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Abstract—In this paper, we focus on the design of fractional 
pseudo- chaotic random number generator (FPCRNG) based on 
the coupling of fractional chaotic systems. The proposed 
FPCRNG is composed of 3 fractional chaotic systems, including 
one fractional generalized double humped logistic system, two 3D 
fractional systems Chen’s system and Lu’s system, and one 
classical skew-tent map. A non-uniform gird calculation method 
is employed by introducing the skew-tent map into the numerical 
calculation of the states of the Chen’s system and Lu’s system to 
obtain greater chaoticity in terms of Lyaponov exponent. The 
XOR operations are applied to the fractional systems to obtain 
the final pseudo-random outputs. The security analysis and 
statistical experiment of a stream cipher implementing the 
FPCRNG prove that the proposed structure is effective and can 
be used into cryptosystem. 
 

Keywords: fractional chaotic systems; pseudo-chaotic random 
number generator; non-uniform gird calculation; stream cipher. 

I. INTRODUCTION 

While we are entering the information era, information 
security has become a very popular topic, especially for the 
multimedia data such as images, videos, etc. Both the 
transformation and the storage of these data containing 
confidential information are required to be processed securely. 
Thus, cryptosystems with novel techniques or structures are in 
greater demand to resist attacks and to ensure the security of 
the information. 

Nonlinear systems with chaotic behavior have been vastly 
investigated and applied in the design of cryptosystem [1][2]. 
The pseudo-random generators are designed based on chaotic 
system due to its numerous merits such as random-like 
behavior and the sensitivity to the initial conditions and to 
parameters [3]. And the outputs of the system work as dynamic 
keys to the cryptosystem for the encryption process. 

In the meantime, though long existing in the domain of 
mathematics, it is not until recent years that fractional calculus 
and fractional dynamic system have been introduced to the 
applications in science and engineering. In fact, due to their 
competence in describing the memory effect and hereditary 
properties [ 4 ], fractional dynamic systems described by 
fractional differential equations have been discussed and used 
to define and to model many real-life systems successfully in 

diverse disciplines like in physics, biology and economic etc 
[5][6].  

In the meantime, the fractional chaotic system also attracts 
a lot of attentions. Compared to classical chaotic system, the 
fractional chaotic systems are much more complex and less 
discussed in the literature. The complexity lies in the fact that 
there exist different definitions for fractional calculus [7], and 
the chaotic behavior is dependent on the numerical method 
chosen to solve the fractional differential equations. However, 
from the aspect of cryptosystem, this complexity also brings 
great merits and possibilities. The fractional chaotic system 
possesses higher nonlinearity and degrees of freedom owning 
to the intricate geometric interpretation of fractional derivatives 
[8][9], the latter could be used to enlarge the secret key space 
and thus increase the complexity of the cryptosystem. The 
possibility of using fractional chaotic system to design random 
number generator has also been discussed in [10][11]. But the 
research remains straightforward and unsophisticated only 
applying one single fractional system in the generator structure. 
Further studies need to be done in order to make it suitable for 
applications in secure information transmission. 

In this work, we take a step forward in fractional chaotic 
pseudo-random number generator (FPCRNG) design by 
coupling several fractional chaotic systems. In addition, a non-
uniform grid whose grid spaces are randomly altered by the 
states of a skew-tent map is employed to obtain the outputs of 
the fractional chaotic systems. Both the coupling of the systems 
and the use of non-uniform grid introduce extra chaoticity to 
the structure, along with the expansion of key space from the 
aspect of cryptosystem design. The tests results and the 
security analysis of a stream cipher based on proposed 
FPCRNG show that the generator passes the random 
requirements successfully, and it can be applied to encryption 
algorithm. 

The paper is organized as follows: the proposed FPCRNG 
is described in Section 2. In Section 3, the performance of the 
FPCRNG is analyzed in terms of statistical analysis. Section 4 
presents the cryptanalytic results of a stream cipher based on 
the proposed FPCRNG. Finally, the conclusion is drawn in 
Section 5.  



II. PROPOSED FPCRNG DESIGN 

In this section, the fractional systems used to design the 
proposed FPCRNG and their numerical calculation methods 
are discussed. Then the structure of the proposed FPCRNG is 
given.  

A. Fractional systems used for the design of FPCRNG 

Fractional systems are dynamic systems which can be 
modeled by differential equations with non-integer order 
derivatives[12]. To design the proposed FCPRNG, two 3D 
fractional systems, Chen’s system [13] and Lu’s system [14] 
respectively, and one 1D fractional generalized double humped 
logistic system (FGDHL) are used. The FGDHL is extended 
from classical integer order generalized double humped logistic 
map discussed in [15].The systems equations are given below, 

Fractional Chen’s system： 
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 Fractional Lu’s system：
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1D FGDHL system：   

           2 22 ,    0.gD x t f x t x t c c x t c t        (3) 

where βc, βl are the commensurate fractional derivative orders 
of Chen’s system and Lu’s system respectively; (ac, bc, cc) and 
(al, bl, cl) denote the system parameters of fractional Chen’s 
and Lu’s systems; and βg is the fractional order of FGDHL 
with c and ρ its system parameters. 

B. Numerical solutions to the fractional Chen’s and Lu’s 
systems 

To calculate numerically the states values of fractional 
Chen’s and Lu’s system, the fractional Corrector-predictor 
Adams Moulton Bashforth method [16] is applied. Different 
from the above classical corrector-predictor approach, a novel 
non-uniform grid is design and employed throughout the 
calculation for the first time.  

Since the numerical solutions of both 3D systems are 
calculated in the same manner, only the equations for next state 
values of Chen’s system Xc(n) are given below. 
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Γ() in the equation represents the gamma function, XcPr(n+1) 
denotes the predicted value, defined by the following identity, 
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The coefficients aj,i and bj,i are written as, 
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       For the classical uniform grid, the calculation space step is 
set to a fixed value, while h(n) in the above equations is an 
original non-uniform grid space which is obtained by under-
sampling based on the chaotic outputs of the skew-tent map 
Xst(n) by the following method, 

     ( ) * ( 1)   while  Xst Ub ,Lb  ,   0,1,2,3,4.  h n h i n i i i        (7) 
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In the above equations, p is the parameter for the skew tent 
map; h is the computation step size close to 0.001, and Ub(i) 
and Lb(i) are the ith upper and lower bounds of Xst(n) value 
which work as a threshold to get the grid space h(n). Therefore, 
h(n) values from 0.001 to 0.005 according to the interval Xst(n) 
is in. To be noticed that, Ub(i) and Lb(i) can be arranged 
randomly in the interval of [0 1] (the range of Xst(n)). And the 
choices of these bounds’ values spread evenly over 0.001 to 
0.005 with a gap of h according to the uniform distribution of 
skew tent map properties suggested in [ 17 ]. The bounds, 
together with computation step size h, can also be considered 
as secret keys which make the cryptosystem even more 
complex and difficult to predict.    

The calculation results show that only the outputs of x1 of 
the two 3D Chen’s and Lu’s systems exhibit chaotic behavior, 
so in the proposed FPCRNG, the x1 of the 3D fractional chaotic 
systems are used. What’s more, the LEs for the systems 
calculated as in [18] show that the non-uniform grid systems 
possess greater chaoticity compared to systems calculated on 
uniform grid. The LEs of x1 for both uniform and non-uniform 
Chen’s systems are shown in Fig.1 with their parameters (ac, bc, 
cc) and initial value (x1, x2, x3) set to [35 28 3.2] and [-9 -5 14], 
respectively.  

C. Numerical solutions to the Fractional Generalized 
Double Humped Logistic system 

The 1D FGDHL system used for the FPCRNG design is 
calculated by adapting the piecewise constant arguments 
method [19]. The calculation of next state value is given by 
the following equation, where r is the discretization step size. 
In the following work, r is set to 0.2. 
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D. FPCRNG structure 
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result for 109 bits (100×31250×32) are shown in the TABLE I. 
It shows that the sequence generated by FPCRNG passes all 
the 15 tests successfully with P-values greater than 0.01. 

IV. SECURITY ANALYSIS OF A STREAM CIPHER BASED ON 

PROPOSED FPCRNG 

One stream cipher based on the proposed FPCRNG is 
discussed in this section. The stream cipher is achieved by 
performing XOR operations between the plaintext and the key 
stream generated by the FPCRNG bit by bit. To analyze its 
security performance, the stream cipher is used to encrypt 
several colored and grey images. 

A. Key space anaylsis 

To be able to resist brute-force attacks, the key space for 
an encryption scheme must be large enough. A secure 
cryptosystem should have a key space equal or greater than 
2128 as stipulated in [24].  

For the stream cipher based on the proposed FPCRNG, the 
secret key includes the input of the initial conditions for the 
systems, and the fractional orders of the three fractional 
chaotic systems. Thus, the key space is composed by the 
parameters (ac, bc, cc, al, bl, cl, , βc, βl, βg, p), and initial 
conditions Xci(0), Xli(0) (i=1,2,3), Xg(0), Xst(0). With a 
computation precision of 10-14, the key space is 10266, which is 
greater than 2128. Hence, the stream cipher based on the 
proposed FPCRNG can resist the brute-force attack. 

B. Histogram and Chi-square test 

For the image encryption, the pixel values of the ciphered 
image should follow a uniform distribution to resist the 
statistical attack. Thus, to evaluate the performance of the 
stream cipher in terms of the pixel value distribution after the 
encryption, the histogram and Chi-square test are employed. In 
Fig.5 and 6 the histograms of two different benchmark images 
‘Lenna’ and ‘Goldhill’ are given. It can be seen from d) and h) 
that the ciphered image c) and g) have uniform distribution. 

By adopting different parameters Nc=256 (pixel value 
levels), Ei = ImageSize/Nc, the critical Chi-square value is 
equal to 293.2478 (degree of freedom=256-1=255). And the 
experimental Chi-square values calculated by equation (10) 
given in TABLE II confirm that the pixel values of ciphered 
images are uniformly distributed.  

C. Entropy test 

In information theory, the entropy of a variable represents 
the average level of uncertainty inherent in the variable’s 
possible outcome. From the aspect of image encryption, the 
entropy can be used to evaluate the randomness of the image 
pixel value and works as an indicator to estimate whether the 
cipher algorithm is robust or not.  If taking the pixel value as 
the variable, for the cipher algorithm to be robust, the 
occurrence probability, hence, the entropy, of different pixel 
value, should be equal or at least almost the same.  

The information entropy of ciphered image is calculated as 
follows, 
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where H(C) stands for the entropy of the cipher image; Q 
represents the number of levels for pixel value (Q = 256 =28);  
and Pro(ci) is the occurrences of ci in each level 
(i=1,2,…,256). In the ideal case, for a well ciphered image, 
each pixel value level of the image possesses equal occurrence 
probability Pro(ci), which is equal to 1/Q=2-8. Thus, the 
information entropy is calculated as, 
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The entropy test is performed to 7 different images. The 
entropy of each pain image (H(P)) and its cipher image (H(C)) 
are obtained by evaluating the average entropy over 50 
different secret keys. The results are given in TABLE II. It can 
be seen that the average information entropy of the ciphered 
image for all 7 tested images is close to the ideal value 8. 

D. Key sensitivity test 

For a cipher stream to be robust, it must hold high 
sensitivity to the secret key. This can be evaluated through the 
calculation of Hamming distance (HD) between two ciphered 
images which are obtained from one same plain image by 
changing the secret key of the stream cipher. And the 
Hamming distance between these two ciphered images is 
calculated as following,  

      1 2 1 2
1

1 lb

k

HD C ,C C k C k
lb 

   (13) 

where lb is the bit length of the image. 

50 different secret keys are used for this experiment, and the 
average HDs given in TABLE II show that for each pairs of 
ciphered images, the probability of bit changes is close to the 
optimal value of 50%. This proves that the stream cypher is 

TABLE I. NIST TEST RESULTS 

Test P-value Proportion
Frequency test 0.122 99.000 

Cumulative-sum test 0.117 99.000 
Longest-run test 0.019 99.000 

FFT test 0.172 97.000 
Overlapping-templates 0.760 99.000 
Approximty entropy 0.679 98.000 

Random-excursions-variant 0.334 99.171 
Serial test 0.403 99.500 
Runs test: 0.868 100.000 
Rank test 0.419 99.000 

Nonperiodic-templates 0.518 99.041 
Universal 0.145 100.000 

Random-excursions 0.464 99.440 
Linear-complexity 0.740 98.000 

TABLE II. RESULTS OF CHI-SQUARE, ENTROPY TEST AND MEAN HD

Image Chi-square
Entropy 
(H(P)) 

Entropy 
(H(C)) 

Mean 
HD 

Lenna Grey 248.5039 7.4116 7.9973 50.0118 
Lenna rgb 257.1031 5.6822 7.9998 49.9993 
Baboon 254.2773 7.7073 7.9991 49.9861 
Black 255.0596 0 7.9993 50.0010 
White 262.4511 0 7.9993 50.0014 

Goldhill 258.0690 7.6220 7.9998 50.0023 
Boat 257.1068 7.1914 7.9993 49.9944 



sens

E. 

evalu
brea
Imag
imag
the d
to e
corre

itive to the se

Correlation 

The correlati
uate the cry

ak the high c
ge. For the p
ge, 8000 diffe
directions of h
evaluate the 
elation coeffic

                    

              

  

cret key. 

analysis 

ion between p
yptosystem. A
correlation be
plain image a
erent pairs of 
horizontal, ve
correlation p
cient is calcula

          a) Goldhill

           e) Lenna  

ixels is anothe
A secure cry
etween the pi
and its corres
f adjacent pixe
ertical and dia
properties of 
ated by the eq

l                           

                           

Figure. 5  Pla

Figure. 6 Correl

er feature test
ptosystem sh
ixels of the p
sponding ciph
els are selecte
gonal respect
the images. 

quation below

      b) Histogram

        f) Histogram

ain and Ciphered 

ation in three dire

ted to 
hould 
plain 
hered 
ed in 
tively 

The 
.  

diffe
ciph
coef
corr
dire
plain
the 
corr

m                      c) 

m                        g

Image of two col

 

rections of image 

 

xy

For each im
erent secret k
hered image 
fficients over
relation coeff
ction are give
n and ciphere
table and the 

relation in the 

Ciphered Goldhi

g) Ciphered lenna

lor images and th

“Baboon” and its


 

1

1

p

p

N

ii

N

ii

x

x x





 





mage, the pla
keys. And th
is obtained 

r these 50 d
ficients in ho
en in TABLE I
ed image “Bab

figure reveal
plain image is

ll image       d) H

a image        h) H

heir histograms 

s Ciphered image

 
  2

1

p

i

N

ii

x y y

y y


  


ain image is 
he correlation

by averagin
different ciph
orizontal, vert
IV. And the c
boon” are giv
l that after en
s broken. 

Histogram of ciph

Histogram of ciph

e 

2

 

encrypted b
n property o
ng the correl
ered images. 
tical and diag
correlations of
ven in Fig. 6. 
ncryption, the 

ered Goldhill      

ered lenna 

 

(16) 

by 50 
f the 
lation 

The 
gonal 
f both 
Both 
high 

 
        

 



 

TABLE IV. CORRELATION RESULTS 

Image 
Plain image Ciphered image 

Hor-D Ver-D Dia-D Hor-D Ver-D Dia-D 
Lenna Grey 0.9458 0.9727 0.9217 -0.0035 -0.0030 -0.0056 
Lenna rgb 0.9750 0.9852 0.9652 -0.0011 -0.0012 -0.0029 
Baboon 0.9538 0.9384 0.9175 -0.0005 -0.0025 0.0004 
Goldhill 0.9775 0.9762 0.9601 0.0014 0.0039 0.0016 

Boat 0.9385 0.9718 0.9227 0.0014 -0.00004 0.0001 

 

V. CONCLUSION 

In this paper, a FPCRNG consisting of 3 different 
fractional chaotic systems is discussed for the first time. The 
XOR operations are performed between the outputs of two 
3D fractional systems extended from classical chaotic 
Chen’s system and Lu’s system, and a 1D FGDHL system. 
By numerically calculating the states of the 3D fractional 
systems on a non-uniform grid, the systems gained higher 
chaoticity which increases the unpredictability of the 
systems’ outputs. And the use of FGDHL further increases 
the complexity of the structure which again enhances the 
pseudo-chaotic properties of the FPCRNG’s final output, 
and therefore, the security of the encryption scheme. The 
experimental results show that the numbers generated from 
the proposed FPCRNG possess excellent characteristic in 
terms of randomness. And the image encryption application 
discussed demonstrates that the stream cipher applying the 
proposed FPCRNG possesses great cryptographic 
performance and properties. 
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