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Owing to the lack of consensus about the way Chapman-Enskog should be performed,

a new Taylor-Expansion of Lattice-Boltzmann models is proposed. Contrarily to the

Chapman-Enskog expansion, recalled in this manuscript, the method only assumes an

su�ciently small time step. Based on the Taylor expansion, the collision kernel is rein-

terpreted as a closure for the stress-tensor equation. Numerical coupling of Lattice-

Boltzmann models with other numerical schemes, also encompassed by the method, are

shown to create error terms whose scalings are more complex than those obtained via

Chapman-Enskog. An athermal model and two compressible models are carefully ana-

lyzed through this new scope, casting a new light on each model’s consistency with the

Navier-Stokes equations.
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INTRODUCTION

The Navier-Stokes-Fourier (NSF) system of conservation equations is widely accepted, to

study mass, momentum and energy conservation in �uid systems. Yet, its derivation from a

more general and purely atomistic point of view is one of the challenges of the 6Cℎ Hilbert

problem1. Formal solutions of the Boltzmann equation (BE)2 were obtained following pertur-

bation theory3–5, but �nding full thermo-hydrodynamic solutions of the BE remains an active

research topic in mathematics6.

Nonetheless, this lack of theoretical understanding on the link between the NSF and BE for-

malisms has not slowed down the rapid development of Lattice-Boltzmann methods (LBM), now

an invaluable simulation tool widely used in the engineering and scienti�c communities. LBM

emerged in the 1980B and consist of a speci�c BE discretization. (i) First a discrete set of veloci-

ties is used to represent the velocity space, leading to the discrete velocity Boltzmann equation

(DVBE). (ii) Second, time and space are discretized, as in most computational �uid dynamics

(CFD) methods. Albeit initially limited to low-Mach athermal �ows, the range of applicabil-

ity has been steadily growing, to encompass compressible �ows7–10, multiphase �ows11–16 and

combustion17–19.

In understanding the link between the equations resolved by LBM and the macroscopic NSF

system, the so-called Chapman-Enskog (CE) expansion20 is the most popular method, provided

as an Appendix to most LBM papers. Yet, the CE expansion can have limitations in understanding

speci�c aspects of modern LB methods. For instance, the aforementioned applications (beyond

athermal �ows) often correspond to Knudsen numbers too high for the underlying LBM theory

to hold, but LBMs reportedly yields reasonable results nonetheless. The impact of the choice of

collision kernel, central in the method’s robustness21, is also hard to study with the CE expansion,

often carried out with a simpli�ed Bhatnagar-Gross-Krook BGK collision model22. Last but not

least, the CE expansion can not be easily performed for the wide variety of models in which a

LB distribution is resolved coupled to another distribution or scalar (which can represent energy,

species, or any transported scalar).

The purpose of the present study is threefold. First, we provide a review of the methods tradi-

tionally used to derive the macroscopic equations from a given LBM. Second, the implicit assump-

tions underlying the CE expansion are discussed. Third, we propose a rigorous and systematic

method to analyze LBMs, based on a modi�ed equation analysis23–25 using a Taylor expansion
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in time and space. Although use of Taylor expansion to that goal is already reported in the LB

literature26–28 for athermal models, the presented method is the �rst – to the authors knowledge

– to encompass arbitrary LB numerical schemes with multi-physics coupling, arbitrary collision

kernel, arbitrary force terms and arbitrary non-dimensional numbers. It will be shown that the

method allows to identify error terms beyond the CE expansion, necessary to fully understand

recent LB models.

The article is organized following these three goals. After a brief Section I introducing the NSF

system of equations along with the necessary notations, Section II focuses on the continuous BE.

We recall two popular methods used to analyze it and derive a NSF system from the BE, namely

the CE expansion20 and the Grad moment system29. Section III discusses the application of the CE

formalism to LBMs. In particular, we will point out the lack of consensus found in the literature

around the CE expansion. Underlying assumptions and limitations are also discussed.

Section IV contains the principal novelty of the present work, following the arguments pre-

sented in Sections II-III, and proposes an alternative to the CE expansion formalism. The step-

by-step algorithm to build and understand a LB scheme is thoroughly explained. Resting on a

naive Taylor expansion of the numerical scheme this method is seen to be fully deductive and

ansatz-free in the sense that its derivation automatically and unequivocally gives the conditions

for the scheme to be consistent to an expected set of macroscopic equations in the small time-step

limit ΔC → 0, while keeping the so-called acoustic scaling coe�cient ΔC/ΔG constant30.

As a �rst textbook example, the classical athermal BGK30 is analyzed through the scope of the

Taylor expansion in Section V. Then, in light of the proposed step-by-step algorithm, Section VI

proposes a new interpretation of the LB collision kernel strictly based on macroscopic equations

instead of the usual kinetic interpretation. Lastly, the scope of our new theoretical framework

is illustrated for two advanced LB thermal models recently published by our group, namely the

RR-d31,32 and RR-?7 models, respectfully in Sections VII and VIII.

I. THE NAVIER-STOKES-FOURIER SYSTEM

Before carrying out any comparison between the BE and NSF systems, it is useful to introduce

the NSF governing equations, along with appropriate de�nitions.
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A. Navier-Stokes de�nitions

Mass and momentum conservation read

md

mC
+
mdDV

mGV
= ¤< , (1)

mdDU

mC
+
m
[
dDUDV + ?XUV − TUV

]
mGV

= dFU , (2)

where d is the volume mass, DU is the local velocity vector and ? is the pressure. In addition, ¤<
and dFU are respectively any forcing term in the mass an momentum equations. These forces

can model physical phenomena e.g. gravity or mass source, but they can also correspond to

numerical terms such as sponge-zones33. Lastly, TUV is the stress tensor,

TUV = `
(
mDU

mGV
+
mDV

mGU
− XUV

2
3
mDW

mGW

)
, (3)

with ` the shear viscosity. The bulk viscosity is neglected in the framework of this paper, but

can readily be included in the analysis.

Recombining Eqs. (1, 2) we obtain the kinetic tensor dDUDV equation

mdDUDV

mC
+
mdDUDVDW

mGW
+ DU

m
[
?XWV − TWV

]
mGW

+ DV
m
[
?XUW − TUW

]
mGW

= dFUDV + dFVDU − ¤<DUDV , (4)

not to be confused with the kinetic energy evolution equation, corresponding to half the trace of

the tensor evolution Eq. (4). When the �ow is assumed to be athermal, the system is fully closed

by assuming, e.g.

? = d22B , (5)

where 2B is the constant sound speed.

B. Fourier system de�nitions

When thermal e�ects cannot be neglected, one needs to consider additionally the total energy

density d� equation

md�

mC
+
m
[
(d� + ?)DV + @V − DUTUV

]
mGV

= dFWDW + d ¤@ , (6)

with the total energy � de�ned as the sum of internal and kinetic energies, � = 4 + DUDU/2. In

Eq. (6), @U corresponds to the heat �ux, and ¤@ is an energy source.
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To close the NSF system, a thermodynamic closure is required, e.g.

? = dA) , 4 = 2E), (7)

with A = '/, , ' the perfect gas constant,, the molecular weight,) the temperature and 2E the

mass heat capacity at constant volume. Laws for the heat transfer are also required, e.g.

@U = −_m) /mGU , (8)

where _ is the heat conductivity34. Having introduced the NSF system, let us now move forward

with the BE system.

II. CONTINUOUS BOLTZMANN EQUATION ANALYSIS

The Boltzmann equation (BE) corresponds to the kinetic description of a gas out of equilib-

rium. In the absence of external forces, and assuming the gas to consist of small hard spherical

particles bouncing elastically against each other, the BE reads

m5

mC
+ bU

m5

mGU
= S (5 ) . (9)

where 5 (ξ,x, C) is the density probability function of �nding particles with velocity vector ξ = bU ,

at location x = GU and time C . The left hand-side of (9) corresponds to the free streaming of the

particles, and the right hand-side takes into account their collisions. Gas kinetic theory dictate

that 5 will relax through collisions towards a Maxwellian equilibrium distribution 5 4@ function35,

e.g.

5 4@ =
d

(2c') )3/2
4−(||ξ−u| |

2)/2') , (10)

for monoatomic ideal gases.

For mass, momentum and energy to be conserved through collision , they must relate to the

density probability functions 5 through36

d =

∫
5 3ξ =

∫
5 4@3ξ , (11)

dDU =

∫
bU 5 3ξ =

∫
bU 5

4@3ξ , (12)

d� =
1
2

∫
bUbU 5 3ξ =

1
2

∫
bUbU 5

4@3ξ , (13)

where d , DU and � are the macroscopic quantities, respectively the density, velocity vector and

total energy.

5



For the sake of simplicity, let us consider for now the most simple collision operator, namely

the Bhatnagar-Gross-Krook (BGK) collision kernel22,

S�� (5 ) = −
1
g
(5 − 5 4@) , (14)

where g is a characteristic relaxation time related to the viscosity of the �uid. This approximation

holds reasonably when the Knudsen number Kn, ratio of the mean free path of the particles to a

characteristic �ow length, is small. Note that Kn can also be expressed in terms of Reynolds Re

and Mach Ma numbers through the Von Kármán relation Kn ∝ Ma/Re.
The formal derivation of the continuum NSF equations from the BE is not straightforward

and usually needs a perturbation analysis which is by construction only valid for some speci�c

asymptotic cases4–6. For the purpose of this article, we shall recall hereafter two historical meth-

ods allowing to link the kinetic BE to the continuum NSF system.

A. Hilbert and Chapman-Enskog expansions

The question of a systematic derivation of the NSF system from kinetic theory is owed to

Hilbert37,38. Its �rst attempt is based on the assumption that Kn � 1 and that the collision

characteristic time g = ng̃ , where n is a small parameter usually identi�ed with Kn. The rescaled

BE then reads

n

(
m5

mC
+ bU

m5

mGU

)
= −1

g̃
(5 − 5 4@) . (15)

A singular perturbation procedure is then performed by taking the limiting case n → 0. Then,

we can search for the solution 5 as an in�nite expansion,

5 =

∞∑
==0

n= 5 (=) = 5 (0) + n 5 (1) + n25 (2) + ... , (16)

where all 5 (=) are O(1). Making the ansatz that Eq. (16) is convergent we insert it inside Eq. (15).

Then by assuming a scale separation between orders in n and collecting terms by orders we end

up with an in�nite hierarchy of equations

5 (0) − 5 4@ = 0 , (17)

−1
g̃
5 (=) =

m5 (=−1)

mC
+ bU

m5 (=−1)

mGU
, (18)

with = > 0. This hierarchy of equations, called Hilbert expansion, exhibits some remarkable

properties. The �rst equation con�rms that the zeroth order distribution 5 (0) should match the
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equilibrium distribution 5 4@ . The second equation shows that the =Cℎ equation depends on the

(= − 1)Cℎ distribution only in a sequential manner. Then, by truncating at any order = in the

in�nite expansion it is possible to get an approximate solution of the BE.

The problem of this solution is that it fails to capture very steep gradients where Kn = O(1)
such as in boundary layers or shocks3,20,39. In those regions the distribution 5 rapidly changes

on a time scale of order Kn meaning that m5 /mC scales as ∼ 5 /Kn. The Hilbert expansion is

then ill-equipped to deal with such applications. A way to circumvent this problem is to use the

popular Chapman-Enskog expansion3,20 instead of the Hilbert expansion.

The only di�erence with the Hilbert expansion lies in the fact that the time derivative is now

also expanded,
m5

mC
=

∞∑
==0

n=
m5

mC=
=
m5

mC0
+ n1 m5

mC1
+ n2 m5

mC2
+ ... , (19)

where m/mC= denotes the contribution from the =Cℎ order to the physical time derivative m/mC .
Plugging Eqs. (16, 19) inside Eq. (15) leads to

n

( ∞∑
==0

n=
m

mC=
+ bU

m

mGU

) [ ∞∑
<=0

n< 5 (<)
]
= −1

g̃

([ ∞∑
<=0

n< 5 (<)
]
− 5 4@

)
. (20)

Assuming a scale separation between orders in n and collecting terms by orders we end up with

a new in�nite hierarchy of equations. The leading orders in n now read

5 (0) − 5 4@ = 0 , (21)

−1
g̃
5 (1) =

m5 (0)

mC0
+ bU

m5 (0)

mGU
, (22)

−1
g̃
5 (2) =

m5 (1)

mC0
+ m5

(0)

mC1
+ bU

m5 (1)

mGU
. (23)

Again, the zeroth order distribution satis�es 5 (0) = 5 4@ , but a slight di�erence appears in higher

orders, the =Cℎ equation now depending not only on the (= − 1)Cℎ but also on any (= −<)Cℎ order

with< < =. This recursive behavior means that CE expansion only addresses low-Knudsen so-

lutions with 5 depending only implicitly on time via the macroscopic variables appearing inside

the Maxwellian Eq. (10). In other words, the CE expansion only describes solutions 5 (C) with au-

tonomous time dependencies 5 (d (C), D (C),) (C),∇=d (C),∇=D (C),∇=) (C)) with ∇= the =Cℎ order

rank space derivative. More general solutions are simply out of the scope of the CE expansion40.

The next step is to take successive moments of this in�nite hierarchy. Integrating the �rst three
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order moments of Eq. (22) lead to the Euler equations

md

mC0
+ mdDU
mGU

= −1
g̃

∫
5 (1)3ξ , (24)

mdDU

mC0
+
m
[
dDUDV + XUV?

]
mGV

= −1
g̃

∫
bU 5

(1)3ξ , (25)

md�

mC0
+
m
[
dDV (� + ') )

]
mGV

= −1
g̃

∫
bVbV 5

(1)3ξ . (26)

Similarly, the �rst three order moments of Eq. (23) lead to

md

mC1
+

∫ (
m

mC0
+ bV

m

mGV

)
5 (1)3ξ = −1

g̃

∫
5 (2)3ξ , (27)

mdDU

mC1
+

∫ (
m

mC0
+ bV

m

mGV

)
bU 5

(1)3ξ = −1
g̃

∫
bU 5

(2)3ξ , (28)

md�

mC1
+

∫ (
m

mC0
+ bV

m

mGV

)
bUbU 5

(1)3ξ = −1
g̃

∫
bVbV 5

(2)3ξ , (29)

which can be interpreted as a correction to the Euler equations Eqs. (24–26), leading to the NSF

system of equations. Note that this system is not closed yet because we do not know how to

evaluate
∫
R5 (=)3ξ with = > 0 andR = [1, bU , bUbU ]. The CE expansion being a formal search

of BE solution any constraint can be used to close the system. Thus, solvability conditions are

applied, ∫
R5 (=)3ξ = 0 , = > 0 . (30)

This is an essential step of the CE expansion because it allows to close the system and prevents

the in�nite hierarchy to impact the (low) orders of interest. Using the solvability conditions,

neglecting higher orders and collecting Eqs. (24–29) the NSF system reads

md

mC
+
mdDV

mGV
= O(n2) , (31)

mdDU

mC
+
m
[
dDUDV + XUV?

]
mGV

+ m

mGV

∫
bVbU 5

(1)3ξ = O(n2) , (32)

md�

mC
+
m
[
dDV (� + ') )

]
mGV

+ m

mGV

∫
bVbUbU 5

(1)3ξ = O(n2) , (33)

this system being closed by moments of Eq. (22)30.

To summarize, the main CE expansion assumptions are the convergent nature of the 5 expan-

sion (16), the scale separation between orders in n and the solvability conditions (30).
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B. Grad moment system

Aside the well known CE expansion, another attempt to link the BE to the continuum me-

chanics was performed by Grad29. It is of historical importance for LBMs as it introduced the

use of Hermite polynomials H (=) to analyze the BE. The main idea is to project the distribution

5 onto the Hermite polynomials41 basis composed by =Cℎ rank symmetric tensors H
(=) of =Cℎ

degree polynomials in ξ, leading to

5 (ξ) = l (ξ)
∞∑
==0

1
=!a

(=) : H (=) (ξ) , (34)

a(=) =

∫
5H

(=)
8
3ξ , (35)

l (ξ) = 1
(2c)3/2

4−ξ·ξ/2 , (36)

H
(=) (ξ) = (−1)

=

l (ξ) ∇
=l (ξ) . (37)

Assuming that 5 is su�ciently well approximated by a # Cℎ order truncated version of Eq. (34),

5 (ξ) ≈ l (ξ)
#∑
==0

1
=!a

(=) : H (=) (ξ) , (38)

it is possible to get a closed system of equations by injecting Eq. (38) into the BE (9). Taking

moments of this system and using the orthogonality properties30,41,42 of the Hermite polynomials

lead to a closed set of macroscopic equations, the most famous one being the Grad-13 system of

equations29,39 that describes the evolution of 13 di�erent moments (N (0) , N (1)U , N (2)
UV

and N (3)WWU ).

Because of the completeness of the Hermite basis, when # → ∞ the Grad moment method

explores every possible BE solutions.

C. The in�nite hierarchy of equations and the closure problem

By performing a CE or a Grad moment analysis we are trying to reduce the in�nite cascade

of moments to a �nite system. In this process we are purposely losing some information and we

expect that this ansatz was relevant for the considered physical phenomena. In the context of

CFD this usually means that we are trying to extract low-Knudsen solutions out of the discretized

LB model.

Whether we use the CE or the Grad moment expansion, both methods rely on a truncated

expansion. To the best of the authors’ knowledge the range of validity of such �nite expansions
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is usually not questioned nor recalled in the LB community.

For instance, the CE expansion �rst assumes that the time derivative Eq. (19) and populations

5 Eq. (16) can be expanded, but none of these assumptions seems to be explicable, particularly

when we also remark that this leads to a singular perturbation analysis, meaning that the small-

ness parameter n appears in front of the highest order derivative in the equation. Such singular

perturbation expansion is known to exhibit unphysical behaviors when truncated43, i.e. the CE

expansion is asymptotic rather than convergent30,39,40,44,45. Therefore, for a given physical appli-

cation there is an optimal number of terms to keep in the in�nite CE expansion because higher-

order terms may introduce unphysical behaviors. For example, higher order approximations than

NSF, namely the Burnett and Super-Burnett equations, can be derived from a truncated CE ex-

pansion of respectively the Grad-13 and Grad-26 systems44,46 but also directly from the BE itself.

However, negative viscosity for high gradients and short wave instabilities of the Burnett and

Super-Burnett equations5 are reported in the literature. This phenomenon was �rst observed by

Bobylev47,48. This means that higher order approximations in the CE expansion may lead to less

stable and less physical results5,46, endorsing a non convergence of clipped in�nite expansions

such as the CE expansion.

However, when trying to link LBMs with some macroscopic equations we usually resort to a

truncated CE expansion. This link is obtained with strong assumptions whose practical use can

be reasonably questioned by the existence of Bobylev instabilities for Burnett and Super-Burnett

models.

It can also be highlighted that the CE expansion is often performed with a very simple BGK

collision operator, which is now hardly used in practical applications for its behavior in shear

�ows49 and porous �ows50. Although the formal CE expansion is possible with the quadratic

Boltzmann collision operator3,20, extension to complex collision kernels such as Regularized7,31,32

or Entropic51–53 remains unknown, at least to the authors’ knowledge. In those kernels at least

a part of the non-equilibrium population is systematically �ltered out and replaced by a recon-

structed population. This is therefore out of the scope of the formal CE expansion because �nding

an explicit solution 5 (=) as a function of 5 (=−1), 5 (=−2), ... as simply as in Eqs. (21–23) would require

to invert a complex collision kernel.

We have now presented the basis of the two most common analysis tools applied to the BE.

Let us now focus exclusively on Lattice-Boltzmann methods, and leave the continuous BE.
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III. LATTICE-BOLTZMANN METHODS

A. From Boltzmann to Lattice-Boltzmann

Besides the time and space discretization on cartesian grids, the main di�erence between the

BE and LBMs is the velocity space discretization.

Assume a 3 dimensional lattice with @ discrete velocities 28U , referred to as the �3&@ lattice30.

Through discretization, Eqs. (11–13) become

d =

@∑
8=1

58 =

@∑
8=1

5
4@

8
, (39)

dDU =

@∑
8=1

28U 58 =

@∑
8=1

28U 5
4@

8
, (40)

d� =
1
2

@∑
8=1

28U28U 58 =
1
2

@∑
8=1

28U28U 5
4@

8
, (41)

where 5 and 5 4@ are the discretized probability density functions corresponding to their BE coun-

terpart from Eqs. (9, 10). Accordingly the BE is also discretized such that we should now solve @

BEs, one for each discrete velocities 28U ,

m58

mC
+ 28U

m58

mGU
= −1

g
(58 − 5 4@8 ) . (42)

The last piece of the puzzle is to project the distributions onto the Hermite basis using Eq. (38).

Because of the boundedness of the lattice a natural clip appears inside the Hermite basis. Each

�3&@ lattice only being able to represent@ independent Hermite polynomials, any Hermite poly-

nomial beyond is in the span of the base.

On the bright side, this implies that Eq. (38) no longer involves an in�nite hierarchy of equa-

tions, so it is enough to search for the solution as a �nite expansion.

B. The Chapman-Enskog expansion in LBM

In a context of growing interest on LBMs, new models are being published on a monthly basis,

usually including a CE expansion appendix. That CE expansion is usually left unquestioned, yet

there is little consensus on its application to LBM.

To highlight this lack of consensus, we included in Tab. I a summary of di�erent CE expan-

sions found in four reference LBM textbooks30,39,54,55. Table I shows that only54,55 agree with

11



Table I: Chapman-Enskog expansions in the lattice-Boltzmann literature.

Reference textbook f = ... m/mC = ... m/mG = ...

Mohamad 54
∞∑
==0

n= 5 (=) n
m

mC1
+ n2 m

mC2
n
m

mG1

Guo and Shu 55
∞∑
==0

n= 5 (=) n
m

mC1
+ n2 m

mC2
n
m

mG1

Krüger et al. 30
∞∑
==0

n= 5 (=)
∞∑
==1

n=
m

mC=
n
m

mG1

Succi 39
∞∑
==0

n= 5 (=)
∞∑
==1

n=
m

mC=

∞∑
==1

n=
m

mG=

each other. They chose to expand the time derivative not as an in�nite expansion but as a linear

composition of a fast convective time C1 and a slow di�usive time C2, in contrast to30,39 that con-

siders – as the historical CE – m/mC= as mathematical derivatives. Under the assumption that each

physical phenomenon takes place on the same scale, space derivative is almost never expanded,

except by39.

Despite these di�erences, and reassuringly, these expansions all lead to the same lowest orders

corresponding to the expected Navier-Stokes equations. In analyzing error terms in the higher

orders, however, these di�erences will lead to di�erent results.

IV. TAYLOR EXPANSION OF A GENERIC LATTICE-BOLTZMANN SCHEME

LBMs being extensively used by engineers and researchers as a thermo-hydrodynamic solver,

it can be interesting to analyze it purely as a CFD method for macroscopic equations. In other

words, knowing a given LB scheme we could simply expand it as a Taylor series in small pa-

rameter ΔC → 0. Then, we recast the scheme whose unknowns are 58 into @ schemes whose

unknowns are macroscopic variables such as mass, momentum and stress tensor. Lastly, we can

a priori deduce in terms of nondimensional numbers consistency conditions of this scheme. This

naive formalism allows to bypass the CE expansion assumptions, now only needing ΔC to be

small, as is usual for consistency studies. This strategy will also allow to simultaneously tackle

possible numerical couplings between LBM and other schemes.
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Table II: Lattice-Boltzmann notations

Notation Representation Equation

58 Total population 5
4@

8
+ 5 =4@

8

5
4@

8
Equilibrium population 48

5
=4@

8
Non-equilibrium population 49

5 , 5
=4@

Modi�ed populations for 2=3 order accuracy 50, 53

5 2>;8 Population after collision 54

�8 Forcing term 52

H (:) Hermite polynomials 43

0
5 ,(=)
U1 ...U= Hermite moments 45

N
5 ,(=)
U1 ...U= Raw moments 46

�
5 ,(=)
U1 ...U= Lattice isotropy defect 47

A. Lattice-Boltzmann de�nitions

To facilitate the reading, let us now introduce LB speci�c quantities. For future reference, all

quantities introduced in this Section are summarized in Table II.

The �rst Hermite polynomials read

H (0)
8

= 1 , H (1)
8U

= 28U , H (2)8UV
= 28U28V − 22BXUV , (43)

H (3)
8UVW

= 28U28V28W − 22B [28UXVW + 28VXWU + 28WXUV] , (44)

where the lattice sound speed is 2B = ΔG/(
√
3ΔC) for standard lattices. Higher order polynomials

do not generally belong to the Hermite base of standard lattices and are not provided here30.

For a given Hermite basis and an arbitrary population 5 we de�ne its Hermite moments 0 5 ,(=)U1 ...U=

and macroscopic (raw) moments N 5 ,(=)
U1 ...U= as

0
5 ,(=)
U1 ...U= =

@∑
8

H (=)
8U1 ...U=

58 , (45)

N
5 ,(=)
U1 ...U= =

@∑
8

28U1 ...28U= 58 . (46)

Since the number of discrete velocities is �nite, there always exists an order involving a non-zero
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Table III: Third-order isotropy defects of standard lattices.

�
5 4@,(3)
GGG �

5 4@,(3)
GG~ �

5 4@,(3)
G~I

D2Q9 dD3G 0 N/A

D3Q19 dD3G dD~D
2
I/2 dDGD~DI

D3Q27 dD3G 0 0

isotropy defect � (=)U1 ...U= between continuous and discrete moments,

�
5 ,(=)
U1 ...U= =

∫
2U1 ...2U= 5 3c − N

5 ,(=)
U1 ...U= . (47)

For nearest-neighbors lattices, this isotropy defect appears from the third order (= = 3)30. For

future reference, the term is provided in Table III for the athermal LB model detailed in the next

Section.

Next, it is convenient to de�ne several populations besides 5 , appearing at di�erent stages of

an LBM algorithm :

• 5 : The total population is the most important population because mass, momentum, etc

are macroscopic moments of this population.

• 5 4@ : The equilibrium population, here de�ned as

5
4@

8
≡ l8

{
H (0)0 5 4@,(0) +

H (1)
8U

22B
0
5 4@,(1)
U +

H (2)
8UV

224B
0
5 4@,(2)
UV

+
H (3)
8UVW

626B
0
5 4@,(3)
UVW

+ ...
}
, (48)

which is usually a Maxwellian projected onto the Hermite basis and properly truncated42.

• 5 =4@ : The non-equilibrium population.

5
=4@

8
≡ 58 − 5 4@8 . (49)

To ensure 2=3 order accuracy30, o�set distributions (5 , 5 =4@) are introduced

• 5 : The modi�ed total population, de�ned by

5 8 ≡ 5
4@

8
+

(
1 + ΔC

2g

)
5
=4@

8
− ΔC

2 �8 , (50)

≡ 5 4@
8
+ 5 =4@8 −

ΔC

2 �8 , (51)
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with �8 a correction force term de�ned as

�8 ≡ l8
{
H (0)0�,(0) +

H (1)
8U

22B
0
�,(1)
U +

H (2)
8UV

224B
0
�,(2)
UV
+
H (3)
8UVW

626B
0
�,(3)
UVW
+ ...

}
. (52)

Note that the forcing scheme considered here was presented by56.

• 5
=4@

: The modi�ed non-equilibrium population ensuring a 2nd order accurate BGK

scheme,

5
=4@

8 ≡ 5 8 − 5
4@

8
+ ΔC

2 �8 . (53)

• 5 2>; : The population at the end of a collide step,

5 2>;8 ≡ 5 4@
8
+

(
1 − ΔC

g

)
5
=4@

8 +
ΔC

2 �8 , (54)

≡ 5 4@
8
+

(
1 − ΔC

2g

)
5
=4@

8
+ ΔC

2 �8 , (55)

where we used the shorthand g = g + ΔC/2. 5 2>;8 is the population that is streamed during

the propagation step. Note that depending on the collision kernel 5
=4@

may be replaced by

a reconstructed non-equilibrium population 5̃ =4@ .

B. Structure of a generic lattice-Boltzmann scheme

A LBM model time iteration typically consists of the steps listed in Tab. IV. Let us detail

these steps one by one. Although these steps may vary depending on LBM, the general structure

remains. At the center of the algorithm lies the collision

5 2>;8 (C,x) = 5
4@

8
(C,x) +

(
1 − ΔC

g

)
5
=4@

8 (C,x) +
ΔC

2 �8 (C,x) , (56)

and streaming steps

5 8 (C + ΔC,x) = 5 2>;8 (C,x − ci ΔC) . (57)

They remain generally identical for all LBM as they are the main ingredients responsible for the

method’s computing e�ciency57, and low dissipation58.

Steps 1 (resp. 7) corresponds to the link between the macroscopic quantities and the popula-

tion (resp. and back), and vary depending on the model. The force update (step 2) is also model
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Table IV: Generic LBM structure.

Step Description Input Output Equation(s)

1 Equilibrium update macroscopic 5
4@

8
48

2 Force update macroscopic �8 (C,x) 52

3 Non-equilibrium update 5
4@

8
, �8 (C,x) 5

=4@

8
53 (BGK)

4 Collision 5
4@

8
, 5

=4@

8
, �8 (C,x) 5 2>;8 56

5 Streaming 5 2>;8 (C,x − ci ΔC) 5 8 (C + ΔC,x) 57

6 Coupling with another scheme φ(C,x) φ(C + ΔC,x) optional

7 Macroscopic quantities update 5 8 macroscopic 61

dependent, but is generally computed from the macroscopic variables. Step 3 includes the de�ni-

tion of the collision kernel. Computation of 5 =4@
8

will be highly dependent on the collision model,

e.g. BGK22, multi-relaxation times models59,60, regularized models21, and so on.

Step 6 is optional, and corresponds to the resolution of a set of quantities φ, not encompassed

in the main LBM population. φ is a dynamic �eld, and can correspond to scalars (as in hybrid

methods) or additional probability functions (as in double distribution functions). They can rep-

resent, e.g.

- Energy31

- Species, if the �ow is multi-constituent17

- an equation for turbulence modeling (e.g. for Spalart-Almaras or : − n models),

- a liquid mass or volume fraction, for multiphase �ows.

While usually presented di�erently30,39,54,55 this structure is shared by all LB schemes using

Hermite polynomials. Note that the coupling with the FD/FV/DDF scheme, here identi�ed as step

6, can be performed at any moment in the algorithm except after Step 7, because the macroscopic

quantity update may depend on it.
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C. Taylor expansion

Now that the basic numerical LB scheme structure has been recast, we can compute its Taylor

expansion. We introduce the distribution’s Taylor Expansion in space as

5 (C,x − cΔC) = 5 (C,x) +
∞∑
:=1

(−ΔC):
:!

(
2U 9

m

mGU 9

):
5 (C,x) , (58)

where U 9 is a dummy index such that 2U 9 m/mGU 9 = 2G m/mG + 2~m/m~ + 2Im/mI. Taking the =Cℎ order

macroscopic moment of the streaming Eq. (57) leads to the moment streaming equation

N
5 (C+ΔC,x),(=)
U1 ...U= = N

5 2>; (C,x−ci ΔC),(=)
U1 ...U= . (59)

Similarly, Eq. (50) can be recast into a moment equation

N
5 (C+ΔC,x),(=)
U1 ...U= = N

5 ,(=)
U1 ...U= (C + ΔC,x) +

ΔC

2

(
1
g
N
5 =4@ (C+ΔC,x),(=)
U1 ...U= − N � (C+ΔC,x),(=)

U1 ...U=

)
. (60)

Combining Eqs. (59) and (60) �nally leads to

N
5 ,(=)
U1 ...U= (C + ΔC,x) = N

5 2>; (C,x−ci ΔC),(=)
U1 ...U= − ΔC

2

(
1
g
N
5 =4@ (C+ΔC,x),(=)
U1 ...U= − N � (C+ΔC,x),(=)

U1 ...U=

)
. (61)

This equation is the update rule for (C + ΔC ) moments. It is nothing but the LBM numerical

scheme written explicitly for the =Cℎ order moment N 5 (C+ΔC,x),(=)
U1 ...U= . We shall now Taylor expand

N
5 2>; (C,x−ci ΔC),(=)
U1 ...U= , using Eq. (58),

N
5 2>; (C,x−ci ΔC),(=)
U1 ...U= =

@∑
8

28U1 ...28U=

{
1 +

∞∑
:=1

(−ΔC):
:!

(
28U=+9

m

mGU=+9

): }
5 2>;8 (C,x) . (62)

Using the fact that the discrete velocities 28U= are �xed leads to

N
5 2>; (C,x−ci ΔC),(=)
U1 ...U= = N

5 2>; (C,x),(=)
U1 ...U= +

∞∑
:=1

(−ΔC):
:!

(
m

mGU=+9

):
N
5 2>; (C,x),(=+:)
U1 ...U=+9 . (63)

It is shown in Appendix A that inserting Eq. (63) into Eq. (61) eventually leads to a second-

order accurate Crank-Nicolson scheme for the continuous equation:

mN
5 ,(=)
U1 ...U=

mC
+
mN

5 ,(=+1)
U1 ...U=+1

mGU=+1
= −1

g
N
5 =4@,(=)
U1 ...U= + N

�,(=)
U1 ...U= + O(ΔC

2) . (64)

Note that this equation is only relevant for @ independent equations, the isotropy defect (47)

leaving higher orders redundant (see Table III).
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Because of the moments cascade,N 5 (C,x),(=+1)
U1 ...U= is always the �ux ofN 5 (C,x),(=)

U1 ...U= , allowing moment

computation to be algorithmically explicit as long as −g−1N 5 =4@,(=)
U1 ...U= +N

�,(=)
U1 ...U= = 0. However, when

the collision kernel −g−1N 5 =4@,(=)
U1 ...U= or a force term +N �,(=)

U1 ...U= is non-zero one has to solve implicitly

Eq. (61) in order to get a second-order accurate scheme.

This layered structure between orders shows that non-equilibrium moments follow their own

evolution equation, they are not algebraically enslaved to lower order moments as suggested by

the Chapman-Enskog expansion through the scale separation hypothesis. Mandatory conditions

for the consistency of LB schemes as NSF solvers will be discussed later for speci�c kernels.

LBM can be seen as a very smart change of variable from macroscopic moments to distribution

functions. First the macroscopic information is stored inside the Hermite basis through 5 2>;

(�rst change of variable from N (=) to 5 ). Then the transport is performed in the distribution

space during the streaming, followed by the macroscopic reconstruction that �lters only the

relevant information for each macroscopic moment N (=) (second change or variable from 5 to

N (=)), prompting us to draw a parallel between classical CFD and LBM, which is now only seen

as a numerical macroscopic solver.

This shows that even if the CE expansion leads to the desired set of macroscopic equation it

does not leads to the necessary result that would allow us to fully understand what solves LBMs,

namely Eq. (64), a Grad-@ system of equations.

In the following we will illustrate the Taylor expansion on three di�erent LBMs, namely the

athermal, density-based recursive regularized (RR-d) and pressure-based recursive regularized

(RR-?) models. We shall also demonstrate that although Eq. (64) could have been easily guessed

from Eq. (42), spurious terms will appear during the coupling between LB algorithm and other

numerical schemes. Because these terms are purely stemming from the numerical coupling they

are out of the scope of the CE expansion.

V. ATHERMAL LBM

The last section showed that each macroscopic moment follows its own evolution equation

(64), advocating a change of paradigm. Instead of considering LBM as a kinetic solver let us

consider it as a Grad-@ solver for an extended set of thermo-hydrodynamic equations. Some

of them are desired conservation laws such as mass and momentum conservation, others cor-

responds to higher order equations in the �nite hierarchy of @ equations related to the lattice
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�3&@. Therefore, 5 and all other populations previously de�ned lose their kinetic meaning and

are now merely seen as temporary variables in the macroscopic CFD solver known as "LBM".

A. Athermal numerical scheme

For the sake of clarity we �rst apply the proposed Taylor expansion on the classical athermal

LBM on standard lattices30 with a force term speci�cally designed to get rid of the well known

O(Ma3) error detailed in Table III. This model, traditionally said to be athermal in the LB litera-

ture, is often used in practice to solve isothermal �ows. Following the new paradigm we de�ne

the initial solution simply by initial macroscopic �elds d (C,x),DU (C,x).From this initial condition

we would like to �nd a LB algorithm that predicts d (C + ΔC,x) and DU (C + ΔC,x) following an

approximate Navier-Stokes system, hopefully matching Eqs. (1,2). Let us now detail step-by-step

the algorithm proposed in Table IV, applied to the classical athermal LBM.

• Step 1 : Equilibrium construction Because we restrict ourselves to standard lattices,

some third-order Hermite polynomials H (3)
8

do not belong to the Hermite basis. For this

reason we do not expand further than the third order, isotropy defects being corrected by

an appropriate force term. The equilibrium reads

5
4@

8
= l8

{
H (0)d +

H (1)
8U

22B
dDU +

H (2)
8UV

224B
[dDUDV] +

H (3)
8UVW

626B
[dDUDVDW ]

}
. (65)

• Step 2 : Force construction The forcing population is extended to second order,

�8 ≡ l8
{
H (0)0�,(0) +

H (1)
8U

22B
0
�,(1)
U +

H (2)
8UV

224B
0
�,(2)
UV

}
, (66)

with its Hermite moments de�ned as

0
�,(2)
UV

= −
m�

5 4@,(3)
UVW

mGW
+ d22B

2
3
mDW

mGW
XUV + dFUDV + dFVDU − ¤<DUDV , (67)

0
�,(1)
U = dFU , (68)

0�,(0) = ¤< , (69)

with � 5 4@,(3)
UVW

the isotropy defect of the equilibrium population, related to the lattice and

the particular equilibrium function. Remember that ¤< and FU correspond respectively to

a mass source and volume force in the macroscopic equations (1, 2).

19



• Step 3 : Non-equilibrium construction Using a BGK kernel, the non-equilibrium pop-

ulation is obtained as

5
=4@

8 = 5 8 − 5
4@

8
+ ΔC

2 �8 . (70)

Otherwise, following a particular choice of collision kernel construct 5̃ =4@
8

and set

5
=4@

8 = 5̃
=4@

8
. (71)

• Step 4 : Collision With 5 4@
8

, �8 and 5
=4@

8 built in the previous steps, compute the collided

population 5 2>;8 as

5 2>;8 (C,x) = 5
4@

8
(C,x) +

(
1 − ΔC

g

)
5
=4@

8 (C,x) +
ΔC

2 �8 (C,x) . (72)

• Step 5 : Streaming Transport the populations according to

5 8 (C + ΔC,x) = 5 2>;8 (C,x − ci ΔC) . (73)

• Step 6 : Coupling update No coupling is necessary in the athermal case, but this stage

can be used to transport passive scalars61–63.

• Step 7 : Update macroscopic variables Using the macroscopic update rule Eq. (61) for

= = 0, 1, 2 respectively leads to

d (C + ΔC,x) =
@∑
8

5 8 (C + ΔC,x) +
ΔC

2 ¤<(C + ΔC,x) , (74)

dDU (C + ΔC,x) =
@∑
8

28U 5 8 (C + ΔC,x) +
ΔC

2 [dFU ] (C + ΔC,x) , (75)

N
5 ,(2)
UV
(C + ΔC,x) = N 5 (C+ΔC,x),(2)

UV
− ΔC

2

(
1
g
N
5 =4@ (C+ΔC,x),(2)
UV

− N � (C+ΔC,x),(2)
UV

)
. (76)

By splittingN 5 ,(2)
UV
(C+ΔC,x) into its equilibrium and non-equilibrium parts, the above leads

to the stress-tensor scheme(
1 + ΔC

2g

)
N
5 =4@ (C+ΔC,x),(2)
UV

= N
5 (C+ΔC,x),(2)
UV

− N 5 4@ (C+ΔC,x),(2)
UV

+ ΔC

2 N
� (C+ΔC,x),(2)
UV

. (77)
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B. Continuous equivalent equations

Now that macroscopic quantities, namely mass, velocity and stress-tensor d (C +ΔC,x), DU (C +
ΔC,x) and N 5 =4@,(2)

UV
(C + ΔC,x) have been explicitly updated let us analyze the equivalent contin-

uous equations of System (74, 75, 77) and compare it with the target set of equations Eqs. (1, 2)

with ? = d22B (5).

Using the continuous limit Eq. (64) of the LB scheme leads to an extended Grad-@ system that

conditionally approximates the athermal Navier-Stokes:

md

mC
+
mdDV

mGV
= ¤< (78)

mdDU

mC
+
m

[
dDUDV + ?XUV + N 5 =4@,(2)

UV

]
mGV

= dFU , (79)

mN
5 ,(2)
UV

mC
+
m

[
N
5 ,(3)
UVW
− � 5 ,(3)

UVW

]
mGW

= −1
g
N
5 =4@,(2)
UV

+ N �,(2)
UV

. (80)

where the lattice-dependent isotropy defect � 5 ,(3)
UVW

can be found in Table III.

From this system we can infer that−N 5 =4@,(2)
UV

is the e�ective stress tensor. We also see that con-

trary to the usual Navier-Stokes equations this system has an evolution equation for the stress-

tensor, Eq. (80). This evolution equation involves N 5 =4@,(3)
UVW

through N
5 ,(3)
UVW

, which depends on

higher order contributions and is assumed negligible by the CE expansion. The term mN
5 4@,(2)
UV

/mC
hidden inside Eq. (80) can be replaced using Eq. (4). Using the second order moment of the equi-

librium population (67,69) in Eq. (80) and the athermal equation of state (5) �nally leads to

− N 5 =4@,(2)
UV

= gd22B

[
mDU

mGV
+
mDV

mGU
− XUV

2
3
mDW

mGW

]
+ g

[ mN 5 =4@,(2)
UV

mC
+
m

[
N
5 =4@,(3)
UVW

− � 5 =4@,(3)
UVW

]
mGW

]
− g

[
DU

mN
5 =4@,(2)
VW

mGW
+ DV

mN
5 =4@,(2)
UW

mGW

]
(81)

with gd22B = ` obtained by identi�cation with the usual de�nition of the stress tensor (3). Note

that the e�ect of the collision kernel is entirely hidden inside N 5 =4@,(3)
UVW

. When using a simple BGK

collision step N 5 =4@,(3)
UVW

is enslaved to higher order unphysical contributions because of the lack

of isotropy that leads to an under-resolved �nite hierarchy of equations in the velocity space.

This last equation is not algebraic as the truncated CE expansion asserts but rather an evolu-

tion equation for the unknown N 5 =4@,(2)
UV

.
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C. Domain of validity in term of dimensionless numbers

The next step is to demonstrate in which cases the Lattice Boltzmann stress-tensor equation

is consistent with a Navier-Stokes stress tensor (80)

−N 5 =4@,(2)
UV

≈ TUV = `
[
mDU

mGV
+
mDV

mGU
−
2XUV
3

mDW

mGW

]
. (82)

To that end, let us nondimensionalize Eq. (81). First we need to identify what is the shortest phys-

ical time scale CB , corresponding to the fastest and dominant physical phenomenon. Depending

on the situation, mainly two relevant candidates exist: the viscous timescale C` = d!20/` and the

convective timescale C2 = !0/*0.

If the shortest timescale is CB , then the appropriate nondimensionalization reads

m

mC
=

1
CB

m

mC∗
,

m

mG
=

1
!0

m

mG∗
, (83)

N
5 =4@,(2)
UV

= N0N
∗,5 =4@,(2)
UV

, N
5 =4@,(3)
UVW

= &0N
∗,5 =4@,(3)
UVW

, (84)

D = *0D
∗ , d = d0d

∗ , ) = )0)
∗ . (85)

where ∗ superscript quantities are O(1) and non-dimensional. Applying this change of variable,

− N ∗,5
=4@,(2)

UV
= T ∗

UV
+ `&0

d022B!0N0

1
d∗

m

[
N
∗,5 =4@,(3)
UVW

− �∗,5
=4@,(3)

UVW

]
mG∗W

+ M̃a
2

Re
1
d∗

[
D∗U
mN
∗,5 =4@,(2)
VW

mG∗W
+ D∗

V

mN
∗,5 =4@,(2)
UW

mG∗W

]
+ `

d022B CB

1
d∗

mN
∗,5 =4@,(2)
UV

mC∗
, (86)

where the Reynolds number Re = C`/C2 and athermal Mach number

M̃a = *0/2B , (87)

have been used. This implicitly means that in the athermal case M̃a is enslaved to the CFL

number24 because 2B = ΔG/(
√
3ΔC), leading to

CFL =
*0 + 2B
ΔG/ΔC =

M̃a + 1
√
3

. (88)

Note that the stability criterion CFL ≤ 1 boils down to the usual athermal Mach limit M̃a ≤
√
3− 1 ≈ 0.732, which is consistent with previous studies64,65. If the convective scaling is chosen

the stress-tensor becomes

− N ∗,5
=4@,(2)

UV
= T ∗

UV
+ O

(
`&0

d022B!0N0

)
+ O

(
M̃a

2

Re

)
. (89)
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The condition of consistency on LBMs is that prefactors should be negligible quantities to verify

our initial assumption Eq. (82). The last term of the right hand side can be neglected for the

di�usive and convective timescale respectively if M̃a
2/Re2 and M̃a

2/Re are small enough. On

the other hand the factor `&0/d022B!0N0 corresponding to the scaling between the third order

non-equilibrium and second order non-equilibrium is not generally trivial. Because the isotropy

defect completely modi�es the convective term in the evolution equation of N 5 =4@,(3)
UVW

, it leads to

an evolution equation whose physical meaning is unclear. More importantly, this unphysical

evolution equation can be a source of instabilities66. However, when the recursive regularized

kernel49 is used, &0 is known and the stress-tensor becomes

− N ∗,5
=4@,(2)

UV
= T ∗

UV
+ O

(
M̃a

2

Re

)
. (90)

One sees here that the usual "small Knudsen" assumption is not even su�cient because Kn.Ma

terms appeared in the scaling analysis. To get back the proper NSF stress-tensor one have to

carefully analyze one by one each of these spurious terms. Additionally the scaling &0 is related

to the heat �ux, suggesting that the Prandtl number Pr should also intervene in the range of

consistency of LBMs.

The Taylor expansion showed us that the consistency condition was not as simple as the CE

expansion suggests. The small Knudsen assumption is not enough and both the choice of the

lattice and the collision kernel changes the consistency defect in Eq. (90). More discrete veloci-

ties mean that the isotropy defect is pushed away from the Navier-Stokes and the stress-tensor

equation, but it also means that more unphysical equations are also solved. Those equations are

likely to modify or even undermine the validity of the solution, such as for Burnett-like systems.

VI. COLLISION KERNEL

Now that we analyzed a simple athermal BGK LB scheme let us discuss the collision kernel

by reviewing a sample of techniques that can be used to increase robustness of LBMs. From the

Taylor expansion we’ve seen that mass and momentum conservation equations were correctly

discretized up to O(ΔC2) errors by the LB scheme. On the other hand, the system is not closed

through an algebraic constitutive equation as in usual CFD solvers. Instead we inherit Eq (81)
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from the hierarchy of moments. Rearranging its terms leads to

mN
5 =4@,(2)
UV

mC
+
m

[
N
5 =4@,(3)
UVW

− � 5 =4@,(3)
UVW

]
mGW

− DU
mN

5 =4@,(2)
VW

mGW
− DV

mN
5 =4@,(2)
UW

mGW
= −1

g

(
N
5 =4@,(2)
UV

+ TUV
)
, (91)

where TUV (3) is the physical stress tensor. Higher order contributions N 5 =4@,(3)
UVW

, as already dis-

cussed, do not necessarily match a physical behavior, especially for standard lattices because of

isotropy defects. Therefore, a question that could drive us towards the use of a particular kernel

is a correct modeling of the stress tensor by Eq. (91). Being the only moment that does not ap-

pear in the hydrodynamic equations Eqs. (78-79) the non-equilibrium tensor N 5 =4@,(3)
UVW

is our only

degree of freedom to modify the modeling of Eq. (91) towards a physically meaningful stress ten-

sor transport equation. For example with a BGK collision operator, N 5 =4@,(3)
UVW

purely stems from

higher order non-hydrodynamic equations. In this case, assuming that the lattice is large enough

such that � 5 =4@,(3)
UVW

= 0 (this property is only enforced on some non-diagonal components of N (3)
UVW

for standard lattices) we can write for example the N 5 =4@,(2)
GG evolution equation,

mN
5 =4@,(2)
GG

mC
− 2DG

mN
5 =4@,(2)
GW

mGW
= −1

g

(
N
5 =4@,(2)
GG + TGG

)
−
mN

5 =4@,(3)
GGW

mGW
. (92)

In the left hand side we recognize a transport term in the G direction with an unexpected back-

ward propagation −2DG while the �rst term in the right hand side is a relaxation term that steers

the variable N 5 =4@,(2)
GG towards the expected TGG . The second term in the right hand side is the

coupling with higher-order non-hydrodynamic moments.

A. E�ect of regularized kernels

A particularly e�cient way to control the time evolution of the stress tensor was identi�ed in

the regularized and recursive regularized collision kernels. The simple regularization67,68 simply

discards N 5
=4@
,(3)

UVW
during the collision leading to a �ltered non-equilibrium population

5
neq
8 = l8

H (2)
8UV

224B
N
5
neq
,(2)

UV
, (93)

N
5
neq
,(2)

UV
=

∑@

8
28U28V

(
5 8 − 5

eq
8
+ ΔC

2 �8
)

(94)

allowing those �ltered moments to be compartmentalized from the hydrodynamic moments, and

e�ectively canceling the last term of Eq. (92).
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Recursive regularization49 does not simply removeN 5
=4@
,(3)

UVW
but replaces it by an approximated

value obtained from the CE expansion,

5
neq
8 = l8

{H (2)
8UV

224B
N
5
neq
,(2)

UV
+
H (3)
8UVW

626B

(
DUN

5
neq
,(2)

VW
+ DVN 5

neq
,(2)

WU + DWN 5
neq
,(2)

UV

) }
, (95)

leading to a new evolution equation,

mN
5 =4@,(2)
GG

mC
+
mDWN

5 =4@,(2)
GG

mGW
+ 2N 5 =4@,(2)

GW

mDG

mGW
= −1

g

(
N
5 =4@,(2)
GG + TGG

)
, (96)

that now exhibits a forward transport, which may explain why high velocity �ows are more

stable49 with this regularized collision kernel.

B. E�ect of the Hybrid Recursive Regularization

An extension of the recursive regularization was developed21 by introducing f ∈ [0, 1] into

the non-equilibrium reconstruction Eq. (95) as

N
5
neq
,(2)

UV
= f

@∑
8=1

28U28V

(
5 8 − 5

4@

8
+ ΔC

2 �8
)
− (1 − f)d22B g

[
mDU

mGV
+
mDV

mGU
−
2XUV
3

mDW

mGW

]
��

, (97)

where the last term is evaluated from a �nite di�erence scheme. It has been shown21 that this

modi�cation leads, for f < 1, to the introduction of a numerical hyperviscosity in the momentum

equation.

In light of the previous Section, an alternative explanation for the enhanced stability is that

N
5 neq,(2)
UV

may deviate from its target value TUV . Using 0 < f < 1 (resp. f = 0) as a weighting

parameter is equivalent to a partial (resp. total) reset of N 5 neq,(2)
UV

to its fully relaxed value TUV at

the end of each time step, leading to a stronger steering of N 5 neq,(2)
UV

towards TUV by the resulting

LB scheme.

C. Trace of the stress tensor

The pressure work is of paramount importance in compressible �ows and was already empha-

sized as a major source of instabilities for thermal LBMs64. Because the non-equilibrium moment

N
5 neq,(2)
UV

is the e�ective stress tensor in LBMs, any spurious term appearing on its trace will act
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as a spurious pressure in momentum equation. Therefore, arti�cially enforcing a traceless stress

tensor7,

N
5
neq
,(2)

UV
=

@∑
8

[
28U28V −

XUV

3
28W28W

] (
5 8 − 5

eq
8
+ ΔC

2 �8
)
, (98)

during the collision allows to get rid of this spurious pressure.

Because d and dDU are conserved moments in LBMs, the collision kernel has no direct impact

on their numerical schemes. But we’ve seen in this section that a choice of collision kernel

impacts the closure for the N 5 neq,(2)
UV

equation. Therefore, a choice of collision kernel is a choice

of closure for non-equilibrium moments. For this reason, we believe the present method to be a

good candidate to analyze the LBM closure, and design future collision kernels.

VII. THERMAL RR-?

Now that we analyzed both the athermal model and the collision kernel, let us analyze two

thermal models using the recursive regularized collision kernel. These models are of particular

interest to highlight advantages of the Taylor expansion over CE as it has both a coupling with

another algorithm and a complex collision kernel.

Let us start with the recursive regularized pressure-based model (RR-?), presented earlier this

year7, to simulate both compressible �ows and reactive �ows18.

The main feature in this model is that the equilibrium population is chosen so that the 0th

order moment of the equilibrium population is a normalized pressure, the rest of the equilib-

rium is similar to the athermal equilibrium distribution Eq. (65). It leads to an unphysical mass

conservation equation that is mended by a correcting term that explicitly uses the Taylor expan-

sion, which is by itself a su�cient reason to analyze this model through the scope of the Taylor

expansion instead of the CE expansion.

Since standard lattices are not able to recover accurately the second-order moment corre-

sponding to energy, the energy conservation (6) is solved separately, as φ in Step 6 of Table

IV. Also note that the athermal equation of state is replaced, from here on, by the perfect gas

equation of state (7).
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A. RR-? numerical scheme

let us assume that we have a consistent and convergent explicit scheme for Eq. (6), expressed

as

[d�] (C + ΔC,x) = [d�] (C,x) + ΔC�d� (C,x) + O(ΔC<) , (99)

with< ≥ 1 and �d� an operator that represents everything but the time derivative in Eq. (6). We

shall now detail the step-by-step algorithm leading to the RR-? model.

• Step 1 : Equilibrium construction The equilibrium is expanded as

5
4@

8
= l8

{
H (0)d\ +

H (1)
8U

22B
dDU +

H (2)
8UV

224B
[dDUDV] +

H (3)
8UVW

626B
[dDUDVDW ]

}
. (100)

Note the slight modi�cation in the 0th order, with this model the density d is replaced by

a normalized pressure

d\ = ?/22B . (101)

• Step 2 : Force construction The forcing population is simply extended to second order,

�8 ≡ l8
{
H (0)0�,(0) +

H (1)
8U

22B
0
�,(1)
U +

H (2)
8UV

224B
0
�,(2)
UV

}
, (102)

with its Hermite moments de�ned as

0
�,(2)
UV

= 22BDU
md (1 − \ )
mGV

+ 22BDV
md (1 − \ )
mGU

+ XUVd22B
2
3
mDW

mGW
− 22BXUV

md (1 − \ )
mC

−
m�

5 4@,(3)
UVW

mGW

+ dFUDV + dFVDU − ¤<DUDV , (103)

0
�,(1)
U = dFU , (104)

0�,(0) = ¤< . (105)

• Step 3 : Non-equilibrium construction Though this particular pressure-based coupling

does not presuppose the use of any particular collision kernel we chose the recursive reg-

ularized collision operator7. The non-equilibrium population 5
=4@

8 is then reconstructed

following Eq. (95).
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• Step 4 : Collision Thanks to previous steps 5 4@
8

, �8 and 5
=4@

8 have been built, compute the

collided population 5 2>;8 such that

5 2>;8 (C,x) = 5
4@

8
(C,x) +

(
1 − ΔC

g

)
5
=4@

8 (C,x) +
ΔC

2 �8 (C,x) . (106)

• Step 5 : Streaming Shift the populations according to

5 8 (C + ΔC,x) = 5 2>;8 (C,x − ci ΔC) . (107)

• Step 6 : Coupling update Here simply solve the explicit numerical scheme Eq. (99) to get

[d�] (C + ΔC,x).

• Step 7 : Updatemacroscopic When applied to = = 0 the macroscopic update rule Eq. (61)

usually gives us the updated density d (C + ΔC,x). But here because we modi�ed the equi-

librium distribution it leads to an updated pressure (?∗/22B ) (C + ΔC,x) such that

(?
∗

22B
) (C + ΔC,x) = N 5 (C+ΔC,x),(0) + ΔC

2 ¤<(C + ΔC,x) . (108)

which is equivalent to an unphysical equation for the pressure, m(?∗/22B )/mC+mdDV/mGV = ¤<,

see Eq. (64) for = = 0. To recover the correct mass conservation equation it is mandatory

to modify the 0th order update rule such as :

d (C + ΔC,x) = N 5 (C+ΔC,x),(0) + d (C,x) [1 − \ ] + ΔC

2 ¤<(C + ΔC,x) . (109)

The update rule for = = 1, 2 remains unchanged,

dDU (C + ΔC,x) =
@∑
8

28U 5 8 (C + ΔC,x) +
ΔC

2 [dFU ] (C + ΔC,x) , (110)(
1 + ΔC

2g

)
N
5 =4@ (C+ΔC,x),(2)
UV

= N
5 (C+ΔC,x),(2)
UV

− N 5 4@ (C+ΔC,x),(2)
UV

+ ΔC

2 N
� (C+ΔC,x),(2)
UV

. (111)

Then compute ) (C + ΔC,x), from [d�] (C + ΔC,x), DU (C + ΔC,x) and d (C + ΔC,x).

B. Continuous equivalent equations

Now that macroscopic quantities, namely mass, velocity, stress-tensor and temperature, d (C +
ΔC,x),DU (C+ΔC,x),N 5 =4@,(2)

UV
(C+ΔC,x) and) (C+ΔC,x) have been explicitly updated let us analyze
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the equivalent continuous equations of the system Eqs. (109,110,111,99) and compare it with the

target set of equations Eqs. (1,2,6). The Taylor expansion leads to the system of equations
md

mC
+
mdDV

mGV
= ¤< , (112)

mdDU

mC
+
m

[
dDUDV + ?XUV + N 5 =4@,(2)

UV

]
mGV

= dFU , (113)

mN
5 ,(2)
UV

mC
+
m

[
N
5 ,(3)
UVW
− � 5 ,(3)

UVW

]
mGW

= −1
g
N
5 =4@,(=)
UV

+ N �,(=)
UV

, (114)

md�

mC
+
m

[
(d� + ?)DV + @V + DUN 5 =4@,(2)

UV

]
mGV

= dFWDW + d ¤@ . (115)

We recognize mass, momentum and energy conservation along with an evolution equation for

the stress tensor, let us analyze this equation. Using the kinetic tensor equation Eq. (4), the force

terms Eqs. (103,105) along with the 2nd and 3rd order macroscopic moments of the equilibrium

population lead to the stress tensor equation,

− N 5 =4@,(2)
UV

= gd22B

[
mDU

mGV
+
mDV

mGU
− XUV

2
3
mDW

mGW

]
+ g

{ mN 5 =4@,(2)
UV

mC
+
m

[
N
5 =4@,(3)
UVW

− � 5 =4@,(3)
UVW

]
mGW

}
− g

[
DU

mN
5 =4@,(2)
VW

mGW
+ DV

mN
5 =4@,(2)
UW

mGW

]
, (116)

with gd22B = `. This is the exact same evolution equation as in the athermal case. Because

equilibrium moments are enslaved to low order macroscopic moments the only place where the

higher order moments have an impact in thermo-hydrodynamic equations is through N 5 =4@,(3)
UVW

.

Fortunately here we used a hybrid recursive regularized collision kernel so that even if higher

order macroscopic equations are unphysical their e�ect on low order macroscopic equations

is explicitly �ltered during non-equilibrium reconstruction49,65. To �nd out in which cases the

stress-tensor evolution equation is su�ciently close to its expected value we use the same nondi-

mensionalization as in the athermal case, except that &0 = *0N0 is known because of the RR

collision kernel. Also note that 2B is not anymore related to the physical sound speed, therefore

changing the de�nition of the Mach number to Ma = *0/
√
WA)0. This leads to

− N ∗,5
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UV
= T ∗

UV
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]
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D∗U
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V

mN
∗,5 =4@,(2)
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]
+ `

d022B CB

1
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mN
∗,5 =4@,(2)
UV

mC∗
. (117)
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Note that de�ning the CFL number24 as

CFL =
*0 +

√
WA)0

ΔG/ΔC , (118)

and reminding that in the acoustic scaling 2B = ΔG/(
√
3ΔC) we can see that

WA)0

22B
=

3CFL2

(Ma + 1)2 . (119)

By assuming that our fastest relevant phenomenon is the convection, such that CB = !0/*0, we

can rearrange Eq. (117) into

−N ∗,5
=4@,(2)

UV
= T ∗

UV
+ O

(
Ma2 CFL2

Re (Ma + 1)2

)
, (120)

which is the consistency condition of the pressure-based model7. This very simple expression

was obtainable only because we used a collision kernel in which the scaling of third order non-

equilibrium moments is algebraically enslaved to variables whose scaling is known (see Eq. (95)).

This equation shows a very special feature of LBMs: the discretized continuous equations directly

depends on the CFL number.

VIII. THERMAL RR-d

This scheme have been thoroughly used in the literature to perform simulations on compressible31,32,

combustion17,69. Mass and momentum are solved by the LB algorithm while the energy and po-

tential species conservation are solved by a FD scheme, as already presented in the last section.

A. RR-d numerical scheme

Contrarily to the RR-? model this scheme encompasses the thermal e�ects coming from the

FD energy equation inside the 2nd and 3rd order equilibrium moments, leading to a more complex

equilibrium distribution function.

• Step 1 : Equilibrium construction The equilibrium is expanded as

5
4@

8
= l8

{
H (0)d +

H (1)
8U

22B
dDU +

H (2)
8UV

224B
[dDUDV + d22B (\ − 1)XUV]

+
H (3)
8UVW

626B
{dDUDVDW + d22B (\ − 1) [DWXUV + DVXWU + DUXVW ]}

}
, (121)

where \ keeps its de�nition (101).
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• Step 2 : Force construction The forcing population is simply extended to second order,

�8 ≡ l8
{
H (0)0�,(0) +

H (1)
8U

22B
0
�,(1)
U +

H (2)
8UV

224B
0
�,(2)
UV

}
, (122)

with its Hermite moments de�ned as

0
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= −
m�

5 4@,(3)
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mGW
+ ? ( 23 −

A

2E
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mDW
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XUV

+
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D2W

2 )

+ dFUDV + dFVDU − ¤<(DUDV + 22BXUV) , (123)

0
�,(1)
U = dFU , (124)

0�,(0) = ¤< . (125)

• Step 3 : Non-equilibrium construction To allow a fair comparison with the pressure-

based model, let us use again the recursive regularized collision operator, Eq. (95).

• Step 4 : Collision Thanks to previous steps 5 4@
8

, �8 and 5
=4@

8 have been built, compute the

collided population 5 2>;8 such that

5 2>;8 (C,x) = 5
4@

8
(C,x) +

(
1 − ΔC

g

)
5
=4@

8 (C,x) +
ΔC

2 �8 (C,x) . (126)

• Step 5 : Streaming Shift the populations according to

5 8 (C + ΔC,x) = 5 2>;8 (C,x − ci ΔC) . (127)

• Step 6 : Coupling update Here simply solve the explicit numerical scheme Eq. (99) to get

[d�] (C + ΔC,x).

• Step 7 : Update macroscopic Using the macroscopic update rule Eq. (60) for = = 0, 1, 2

respectively leads to

d (C + ΔC,x) =
@∑
8

5 8 (C + ΔC,x) +
ΔC

2 ¤<(C + ΔC,x) , (128)

dDU (C + ΔC,x) =
@∑
8

28U 5 8 (C + ΔC,x) +
ΔC

2 [dFU ] (C + ΔC,x) , (129)(
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UV

+ ΔC

2 N
� (C+ΔC,x),(2)
UV

. (130)

Then compute ) (C + ΔC,x), from [d�] (C + ΔC,x), DU (C + ΔC,x) and d (C + ΔC,x).
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B. Continuous equivalent equations

Now that macroscopic quantities, namely mass, velocity, stress-tensor and temperature, d (C +
ΔC,x),DU (C+ΔC,x),N 5 =4@,(2)

UV
(C+ΔC,x) and) (C+ΔC,x) have been explicitly updated let us analyze

the equivalent continuous equations of the system Eqs. (128,129,130,99) and compare it with the

target set of equations Eqs. (1,2,6). The Taylor expansion leads to the system of equations
md
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[
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UV

]
mGV

= dFWDW + d ¤@ . (134)

We shall now deduce the stress tensor evolution equation. First, using Eqs. (131,132) to isolate

the pressure time derivative m?/mC inside Eq. (134) and assuming that the adiabatic exponent W is

a constant leads to the pressure equation,

2E
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2 . (135)

with 2E/A = 1/(W − 1). Then injecting Eqs. (4,135,123-125) into Eqs. (133) �nally leads to
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with g? = `. Here we end up with a slightly di�erent evolution equation for the stress tensor

when compared to the pressure-based and athermal cases. Again the higher order unphysical

moments are �ltered out because N 5 =4@,(3)
UVW

was reconstructed following Eq. (95).

To allow a fair comparison with the RR-? model we use the previously de�ned nondimen-

sionalization. This leads to
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Assuming that convection is dominant, CB = !0/*0, Eq. (137) can be recast into

−N ∗,5
=4@,(2)

UV
= N

∗,#(
UV
+ O

(
Ma2

Re

)
+ O

(
1

Re Pr

)
. (138)

This last equation should be compared to Eq. (120). While the consistency defect of the density-

based model increase with Ma it remains bounded for the pressure-based. Another interesting

di�erence between density-based on one side and both athermal and pressure-based on the other

side is that the former model does not have a decreasing consistency defect when the CFL is

decreased, an evident limitation for simulating compressible �ows.

IX. ILLUSTRATION: SPHERICAL FLAME

In order to illustrate that di�erent consistency defects can lead to very di�erent results a cir-

cular laminar �ame is simulated with both the density-based (Sec. VIII) and the pressure-based

(Sec. VII) models, as adapted for reactive �ows17,18. This test case was found to particularly ag-

gravate spurious currents e�ects because of the presence of heat-release along a curved density

gradient. This two dimensional test is setup as follows: the domain size is chosen as 4cm×4cm,

with a grid spacing JG = 0.2mm. The domain is initialized with fresh stoichiometric mixture

of propane and air at 300K and 1atm and a spot of corresponding burnt gases in its center. The

thermodynamic, transport and chemical closures applied in the current work are identical to

those in17, which correspond to a laminar �ame speed (! ≈ 0.25m/s and a thermal �ame thick-

ness X! ≈0.6mm. It is worth noting that the grid is quite coarse, corresponding to around three

points in one thermal �ame thickness. The boundary conditions are set to characteristic in/out

boundaries with a far-�eld pressure ?∞ = 1atm.

The �ow �elds of two very early time steps of simulation are presented in Fig. 1. It can be

seen that the density-based scheme creates spurious currents near the �ame front which leads

to unstable simulation, whereas the pressure-based scheme presents the expected behavior.

The temperature, heat release rate (HR) and velocity �elds from the simulation pressure-based

are given at a later instant in Fig. 2. Pro�les are seen to remain circular even when approach-

ing the boundary, showing both the isotropy of the scheme as well as the e�ectiveness of the

characteristic boundary.

This comparison between density-based and pressure-based formulations illustrates how spu-

rious currents can be triggered by defects of consistency of the stress-tensor.
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(a) t=2.0×10−2ms

(b) t=4.0×10−2ms

Figure 1: Streamlines of the 2D circular �ame simulation colored by velocity magnitude (in

m/s). Left column: pressure-based model18, right column: density-based model17. Note the very

di�erent ranges of velocity magnitude from the two methods. The yellow contour is the heat

release rate peak indicating the �ame front.
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Figure 2: Visualization of the temperature, heat release rate and velocity magnitude �elds of the

2D circular �ame as obtained with the pressure-based formulation18, at C = 9.24s.

X. CONCLUSION

We have presented a new systematic method to analyze Lattice-Boltzmann models. Based on a

Taylor-Expansion, it allows to derive the set of macroscopic equations consistent with the model.

The analysis only requires the assumption of a su�ciently small time discretization ΔC → 0, as

is usual for consistency studies.

A major advantage of the method over the traditional Chapman-Enskog framework is that

it allows to study more carefully numerical errors. In light of this Taylor-Expansion, collision

kernel’s e�ects on macroscopic variables are reinterpreted as a closure for the stress-tensor evo-

lution equation. Numerical coupling of Lattice-Boltzmann models with other numerical schemes

are shown to create error terms whose scalings are more complicated than what the Chapman-

Enskog expansion suggests. Apart the usual low-Knudsen assumption it is found that Mach,

Prandtl and CFL numbers can also intervene in consistency conditions of Lattice-Boltzmann

models. Note that although we focused on standard, nearest-neighbors lattices such as D2Q9,

D3Q19 and D3Q27, the presented method can be extended to larger lattices.

Consistency errors are analyzed for three models: (i) athermal model, (ii) a density-based

compressible model, (iii) a pressure-based compressible model. The consistency errors reported

in Tab. V show that, for the athermal model (i), the consistency error decreases with the CFL and

increases with the Mach number. For compressible models, two distinct behaviors were found:

• increasing consistency error with increasing Mach number, and bounded error with de-

creasing CFL number, for the density-based model (ii),
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Table V: Summary of consistency errors for the stress tensor, for the three models studied.

Here M̃a is the lattice-speed based Mach number, Eq. (87)

Model Stress tensor error Equation

Athermal model (Section V) O
(
M̃a

2

Re

)
(90)

Compressible pressure-based (Section VII) O
(

Ma2 CFL2

Re (Ma + 1)2

)
(120)

Compressible density-based (Section VIII) O
(
Ma2

Re

)
+ O

(
1

Re Pr

)
(138)

• bounded consistency error with increasing Mach number and vanishing error with de-

creasing CFL number, for the pressure-based model (iii).

The Taylor analysis presented here therefore clearly favors the pressure-based model, while the

Chapman-Enskog expansion was unable to discriminate the two models.
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Appendix A: Second order of accuracy of LBMs

To study the order of accuracy let us use Eq. (63) evaluated for the (=+1)-order moment along

with Eq. (59) to get

ΔC
mN

5 2>; (C,x),(=+2)
U1 ...U=+2

mGU=+2
= N

5 2>; (C,x),(=+1)
U1 ...U=+1 − N 5 (C+ΔC,x),(=+1)

U1 ...U=+1 + O(ΔC2) , (A1)

which can be injected back into Eq. (63), then using Eq. (59) leads to

N
5 (C+ΔC,x),(=)
U1 ...U= − N 5 2>; (C,x),(=)

U1 ...U= = −ΔC2
m

mGU=+1

[
N
5 2>; (C,x),(=+1)
U1 ...U=+1 + N 5 (C+ΔC,x),(=+1)

U1 ...U=+1

]
+ O(ΔC3) . (A2)

On the other hand, Eqs. (52,55,50) leads to

N
5 2>; (C,x),(=)
U1 ...U= =

[
N
5 ,(=)
U1 ...U= −

ΔC

2

(
1
g
N
5 =4@,(=)
U1 ...U= − N

�,(=)
U1 ...U=

) ]
(C,x) , (A3)

N
5 (C+ΔC,x),(=)
U1 ...U= =

[
N
5 ,(=)
U1 ...U= +

ΔC

2

(
1
g
N
5 =4@,(=)
U1 ...U= − N

�,(=)
U1 ...U=

) ]
(C + ΔC,x) . (A4)

At this point it is curious to note that the collision forcing g−1N 5 =4@,(=)
U1 ...U= and the external forcing

N
�,(=)
U1 ...U= have the exact same treatment in the algorithm. Therefore the collision discretization is

nothing else than a particular Guo forcing applied to a collisionless discretized BE. Also note that

N
5 2>; (C,x),(=)
U1 ...U= + N 5 (C+ΔC,x),(=)

U1 ...U= ≈ N 5 (C,x),(=)
U1 ...U= + N 5 (C+ΔC,x),(=)

U1 ...U= + O(ΔC2) . (A5)

Injecting Eq. (A5) and Eq. (A4) respectively in the right hand side and left hand side of Eq. (A2)

leads to the general second order numerical scheme :

N
5 (C+ΔC,x),(=)
U1 ...U= − N 5 (C,x),(=)

U1 ...U= = −ΔC2
m

mGU=+1

[
N
5 ,(=+1)
U1 ...U=+1 (C,x) + N

5 ,(=+1)
U1 ...U=+1 (C + ΔC,x)

]
−ΔC2

[ (
1
g
N
5 =4@,(=)
U1 ...U= − N

�,(=)
U1 ...U=

)
(C,x) +

(
1
g
N
5 =4@,(=)
U1 ...U= − N

�,(=)
U1 ...U=

)
(C + ΔC,x)

]
+ O(ΔC3) , (A6)

or equivalently

N
5 (C+ΔC,x),(=)
U1 ...U= − N 5 (C,x),(=)

U1 ...U=

ΔC
=
1
2

{[
−
mN

5 ,(=+1)
U1 ...U=+1

mGU=+1
− 1
g
N
5 =4@,(=)
U1 ...U= + N

�,(=)
U1 ...U=

]
(C + ΔC,x)

+
[
−
mN

5 ,(=+1)
U1 ...U=+1

mGU=+1
− 1
g
N
5 =4@,(=)
U1 ...U= + N

�,(=)
U1 ...U=

]
(C,x)

}
+ O(ΔC2) . (A7)

As already highlighted in the literature on the 5 equation itself70 we recognize in this last equa-

tion a second order accurate Crank-Nicolson scheme whose limit ΔC → 0 is Eq. (64). Note that
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rigorously speaking this 2nd order accuracy stands for each of the @ moments associated to the

DdQq lattice only in the BGK case. In other words Eq. (A4) is strictly veri�ed only for BGK ker-

nel. Meaning that depending on the chosen collision kernel the schemes associated to higher

order moments than N (0) and N (1)U may not exhibit a 2nd order accuracy65.
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