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Abstract—In this paper, we focus on the design of fractional
pseudo- chaotic random number generator (FPCRNG) based on
the coupling of fractional chaotic systems. The proposed
FPCRNG is composed of 3 fractional chaotic systems, including
one fractional generalized double humped logistic system, two 3D
fractional systems Chen’s system and Lu’s system, and one
classical skew-tent map. A non-uniform gird calculation method
is employed by introducing the skew-tent map into the numerical
calculation of the states of the Chen’s system and Lu’s system to
obtain greater chaoticity in terms of Lyaponov exponent. The
XOR operations are applied to the fractional systems to obtain
the final pseudo-random outputs. The security analysis and
statistical experiment of a stream cipher implementing the
FPCRNG prove that the proposed structure is effective and can
be used into cryptosystem.

Keywords: fractional chaotic systems; pseudo-chaotic random
number generator, non-uniform gird calculation; stream cipher.

I. INTRODUCTION

While we are entering the information era, information
security has become a very popular topic, especially for the
multimedia data such as images, videos, etc. Both the
transformation and the storage of these data containing
confidential information are required to be processed securely.
Thus, cryptosystems with novel techniques or structures are in
greater demand to resist attacks and to ensure the security of
the information.

Nonlinear systems with chaotic behavior have been vastly
investigated and applied in the design of cryptosystem [1][2].
The pseudo-random generators are designed based on chaotic
system due to its numerous merits such as random-like
behavior and the sensitivity to the initial conditions and to
parameters [3]. And the outputs of the system work as dynamic
keys to the cryptosystem for the encryption process.

In the meantime, though long existing in the domain of
mathematics, it is not until recent years that fractional calculus
and fractional dynamic system have been introduced to the
applications in science and engineering. In fact, due to their
competence in describing the memory effect and hereditary
properties [ 4 ], fractional dynamic systems described by
fractional differential equations have been discussed and used
to define and to model many real-life systems successfully in
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diverse disciplines like in physics, biology and economic etc
[5][6]-

In the meantime, the fractional chaotic system also attracts
a lot of attentions. Compared to classical chaotic system, the
fractional chaotic systems are much more complex and less
discussed in the literature. The complexity lies in the fact that
there exist different definitions for fractional calculus [7], and
the chaotic behavior is dependent on the numerical method
chosen to solve the fractional differential equations. However,
from the aspect of cryptosystem, this complexity also brings
great merits and possibilities. The fractional chaotic system
possesses higher nonlinearity and degrees of freedom owning
to the intricate geometric interpretation of fractional derivatives
[8][9], the latter could be used to enlarge the secret key space
and thus increase the complexity of the cryptosystem. The
possibility of using fractional chaotic system to design random
number generator has also been discussed in [10][11]. But the
research remains straightforward and unsophisticated only
applying one single fractional system in the generator structure.
Further studies need to be done in order to make it suitable for
applications in secure information transmission.

In this work, we take a step forward in fractional chaotic
pseudo-random number generator (FPCRNG) design by
coupling several fractional chaotic systems. In addition, a non-
uniform grid whose grid spaces are randomly altered by the
states of a skew-tent map is employed to obtain the outputs of
the fractional chaotic systems. Both the coupling of the systems
and the use of non-uniform grid introduce extra chaoticity to
the structure, along with the expansion of key space from the
aspect of cryptosystem design. The tests results and the
security analysis of a stream cipher based on proposed
FPCRNG show that the generator passes the random
requirements successfully, and it can be applied to encryption
algorithm.

The paper is organized as follows: the proposed FPCRNG
is described in Section 2. In Section 3, the performance of the
FPCRNG is analyzed in terms of statistical analysis. Section 4
presents the cryptanalytic results of a stream cipher based on
the proposed FPCRNG. Finally, the conclusion is drawn in
Section 5.



II.  PROPOSED FPCRNG DESIGN

In this section, the fractional systems used to design the
proposed FPCRNG and their numerical calculation methods
are discussed. Then the structure of the proposed FPCRNG is
given.

A.  Fractional systems used for the design of FPCRNG

Fractional systems are dynamic systems which can be
modeled by differential equations with non-integer order
derivatives[ 12]. To design the proposed FCPRNG, two 3D
fractional systems, Chen’s system [13] and Lu’s system [14]
respectively, and one 1D fractional generalized double humped
logistic system (FGDHL) are used. The FGDHL is extended
from classical integer order generalized double humped logistic
map discussed in [15].The systems equations are given below,

Fractional Chen’s system:
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Fractional Lu’s system:

1D FGDHL system:

DPix(1)= £ (x(1)) = p(x(1) =¢) [ = (x(1) =¢)'). ¢>o0. 3)
where ., f; are the commensurate fractional derivative orders
of Chen’s system and Lu’s system respectively; (a., b., ¢.) and
(aj, by, ¢;) denote the system parameters of fractional Chen’s

and Lu’s systems; and f, is the fractional order of FGDHL
with ¢ and p its system parameters.

B.  Numerical solutions to the fractional Chen’s and Lu’s
systems

To calculate numerically the states values of fractional
Chen’s and Lu’s system, the fractional Corrector-predictor
Adams Moulton Bashforth method [16] is applied. Different
from the above classical corrector-predictor approach, a novel
non-uniform grid is design and employed throughout the
calculation for the first time.

Since the numerical solutions of both 3D systems are
calculated in the same manner, only the equations for next state
values of Chen’s system Xc(n) are given below.

Xe(n+1)=Fe[Xc(n)]
=Xc(0)+ :lg,)m )f(XcP'(n+l)) 0<p <. “
Eg 2y e (%)

I'(e) in the equation represents the gamma function, Xc™(n+1)
denotes the predicted value, defined by the following identity,
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Xc" (n+1) =Xc(0)+ 0<f.<l.  (5)

The coefficients a;; and b;; are written as,
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1, ifj=n+l1. (6)

b = h(;)ﬁ ((n+1—j)ﬂ‘ —(n_j)/f(.).

For the classical uniform grid, the calculation space step is
set to a fixed value, while /(n) in the above equations is an
original non-uniform grid space which is obtained by under-
sampling based on the chaotic outputs of the skew-tent map
Xst(n) by the following method,

h(n)=h*(i+1) while Xst(n)e[Ub(i),Lb(i) [, i=0,1,2,3,4. (7)

where
X2l g < xst(n)< p
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In the above equations, p is the parameter for the skew tent
map; & is the computation step size close to 0.001, and Ub(7)
and Lb(7) are the ith upper and lower bounds of Xst(n) value
which work as a threshold to get the grid space 4(n). Therefore,
h(n) values from 0.001 to 0.005 according to the interval Xst(n)
is in. To be noticed that, Ub(i) and Lb(i) can be arranged
randomly in the interval of [0 1] (the range of Xst(n)). And the
choices of these bounds’ values spread evenly over 0.001 to
0.005 with a gap of /& according to the uniform distribution of
skew tent map properties suggested in [17]. The bounds,
together with computation step size 4, can also be considered
as secret keys which make the cryptosystem even more
complex and difficult to predict.

The calculation results show that only the outputs of x; of
the two 3D Chen’s and Lu’s systems exhibit chaotic behavior,
so in the proposed FPCRNG, the x; of the 3D fractional chaotic
systems are used. What’s more, the LEs for the systems
calculated as in [18] show that the non-uniform grid systems
possess greater chaoticity compared to systems calculated on
uniform grid. The LEs of x; for both uniform and non-uniform
Chen’s systems are shown in Fig.1 with their parameters (a., b,
¢.) and initial value (x;, x,, x3) set to [35 28 3.2] and [-9 -5 14],
respectively.

C.  Numerical solutions to the Fractional Generalized
Double Humped Logistic system
The 1D FGDHL system used for the FPCRNG design is
calculated by adapting the piecewise constant arguments
method [19]. The calculation of next state value is given by
the following equation, where 7 is the discretization step size.
In the following work, r is set to 0.2.

Xg(n+1)=Fg(n+1) ,
=Xg(n)+ 1"(:+ a)

D. FPCRNG structure

)

p(Xg(n) —0)2 (cz —(Xg(n) —c)z)
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Figure. 1 LE results for Chen system with
calculated with different grid choice

With all the systems states calculated, the FPCRNG output
X(n) is obtained by the scheme in Fig. 2. The output of one
integer order skew tent map Fst is first used to generate the
non-uniform grid (as given in equation (7)-(8)) to calculate the
outputs of fractional Chen’s and Lu’s systems (equation(4)-(6));
then, the XOR operations are performed to the x; output of
fractional Chen’s, fractional Lu’s systems and the output of
FGDHL map. To be mentioned that, in order to get greater
uniformity for the output sequence distribution, the states of the
two fractional 3D systems with decimal values are injected into
the interval of [-10 10] by a folding mechanism similar to that
introduced in [20], and the states of FGDHL is truncated with a
window of [-0.15 0.7]. The FPCRNG output is obtained by
performing XOR operations to the three fractional systems
after converting the decimal values of the systems to 32 bits
binary values using MATLAB dec2bin function.

III.  PERFORMANCE ANALYSIS OF THE FPCRNG

In this section, the performances of the proposed FPCRNG
are discussed. The statistical properties of the FPCRNG are
analyzed by the histogram, Chi-analysis of the outputs. The
NIST test is also performed to justify the randomness of the
proposed FPCRNG.

A.  Histogram and Chi-square test

To do the statistical analysis, 100 chaotic sequences with
31250 samples are generated by the proposed FPCRNG using
100 pairs of different secret keys. The histogram of these
3125000 samples whose values are in the interval of [0, 2"-1]
(n=32) is given in Fig.3 which shows that the outputs of the
proposed FCPRNG are uniformly distributed in 1000 statistical
classes. The parameters are set as following, S. € [0.65, 0.9],
B €10.65, 0.9], B,= 0.85; p = 0.4, (a., b, c.) =[35 28 3.2],
¢ =-0.85, p =-10.3; (a, b, ¢;) = [36 3 20]; Xst € [0, 1],
Xc(0)=1[-9 -5 14], X1(0) =[0.2 0.5 0.3], Xg(0) =0.7.

Xi(n-1) Ay X0 1) | Xl(r) C}xcun)
4

L

A
Xslfn-l)=_ Est[Xst(n-1)] Xst(n) y

Y
Secret X(n)
key = T \i
. L B Prvayvavptey B0 A

Xg(n-l Falxgn-y) X900

Figure. 2 FPCRNG structure
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Figure. 4 Histogram of the partial FPCRNG
and average value per interval (in red)
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Figure. 3 Histogram of the FPCRNG sequence and average value
per interval (in red)

To better observe the distribution, the histogram for the
outputs ranging from [3x10°, 3.2x10°] is also given in Fig.4. It
can be seen that this zoomed-in partial histogram holds a form
that is qualitatively similar to its preceding histogram depicting
the distribution of all the samples.

Apart from the histogram result, the Chi-Square test [21] is
also applied to further validate the hypotheses of the uniformity
of the FPCRNG outputs. The experimental value of Chi-Square
is calculated by the equation below,

. W(0-EY (10)

How =2, z

i=0 i
where N, is the number of classes chosen, O, is the number of
samples in the i-#1 class that are observed and E;represents the
number of samples which is expected for a uniform distribution.
Knowing that the critical Chi-square value for 1000 classes
(degree of freedom = 1000-1 = 999) equals to 1073.6427 when
having a significant level of 0.05, with an experimental value

Z'wo calculated equal to 1021.0521, the hypothesis is not

rejected and the uniformity of the generated sequence is
justified.

B.  NIST test

The NIST (National Institute of Standard and Technology)
test is a suite of test consisting of 15 different bitwise tests used
to investigate and measure the randomness of a sequence [22].
A P-value greater than 0.01 indicates that the sequence tested is
random with a confidence of 0.99(99%) [23]. The NIST test



TABLE I. NIST TEST RESULTS

Test P-value | Proportion
Frequency test 0.122 99.000
Cumulative-sum test 0.117 99.000
Longest-run test 0.019 99.000
FFT test 0.172 97.000
Overlapping-templates 0.760 99.000
Approximty entropy 0.679 98.000
Random-excursions-variant 0.334 99.171
Serial test 0.403 99.500
Runs test: 0.868 100.000
Rank test 0.419 99.000
Nonperiodic-templates 0.518 99.041
Universal 0.145 100.000
Random-excursions 0.464 99.440
Linear-complexity 0.740 98.000

result for 10° bits (100x31250%32) are shown in the TABLE L.
It shows that the sequence generated by FPCRNG passes all
the 15 tests successfully with P-values greater than 0.01.

IV. SECURITY ANALYSIS OF A STREAM CIPHER BASED ON
PROPOSED FPCRNG

One stream cipher based on the proposed FPCRNG is
discussed in this section. The stream cipher is achieved by
performing XOR operations between the plaintext and the key
stream generated by the FPCRNG bit by bit. To analyze its
security performance, the stream cipher is used to encrypt
several colored and grey images.

A.  Key space anaylsis

To be able to resist brute-force attacks, the key space for
an encryption scheme must be large enough. A secure
cryptosystem should have a key space equal or greater than
2'* as stipulated in [24].

For the stream cipher based on the proposed FPCRNG, the
secret key includes the input of the initial conditions for the
systems, and the fractional orders of the three fractional
chaotic systems. Thus, the key space is composed by the
parameters (a., b, c., ai, by, ¢, p, Pe, B Be p), and initial
conditions Xc«0), X1(0) (i=1,2,3), Xg(0), Xst(0). With a
computation precision of 107, the key space is 10*°, which is
greater than 2'**. Hence, the stream cipher based on the
proposed FPCRNG can resist the brute-force attack.

B.  Histogram and Chi-square test

For the image encryption, the pixel values of the ciphered
image should follow a uniform distribution to resist the
statistical attack. Thus, to evaluate the performance of the
stream cipher in terms of the pixel value distribution after the
encryption, the histogram and Chi-square test are employed. In
Fig.5 and 6 the histograms of two different benchmark images
‘Lenna’ and ‘Goldhill” are given. It can be seen from d) and h)
that the ciphered image c¢) and g) have uniform distribution.

By adopting different parameters N.=256 (pixel value
levels), E; = ImageSize/N,, the critical Chi-square value is
equal to 293.2478 (degree of freedom=256-1=255). And the
experimental Chi-square values calculated by equation (10)
given in TABLE II confirm that the pixel values of ciphered
images are uniformly distributed.

C. Entropy test

In information theory, the entropy of a variable represents
the average level of uncertainty inherent in the variable’s
possible outcome. From the aspect of image encryption, the
entropy can be used to evaluate the randomness of the image
pixel value and works as an indicator to estimate whether the
cipher algorithm is robust or not. If taking the pixel value as
the variable, for the cipher algorithm to be robust, the
occurrence probability, hence, the entropy, of different pixel
value, should be equal or at least almost the same.

The information entropy of ciphered image is calculated as
follows,

1

ZPro ><log2 7Pro(c,) an
where H(C) stands for the entropy of the cipher image; Q
represents the number of levels for pixel value (Q = 256 =2%);
and Pro(c;) is the occurrences of ¢; in each level
(i=1,2,...,256). In the ideal case, for a well ciphered image,
each pixel value level of the image possesses equal occurrence
probability Pro(c;), which is equal to 1/0=2". Thus, the
information entropy is calculated as,

0-1
:;2’8xlog2256:8 (12)

The entropy test is performed to 7 different images. The
entropy of each pain image (H(P)) and its cipher image (H(C))
are obtained by evaluating the average entropy over 50
different secret keys. The results are given in TABLE II. It can
be seen that the average information entropy of the ciphered
image for all 7 tested images is close to the ideal value 8.

D. Key sensitivity test

For a cipher stream to be robust, it must hold high
sensitivity to the secret key. This can be evaluated through the
calculation of Hamming distance (HD) between two ciphered
images which are obtained from one same plain image by
changing the secret key of the stream cipher. And the
Hamming distance between these two ciphered images is

calculated as following,
b

HD(C,,C,) Zc |®G, (4] (13)

where /b is the bit length of the image.

50 different secret keys are used for this experiment, and the
average HDs given in TABLE II show that for each pairs of
ciphered images, the probability of bit changes is close to the
optimal value of 50%. This proves that the stream cypher is

TABLE II. RESULTS OF CHI-SQUARE, ENTROPY TEST AND MEAN HD

. Entropy Entropy Mean

Image Chi-square (H(P)) (H(C) HD
Lenna Grey | 248.5039 74116 7.9973 50.0118
Lenna rgb 257.1031 5.6822 7.9998 49.9993
Baboon 254.2773 7.7073 7.9991 49.9861
Black 255.0596 0 7.9993 50.0010
White 262.4511 0 7.9993 50.0014
Goldhill 258.0690 7.6220 7.9998 50.0023
Boat 257.1068 7.1914 7.9993 49.9944




sensitive to the secret key.

E.  Correlation analysis

The correlation between pixels is another feature tested to
evaluate the cryptosystem. A secure cryptosystem should
break the high correlation between the pixels of the plain
Image. For the plain image and its corresponding ciphered
image, 8000 different pairs of adjacent pixels are selected in
the directions of horizontal, vertical and diagonal respectively
to evaluate the correlation properties of the images. The
correlation coefficient is calculated by the equation below.

6000

4000

2000

0 64 128 196 255

Pixel value
b) Histogram

<10*

a) Goldhill

0 64 128 196
Pixel Value

e) Lenna f) Histogram

po - >l -3 -y)] (16)
N S ) ) S g

For each image, the plain image is encrypted by 50
different secret keys. And the correlation property of the
ciphered image is obtained by averaging the correlation
coefficients over these 50 different ciphered images. The
correlation coefficients in horizontal, vertical and diagonal
direction are given in TABLE IV. And the correlations of both
plain and ciphered image “Baboon” are given in Fig. 6. Both
the table and the figure reveal that after encryption, the high

correlation in the plain image is broken.
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Figure. 5 Plain and Ciphered Image of two color images and their histograms
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Figure. 6 Correlation in three directions of image “Baboon” and its Ciphered image



TABLE IV. CORRELATION RESULTS

Image Plain image Ciphered image
Hor-D Ver-D Dia-D Hor-D Ver-D Dia-D
Lenna Grey | 0.9458 | 0.9727 0.9217 -0.0035 -0.0030 -0.0056
Lenna rgb 0.9750 | 0.9852 0.9652 | -0.0011 -0.0012 -0.0029
Baboon 0.9538 | 0.9384 09175 | -0.0005 -0.0025 0.0004
Goldhill 0.9775 | 0.9762 0.9601 0.0014 0.0039 0.0016
Boat 0.9385 | 0.9718 0.9227 0.0014 -0.00004 | 0.0001

V. CONCLUSION

In this paper, a FPCRNG consisting of 3 different
fractional chaotic systems is discussed for the first time. The
XOR operations are performed between the outputs of two
3D fractional systems extended from classical chaotic
Chen’s system and Lu’s system, and a 1D FGDHL system.
By numerically calculating the states of the 3D fractional
systems on a non-uniform grid, the systems gained higher
chaoticity which increases the unpredictability of the
systems’ outputs. And the use of FGDHL further increases
the complexity of the structure which again enhances the
pseudo-chaotic properties of the FPCRNG’s final output,
and therefore, the security of the encryption scheme. The
experimental results show that the numbers generated from
the proposed FPCRNG possess excellent characteristic in
terms of randomness. And the image encryption application
discussed demonstrates that the stream cipher applying the
proposed FPCRNG possesses great cryptographic
performance and properties.
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