of L. For any hypothesis h ∈ H K and any δ > 0, the following generalization bound holds with at least probability 1-δ:

L P (h, f ) ≤ 2 + disc H K ( Q K , P ) + 2µR n (H) + M   log( 1 δ ) 2n   .
(2)

Main results: generalization bounds for active learning

Considering the previous bound (Proposition 1) it appears that a natural way of choosing the K queries in an active learning perspective is to pick the target data minimizing the localized discrepancy.

Unfortunately this is a difficult problem for an arbitrary functional space H, since it leads to compute a maximum over the set space H K . Our main idea is then to further bound the localized discrepancy with a computable criterion. This can be done by considering the assumption f ∈ H which leads to the following theorem:

Theorem 1. Let K > 0 be the number of queries, H a hypothesis space of k-Lipschitz functions and ≥ 0. Let S ∪ T K be the labeled set and T the target set drawn according to P with empirical distribution P . We assume that f ∈ H and that L is a symmetric, µ-Lipschitz and bounded loss function verifying the triangular inequality. We denote by M the bound of L. For any hypothesis h ∈ H K and any δ > 0, the following generalization bound holds with at least probability 1-δ:

L P (h, f ) ≤ 4 + 2kµ n x ∈T d(x , S ∪ T K ) + 2µR n (H) + M   log( 1 δ ) 2n   (3) With d(x , S ∪ T K ) = min x∈S∪T K d(x , x)
Visual insights to understand Theorem 1 are presented in Figure 1 : the main idea is to approximate the maximal hypotheses h, h ∈ H K returning the localized discrepancy by the k-Lipschitz envelope of the labeling function f , consistent with f on the labeled points, i.e. at most 2 close to f on these points. Indeed, for any target point x ∈ T , the gap between h, h on x : L(h (x ), h(x )) is upper bounded by twice the distance from x to its closest labeled point times the Lipschitz constants of L and h, h plus the maximal error on the labeled point :

L(h (x ), h(x )) ≤ 2kµ d(x , S ∪ T K ) + 2 .
The generalization bound of Theorem 1 involves the maximal noise level and the Lipschitz constant k of the hypothesis space H. This last parameter is linked to the complexity of H, complex hypotheses presenting higher Lipschitz constant k. In practice, the considered hypothesis space H should be chosen complex enough to ensure f ∈ H but with enough regularization to avoid overfitting the noisy labels (see Section 4.3).

It is interesting to notice that the criterion involving the queried batch T K , i.e. x ∈T d(x , S ∪ T K ) is now independent of the hypothesis complexity (characterized by k), it only involves pairwise distances between sample points. As this criterion is computable, we can now propose an active learning strategy.

Figure 1: Visual insights of Theorem 1 : Any potential candidates for f in H K returns values between h and h : two hypotheses 2 close to f on the labeled points and with slopes of factor k everywhere. Thus, an approximation of the localized discrepancy is given by the mean of gaps between h and h (mean length of orange arrows) which can be approximated by the distance to the labeled set in X times k. The best target point to label is chosen in order to minimize this sum.

Discrepancy-Based Algorithm

Theorem 1 directly implies that selecting the K queries minimizing x ∈T d(x , S ∪ T K ) leads to minimize an upper bound of the target risk. We can thus propose an algorithm dedicated to active learning which provides theoretical guarantees on the target risk.

Seeking the K queries minimizing x ∈T d(x , S ∪ T K ) corresponds to solve a K-medoids problem [START_REF] Kaufmann | Clustering by means of medoids. Data Analysis based on the L1-Norm and Related Methods[END_REF]. Notice however that it does not consist of a K-medoids performed directly on the target domain as the source data are already labeled and considered as medoids. The presented algorithm only differs in the initialization process, where the distance between each target and its nearest source neighbour needs to be computed.

Several algorithms exist to solve or approximate the K-medoids [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF], [START_REF] Ng | Clarans: A method for clustering objects for spatial data mining[END_REF], [START_REF] Park | A simple and fast algorithm for k-medoids clustering[END_REF]. Here we use the greedy version of the algorithm which already provides a (1 -1/e)-approximation of the optimum [START_REF] George L Nemhauser | An analysis of approximations for maximizing submodular set functions-i[END_REF], and never more than a 0.98-approximation in practice [START_REF] Krause | Optimizing Sensing: Theory and Applications[END_REF].

It is well known that K-medoids algorithms suffer from computational burdens or memory issues on large and moderately large data sets (∼ 100K data) [START_REF] Newling | A sub-quadratic exact medoid algorithm[END_REF]. Indeed they require to compute huge pairwise distance matrix between the source and target samples as well as between targets. Precisely, the greedy K-medoids algorithm presents a complexity of O(p(nm + n 2 ) + Kn 2 ) and a memory usage of O(nm + n 2 ) with m, n, K the respective size of S, T and T K . p is the dimension of X .

To handle this issue, we propose an adaptation of the K-medoids greedy algorithm with better scalability (Algorithm 1). This algorithm performs the following steps:

1) Computation of the distance to the closest source for each target points via a KD-trees random forest algorithm [START_REF] Silpa-Anan | Optimised kd-trees for fast image descriptor matching[END_REF] of complexity O(T (m + pn) log(m) 2 ) with T the number of trees.

2) Medoids initialization using the greedy algorithm on a random target batch of B samples with complexity O((K + p)B 2 ).

3) An iterative algorithm on the model of [START_REF] Park | A simple and fast algorithm for k-medoids clustering[END_REF], combining assignment of each target point to its closest medoid (O(Kpn)) and medoid update inside each cluster.

4) The medoid update for each cluster is done through an original Branch-and-Bound algorithm [START_REF] Ailsa | An automatic method for solving discrete programming problems[END_REF] which estimates the criterion by iteration over mini-batch, target points for which criterion is bigger than a statistical threshold are left aside. Thus the number of pairwise distances to compute is reduced at each iteration until the maximal iteration number is reached or all target points are left aside. Under some assumptions, we can show that the complexity of the update for all cluster is O(n 3/2 K -1/2 ) (the proof is given in the supplementary material).

The overall complexity is then O(T (m + pn) log(m) 2 + (K + p)B 2 + Kpn + pn 3/2 K -1/2 ) which provides reasonable computational time for moderately large data set (n, m ∼ 10 5 and p ∼ 10 3 ). Empirical comparison of computational time is also provided in the supplementary material.

Algorithm 1 Accelerated K-medoids 1: {d(x , S)} x ∈T ← KDT-Forest-Nearest-Neighbour(S, T ) # Compute distances to source 2: T K = {x * i } i=1..K ← Kmedois-Greedy(T , B, K, {d(x , S)} x ∈T ) # Initialize medoids 3: C i ← {x ∈ T | d(x , x * i ) = min j=1..K d(x , x * j ) ∧ d(x , S
)} # Assign targets to closest cluster 4: while any medoid x * i can be updated do 5:

for i from 1 to K do 6:

x * i = argmin

x ∈Ci x ∈Ci d(x , x ) ← Branch-and-Bound(C i ) # Update medoid 7:
end for

8:
For all x ∈ T , compute d(x , x * i ) for all updated medoids and reassign x to the closest C i 9: end while 4 Related Work and Discussion

Related work

Active learning as distribution matching. Active learning methods based on distribution matching aim at reducing the gap between the distributions of the labeled sample and the unlabeled one with a minimal query budget. Several metrics are used to measure the gap between distributions as the Transductive Rademacher Complexity [START_REF] Gu | Towards active learning on graphs: An error bound minimization approach[END_REF], the MMD [START_REF] Wang | Querying discriminative and representative samples for batch mode active learning[END_REF][START_REF] Tang | Self-paced active learning: Query the right thing at the right time[END_REF][START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF] the Disagreement Coefficient [START_REF] Hanneke | A bound on the label complexity of agnostic active learning[END_REF][START_REF] Balcan | Agnostic active learning[END_REF][START_REF] Beygelzimer | Importance Weighted Active Learning[END_REF][START_REF] Cortes | Regionbased active learning[END_REF][START_REF] Cortes | Active learning with disagreement graphs[END_REF][START_REF] Cortes | Adaptive region-based active learning[END_REF], the H-divergence [START_REF] Sinha | Variational adversarial active learning[END_REF][START_REF] Gissin | Discriminative active learning[END_REF][START_REF] Su | Active adversarial domain adaptation[END_REF] or the Wasserstein distance [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF]. To the best of our knowledge, only one paper deals with the discrepancy for active learning [START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF]. The authors consider the discrepancy on the space of RKHS hypotheses with PSD kernels and provide an explicit way of computing exactly the discrepancy using eigen-value analysis. However the corresponding algorithm encounters computational burden and could hardly be applied on large data sets.

K-medoids for active learning. Many active learning methods use a K-medoids algorithm as an heuristic measure of representativeness [START_REF] Lin | Graph-based submodular selection for extractive summarization[END_REF][START_REF] Gomes | Budgeted nonparametric learning from data streams[END_REF][START_REF] Wei | Using document summarization techniques for speech data subset selection[END_REF][START_REF] Rishabh | Submodular optimization with submodular cover and submodular knapsack constraints[END_REF][START_REF] Zheng | Submodular attribute selection for action recognition in video[END_REF]. The K-medoids is in general computed on a smaller set of selected targets with the higher uncertainties [START_REF] Wei | Submodularity in data subset selection and active learning[END_REF][START_REF] Kaushal | Learning from less data: A unified data subset selection and active learning framework for computer vision[END_REF]. In this present work, we provide theoretical insights for this algorithm by highlighting the link with discrepancy minimization.

Active learning for domain adaptation. Our work is related to the recent advances on active learning for domain adaptation as we also consider the domain shift hypothesis [START_REF] Rai | Domain adaptation meets active learning[END_REF][START_REF] Saha | Active supervised domain adaptation[END_REF][START_REF] Deng | Active multi-kernel domain adaptation for hyperspectral image classification[END_REF][START_REF] Su | Active adversarial domain adaptation[END_REF]. These works use in general the output of a domain classifier to measure the informativeness of target samples. In our work, we consider instead the distance to the source sample to capture informative target data.

Lipschitz consistent functions for active learning. In the context of function optimization, some methods consider the set of Lipschitz or locally Lipschitz functions consistent with the observations [START_REF] Valko | Stochastic simultaneous optimistic optimization[END_REF][START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF][START_REF] Malherbe | Global optimization of lipschitz functions[END_REF]. We use similar functions to approximate the maximal hypotheses returning the localized discrepancy. Notice that the goal of the previous papers differ from ours as they aim at finding the maximum of the labeling function.

Comparison with existing generalization bounds for active learning

The paper by Sener & Savarese [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF] proposes the K-centers algorithm for active learning based on an easily computable criterion offering theoretical guarantees. For a regression loss L and = 0, it controls the target risk as follows:

L P (h, f ) ≤ 2kµ max x ∈T d(x , S ∪ T K ) + 2µR n (H) + O M 2 log( 1 δ )/2n
We directly observe that this bound is looser than the one of equation ( 3). Indeed, in our case the target risk is controlled with the mean of distances between unlabeled points and the labeled set whereas Sener & Savarese consider the maximum of these distances. This theoretical observation is also confirmed in our empirical experiments (see Section 5) as our proposed algorithm brings to lower target risks than the greedy algorithm minimizing the criterion proposed by these authors.

A generalization bound for active learning involving the Wasserstein distance W 1 has also been proposed [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF]. For = 0 and under the assumption of Theorem 1 this bound is written:

L P (h, f ) ≤ 2kµW 1 ( Q K , P ) + 2µR n (H) + O M 2 log( 1 δ )/2n
Where W

1 ( Q K , P ) = argmin γ∈Γ x∼ Q K x ∼ P γ xx d(x, x ) with Γ = {γ ∈ R n×(m+K) ; γ1 = 1 n 1 ; γ T 1 = 1 m+K 1}.
Thus, in observing that d(x, x ) ≥ d(x , S ∪ T K ) for any x ∈ T and x ∈ S ∪ T K we can show that our presented bound of equation ( 3) is tighter than the one above. Notice however that this comparison is made in the specific case of = 0 and k-Lipschitz f . For = 0 the two bounds are not comparable. Besides, a more general assumption is considered in [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF] as the proposed bound extends to f being "φ(λ)-(Q K , P ) Joint Probabilistic Lipschitz" [START_REF] Urner | Plal: Cluster-based active learning[END_REF].

Discussion about the assumptions and limitations

In this work, we make the assumption of covariate-shift i.e. we suppose that Q = P but that f Q = f P = f . This hypothesis holds in a variety of scenarios such as sample bias [START_REF] Cortes | Domain adaptation and sample bias correction theory and algorithm for regression[END_REF] and is considered in several works in the field of domain adaptation [START_REF] Sugiyama | Direct importance estimation with model selection and its application to covariate shift adaptation[END_REF][START_REF] Huang | Correcting sample selection bias by unlabeled data[END_REF][START_REF] Bickel | Discriminative learning under covariate shift[END_REF]. This assumption justifies the usefulness of source data for the selection of target points and for learning the task. If this hypothesis is not verified, the information provided by the source data labels is limited, it may become necessary to label target points close to the sources depending on the level of deviation between f P and f Q . In this case, instance-based transfer learning approaches reducing the importance of source data in conflict with target labels can be useful [START_REF] Dai | Boosting for transfer learning[END_REF][START_REF] Pardoe | Boosting for regression transfer[END_REF].

The assumption of the k-Lipschitzness of h ∈ H is rather standard. If H is a set of neural networks, the hypotheses can be made Lipschitz with an arbitrary constant through weight clipping. The assumption that f ∈ H may be considered strong as the complexity of f is unknown a priori. It is indeed assumed in the experiments that the considered neural network architecture and the weight clipping level are suited to learn the labeling function, i.e. that f ∈ H. This assumption is realistic as a large sample of source labeled data are available to tune through grid-search the architecture of the network and the projecting constant. Thus, the complexity of H can be calibrated in order to be appropriate for the learning of f on the source domain and then on the target domain if the covariate-shift assumption holds.

Regularity assumptions on the loss function L are essentially verified by norms as the L p which are common losses for regression problems. However, the regularity assumptions are not verified by most classification losses : for instance, the cross-entropy is not symmetric and does not verify triangular inequality. We have observed that applying the basic K-medoids algorithm for classification tasks is not the most appropriate choice. In fact classification loss as the cross-entropy is bounded between 0 and 1 and can not increase linearly with the distance to the closest labeled point. Considering target points far away from sources as interesting points is not the best thing to do. In fact, the most interesting points are the ones in the margin between classes [START_REF] Balcan | Margin based active learning[END_REF]. Thus, in order to focus the K-medoids selection in the margin we propose for classification an improved version of our algorithm weighting each target sample with the BVSB confidence score [START_REF] Joshi | Multi-class active learning for image classification[END_REF] obtained through a hypothesis fitted on the source labeled set.

The choice of the distance d to consider is an important issue. The common choice is the L 1 or L 2 , however they might not be the most meaningful distances depending on the application (for instance with images). Some works have considered to use the L 2 distance in an embedding given by the last layer of a neural network h ∈ H fitted on the source data [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF][START_REF] Jordan T Ash | Deep batch active learning by diverse, uncertain gradient lower bounds[END_REF]. Indeed one can consider that the features obtained in the last layer are more relevant for the task at hand. We have observed that it can provides improvement for classification problems when coupled with uncertainty weighting as suggested in [START_REF] Jordan T Ash | Deep batch active learning by diverse, uncertain gradient lower bounds[END_REF]. For the classification case, we propose an improved algorithm referred as K-medoids Weighted Embedded (W+E). An ablation study highlights the influence of weighting and embedding in the supplementary material.

Experiments

We choose to compare the performances of our algorithm to classical active learning methods on regression and classification problems in a domain shift context. We consider the single-batch active learning setting [START_REF] Viering | Nuclear discrepancy for single-shot batch active learning[END_REF] where all queries are taken at the same time in one batch. We compare the results obtained on the target domain for different query and training methods. The experiments have been run on a (2.7GHz, 16G RAM) computer. The source code is provided on GitHub1 . We use the open source code of the corresponding authors for BADGE [START_REF] Jordan T Ash | Deep batch active learning by diverse, uncertain gradient lower bounds[END_REF] and WAAL [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF].

Competitors

We compare the proposed approach with the following query methods : Random Sampling; Kmeans [START_REF] Hu | Off to a good start: Using clustering to select the initial training set in active learning[END_REF]; K-centers [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF]; Diversity [START_REF] Jain | Active image segmentation propagation[END_REF]; QBC [START_REF] Raychaudhuri | Minimisation of data collection by active learning[END_REF]; BVSB [START_REF] Joshi | Multi-class active learning for image classification[END_REF]; AADA [START_REF] Su | Active adversarial domain adaptation[END_REF] : hybrid active learning method for domain adaptation using a combination of entropy measure from a classifier and the outputs of a domain discriminator; WAAL [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF] : active learning method on the model of AADA using the Wasserstein loss for the discriminator instead of the cross-entropy; BADGE [START_REF] Jordan T Ash | Deep batch active learning by diverse, uncertain gradient lower bounds[END_REF] : hybrid deep active learning method optimizing for both uncertainty and diversity.

We select four different training methods Uniform Weighting; Balanced Weighting : Assign balanced total weight between source and target instances; TrAdaBoost [START_REF] Pardoe | Boosting for regression transfer[END_REF] : Transfer learning regression method based on a reverse boosting principle; Adversarial training : unsupervised features transformation on the model of DANN [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF].

To make a fair comparison between the different query strategies, we use for all experiments, the same set of training hypotheses H. We define H as the set of neural networks composed of two fully connected hidden layers of 100 neurons, with ReLU activations and projection constraints on the layer norms (< 1.). We use the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. The network architecture is defined to be complex enough that the network provides a good approximation of the labeling function on the source domain in all experiments. Besides, for each experiment, fine-tuning of the optimization hyper-parameters (epochs, batch sizes...) is performed using only source labeled data. We assume that the architecture and the resulting hyper-parameters will still be appropriate after adding the queried target data to the training set (see Section 4.3). Finally, we consider the L 1 as base distance for K-medoids, Diversity and K-centers algorithms, we use an ensemble of 10 models in QBC.

Superconductivity data set

As there is very few public data sets for domain adaptation with regression tasks [START_REF] Teshima | Few-shot domain adaptation by causal mechanism transfer[END_REF], we choose an UCI data set with a reasonable amount of instances and split it in different domains using the setup of [START_REF] Pardoe | Boosting for regression transfer[END_REF]. We choose Superconductivity [START_REF] Hamidieh | A data-driven statistical model for predicting the critical temperature of a superconductor[END_REF][START_REF] Dua | UCI machine learning repository[END_REF] which is composed of features extracted from superconductors chemical formula. The task consists in predicting their critical temperature.

Experimental setup: The data set is divided in four domains following [START_REF] Pardoe | Boosting for regression transfer[END_REF] : low (l), middle-low (ml), middle-high (mh) and high (h) of around 4000 instances and 166 features. We use a learning rate of 0.001, a number of epochs of 100, a batch size of 128 and the mean squared error as loss function. We conduct an experiment for the 12 pairs of domains. For each experiment the number of queries varies from 5 to 300 and the experiment is repeated 8 times with different random seeds. We report the mean absolute error (MAE) on the target unlabeled data for all experiments when K = 20 in Table 1. We also present the evolution of this MAE for the adaptation from mh to h in Figure 2.

Results: We observe on Figure 2 that, for any K > 0, the K-medoids algorithm presents the lowest MAE on the target data for the three different training methods. In particular we observe a significant performance gain of K-medoids when using TrAdaBoost which provides the lowest MAE for the majority of fixed budget K compared to other training methods. These observations are confirmed on Table 1 where we observe that K-medoids presents the lowest MAE in 10 experiments over 12. We also observe here that methods based on spatial consideration as K-medoids, K-means and K-centers select more informative target points than the uncertainty based method QBC. This comes from the fact that, in batch mode, QBC is selecting close target points with similar uncertainty level. We notice besides that only K-medoids and K-means perform significantly better than Random. We observe indeed that Diversity and K-centers query extreme target points and thus select a batch which is not representative of the target distribution. Finally, K-medoids outperforms K-means because it takes into account the distance to source points and then queries less redundant information. 

Office data set

The office data set [START_REF] Saenko | Adapting visual category models to new domains[END_REF] consists in pictures of office items coming from different domains: amazon or webcam. The task is a multi-classification problem with 31 classes (chairs, printers, ...). The goal is to use data from the amazon domain where labels are easily available to learn a good model on the webcam domain where a few labels are chosen using active learning methods.

Experimental setup: We consider the adaptation from the amazon domain with 2817 labeled images to the webcam domain with 795 unlabeled images. We use, as input features, the outputs of the ResNet-50 network [START_REF] He | Deep residual learning for image recognition[END_REF] pretrained on ImageNet, leading to 2048 features. We vary the number of queries from 5 to 300, repeating each experiment 8 times. The learning rate is set to 0.001, the number of epochs to 60 and the batch size to 128. We use the categorical cross-entropy as loss function and a softmax activation at the last layer.

Results: Figure 3.A presents the results for the different query strategies with the Balanced Weighting training method. We observe that the K-medoids W+E algorithm provides the best performances for almost any K and in particular for K ≤ 100. We then present the visualization of the two first components of the PCA transform on Figure 4. We observe that the K-medoids algorithm queries points at the center of the target distribution but at a reasonable distance from the sources. The Random and K-means algorithms select a representative subset of the target distribution but without taking into account the sources and therefore query redundant information. K-centers selects data far from the source domain but which are less representative of the the target distribution.

Digits data set

We consider the experiment proposed in [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF] where a synthetic digits data set: SYNTH is used to learn a classification task for a data set of real digits pictures: SVHN (Street-View House Number) [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF]. The first data set is composed of 60000 images of size 28 × 28 and the second of 73257 images.

Experimental setup: To handle the large number of data we use the accelerated K-medoids algorithm (Algorithm 1) with T = 50 trees and a initial batch size of B = 5000. The algorithm is improved with the (W+E) extension. Besides, we use the KD-trees random forest nearest neighbour algorithm in Diversity and K-centers to approximate the distance of each target data to the source data set. Finally, we use the mini-batch version of the K-means algorithm. We consider two kinds of input features: the ones obtained with the convulational part of a Lenet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] trained with the source labeled data and the ones coming from the same network but trained with adversarial training following the model of DANN [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]. In both cases, the network is pre-trained on 30 epochs with a batch size of 128 and a learning rate of 0.001, for the adversarial training the trade-off parameter λ is set to 0.1 following the setup of [START_REF] Su | Active adversarial domain adaptation[END_REF]. After the query process, a Balance Weighting training is performed with the source and target labeled data using the same optimization hyper-parameters than before. Experiments are conducted 8 times for K between 10 and 500.

Results: Figure 3.B and 3.C correspond to the evolution of accuracy with respect to K for the experiments conducted with the features obtained respectively without and with adversarial training. We first observe that adversarial training improves the accuracy by around 1% for all query strategies for small values of K. For K = 500, performances are similar between the two training methods. However, the choice of training algorithm does not change the relative performances between query strategies. An exception is made for AADA which better performs with adversarial training. This is expected as AADA is specially designed for adversarial training. We observe that, for any K > 0, Kmedoids W+E outperforms other query strategies in both cases. The method is followed by BADGE and BVSB. BADGE is indeed closely related to K-medoids W+E as it considers a combination of uncertainty and distance criteria in an embedded space. However its distance criterion, based on the kmeans++ seeding algorithm [START_REF] Arthur | k-means++ the advantages of careful seeding[END_REF], is close to the K-centers criterion and is then less accurate than the one of K-medoids (cf Section 4.2).

Conclusion and Future Work

This work introduces a novel active learning approach based on a localized discrepancy between the labeled and unlabeled distributions. We provide both theoretical guarantees of this approach and an active learning algorithm scaling to large data sets. Several experiments show very competitive results of the proposed approach. Future work will focus on considering a more appropriate distance on the input space, giving more importance to relevant features with respect to the task.

Appendix

We recall here the notations and definitions used in the following:

• X ⊂ R p and Y ⊂ R are the respective input and output subsets.

• d : X × X → R + is a distance on X .

• P and Q are two distributions on X .

• T = {x 1 , ..., x n } ∈ X n is the unlabeled target data set and S = {x 1 , ..., x m } ∈ X m the labeled source data set drawn respectively from P and Q.

• L : Y × Y → R + is a loss function.
• H is a hypothesis set of k-Lipschitz functions from X to Y.

• E x∼D [L(h(x), h (x))]
is the average loss (or risk) over any distribution D on X between two hypotheses h, h ∈ H.

• R n (H) = E {x i }i∼P E {σi}i∼U sup h∈H 1 n n i=1 σ i h(x i ) , is the expected Rademacher complex-
ity of H, with U the uniform distribution on {-1, 1}.

• f : X → Y is the true labeling function on the source and target domains such that f returns the true output label for any x ∼ P or x ∼ Q.

• g : X → Y is the oracle function such that g returns the recorded output label for any x ∈ S ∪ T .

• is the maximal noise level of the function g such that for any x ∈ S ∪T , L(g(x), f (x)) ≤ .

• K > 0 is the number of queries

• T K ⊂ T with |T K | = K is a queried batch or subset.
• L K = S ∪ T K is the labeled data set.

• Q, Q K and P are the respective empirical distributions on X of S, S ∪ T K and T .

•

H K = {h ∈ H; L(h(x), f (x)) < ∀x ∈ L K } is the localized hypothesis space . • disc H K ( Q K , P ) = max h,h ∈H K |L Q K (h, h ) -L P (h, h )| is the localized discrepancy between Q K and P .
A Proof of Proposition 1 Proposition 1. Let K > 0 be the number of queries, H a hypothesis space and ≥ 0. Let P and Q K be the empirical distributions of the respective sets T and S ∪ T K of respective size n and m + K. We assume that f ∈ H and that L is a symmetric, µ-Lipschitz and bounded loss function verifying the triangular inequality. We denote by M the bound of L. For any hypothesis h ∈ H K and any δ > 0, the following generalization bound holds with at least probability 1-δ:

L P (h, f ) ≤ 2 + disc H K ( Q K , P ) + 2µR n (H) + M   log( 1 δ ) 2n   . (4) 
Proof. Let's consider h ∈ H. According to [START_REF] Mohri | Foundations of machine learning[END_REF] we have for any δ > 0, with probability at least 1 -δ:

L P (h, f ) ≤ L P (h, f ) + 2µR n (H) + M log( 1 δ ) 2n . (5) 
Besides, in noticing that f ∈ H K , we have for any h ∈ H K :

L P (h, f ) = L Q K (h, f ) + L P (h, f ) -L Q K (h, f ) ≤ L Q K (h, g) + L Q K (g, f ) + max h∈H K |L P (h, f ) -L Q K (h, f )| ≤ 2 + max h,h ∈H K |L P (h, h ) -L Q K (h, h )| (6) 
Thus we conclude that for any h ∈ H K :

L P (h, f ) ≤ 2 + disc H K ( Q K , P ) + 2µR n (H) + M   log( 1 δ ) 2n   . (7) 
B Proof of Theorem 1 Theorem 1. Let K > 0 be the number of queries, H a hypothesis space of k-Lipschitz functions and ≥ 0. Let S ∪ T K be the labeled set and T the target set drawn according to P with empirical distribution P . We assume that f ∈ H and that L is a symmetric, µ-Lipschitz and bounded loss function verifying the triangular inequality. We denote by M the bound of L. For any hypothesis h ∈ H K and any δ > 0, the following generalization bound holds with at least probability 1-δ:

L P (h, f ) ≤ 4 + 2kµ n x ∈T d(x , S ∪ T K ) + 2µR n (H) + M   log( 1 δ ) 2n   (8) 
With d(x , S ∪ T K ) = min x∈S∪T K d(x , x)
Proof. Let ≤ 0 and K > 0. We define the labeled data set L K = S ∪ T K with T K one queried subset such that

|T K | = K.
For all h, h ∈ H K , for all x ∈ T and for all x ∈ L K we have:

L(h(x ), h (x )) ≤ L(h(x ), h(x)) + L(h(x), h (x)) + L(h (x), h (x )) ≤ L(h(x ), h(x)) + L(h (x), h (x )) + L(h(x), g(x)) + L(g(x), h (x)) ≤ µ (|h(x) -h(x )| + |h (x) -h (x )|) + 2 ≤ 2kµ d(x , x) + 2 (9) 
The two first inequalities come from the triangular inequality, the others from the lipschitzness of h, h and definition of H K .

As the above inequality is true for any x ∈ L K , we have in particular for any x ∈ T :

L(h(x ), h (x )) ≤ 2kµ min x∈L K d(x, x ) + 2 = 2kµ d(x , L K ) + 2 (10) 
Leading to:

L P (h(x ), h (x )) ≤ 2kµ n x ∈T d(x , L K ) + 2 (11) 
We then deduce the following, for all h, h ∈ H K :

disc H K ( Q K , P ) = max h,h ∈H K |L P (h, h ) -L Q K (h, h )| ≤ max max h,h ∈H K L P (h, h ), max h,h ∈H K L Q K (h, h ) ≤ max 2kµ n x ∈T d(x , L K ) + 2 , 2 ≤ 2kµ n x ∈T d(x , L K ) + 2 (12) 
Finally, according to Proposition 1, we have for all h, h ∈ H K :

L P (h, f ) ≤ 4 + 2kµ n x ∈T d(x , L K ) + 2µR n (H) + M   log( 1 δ ) 2n   (13) 
C Comparison with other active learning bounds (cf section 4.2)

C.1 K-center bounds Sener and Savarese [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF] propose the following generalization bounds for = 0 and h ∈ H K :

L P (h, f ) ≤ δ(λ l + M Cλ µ ) + M   log( 1 δ ) 2n   (14) 
which leads to:

L P (h, f ) ≤ δ(λ l + M Cλ µ ) + 2µR n (H) + 2M   log( 1 δ ) 2n   (15) 
With δ = max x ∈T d(x , L K ), C the class number and λ µ the Lipschitz constant of a class-specific regression function. λ l is the Lipschitz constant of the loss function l verifying l : (x, h) → l(x, f (x), h) = L(h(x), f (x)).

If we consider a regression problem, we can drop the term corresponding to the class-specific function and we have:

L P (h, f ) ≤ δλ l + 2µR n (H) + O   M 2 log( 1 δ ) 2n   (16) 
Let's now consider h ∈ H and x, x ∈ X , we have for k-Lipschitz f :

|l(x, f (x), h) -l(x , f (x ), h)| = |L(h(x), f (x)) -L(h(x ), f (x ))| ≤ |L(h(x), f (x)) -L(h(x ), f (x))| + |L(h(x ), f (x)) -L(h(x ), f (x ))| ≤ L(h(x), h(x )) + L(f (x), f (x )) ≤ µ|h(x) -h(x )| + µ|f (x) -f (x )| ≤ 2µk|x -x | (17) 
The two first inequalities are obtained with triangular inequalities, then we use Lipschitz assumptions on h, f and L.

Thus, we have λ l = 2µk from which we deduce:

L P (h, f ) ≤ 2kµ max x ∈T d(x , L K ) + 2µR n (H) + O   M 2 log( 1 δ ) 2n   (18) 
C.2 Wasserstein bounds Shui et al. [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF] write the following generalization bounds:

L P (h, f ) ≤ L Q K (h, f )+µ(k +λ)W 1 ( Q K , P )+µφ(λ)+2µR n (H)+O   M 2 log( 1 δ ) 2n   (19)
With λ, φ verifying:

P (x,x )∼γ (|h(x) -h(x )| > λd(x, x )) ≤ φ(λ) (20) 
We remark that for λ = k we have φ(λ) = 0 as h is k-Lipschitz.

Thus for = 0 and for any h ∈ H K , we have:

L P (h, f ) ≤ 2kµW 1 ( Q K , P ) + 2µR n (H) + O   M 2 log( 1 δ ) 2n   = 2kµ x ∈T x∈L K γ * x x d(x , x) + 2µR n (H) + O   M 2 log( 1 δ ) 2n   (21) 
With γ * = argmin γ∈Γ x ∈T x∈L K γ x x d(x , x) and Γ = {γ ∈ R n×(m+K) ; γ1 = 1 n 1 ; γ T 1 =

1 m+K 1}.
Thus, in observing that:

x ∈T x∈L K γ x x d(x , x) ≥ x ∈T x∈L K γ x x min x∈L K d(x , x) ≥ x ∈T d(x , L K ) x∈L K γ x x ≥ 1 n x ∈T d(x , L K )
We deduce that our presented bound of Theorem 1 is also tighter than the one proposed in [START_REF] Shui | Deep active learning: Unified and principled method for query and training[END_REF] in the case of = 0 and k-Lipschitz f and h. 

C i = {x j ∈ C ; (B -1)i ≤ j ≤ Bi} 9:
for x ∈ C do 10:

D x ← D x ∪ {d(x, x ) ; x ∈ C i } 11: C x ← 1 Bi d∈Dx d 12: σ x ← 1 Bi d∈Dx (d -C x ) 2 13:
end for 14:

x * ← argmin x∈ C C x 15: t ← min(t, C x * + 2σ x * √ Bi ) 16: C ← x ∈ C ; C x -2σx √ Bi < t 17: end for 18: x * ← argmin x∈ C C x D.

Complexity Computation

In the following, a distance computation is considered to be done in O(p). We first observe on Figure 5 that the K-medoids Greedy algorithm encounters computational burden for samples larger than 10k instances. For n = m = 60k, the K-centers algorithm encounters a similar issue due to the computation of the distance matrix between the source and target data sets. Using the KD-Trees Random Forest algorithm decreases in this case the computational time by a factor of 5. We also notice that the accelerated K-medoids algorithm has similar complexity performance to K-medoids for n, m ≤ 5000 which is the maximum size of the initial batch. Then, the computation time of the algorithm increases slightly from n, m = 5k to n, m = 60k while remaining at an acceptable level. For n, m = 60k the complexities of the accelerated K-medoids and the K-centers + KD-Trees are almost similar but with a level of performance in favor of the accelerated K-medoids (see Section 5.4).

F Ablation Study

This section presents the ablation study of the K-medoids Weighted Embedded algorithm (K-medoids W+E) used for the Office and Digits experiments. We compare the effect of the weighting and the embedding on the relative performances compared to the random strategy (Figure 6). The percentage of accuracy gain over the random strategy is reported on y axis.

The weighting is performed with the BVSB method [START_REF] Joshi | Multi-class active learning for image classification[END_REF] and the embedding is done with the last layer of the neural network used to learn the task on the source domain [START_REF] Sener | Active learning for convolutional neural networks: A core-set approach[END_REF].

We observe on Figure 6 that the basic K-medoids under-performs the improved versions for most values of labeled target number K. This observation supports the idea that purely distance-based query strategies are not well suited for classification tasks. The weighting improvement provides a significant performance gain in both experiment. The embedding option, however, provides mixed results. For the Digits experiments, using an embedding improves the accuracy gain by 1% in small values of K. In the Office experiment, the use of an embedding seems to decrease the performances as the K-medoids Weighted algorithm provides the best results for any value of K. These mixed results for the "last layer" embedding option may depend on the nature of the data or the architectural priors of the model [START_REF] Jordan T Ash | Deep batch active learning by diverse, uncertain gradient lower bounds[END_REF]; however, the influence of these factors is not yet well understood and will be explored in future works. 

G Experiments G.1 Superconductivity

The UCI data set "Superconductivity" [START_REF] Hamidieh | A data-driven statistical model for predicting the critical temperature of a superconductor[END_REF][START_REF] Dua | UCI machine learning repository[END_REF] is composed of features extracted from the chemical formula of several superconductors along with their critical temperature. There is two kind of features: some features correspond to the chemical element number's in the superconductor chemical formula, others are statistical features derived from the chemical formula as the mean and variance of the atomic mass.

We use the setup of [START_REF] Pardoe | Boosting for regression transfer[END_REF] to divide the data set in separate domains. We select an input feature with a moderate correlation factor with the output (∼ 0.3). We then sort the set according to this feature and split it in four parts: low (l), middle-low (ml), middle-high (mh), high (h). Each part defining a domain with around 4000 instances and 166 features. The considered feature is then withdrawn from the data set.

A standard scaling preprocessing is performed using the source data on the input statistical features and the output feature. A max scaling is performed on features corresponding to the chemical element number's. A visualization of the first components of the PCA as well as the output distribution is provided in Figure 7). Table 2 presents the standard deviation of the MAEs obtained on the 8 repetitions of the 12 experiments with the Balanced Weighting training and K = 20. We observe that K-medoids provides the smallest standard deviations in 10 of the 12 experiments. K-medoids is indeed a deterministic algorithm and thus selects a determined batch of target points. Besides, K-medoids selects the target batch to label in a distribution matching perspective, i.e. it produces a training set with a distribution close to the one of the testing set (cf Section 2). This can explain why the training is more stable with the training set provided by K-medoids. 

Figure 2 :

 2 Figure 2: Results for the Superconductivity data set (mh → h experiment). Evolution of the MAE in function of the budget K for three different training methods and six query methods.

Figure 3 :

 3 Figure 3: Office and digits results. Evolution of the accuracy in function of the budget K.

Figure 4 :

 4 Figure 4: Visualization of the two PCA first components of the Office data set input space. Queries are reported with black points for each query method with K = 20.
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 129101 Input: T , B, K, S, {d(x , S)} x ∈T ) Output: T K = {x j } j≤K ⊂ T 3: T ← {x s1 , ..., x s B } with {x s1 , ..., x s B } picked randomly in T without replacement. 4: Initialize query subset:T 0 = {} 5: For all x ∈ T , d x = d(x , S) = min x∈S d(x , x) 6: For all x, x ∈ T compute d xx = d(x, x ) 7: for i from 1 to K do 8: x i ← argmin x∈T x ∈T min d xx , d x S i ← S i-1 ∪ {x i } For all x ∈ T , update d x = min(d x , d xix)) 11: end for Algorithm 3 Branch & Bound Medoid (B & B) Input: Cluster C ∈ R nc×p , previous medoid criterion C * , batch size B 2: Output: New medoid x * 3: Initialize candidates C = C 4: Initialize computed distance set D x = {} for all x ∈ C. 5: Initialize criterion C x = 0 and standard deviation σ x = 0 for all x ∈ C. 6: Initialize threshold t = C * 7: for i from 1 to n c /B do 8:

1 .

 1 KD-Trees Random Forest: Each of the T trees is built by splitting one sample, at each root, at the median of a random feature until the leaf-sizes are ∼ log(m). The median computation for each root with m r data is in O(m r log(m r )). Thus the overall complexity to build one tree is O(M i=0 2 -i m log(2 -i m)2 i ) = O(m log(m) M i=0 1) with M ∼ log(m/ log(m)) which becomes O(m log(m) 2 ).Then, each target is assigned to a leaf by performing O(log(m)) computations, inside the assigned leaf all distance computations are done in O(p log(m)). Thus an approximate nearest neighbour is given for all targets with a complexity O(T (m + pn) log(m) 2 ).The experiments are run on a (2.7GHz, 16G RAM) computer using Python 3.8. The scikit-learn[START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] implementation of the pairwise euclidean distance is used. No parallel computing is performed.The parameters are set to K = 100, T = 50 for the KD-Trees Random Forest algorithm and an initial batch size B = 5000 for the Accelerated K-medoids algorithm. The euclidean distance is used as base distance d. The results are reported on Figure5. The evolution of computational time is a function of the size of the source and target samples (m and n).

Figure 5 :

 5 Figure 5: Visualization of empirical computational times in function of the sample sizes.

Figure 6 :

 6 Figure 6: Comparison of the accuracy gain compared to the random query strategy for the K-medoids algorithm and its weighted and embedded extensions. The Balanced Weighting training is considered here.

Figure 7 :

 7 Figure 7: Visualization of the domain shift of the superconductivity data set. The visualization of the two first components of the PCA on the input features is given on the left. The output distribution is given on the right. One domain is represented by one color.

Figure 8 :

 8 Figure 8: Office data set: examples of images from amazon domain

Figure 9 :

 9 Figure 9: Office data set: examples of images from webcam domain

  

Table 1 :

 1 MAE on the critical temperature for the Superconductivity experiments with Balanced Weighting and K = 20. Standard deviation are given in the supplementary material.

	Experiment l→ml	l→mh	l→h	ml→l	ml→mh ml→h	mh→l mh→ml mh→h h→l	h→ml h→mh
	Random	15.33	15.80	17.45	16.53	11.39	14.70	17.65	12.83	10.36	18.75	14.86	10.54
	Kmeans	15.22	14.74	15.39	15.30	9.86	13.65	16.33	14.21	10.23	18.49	14.23	10.19
	QBC	20.00	19.03	20.08	15.89	12.24	15.31	20.78	12.87	10.19	31.88	18.86	10.65
	Kcenters	19.21	15.73	16.85	15.75	11.62	13.44	22.17	12.74	10.24	36.50	19.60	10.39
	Diversity	19.52	17.75	24.89	15.81	12.36	17.08	23.66	14.11	10.45	39.65	23.92	11.41
	Kmedoids	13.82	13.01	15.82	15.57	9.27	12.79	14.71	12.74	9.33	16.61	14.10	9.67

Table 2 :

 2 Standard deviations of the MAE on the unlabeled data for the superconductivity experiments. The deviations are computed using the results of 8 repetitions of each experiment.

	Experiment l→ml	l→mh	l→h	ml→l	ml→mh ml→h	mh→l mh→ml mh→h h→l	h→ml h→mh
	Random	1.007	2.599	1.597	1.232	1.679	1.291	1.863	0.787	0.266	1.900	1.228	0.595
	Kmeans	1.162	1.089	1.040	0.564	0.546	0.248	1.045	0.998	0.247	1.235	1.414	0.372
	QBC	1.469	2.370	1.882	0.571	0.564	0.707	2.151	0.767	0.394	7.240	3.250	0.620
	Kcenters	0.807	1.761	1.926	0.626	0.343	0.794	2.188	0.885	0.503	5.403	2.838	0.920
	Diversity	1.268	0.961	3.444	0.538	0.900	1.379	1.869	0.628	0.284	2.074	2.741	0.386
	Kmedoids	0.393	0.746	0.921	0.392	0.201	0.459	0.319	0.279	0.183	1.553	0.327	0.351
	G.2 Office											
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2. Medoids Initialization: Using the greedy algorithm, O(pB 2 ) distance computations are first done, then, for all targets, a sum over the target data is computed at each of the K steps. Thus the complexity is O((K + p)B 2 ).

Assignation to the Closest Medoid:

The distance between all target and the medoids is computed in O(Kpn).

Branch & Bound Medoid Computation

B & B algorithm (Algorithm 3) takes as input one cluster C of n c unlabeled data from T . It also takes a batch size B and the previous cluster medoid criterion C * which is used as an initial threshold. The use of the initialization C * may accelerate the algorithm, in the following we do not take into account this initialization, i.e we consider that C * = +∞.

Besides, to use notations consistent with the common notations in statistics, we will denote the batch size B by n (B ≡ n). Notice that it is redundant with the size of the unlabeled data set T . An explicit mention will be made, if n does not refer to the batch size.

Definitions and notations: Let's consider one cluster C ⊂ T with n c data. We consider the uniform norm as underlying distance d, defined for all

i , ..., x

i ) ∈ R p . Computing the complexity of the B & B algorithm for any distribution of the x i would be too difficult. We make here the simplifying assumption that the x i in C are uniformly distributed on the hyper-cube C of edge size 2 and centered on x * = (0, ..., 0) ∈ R p We define for any

1 , ..., Z i nc are iid and that for any j ∈ [|1, n c |] the Z i j are independents. We define, for any

We consider a first batch of distance computations of size n < n C . We define for any i ∈ [|1, n c |] the empirical mean µ i = 1 n n j=1 Z i j and the empirical variance

We denote by µ * and σ * 2 the mean and variance of Z * 0 and µ * and σ * 2 their respective empirical estimator. We first observe that µ i and σ i are finite for any i ∈ [|1, n c |] as the x i are uniformly distributed on the hyper-cube centered in x * ∈ C. We also notice that

Preliminary results: We make the assumption that p >> 1. We aim at giving bounds for any µ i and σ i . We admit the intuitive results that for any

i ). We consider indeed that the more x i is close to the center of the hyper-cube smaller is µ i and σ i . Considering this fact, we have, for any i ∈ [|1, n c |]:

Besides, for any 0 ≤ r ≤ 1 the sample density in the elementary surface between the balls centered on x * and of respective radius r + dr and r is pr p-1 dr. Thus, we can notice that Z * 0 follows a beta distribution of parameters α = p and β = 1, from which we deduce that:

We further notice that for any 0 ≤ a ≤ 1 and for any i ∈ [|1, n c |] such that d(x * , x i ) = a we have µ i ≥ µ a with µ a the criterion of the sample x a = (a, 0, ..., 0) ∈ R p .

To compute µ a = 1 2 p x∈C d(x a , x), we split the integral on three parts:

Using the simplifying approximation p p+1 p-1 p

1 for p >> 1. Thus for any 0 ≤ a ≤ 1 and for any i ∈ [|1, n c |] such that d(x * , x i ) = a we have:

An upper bound of the σ 2 i is given by the variance σ 2 c of the variable d(x c , .) with x c = (1, ..., 1) which corresponds to one corner of the hyper-cube C:

From which we deduce that for any i ∈ [|1, n c |]:

To simplify the calculations, we make the approximation σ i σ i for any i ∈ [|1, n c |], which is relevant for sufficiently large n as E[Z i 0 4 ] < +∞.

Probability of rejecting all optimal medoid candidates: Let > 0 be an approximation factor of µ * . The goal of the Branch & Bound algorithm is to identify one sample x i ∈ C such that µ i ≤ µ * (1 + ) with less distance computations as possible. The process consists in removing all candidates

n with µ i * the current minimal empirical mean.

We aim now at computing the probability of rejecting all optimal medoid candidates x i verifying µ i ≤ µ * (1 + ) during the B & B process. For this, we define B (µ

set of sub-optimal medoid candidates. We assume that B & B returns an optimal candidate if at least one sample of B (µ * ) is kept after the first batch computation. We define the two following probabilities:

We can observe that the probability of rejecting all optimal medoid candidates is upper bounded by: (1 -P 2 ) + P 2 P 1 considering the approximation σ i σ i and the fact that

We now define, for i ∈ B c (µ * ):

Leading to:

On the other hand, according to the Bennett's inequality from [START_REF] Maurer | Empirical bernstein bounds and sample variance penalization[END_REF][START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] we have, for any i ∈ B c (µ * ) and for any δ > 0:

Notice that we apply the inequality to the Z i j /2. Then, considering the fact that σ i ≤ 2σ * and that µ i > µ * (1 + ) we have:

Leading to:

Let's consider δ > 0 such that the following equality holds:

Thus:

With:

We then set:

We have for the δ defines above and for any i ∈ B c (µ * ):

Thus, the probability P 1 can be upper bounded as follows:

Considering the fact that |B c (µ * )| < n c . 1 -(1 -δ) nc is the probability of getting at least one success for the binomial law of parameters (n c , δ).

We are now looking for an upper bound of P 2 . We observe that, at least the index i such that

We can then apply the Bennett's inequality to the Z * j , and for any γ > 0 we have:

We set:

We then have:

Leading to:

Finally the probability of rejecting all optimal candidates is upper bounded by 1 -(1δ) nc + γ. To give an order of magnitude of this probability, we consider the scenario where n c = 10 5 , p = 100, n = √ n c and = 0.05. Then we have: δ 3.6 10 -8 and γ 7.7 10 -5 , which leads to a probability of rejection around 3.6 10 -3 . Thus, in this case, there is at least a probability 0.995 that B & B returns a medoid candidate with a criterion less than 1.05 the optimal.

Complexity computation: We are now looking for the number of distance computations performed by B & B. For this, we need to compute the number of x i kept at each batch. An upper bound of this number is given by the number of x i verifying µ i ≤ µ * (1 + /4) + 8σ * √ n . We further assume that the previous upper bound can be approximated by the number of

We have shown in the preliminary results that for any i ∈ [|1, n c |], µ i ≥ 1 + a 2 4 with a = d(x i , x * ). Thus an upper bound of the number of candidates x i kept after the first batch is given by the number of x i in the ball of radius a with a verifying:

Using the approximation µ * = p 

E Empirical Complexities

This section presents the empirical time computation recorded for K-medoids Greedy, Accelerated K-medoids, K-centers and K-centers + KD-Trees which corresponds to the K-centers algorithm with initialization of the nearest source neighbour distances computed through the KD-Trees Random Forest algorithm. The experiments are conducted on the Digits data set.