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Owing to the lack of consensus about the way Chapman-Enskog should be performed,
a new Taylor-Expansion of Lattice-Boltzmann models is proposed. Contrarily to the
Chapman-Enskog expansion, recalled in this manuscript, the method only assumes an
sufficiently small time step. Based on the Taylor expansion, the collision kernel is rein-
terpreted as a closure for the stress-tensor equation. Numerical coupling of Lattice-
Boltzmann models with other numerical schemes, also encompassed by the method, are
shown to create error terms whose scalings are more complex than those obtained via
Chapman-Enskog. An athermal model and two compressible models are carefully ana-
lyzed through this new scope, casting a new light on each model’s consistency with the

Navier-Stokes equations.
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INTRODUCTION

The Navier-Stokes-Fourier (NSF) system of conservation equations is widely accepted, to
study mass, momentum and energy conservation in fluid systems. Yet, its derivation from a
more general and purely atomistic point of view is one of the challenges of the 6" Hilbert
problem'. Formal solutions of the Boltzmann equation (BE)? were obtained following pertur-
bation theory®™, but finding full thermo-hydrodynamic solutions of the BE remains an active

research topic in mathematics®.

Nonetheless, this lack of theoretical understanding on the link between the NSF and BE for-
malisms has not slowed down the rapid development of Lattice-Boltzmann methods (LBM), now
an invaluable simulation tool widely used in the engineering and scientific communities. LBM
emerged in the 1980s and consist of a specific BE discretization. (i) First a discrete set of veloci-
ties is used to represent the velocity space, leading to the discrete velocity Boltzmann equation
(DVBE). (ii) Second, time and space are discretized, as in most computational fluid dynamics

(CFD) methods. Albeit initially limited to low-Mach athermal flows, the range of applicabil-
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ity has been steadily growing, to encompass compressible flows’ 1%, multiphase flows and

combustion!’" 1,

In understanding the link between the equations resolved by LBM and the macroscopic NSF
system, the so-called Chapman-Enskog (CE) expansion?® is the most popular method, provided
as an Appendix to most LBM papers. Yet, the CE expansion can have limitations in understanding
specific aspects of modern LB methods. For instance, the aforementioned applications (beyond
athermal flows) often correspond to Knudsen numbers too high for the underlying LBM theory
to hold, but LBMs reportedly yields reasonable results nonetheless. The impact of the choice of
collision kernel, central in the method’s robustness?!, is also hard to study with the CE expansion,
often carried out with a simplified Bhatnagar-Gross-Krook BGK collision model??. Last but not
least, the CE expansion can not be easily performed for the wide variety of models in which a
LB distribution is resolved coupled to another distribution or scalar (which can represent energy,

species, or any transported scalar).

The purpose of the present study is threefold. First, we provide a review of the methods tradi-
tionally used to derive the macroscopic equations from a given LBM. Second, the implicit assump-

tions underlying the CE expansion are discussed. Third, we propose a rigorous and systematic
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method to analyze LBMs, based on a modified equation analysis using a Taylor expansion



in time and space. Although use of Taylor expansion to that goal is already reported in the LB
literature?°=28 for athermal models, the presented method is the first - to the authors knowledge
— to encompass arbitrary LB numerical schemes with multi-physics coupling, arbitrary collision
kernel, arbitrary force terms and arbitrary non-dimensional numbers. It will be shown that the
method allows to identify error terms beyond the CE expansion, necessary to fully understand

recent LB models.

The article is organized following these three goals. After a brief Section I introducing the NSF
system of equations along with the necessary notations, Section II focuses on the continuous BE.
We recall two popular methods used to analyze it and derive a NSF system from the BE, namely
the CE expansion®’ and the Grad moment system?. Section IIl discusses the application of the CE
formalism to LBMs. In particular, we will point out the lack of consensus found in the literature

around the CE expansion. Underlying assumptions and limitations are also discussed.

Section IV contains the principal novelty of the present work, following the arguments pre-
sented in Sections II-III, and proposes an alternative to the CE expansion formalism. The step-
by-step algorithm to build and understand a LB scheme is thoroughly explained. Resting on a
naive Taylor expansion of the numerical scheme this method is seen to be fully deductive and
ansatz-free in the sense that its derivation automatically and unequivocally gives the conditions
for the scheme to be consistent to an expected set of macroscopic equations in the small time-step

limit At — 0, while keeping the so-called acoustic scaling coefficient At/Ax constant®,

As a first textbook example, the classical athermal BGK*® is analyzed through the scope of the
Taylor expansion in Section V. Then, in light of the proposed step-by-step algorithm, Section VI
proposes a new interpretation of the LB collision kernel strictly based on macroscopic equations
instead of the usual kinetic interpretation. Lastly, the scope of our new theoretical framework
is illustrated for two advanced LB thermal models recently published by our group, namely the

RR-p>1%2 and RR-p’ models, respectfully in Sections VII and VIIL

I. THE NAVIER-STOKES-FOURIER SYSTEM

Before carrying out any comparison between the BE and NSF systems, it is useful to introduce

the NSF governing equations, along with appropriate definitions.



A. Navier-Stokes definitions

Mass and momentum conservation read

0 apu
Py, (1)
ot aXﬁ
9 0 | pugug + pbys — Ty
pua 3| puatty + poop = Teg) _ -
ot aXﬁ

where p is the volume mass, u, is the local velocity vector and p is the pressure. In addition,
and p¥, are respectively any forcing term in the mass an momentum equations. These forces
can model physical phenomena e.g. gravity or mass source, but they can also correspond to

numerical terms such as sponge-zones®. Lastly, 7,4 is the stress tensor,

ou ou 2 0u
Tap =t | s+ =L = 5= L)
oxpg  Ixg 3 9xy

(3)
with p the shear viscosity. The bulk viscosity is neglected in the framework of this paper, but
can readily be included in the analysis.

Recombining Egs. (1, 2) we obtain the kinetic tensor pu,uz equation

opuaug  dpugupu, 3 [pdp—Tp|l  I|pSay — Tay]
+ + U + = + — i , (4
ot axy “ ox, up ox, pFaup + pFpuq — muqup (4)

not to be confused with the kinetic energy evolution equation, corresponding to half the trace of
the tensor evolution Eq. (4). When the flow is assumed to be athermal, the system is fully closed
by assuming, e.g.

p = pcs, (5)

where c; is the constant sound speed.

B. Fourier system definitions

When thermal effects cannot be neglected, one needs to consider additionally the total energy

density pE equation

9pE | 9 [(pE + p)ug + qp — uaTap]
ot (9X/3

= pFyuy +pq, (6)

with the total energy E defined as the sum of internal and kinetic energies, E = e + u,u,/2. In

Eq. (6), g, corresponds to the heat flux, and ¢ is an energy source.
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To close the NSF system, a thermodynamic closure is required, e.g.
p=prT, e=c,T, (7)

with r = R/W, R the perfect gas constant, W the molecular weight, T the temperature and ¢, the

mass heat capacity at constant volume. Laws for the heat transfer are also required, e.g.
qo = —AdT [ 9x,, (8)

where A is the heat conductivity®*. Having introduced the NSF system, let us now move forward

with the BE system.

II. CONTINUOUS BOLTZMANN EQUATION ANALYSIS

The Boltzmann equation (BE) corresponds to the kinetic description of a gas out of equilib-
rium. In the absence of external forces, and assuming the gas to consist of small hard spherical

particles bouncing elastically against each other, the BE reads

of ., of _

=) ©)

where f (&, x, t) is the density probability function of finding particles with velocity vector & = &,,
at location = x, and time ¢. The left hand-side of (9) corresponds to the free streaming of the
particles, and the right hand-side takes into account their collisions. Gas kinetic theory dictate
that f will relax through collisions towards a Maxwellian equilibrium distribution £ function®,
e.g.

p _ a2
eq = P ~(Ig-ulP)/2RT 10
(27RT)3/2 (10)

for monoatomic ideal gases.

For mass, momentum and energy to be conserved through collision , they must relate to the

p:/fdngfeqczg, (11)

pui= [ tufd = [ eufeide, (12)
pE=3 [ tuturie =3 [ turae, 13

density probability functions f through3®

where p, u, and E are the macroscopic quantities, respectively the density, velocity vector and

total energy.



For the sake of simplicity, let us consider for now the most simple collision operator, namely

the Bhatnagar-Gross-Krook (BGK) collision kernel??,

Qnox(f) === (f = £, (149

where 7 is a characteristic relaxation time related to the viscosity of the fluid. This approximation
holds reasonably when the Knudsen number Kn, ratio of the mean free path of the particles to a
characteristic flow length, is small. Note that Kn can also be expressed in terms of Reynolds Re
and Mach Ma numbers through the Von Karman relation Kn o Ma/Re.

The formal derivation of the continuum NSF equations from the BE is not straightforward
and usually needs a perturbation analysis which is by construction only valid for some specific
asymptotic cases* °. For the purpose of this article, we shall recall hereafter two historical meth-

ods allowing to link the kinetic BE to the continuum NSF system.

A. Hilbert and Chapman-Enskog expansions

The question of a systematic derivation of the NSF system from kinetic theory is owed to
Hilbert*’8. Tts first attempt is based on the assumption that Kn < 1 and that the collision
characteristic time 7 = €7, where € is a small parameter usually identified with Kn. The rescaled
BE then reads

of L of\_ 1. .
((Lrtgl)=-z0- 0. (15)

A singular perturbation procedure is then performed by taking the limiting case € — 0. Then,

we can search for the solution f as an infinite expansion,
=l fM=fOuef®yf®y (16)
n=0

where all £ are O(1). Making the ansatz that Eq. (16) is convergent we insert it inside Eq. (15).
Then by assuming a scale separation between orders in € and collecting terms by orders we end

up with an infinite hierarchy of equations

fO-fi=o, (17)

1 af(n—l) af(n—l)
—Zf™ = + 18
ff ot b ox, (18)

with n > 0. This hierarchy of equations, called Hilbert expansion, exhibits some remarkable

properties. The first equation confirms that the zeroth order distribution f°) should match the



equilibrium distribution f¢9. The second equation shows that the n'" equation depends on the
(n — 1) distribution only in a sequential manner. Then, by truncating at any order n in the
infinite expansion it is possible to get an approximate solution of the BE.

The problem of this solution is that it fails to capture very steep gradients where Kn = O(1)

such as in boundary layers or shocks#*?

. In those regions the distribution f rapidly changes
on a time scale of order Kn meaning that df /ot scales as ~ f/Kn. The Hilbert expansion is
then ill-equipped to deal with such applications. A way to circumvent this problem is to use the

popular Chapman-Enskog expansion>2°

instead of the Hilbert expansion.
The only difference with the Hilbert expansion lies in the fact that the time derivative is now

also expanded,

of Z WOf _Of  Lof | L0f

+ ..., (19)
atn t() oty ot,

where 9/dt, denotes the contribution from the n'* order to the physical time derivative 9/dt.

Plugging Egs. (16, 19) inside Eq. (15) leads to
€ ie 2 g2 ie'"ﬂ"ﬁ S ie”‘f(m) — £ (20)
n=0 at aaxa m=0 z m=0 .

Assuming a scale separation between orders in € and collecting terms by orders we end up with

a new infinite hierarchy of equations. The leading orders in € now read

fO-fi=o, (21)
1 of (0 of (0
Ry A (22)
T 0 Xa
1 of(W 50 of ()
—=f® = f + f + &, f . (23)
T ato atl axa

Again, the zeroth order distribution satisfies f(*) = ¢4, but a slight difference appears in higher
orders, the n'" equation now depending not only on the (n — 1) but also on any (n — m)** order
with m < n. This recursive behavior means that CE expansion only addresses low-Knudsen so-
lutions with f depending only implicitly on time via the macroscopic variables appearing inside
the Maxwellian Eq. (10). In other words, the CE expansion only describes solutions f(t) with au-
tonomous time dependencies f (p(t), u(t), T(t), V"p(t), V"u(t), VT (t)) with V" the n'" order

40

rank space derivative. More general solutions are simply out of the scope of the CE expansion™.

The next step is to take successive moments of this infinite hierarchy. Integrating the first three



order moments of Eq. (22) lead to the Euler equations

8p 8pua 1 (1)

op L OPUx _ - d 24
at0+ Oxy / frds, (24)

Opua 9 |puatip+Sapp| _ / @
d 25
o, a5 Eof 7 dE, (25)

opE 9 |pug(E+RT)| W

=—= d€ . 26
e : [ ttara 20

Similarly, the first three order moments of Eq. (23) lead to

% Wge =L [ (@
at1+/(8t §‘Bax )f1d£ ~/f2d§, (27)
opugy Wae_ @

Gt [ (-t s Ve = [ eorae 25
% +/ (6‘t gﬁa ) §a§af(1)d€ =-= / §ﬁ§ﬁf(2)d5 (29)

which can be interpreted as a correction to the Euler equations Egs. (24-26), leading to the NSF
system of equations. Note that this system is not closed yet because we do not know how to
evaluate f vf(Wd¢ withn > 0and ¥ = [1, &, £,&,]. The CE expansion being a formal search
of BE solution any constraint can be used to close the system. Thus, solvability conditions are

applied,
/ yringe = o, n>0. (30)

This is an essential step of the CE expansion because it allows to close the system and prevents
the infinite hierarchy to impact the (low) orders of interest. Using the solvability conditions,

neglecting higher orders and collecting Eqgs. (24-29) the NSF system reads

opu
ap+ PYs =0(€), (31)
ot axlg
dpu, O |puqup+Bapp] 0 / (1) 7¢ _ 2
a oxp +ax/3 Eptaf’dE = O(€7), (32)
opE @ |pug(E+RT)] o / D) e — A2
T ey oy BRAHEEOE ”

this system being closed by moments of Eq. (22)*.
To summarize, the main CE expansion assumptions are the convergent nature of the f expan-

sion (16), the scale separation between orders in € and the solvability conditions (30).
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B. Grad moment system

Aside the well known CE expansion, another attempt to link the BE to the continuum me-
chanics was performed by Grad®. It is of historical importance for LBMs as it introduced the
use of Hermite polynomials H™ to analyze the BE. The main idea is to project the distribution
f onto the Hermite polynomials*' basis composed by n'* rank symmetric tensors H ™) of nth

degree polynomials in &, leading to

O =0(©) Y —a 1 H @), (9
n=0

a® = / fH"de, (35)

0l€) = e < (36)

HO(©) = S Lol @)

Assuming that f is sufficiently well approximated by a N** order truncated version of Eq. (34),

N
f© =0 ) ~a : H" (@), 59)
n=0

it is possible to get a closed system of equations by injecting Eq. (38) into the BE (9). Taking

moments of this system and using the orthogonality properties3®4!:42

of the Hermite polynomials
lead to a closed set of macroscopic equations, the most famous one being the Grad-13 system of
equations®3 that describes the evolution of 13 different moments (IT(?, HD(,I), HOEZ) and Hy(;(),,).
Because of the completeness of the Hermite basis, when N — oo the Grad moment method

explores every possible BE solutions.

C. The infinite hierarchy of equations and the closure problem

By performing a CE or a Grad moment analysis we are trying to reduce the infinite cascade
of moments to a finite system. In this process we are purposely losing some information and we
expect that this ansatz was relevant for the considered physical phenomena. In the context of
CFD this usually means that we are trying to extract low-Knudsen solutions out of the discretized
LB model.

Whether we use the CE or the Grad moment expansion, both methods rely on a truncated

expansion. To the best of the authors’ knowledge the range of validity of such finite expansions



is usually not questioned nor recalled in the LB community.

For instance, the CE expansion first assumes that the time derivative Eq. (19) and populations
f Eq. (16) can be expanded, but none of these assumptions seems to be explicable, particularly
when we also remark that this leads to a singular perturbation analysis, meaning that the small-
ness parameter € appears in front of the highest order derivative in the equation. Such singular
perturbation expansion is known to exhibit unphysical behaviors when truncated*?, i.e. the CE
expansion is asymptotic rather than convergent®*-*40444> Therefore, for a given physical appli-
cation there is an optimal number of terms to keep in the infinite CE expansion because higher-
order terms may introduce unphysical behaviors. For example, higher order approximations than
NSF, namely the Burnett and Super-Burnett equations, can be derived from a truncated CE ex-
pansion of respectively the Grad-13 and Grad-26 systems**4¢ but also directly from the BE itself.
However, negative viscosity for high gradients and short wave instabilities of the Burnett and
Super-Burnett equations® are reported in the literature. This phenomenon was first observed by
Bobylev*”#®. This means that higher order approximations in the CE expansion may lead to less

5,46

stable and less physical results>*°, endorsing a non convergence of clipped infinite expansions

such as the CE expansion.

However, when trying to link LBMs with some macroscopic equations we usually resort to a
truncated CE expansion. This link is obtained with strong assumptions whose practical use can
be reasonably questioned by the existence of Bobylev instabilities for Burnett and Super-Burnett

models.

It can also be highlighted that the CE expansion is often performed with a very simple BGK
collision operator, which is now hardly used in practical applications for its behavior in shear
flows*’ and porous flows>®. Although the formal CE expansion is possible with the quadratic

Boltzmann collision operator®?’, extension to complex collision kernels such as Regularized”>!:2

or Entropic®! ™

remains unknown, at least to the authors’ knowledge. In those kernels at least
a part of the non-equilibrium population is systematically filtered out and replaced by a recon-
structed population. This is therefore out of the scope of the formal CE expansion because finding
an explicit solution £ as a function of £, £("=2) a5 simply as in Eqs. (21-23) would require

to invert a complex collision kernel.

We have now presented the basis of the two most common analysis tools applied to the BE.

Let us now focus exclusively on Lattice-Boltzmann methods, and leave the continuous BE.
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III. LATTICE-BOLTZMANN METHODS
A. From Boltzmann to Lattice-Boltzmann

Besides the time and space discretization on cartesian grids, the main difference between the
BE and LBMs is the velocity space discretization.
Assume a d dimensional lattice with g discrete velocities c;,, referred to as the DdQq lattice®.

Through discretization, Eqs. (11-13) become

q
p=> fi=) £, (39)
q q
puy = Z Ciafi = Z ciof 1, (40)

q q
1 1
pE = 2 Z CiaCiafi = 2 Z CiaCiaf; 1, (41)

where f and Y are the discretized probability density functions corresponding to their BE coun-
terpart from Eqgs. (9, 10). Accordingly the BE is also discretized such that we should now solve gq
BEs, one for each discrete velocities c;,,

Pvanl = -2(i- 1. (42)
The last piece of the puzzle is to project the distributions onto the Hermite basis using Eq. (38).
Because of the boundedness of the lattice a natural clip appears inside the Hermite basis. Each
DdQq lattice only being able to represent q independent Hermite polynomials, any Hermite poly-
nomial beyond is in the span of the base.

On the bright side, this implies that Eq. (38) no longer involves an infinite hierarchy of equa-

tions, so it is enough to search for the solution as a finite expansion.

B. The Chapman-Enskog expansion in LBM

In a context of growing interest on LBMs, new models are being published on a monthly basis,
usually including a CE expansion appendix. That CE expansion is usually left unquestioned, yet
there is little consensus on its application to LBM.

To highlight this lack of consensus, we included in Tab. I a summary of different CE expan-

sions found in four reference LBM textbooks®*3%>%%_ Table I shows that only>*>> agree with
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Table I: Chapman-Enskog expansions in the lattice-Boltzmann literature.

Reference textbook f=.. /ot = ... d/dx = ...
S d d d
Mohamad > Z enfn e— + et — €—
=0 6t1 8t2 3X1
= 9 9 9
Guo and Shu >’ Z e e— +€*— e—
= at1 atz 8x1
Kriiger et al.* i e i e”i ei
atn 8x1
n=0 n=1
Succi® enfim e"— €' —
; f HZ:; th HZ:; axn

each other. They chose to expand the time derivative not as an infinite expansion but as a linear
composition of a fast convective time ¢; and a slow diffusive time t,, in contrast to*>*° that con-
siders — as the historical CE - 9/dt, as mathematical derivatives. Under the assumption that each
physical phenomenon takes place on the same scale, space derivative is almost never expanded,

except by>’.

Despite these differences, and reassuringly, these expansions all lead to the same lowest orders
corresponding to the expected Navier-Stokes equations. In analyzing error terms in the higher

orders, however, these differences will lead to different results.

IV. TAYLOR EXPANSION OF A GENERIC LATTICE-BOLTZMANN SCHEME

LBMs being extensively used by engineers and researchers as a thermo-hydrodynamic solver,
it can be interesting to analyze it purely as a CFD method for macroscopic equations. In other
words, knowing a given LB scheme we could simply expand it as a Taylor series in small pa-
rameter At — 0. Then, we recast the scheme whose unknowns are f; into g schemes whose
unknowns are macroscopic variables such as mass, momentum and stress tensor. Lastly, we can
a priori deduce in terms of nondimensional numbers consistency conditions of this scheme. This
naive formalism allows to bypass the CE expansion assumptions, now only needing At to be
small, as is usual for consistency studies. This strategy will also allow to simultaneously tackle

possible numerical couplings between LBM and other schemes.
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Table II: Lattice-Boltzmann notations

Notation Representation Equation
fi Total population 1+ £
fl.eq Equilibrium population 48

fineq Non-equilibrium population 49

f, ]_”neq Modified populations for 2"¢ order accuracy 50, 53
fi“’l Population after collision 54

F; Forcing term 52

H Hermite polynomials 43
a{;’l(ﬁ,n Hermite moments 45

Ho{f (";n Raw moments 46
D{;(nzxn Lattice isotropy defect 47

A. Lattice-Boltzmann definitions

To facilitate the reading, let us now introduce LB specific quantities. For future reference, all
quantities introduced in this Section are summarized in Table II.

The first Hermite polynomials read

7{1_(0) =1 s 7’{1(0{1) = Cia, 7_{1(0(2’2 = Ciaciﬂ — cfaaﬁ s (43)
wifﬂ?y = CiaCipCiy — csz [Ciaaﬁ}/ + Ciﬂ5yrx + Ciy5a/3] ) (44)

where the lattice sound speed is ¢, = Ax/ (/3 At) for standard lattices. Higher order polynomials

do not generally belong to the Hermite base of standard lattices and are not provided here®.

For a given Hermite basis and an arbitrary population f we define its Hermite moments a{;;(f?),n

. (n
and macroscopic (raw) moments HOJ; (;n as

q
aloey = ) M) o i (45)

1

q
Hojc?.(.’?o)cn = Z Ciay ~-~Cianﬁ . (46)

i
Since the number of discrete velocities is finite, there always exists an order involving a non-zero

13



Table III: Third-order isotropy defects of standard lattices.

€q (3 €q (3 €q (3
D2Q9 pu’ 0 N/A
D3Q19 pus puyu/2 Plxliyl;
D3Q27 pus 0 0

isotropy defect Dé’f.)”an between continuous and discrete moments,
DL, = [ cunca fde =115, (@)

For nearest-neighbors lattices, this isotropy defect appears from the third order (n = 3)*°. For
future reference, the term is provided in Table III for the athermal LB model detailed in the next
Section.

Next, it is convenient to define several populations besides f, appearing at different stages of

an LBM algorithm :

* f: The total population is the most important population because mass, momentum, etc

are macroscopic moments of this population.

e f°: The equilibrium population, here defined as

(2) (3)
HO HP H )
eq _ a0 fea0)  Mlia  feU(1) " iaf fed(2) " iaPy f4,(3) }
f; _a),{?( a + 2 a, + 2 Tp "+ ot Ty F ool (48)

which is usually a Maxwellian projected onto the Hermite basis and properly truncated*?.
e "4 : The non-equilibrium population.
== (49)
To ensure 2" order accuracy30, offset distributions (?, ?neq) are introduced

. ]_” : The modified total population, defined by

— At At
fi = ffq + (1 + E) f;neq - 7F, s (50)
— At
= £ f - —F. (51)



with F; a correction force term defined as

(1) H' H
F=o {740) F(o>+ﬂla g ¢ R Ty PG3) } (52)
“ap 6¢8 Capy

S N

Note that the forcing scheme considered here was presented by>°.

—neq

- f

scheme,

: The modified non-equilibrium population ensuring a 2nd order accurate BGK

Fi- 1+ 2R (53)

—neq

fi

« feol: The population at the end of a collide step,

—n q At
ﬁcol = ieq ( _) fz (54)
At At
_ req neq
=f; +(1—2—T)f; +?Fl‘, (55)
where we used the shorthand 7 = 7 + At/2. fl.wl is the population that is streamed during

the propagation step. Note that depending on the collision kernel ]_‘neq may be replaced by

a reconstructed non-equilibrium population f neq,

B. Structure of a generic lattice-Boltzmann scheme

A LBM model time iteration typically consists of the steps listed in Tab. IV. Let us detail
these steps one by one. Although these steps may vary depending on LBM, the general structure

remains. At the center of the algorithm lies the collision

. At At
el ) = 90, x) + (1 - T)f”e"( @)+ —Fi(tx), (56)
T
and streaming steps
fi(t+ At @) = £t x — ¢; At) . (57)

They remain generally identical for all LBM as they are the main ingredients responsible for the
method’s computing efficiency®’, and low dissipation®®.
Steps 1 (resp. 7) corresponds to the link between the macroscopic quantities and the popula-

tion (resp. and back), and vary depending on the model. The force update (step 2) is also model
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Table IV: Generic LBM structure.

Step Description Input Output Equation(s)
1 Equilibrium update macroscopic A 48

2 Force update macroscopic Fi(t,x) 52

3 Non-equilibrium update £ Fi(t, ) £ 53 (BGK)

4 Collision fl.eq, fineq, Fi(t,x) ﬁ“’l 56

5 Streaming fi“’l(t, x — c; At) ]_‘l-(t + At, x) 57

6 Coupling with another scheme o(t, x) oO(t+ At,x) optional

7 Macroscopic quantities update ]_”i macroscopic 61

dependent, but is generally computed from the macroscopic variables. Step 3 includes the defini-
tion of the collision kernel. Computation of fineq will be highly dependent on the collision model,

59,60

e.g. BGK?2, multi-relaxation times models®%%?, regularized models?!, and so on.

Step 6 is optional, and corresponds to the resolution of a set of quantities ¢, not encompassed
in the main LBM population. ¢ is a dynamic field, and can correspond to scalars (as in hybrid
methods) or additional probability functions (as in double distribution functions). They can rep-

resent, e.g.

Energy®!

- Species, if the flow is multi-constituent!’

an equation for turbulence modeling (e.g. for Spalart-Almaras or k — € models),

a liquid mass or volume fraction, for multiphase flows.

While usually presented differently®*3%>4% this structure is shared by all LB schemes using
Hermite polynomials. Note that the coupling with the FD/FV/DDF scheme, here identified as step
6, can be performed at any moment in the algorithm except after Step 7, because the macroscopic

quantity update may depend on it.

16



C. Taylor expansion

Now that the basic numerical LB scheme structure has been recast, we can compute its Taylor

expansion. We introduce the distribution’s Taylor Expansion in space as

k
] S0, 58)

) (- A
f(t,z - cAt) = f(t,x) + Z o e
k=1
where «; is a dummy index such that c¢,,0/9x,; = ¢xd/dx + ¢,0/dy + c,9/dz. Taking the nth order
macroscopic moment of the streaming Eq. (57) leads to the moment streaming equation

Hf(t+At x),(n) Hf”"’(tac c; Ab), (n) (59)

ay...0n

Similarly, Eq. (50) can be recast into a moment equation

At (1 pne
Hi(tzﬁt ),(n) Hf (n) ) (t+Atx) + — . ( Ho{l ‘;(nt+At ), (n) H;(t:ﬁt ), (n)) (60)
Combining Egs. (59) and (60) finally leads to
col At [1 ne
Hf (n) (t + AL m) _ Hf (gl;m ¢ At),(n) 2 (_Hojjl-..‘l;’f+At,w),(n) _ Hg];(t-;ﬁt ), (n)) (61)
This equation is the update rule for (t + At) moments. It is nothing but the LBM numerical
scheme written explicitly for the n'" order moment H,{l(t:,ﬁt ©H") We shall now Taylor expand
col .
Hg:léim “ At)’(n), using Eq. (58),
q 00 k k
col 7 A ( At) d
Hoj:l [girc c; At),(n) Z Cig, -- Czan{ Z ( 1an+] P ) }fiwl(t, m) ) (62)
i k=1 an+j
Using the fact that the discrete velocities c;,, are fixed leads to
b k
feol(tx—c; At),(n) f“’l(t x), (n) (_ At) 0 feol(t,x), (n+k)
H(xl...(xn ay...0p kzz; k' aXan+J Hal On+j (63)

It is shown in Appendix A that inserting Eq. (63) into Eq. (61) eventually leads to a second-

order accurate Crank-Nicolson scheme for the continuous equation:

£.(n) f(n+1)
oIl olT, ne
;{1...(2’” a1...0n+1 — CJ:I q (l’l) + (fl(nc)( + O(Atz) (64)
t Xy T

Note that this equation is only relevant for g independent equations, the isotropy defect (47)

leaving higher orders redundant (see Table III).
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Hﬁ?:)’(nﬂ) is always the flux of Hﬂfffz’("), allowing moment

computation to be algorithmically explicit as long as —T‘lﬂoﬁrfqg{i") + H;(”;n = 0. However, when

neq
the collision kernel —7‘11'[0]:1“0}?) or a force term +H£.(.r2,n is non-zero one has to solve implicitly

Because of the moments cascade,

Eq. (61) in order to get a second-order accurate scheme.

This layered structure between orders shows that non-equilibrium moments follow their own
evolution equation, they are not algebraically enslaved to lower order moments as suggested by
the Chapman-Enskog expansion through the scale separation hypothesis. Mandatory conditions
for the consistency of LB schemes as NSF solvers will be discussed later for specific kernels.

LBM can be seen as a very smart change of variable from macroscopic moments to distribution
functions. First the macroscopic information is stored inside the Hermite basis through f¢!
(first change of variable from IT™ to f). Then the transport is performed in the distribution
space during the streaming, followed by the macroscopic reconstruction that filters only the
relevant information for each macroscopic moment IT™ (second change or variable from f to
IT™), prompting us to draw a parallel between classical CFD and LBM, which is now only seen
as a numerical macroscopic solver.

This shows that even if the CE expansion leads to the desired set of macroscopic equation it
does not leads to the necessary result that would allow us to fully understand what solves LBMs,
namely Eq. (64), a Grad-q system of equations.

In the following we will illustrate the Taylor expansion on three different LBMs, namely the
athermal, density-based recursive regularized (RR-p) and pressure-based recursive regularized
(RR-p) models. We shall also demonstrate that although Eq. (64) could have been easily guessed
from Eq. (42), spurious terms will appear during the coupling between LB algorithm and other
numerical schemes. Because these terms are purely stemming from the numerical coupling they

are out of the scope of the CE expansion.

V. ATHERMAL LBM

The last section showed that each macroscopic moment follows its own evolution equation
(64), advocating a change of paradigm. Instead of considering LBM as a kinetic solver let us
consider it as a Grad-q solver for an extended set of thermo-hydrodynamic equations. Some
of them are desired conservation laws such as mass and momentum conservation, others cor-

responds to higher order equations in the finite hierarchy of g equations related to the lattice
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DdQgq. Therefore, f and all other populations previously defined lose their kinetic meaning and

are now merely seen as temporary variables in the macroscopic CFD solver known as "LBM".

A. Athermal numerical scheme

For the sake of clarity we first apply the proposed Taylor expansion on the classical athermal
LBM on standard lattices*® with a force term specifically designed to get rid of the well known
O(Ma®) error detailed in Table III. This model, traditionally said to be athermal in the LB litera-
ture, is often used in practice to solve isothermal flows. Following the new paradigm we define
the initial solution simply by initial macroscopic fields p(t, &), u,(t, ) .From this initial condition
we would like to find a LB algorithm that predicts p(t + At, ) and u,(t + At, x) following an
approximate Navier-Stokes system, hopefully matching Eqs. (1,2). Let us now detail step-by-step
the algorithm proposed in Table IV, applied to the classical athermal LBM.

« Step 1: Equilibrium construction Because we restrict ourselves to standard lattices,
some third-order Hermite polynomials 7{1.(3) do not belong to the Hermite basis. For this
reason we do not expand further than the third order, isotropy defects being corrected by

an appropriate force term. The equilibrium reads

fieq - a)i{?{(o)p + ’;‘ Puy + w;ﬁ [puqug] + mfy [puauﬁuy]} . (65)
Cs 2¢ 6cy

« Step 2 : Force construction The forcing population is extended to second order,

(2)
HW H.
F; = wi{ﬂ(o)aF’(O) + —l;’ ai’(l) + —w;ﬂ aF’(z)} , (66)
c 2ct b
N N
with its Hermite moments defined as
f¢9.(3)
oD
20u )
aif) - _;Tﬁ: + pcfga—x:éaﬁ + pFaupg + pFpug — mugug, (67)
abW = o7, (68)
a"® =, (69)
with D/ the isotropy defect of the equilibrium population, related to the lattice and
afy

the particular equilibrium function. Remember that m and ¥, correspond respectively to

a mass source and volume force in the macroscopic equations (1, 2).
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«+ Step 3 : Non-equilibrium construction Using a BGK kernel, the non-equilibrium pop-

ulation is obtained as

—neq — At

fi :fi_ﬁeq"‘?Fi' (70)
Otherwise, following a particular choice of collision kernel construct fineq and set

—neq

fi =f (71)

Step 4 : Collision With fieq, F; and f?eq built in the previous steps, compute the collided

population fl.c"l as

ﬁCOl(t, iB) — ﬁeq(t, iB) + (1 — %) ??eq(t, CB) + %Fi(t, w) . (72)

Step 5 : Streaming Transport the populations according to

Fi(t+Atx) = [t x - ¢; At). (73)

« Step 6 : Coupling update No coupling is necessary in the athermal case, but this stage

can be used to transport passive scalars® ™.

« Step 7 : Update macroscopic variables Using the macroscopic update rule Eq. (61) for

n =0, 1, 2 respectively leads to

q
- At
p(t+At,x) = Zfi(t+At, x) +7rh(t+At, x), (74)
i
& At
pua(t+ ML) = > ciaf (t+ AL, T) + S pTal(t+dta), (75)
i
£.(2) _ qfarana)2) AL meanie) ) F(t+AL@),(2)
Haﬁ (t+At,x) = Haﬁ 5 (rnaﬁ Haﬁ ) (76)

By splitting IT 0]: ';),(2) (t+At, x) into its equilibrium and non-equilibrium parts, the above leads

to the stress-tensor scheme

( At) e AL@).(2) _ H?(Hm,w),(z) _ @) (2) At [F (et 2) (77)

1+ E af af af 2 ap
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B. Continuous equivalent equations

Now that macroscopic quantities, namely mass, velocity and stress-tensor p(t + At, x), u,(t +
At,x) and HOJ: ;eq’(z) (t + At, x) have been explicitly updated let us analyze the equivalent contin-
uous equations of System (74, 75, 77) and compare it with the target set of equations Egs. (1, 2)
with p = pc? (5).

Using the continuous limit Eq. (64) of the LB scheme leads to an extended Grad-q system that

conditionally approximates the athermal Navier-Stokes:

0 apu
o LPY_

78
ot oxp 78)
neq (2
opuy ? [Puauﬂ +p5aﬂ * HOJ:ﬁ ( )] F 79
+ = ’

ot oxp Pl 7

£.(2) 1.3 £.(3)

oIl 9 [H -D ] 1 fne

ap afy afy - /™M@ L gR@ (80)

ot axy v b ap

where the lattice-dependent isotropy defect Df; k;) can be found in Table III.

From this system we can infer that —HOJ: ;eq’(z)

trary to the usual Navier-Stokes equations this system has an evolution equation for the stress-

is the effective stress tensor. We also see that con-

tensor, Eq. (80). This evolution equation involves HOJ: ;;q’(g) through Hff ,}3;) , which depends on
higher order contributions and is assumed negligible by the CE expansion. The term 817521’(2) /ot
hidden inside Eq. (80) can be replaced using Eq. (4). Using the second order moment of the equi-

librium population (67,69) in Eq. (80) and the athermal equation of state (5) finally leads to

ne 0 ou 20u
ap dxp  Ixg 3 9x,
£71,(2) fe1.(3) _ f"“q,(S)] 1m9.(2) neq (2)
aHaﬁ J Haﬁy Daﬁy aHﬂy aﬂf{y
+7 + —T|Uy +up (81)
ot oxy 9xy oxy

with tpc? = pi obtained by identification with the usual definition of the stress tensor (3). Note

that the effect of the collision kernel is entirely hidden inside Héf ;
collision step H{f ;;q’(g) is enslaved to higher order unphysical contributions because of the lack

of isotropy that leads to an under-resolved finite hierarchy of equations in the velocity space.

;q’(3). When using a simple BGK

This last equation is not algebraic as the truncated CE expansion asserts but rather an evolu-

f1.2).

tion equation for the unknown
af
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C. Domain of validity in term of dimensionless numbers

The next step is to demonstrate in which cases the Lattice Boltzmann stress-tensor equation

is consistent with a Navier-Stokes stress tensor (80)

G L e T (82)
ap P oxy T axg 3 ox,

To that end, let us nondimensionalize Eq. (81). First we need to identify what is the shortest phys-

ical time scale ¢, corresponding to the fastest and dominant physical phenomenon. Depending

on the situation, mainly two relevant candidates exist: the viscous timescale t, = pL2/p and the

convective timescale t, = Ly/Uj.

If the shortest timescale is t;, then the appropriate nondimensionalization reads

d 10 d 1 0
—=——, —=——, (83)
ot t,ot* ox Ly ox*
f(2) _ #f"¢1,(2) fe.(3) _ #f1¢1,(3)
w0 = g Y = g T (84)
u="Uu", p=pop”, T =TyT". (85)

where * superscript quantities are O(1) and non-dimensional. Applying this change of variable,

wf10(3) _ ysf"9.(3)
£ f0(2) o pQo 179 [Halﬂ’y Dagy
- Haﬁ = 7;(/3 + 2 Tk *
pocsLolly p ox,
~ *,f"eq,(Z) « Freq *’fneq’(z)
Md 1| oy oyl | oI
+ — |u; — tuy . —— , (86)
Re p* ox, ox, pocsts p* ot*
where the Reynolds number Re = ¢/t and athermal Mach number
Ma = Uy/cs, (87)

have been used. This implicitly means that in the athermal case Ma is enslaved to the CFL

number?* because ¢, = Ax/(\/§ At), leading to

_U0+cs_]\7a+1 (89)
-~ Ax/At V3o

Note that the stability criterion CFL < 1 boils down to the usual athermal Mach limit Ma <

CFL

V3 — 1 ~ 0.732, which is consistent with previous studies®*%°. If the convective scaling is chosen

the stress-tensor becomes

— 2
* ne M
1 S4(2) _ T* + O ('U—QO) +0 R . (