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Abstract

Background: Biological assays for the quantification of markers may suffer from a lack of sensitivity and thus from an
analytical detection limit. This is the case of human immunodeficiency virus (HIV) viral load. Below this threshold the
exact value is unknown and values are consequently left-censored. Statistical methods have been proposed to deal
with left-censoring but few are adapted in the context of high-dimensional data.

Methods: We propose to reverse the Buckley-James least squares algorithm to handle left-censored data enhanced
with a Lasso regularization to accommodate high-dimensional predictors. We present a Lasso-regularized
Buckley-James least squares method with both non-parametric imputation using Kaplan-Meier and parametric
imputation based on the Gaussian distribution, which is typically assumed for HIV viral load data after logarithmic
transformation. Cross-validation for parameter-tuning is based on an appropriate loss function that takes into account
the different contributions of censored and uncensored observations. We specify how these techniques can be easily
implemented using available R packages. The Lasso-regularized Buckley-James least square method was compared to
simple imputation strategies to predict the response to antiretroviral therapy measured by HIV viral load according to
the HIV genotypic mutations. We used a dataset composed of several clinical trials and cohorts from the Forum for
Collaborative HIV Research (HIV Med. 2008;7:27-40). The proposed methods were also assessed on simulated data
mimicking the observed data.

Results: Approaches accounting for left-censoring outperformed simple imputation methods in a high-dimensional
setting. The Gaussian Buckley-James method with cross-validation based on the appropriate loss function showed the
lowest prediction error on simulated data and, using real data, the most valid results according to the current
literature on HIV mutations.

Conclusions: The proposed approach deals with high-dimensional predictors and left-censored outcomes and has
shown its interest for predicting HIV viral load according to HIV mutations.

Keywords: Limit of detection, Buckley-James least squares procedure, HIV viral load, Drug resistance, HIV genotypic
mutations, Cross-sectional studies
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Background
Left-censoring due to the lower detection limit of an assay
is a common problem in many fields including biology,
chemistry, and the environmental sciences. One exam-
ple is the quantification of the human immunodeficiency
virus (HIV) viral load in plasma. The sensitivity of assays
has improved and the detection threshold has decreased
from 10,000 copies/mL to 20 or fewer copies/mL today.
Several statistical methods have been proposed to account
for left-censoring of such quantitative variables in cross-
sectional (with one measure per subject) and longitudi-
nal (with several measures per subject) studies. Standard
methods include multiple imputation [1–4], reverse sur-
vival analysis methods [2, 5–7], quantile regression [8, 9]
and censored quantile regression [10, 11]. Furthermore,
the Tobit model with censored outcome which is sup-
posed to be normally distributed can be estimated by
maximum likelihood [12–18] or by the Buckley-James
estimator [18, 19]. Indeed, HIV viral load appears to
have an underlying Gaussian distribution truncated by
the detection limit that justifies the normality hypothesis
[13–15, 17, 18]. As expected, approaches accounting for
left-censoring outperform simple imputation of a constant
[2, 4, 13–16, 18, 20–22].
Another issue may arise when the number of predic-

tors (p) is high compared to the number of statistical units
(n), without excluding the possibility that n < p. This is
known as high dimensionality. In the context of HIV infec-
tion, this can be illustrated by analyzing the association
between the presence of HIV mutations and the response
to antiretroviral therapy which is measured by HIV viral
load. HIV strains circulating in a given individual can
present mutations associated with antiretroviral treat-
ment failure (detectable HIV viral load), also called HIV
drug resistance mutations. Thus, genotypic tests allow-
ing the detection of HIV drug resistance mutations are
commonly performed in patients starting a new antiretro-
viral regimen or even in newly HIV-infected patients
because of the transmission of resistant strains [23–26].
Lasso linear [27, 28] and logistic regressions [29], princi-
pal component and partial least square logistic regressions
[30], and multiple testing correction [31] have been used
to deal with more than 100 predictors and fewer than
a few hundred of patients, a common situation in this
context [32].
These studies use a dichotomized outcome or sim-

ple imputation by a constant to circumvent the prob-
lem of censoring. One limitation of dichotomizing a
continuous outcome is the loss of information and
hence power. In addition, success is usually defined
as achieving an undetectable HIV viral load. However,
the detection limit, although not random, depends on
several factors that differ from one study to another.
Thus, there is no reason, except convenience, for the

detection limit to correspond to the threshold for
dichotomization.
We hypothesize that approaches accounting for left-

censoring will exhibit better results compared to simple
imputation strategies in a high-dimensional setting simi-
lar to what has been found in low-dimensional settings.
Some works have simultaneously addressed both cen-

soring and high-dimensional problems using the Lasso
[33–43], partial least squares [44], random forests
[45], support vector machines [46], and deep learning
[47]. These examples were developed for right-censored
survival data. A main approach to left-censored data
analysis is based on methods typically used with right-
censored survival data such as the Buckley-James esti-
mator. Left-censored data are then previously reversed
to right-censored data. While from a statistical point
of view, the nature of the outcome (time-to-event or
quantitative measurement below a limit of detection)
is secondary, this can impact the choice of adequate
probability distribution functions and other practical
issues.
We propose a Lasso-regularized Buckley-James least

squares method with both, non-parametric imputation
using Kaplan-Meier and parametric imputation based on
the Gaussian distribution. The non-parametric Buckley–
James estimator, which simply replaces censored residu-
als by their conditional expectations in an iterative way,
has been previously applied to left-censored HIV viral
load data in a cross-sectional study [18]. On the other
hand, the Lasso extension of the non-parametric Buckley–
James method has been proposed for right-censored data
[36, 38, 40, 48]. Our contribution consists in using
the latter method for left-censored outcomes and high-
dimensional predictors. Furthermore, we propose an orig-
inal parametric version of the Buckley-James method,
which is adapted to the typical assumption of a Gaussian
distribution of HIV viral load. We demonstrate the value
of these approaches by comparing them to Lasso linear
regression with simple imputation [28] for predicting
the response to antiretroviral therapy by HIV genotypic
mutations.
Our primary objective is to predict as accurately as pos-

sible responses in future patients who will switch to a
similar regimen. Thus, comparisons are based on mean
square prediction error. The prediction performances of
the different methods were assessed on simulated data
that reproduced the observed data. Then, methods were
applied to data obtained in a collaborative study from
clinical trials and cohorts provided by the Standardiza-
tion in Clinical Relevance of HIV Drug Resistance Testing
Project from the Forum for Collaborative HIV Research
[49]. The actual data presented a moderate censoring rate
of 26 %, i.e. a realistic magnitude [18, 50]. However, high
(around 50 %) or even severe (around 70 %) censoring
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rates could be observed in older studies with a high limit
of detection (LOD) or particular populations with low
treatment failure rate, e.g. HIV controllers [18, 51, 52].
Thus, we also explored the impact of high and severe
censoring rates on performance.
We detail how to use publicly available R packages to

compute Lasso estimates with left-censored data.
Finally, we discuss possible extensions and applications

of our work.

Methods
Methods to analyze left-censored outcome
In this section, we review the simplest models and
estimation methods used to deal with left-censoring in
cross-sectional studies. For a more extensive and compre-
hensive review of these methods, see [2, 18]. Thereafter,
we consider the Lasso extension of those methods that
support simple implementations.

The linearmodel
First, consider the general linear regression model

Yi = Xiβ + εi, i = 1, · · · , n (1)

where Xi is a p-vector of fixed predictors, Yi is the
uncensored continuous random outcome variable, β =(
β1, · · · ,βp

)� is a p-vector of unknown regression param-
eters and εi are independent and identically normally
distributed random variables with mean 0 and constant
variance σ 2. Let X be the n× pmatrix X = (X1, . . . ,Xn)

�
and Y the n× 1 vector Y = (Y1, . . . ,Yn)�. The intercept is
omitted in the model for simplicity, and all predictor vari-
ables are assumed to be standardized (i.e. zero mean and
unit variance).

Lasso on complete data
The Lasso (Least Absolute Shrinkage and Selection
Operator) [53] is one of the most popular methods in
high-dimensional data analyses. It allows for simultane-
ous estimation and variable selection and has efficient
algorithms available. It is considered here as the Gold
Standard for our simulation studies. The Lasso estimator
of parameters in model (1) is:

β̂(λ)GoldS = argmin
β

‖Y − Xβ‖22 + λ ‖β‖1 (2)

where ‖Y − Xβ‖22 = ∑n
i=1 (Yi − Xiβ)2 is the quadratic

loss, ‖β‖1 = ∑p
j=1

∣∣βj
∣∣ is the Lasso penalty on the param-

eter size, and λ > 0 controls the amount of regulariza-
tion. When λ is large enough (which depends on data),
all coefficients are forced to be exactly zero. Inversely,
λ = 0 corresponds to the unpenalized ordinary least-
squares estimate.
This model on complete data (no left-censored mea-

sures) is considered as a reference when comparing the

other methods applied to incomplete datasets that include
left-censored values.

The Tobit model
Because of the detection limit, Yi can be left-censored.
Let LODi be the (fixed and known) censoring threshold of
subject i. To simplify, we consider LODi = LOD. Zi is the
observed response. The so-called Tobit model [12] can be
defined as:

Zi =
{
Yi if Yi > LOD
LOD if Yi ≤ LOD (3)

where Yi is the response variable defined in model (1). We
can equivalently write:

Zi = max (Yi, LOD) , or Zi = δiYi + (1 − δi)LOD,
(4)

where δi = I(Yi>LOD) is a censoring indicator. The idea
behind the Tobit regression model is to deal with the
left-censored variable Z as the outcome of a normally
distributed latent variable Y.

Simple imputation
Simple imputation is a substitution method that replaces
left-censored values with a single value, LOD. LOD/2 is
another common choice. Let β̂LOD be the ordinary least
squares estimate of model:

Zi = Xiβ + εi, i = 1, · · · , n (5)

Simple imputation is widely used for its simplicity. How-
ever, replacing any censored observation by a single value
may lead to biased parameter estimates.
Beerenwinkel et al. [28] applied Lasso-regularized linear

regression with the naïve approach of replacing the unob-
served undetectable value with the limit of detection of
the assay. Then the Lasso estimator of parameters in
model (5) is:

β̂(λ)LOD = argmin
β

‖Z − Xβ‖22 + λ ‖β‖1 . (6)

Maximum likelihood estimation
In the Tobit model (1)-(3), one can assume that when
Z = LOD, the density function of Z is equal to the prob-
ability of observing Y ≤ LOD and for Z > LOD the
density function of Z is the same as the density of Y. The
likelihood function takes the form:

L
(
β , σ 2)=

n∏

i=1
P(Yi |Yi>LOD,Xi )

δi P(Yi |Yi≤LOD,Xi)
1−δi
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When the Gaussian distribution for the outcome is
assumed, the log-likelihood function can be written as:

lnL
(
β , σ 2)=

n∑

i=1
δi ln fG

(
Yi,Xi,β , σ 2)

+ (1 − δi) ln FG
(
LOD,Xi,β , σ 2) (7)

with fG
(
u,Xi,β , σ 2) = e

(u−Xiβ)2

−2σ2√
2πσ 2 the Gaussian proba-

bility density function of Yi with mean Xiβ and con-
stant variance σ 2 evaluated at u and FG

(
v,Xi,β , σ 2) =∫ v

−∞ fG
(
u,Xi,β , σ 2) du is the corresponding Gaussian

cumulative distribution function evaluated at v. Let β̂MLE
be the maximum likelihood estimation obtained by max-
imizing (7). Extensions to other distributions have also
been explored [54]. Several works have shown the supe-
riority of this method [18, 20–22]. However, when the
parametric model is misspecified, the sample size is small
or the percent censoring is high, the maximum-likelihood
estimation method has been shown to perform poorly [2].
The Lasso penalty applied to some likelihood function

has become an established and relatively standard tech-
nique. However, when the likelihood function is a more
complex function of the model parameter, such as the
likelihood function for the Tobit model (7), adding a non-
differentiable penalty leads to a computational challenging
optimization.

Quantile regression and censored quantile regression
Quantile regression, particularly least absolute deviations
(LAD) regression, has been applied to left-censored
data [9]:

β̂LAD = argmin
β

1
n

n∑

i=1
|Zi − Xiβ|

Median regression is a natural alternative to the usual
mean regression in the presence of heteroscedasticity or
when the normality assumption is violated. Simple impu-
tation using robust regression may be less sensitive to the
influence of censored observations.
Lasso-regularized least absolute deviations regression

has been investigated in the literature (e.g. [55]).
Powell [10] proposed the LAD estimate specifically for

censored data:

β̂CLAD = argmin
β

1
n

n∑

i=1
|Zi − max {LOD,Xiβ}|

Later, the approach was extended to more general
quantiles [11].
The Lasso extension of censored quantile regression

(basically, censored LAD) has been analyzed for right-
censored survival data [41, 42, 56] and specifically for
left-censored data [57–62]. Yu et al. [58] and Alhamzawi

et al. [61] proposed Bayesian approaches using different
hyperparameters priors. These methods rely on computa-
tionally intensive algorithms. In practice, applications are
limited to the n >> p case. Others [57, 59, 60, 62] derived
theoretical properties of the Lasso-regularized censored
least absolute deviations regression, but the algorithmic
development was not a priority in these works and the
practical use was limited to n >> p or not addressed.
To our knowledge, there are no publicly available soft-
ware tools that implement the Lasso extension of Powell’s
approach and no simple implementation relying on exist-
ing packages seems straightforward.

Non-parametric Buckley-James
Left-censored outcome data can be analyzed using meth-
ods designed for right-censored survival data by revers-
ing the outcome scale. For instance, Gillespie et al. [6]
proposed the reverse Kaplan-Meier and Dinse et al. [7]
reversed the Cox method (though in the case of left-
censored exposures and uncensored outcome). After the
Cox model, the accelerated failure time model is the
most frequently used regression model for right-censored
survival data. It directly links the expected response to
predictors, analogously to the classical linear regression
approach. A popular method for fitting the accelerated
failure time model is the Buckley-James estimator [19],
an extension of the least squares principle. The idea is to
impute the censored values by their estimated conditional
mean to provide censoring and predictor values:

Z∗
i = δiYi + (1 − δi)E (Yi |Yi ≤ LOD,Xi ) (8)

with

E (Yi |Yi ≤ LOD,Xi ) =
∫ LOD

−∞
uf (u,Xi,β) du
F (LOD,Xi,β)

where f (u,Xi,β) is the (unknown) probability den-
sity function of Yi with mean Xiβ evaluated at u and
F (u,Xi,β) is the corresponding cumulative distribution
function. By "flipping" the data (turning it from left-
censored to right-censored), the application of algorithms
previously developed for right-censoring is direct and has
been performed in other contexts [5]. We consider M an
arbitrary constant that equals or exceeds the largest obser-
vation. Then subtract all uncensored and left-censored
outcomes from M. The left-censored at LOD variable Z
is then replaced by M − Z which is right-censored at
M − LOD. Let (M − Zi)

∗ be imputed as δi (M − Yi) +
(1 − δi) E (M − Yi |M − Yi ≥ M − LOD,Xi ). Then, we
can calculate the conditional expectation by

E (M − Yi |M − Yi ≥ M − LOD,Xi )

=
∫ ∞

M−LOD

uf (u,Xi,β) du
1 − F (M − LOD,Xi,β)

(9)
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where F (u,Xi,β) is now the (unknown) cumulative distri-
bution function ofM−Yi with meanM−Xiβ evaluated at
u, which can be estimated, for example, by Kaplan-Meier.
The Buckley-James estimate, β̂NonParBJ , can be computed
using a semiparametric iterative algorithm that alternates
between imputation of censored values according to (9)
and least-squares estimation.
The main drawback of this method is that convergence

of the algorithm is not guaranteed. Due to the discontin-
uous nature of the estimating function (formulation (8)
makes β̂NonParBJ to be a piecewise linear function in β),
the iterative procedure may oscillate between different
parameter values. The problem is of practical importance
in situations where the effect of predictors is small or
in small samples [63] (which could be worse in high-
dimensional settings). To circumvent this problem, a one-
step algorithm that stops at the first iteration is used in
some works [36, 64]. This approach is close to a substitu-
tion method in which values below the detection limit are
replaced by expected values of the missing measurements,
provided they are less than the detection limit [65].
Several authors have proposed combining the iterative

Buckley-James imputation and methods handling high-
dimensional predictors: Johnson et al. [36, 48] and Cai
et al. [38] used the Lasso, Wang et al. [37], used boost-
ing, Wang et al. [40] used ElasticNet, Johnson et al. [66]
and Li et al. [67] used the Dantzig selector, and Dirienzo
et al. [68] used parsimonious covariate selection. The
Buckley-James estimate can be computed using an iter-
ative algorithm that alternates between imputation of
censored values according to (9) and the Lasso:

β̂(λ)NonParBJ =argmin
β

∥∥(M−Z)∗−(M−Xβ)
∥∥2
2 + λ ‖β‖1

(10)

Gaussian Buckley-James
Alternatively, the Buckley-James imputation (8), assum-
ing the logarithm of HIV viral load follows a Gaussian
distribution, can be calculated with the conditional
expectation:

E (Yi |Yi ≤ LOD,Xi ) =
∫ LOD

−∞
ufG

(
u,Xi,β , σ 2) du

FG
(
LOD,Xi,β , σ 2)

(11)

where fG and FG are the Gaussian density and cumulative
distribution functions defined in (7). Again, the solu-
tion can be computed by iteratively alternating between
imputation based on (11) and parameter estimation using
ordinary least squares, β̂GaussBJ , or the Lasso:

β̂(λ)GaussBJ = argmin
β

∥∥Z∗ − Xβ
∥
∥2
2 + λ ‖β‖1 (12)

Graphical illustration in a low-dimensional setting
To illustrate the difference between estimation methods
we generated data from the simple linear model (p = 1):
Yi = Xiβ+εi with i = 1, · · · , n,X ∼ N(0, 1), ε ∼ N(0, σ 2).
β was set to 10 and σ 2 was chosen such that the signal-
to-noise ratio was 4:3. A limit of detection was then fixed
to obtain the desired censoring rate: moderate, 20 %, high,
50 % or severe, 70 %.
In Fig. 1, predicted regression lines are obtained using

different methods: the true model that generated the data,
the gold standard (ordinary least squares with uncensored
data), maximum likelihood estimation (MLE), which is
identical to the Gaussian Buckley-James estimation (BJ)
when p = 1, non-parametric Buckley-James (BJ), least
absolute deviations (LAD) and censored LAD regressions,
simple imputation by the limit of detection (LOD) and by
LOD/2.
Notice that simple imputation by LOD and LOD/2 are

the most distant regression lines from the true and gold
standard lines, in an opposite way: simple imputation by
LOD tends to overestimate the response values while sim-
ple imputation by LOD/2 tends to underestimate them.
Maximum likelihood estimation shows one of the best

behaviors, but the computational complexity dramatically
increases with p (results not showed). Mean and median
regressions with simple imputation by LOD are quite close
and are the closest when the estimation situation is easy
(high n, low censoring rate). The censored LAD shows
better results than censored mean regression (MLE and
Buckley-James) for small sample size while the inverse is
observed when n = 100. Gaussian Buckley-James and
MLE are identical, but their differences increase when
p increases (results not showed). In this i.i.d. gener-
ated from a Gaussian distribution example, the Gaussian
Buckley-James estimate shows better behavior than non-
parametric Buckley-James, the difference being higher
when n is small.

Tuning parameter selection
K-fold cross-validation is routinely applied to select the
optimal regularization parameter when the main goal
of the study is prediction. Data D is randomly chun-
ked into K disjoint blocks of approximately equal size.
To avoid a potentially unbalanced partition, we con-
sider stratified K-fold cross-validation, i.e. each fold con-
tains roughly the same proportion of censoring as in
the whole sample. D

�k is the learning data, used to
estimate coefficients. Dk is the test data, not used in
the estimation process and then used to evaluate the
loss function L. This K-fold cross-validation can be
written as:

CV(λ) = 1
K

K∑

k=1
L

(
β̂(λ)D

�k ,Dk
)

(13)
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Fig. 1 Observed and predicted simulated censored data. Regression lines are obtained using: the true model that generated the data, the gold
standard, maximum likelihood estimation (MLE), non-parametric Buckley-James (BJ), least absolute deviations (LAD) and censored LAD regressions,
simple imputation by the limit of detection (LOD) and by LOD/2

CV is evaluated on a grid of λ–values. The highest
value, λmax, corresponds to the smallest value of λ

for which all coefficients are zero. The lowest value,
λmin, corresponds to the unpenalized solution (when
feasible). We choose the λ value that minimizes the CV
function.
Squared error loss is one of the most widely used loss

functions:

L(β̂(λ)D
�k ,Dk) = 1

nk

∑

i∈Dk

(
Yi − Xiβ̂(λ)D

�k

)2
, (14)

where nk is the sample size of Dk . However, Y is a latent
variable not fully observed due to the detection limit. This
loss function could be used only for the gold standard in
(2), with simulated data. Again, the simplest imputation
strategy consists in replacing Y with Z, in Dk . Alterna-
tively, Buckley-James strategies could replace censored Yi
values in the test data Dk by their conditional expectation
estimated using the learning data [48].
On the other hand, a loss function differentiating the

contribution of uncensored and censored data would be
useful. Assuming the Gaussian distribution of the HIV
viral load (7), the following loss function could be derived:

LG
(
β̂(λ)D

�k ,Dk
)

= 1
nunck

∑

i∈Dk
i uncensored

(
Yi − Xiβ̂(λ)D

�k

)2 +

2σ̂ 2
D
�k

nunck

∑

i∈Dk
i censored

− ln FG
(
LOD,Xi, β̂(λ)D

�k , σ̂ 2
D
�k

)

(15)

where nunck is the number of uncensored observations in
Dk . The loss function LG in (15) is proportional and equiv-
alent to the negative Gaussian log-likelihood loss function,
but allows for comparison with the squared loss in (14).

Implementation issues
All statistical analyses, comparisons and implementa-

tions were performed using the computing environment
R (R Development Core Team, 2017) [69]. We used
the function cv.glmnet from package glmnet [70] to
choose the optimal λ value of Lasso linear regression
on complete data (GoldS) and Lasso linear regression
with simple substitution of left-censored values by the
detection limit (LOD). We implemented the Lasso non-
parametric Buckley-James (NonParBJ) using the bujar
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package [71]. We modified the function to support strat-
ified K-fold cross-validation and conserve the same pro-
portion of censoring in all the folds. Lasso Gaussian
Buckley-James (Gaussian BJ) was implemented in a new
function cvGaussBJ. Algorithm 1 specifies how to solve
the problem. The stopping criterion is based on the dif-
ference between current and previous regression coef-
ficient estimates, variance estimates, and imputed data.
Because of the tendency to oscillate between different
parameter values of the iterative procedure, the algo-
rithm is also stopped if the number of oscillations is
high [40]. Alternatively, we also considered the one-step
algorithm, which stops at the first iteration [36, 64]. Cross-
validation based on both imputation and loss function
accounting for censored and uncensored contributions
is considered. The Lasso estimation step depends on
package glmnet.
All these implementations and an artificial example are

available at: https://github.com/psBiostat/left-censored-
Lasso.

Prediction of HIV viral load from HIV genotypic mutations:
real and simulated data
HIV is highly replicative and thus presents high mutation
and recombination rates which could lead to the devel-
opment of HIV drug resistance and consequently reduce
the efficacy of antiretroviral treatment. To optimize the
control of the evolution of HIV drug resistance, HIV viral
load is routinely monitored to identify treatment failure,
and HIV genotypic tests are commonly performed before
a switch to a new treatment regimen in patients already
treated or at the initiation of the first treatment in naive
HIV-infected patients [72].

Algorithm 1 Lasso-regularized Gaussian Buckley-James
Initialization:

β̂
(0) ← argmin

β

n∑

i=1
(Zi − Xiβ)2 + λ‖β‖1

σ̂ 2(0) ← 1
n

n∑

i=1

(
Zi − Xiβ̂

(0))2

while the stopping criterion is not satisfied do
Imputation step

Z∗(k)
i ← δiYi + (1 − δi)

∫ LOD

−∞
ufG(u,Xi , β̂

(k−1)
, σ̂ 2(k−1)) du

FG(LOD,Xi, β̂
(k−1)

, σ̂ 2(k−1))

Lasso estimation step

β̂
(k) ← argmin

β

n∑

i=1
(Z∗(k)

i − Xiβ
(k))2 + λ‖β(k)‖1

σ̂ 2(k) ← 1
n

n∑

i=1

(
Z∗(k)
i − Xiβ̂

(k))2

end while

Our objective is to compare methods that handle left-
censoring by conditional imputation with methods that
handle left-censoring by imputing a single constant value
(that is, the Lasso-regularized linear regression with sim-
ple imputation by LOD and LOD/2) to predict of HIV
viral load by HIV genotypic mutations. The methods
accounting for left-censoring by imputing the estimated
conditional mean given censoring and predictor values are
the Lasso-regularized Buckley-James least square algo-
rithms (with/without Gaussian assumption, with com-
plete convergence/1-step, using cross-validation based on
imputation/loss function accounting for censored and
uncensored contributions).

Real data
The database used in this study was provided by the Stan-
dardization and Clinical Relevance of HIV Drug Resis-
tance Testing Project for the Forum for Collaborative
HIV Research [49]. Patients included in this study were
all treatment-experienced and switched to an abacavir-
containing regimen. The investigated drug, abacavir, is
a nucleoside reverse transcriptase inhibitor (NRTI) that
blocks HIV reverse transcriptase.
The sample size n = 99 was slightly smaller than the

number of predictors p = 121. 54 of the 121 predictors
correspond to the presence or absence of specific muta-
tions in the reverse transcriptase gene (RTG), which were
reported to be probably associated with resistance to
abacavir, multi-NRTI, NRTI (other than abacavir) or non-
nucleoside reverse transcriptase inhibitors (NNRTI) at
the time of the study [73, 74]. The number of muta-
tions reported to be probably associated with resistance
to abacavir or multi-NRTI is low (14%). The other 67
predictors correspond to the presence or absence of spe-
cific mutations in the protease gene (PG) reported to be
probably associated with resistance to one or several pro-
tease inhibitors (PI) at the time of the study [73, 74]. The
number of molecules, including abacavir, ranged from 1
to 6 (with the median number of molecules being 3 and
interquartile range 2). In particular, a PI was prescribed
in 59% of the patients and 43% received an NNRTI. The
response variable is the log-HIV viral load measured at t8
(8 weeks after treatment initiation at t0). LOD was fixed at
100 copies/mL and the censoring rate was moderate (26%).

Generation of simulated data
HIV viral load appears to have an underlyingGaussian dis-
tribution when log-transformed. Therefore, our outcome,
Y (8)
i is generated from a Gaussian distribution. We simu-

lated 200 data sets of size n = 100 and p = 100 predictors
from the model:

Y (8)
i = β0 + β

(0)
1 Y (0)

i + Xiβ + εi i = 1, · · · , n
where

https://github.com/psBiostat/left-censored-Lasso
https://github.com/psBiostat/left-censored-Lasso
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• Y (0)
i , the HIV viral load at t0 is generated by a normal

distribution with mean 12 (log10 copies/mL) and
variance 1.

• β
(0)
1 represents the change of the slope between the

HIV viral load on the day of treatment, t0, and 8
weeks later, at t8, when no mutations are present and
for 1 log10/mL higher concentration of viral load at t0.
We fix β0 and β

(0)
1 to obtain the desired censoring

rates: 20% (moderate), 50% (high), and 70% (severe).
• X(n×p), representing the presence or absence of HIV

mutations, is generated by a multinomial distribution
with mean 0.15 (the fixed prevalence for all the 100
mutations) and covariance matrix � where
�ij = 0.4|i−j| (the closer the mutations, the more
positively they are correlated).

• β = (
β1, · · · ,βp

)�. Among p = 100 candidate
mutations only 10% are relevant with effects βj = 1, if
j = 1, . . . , 10 and 0 if j > 10. A 1-unit increase in HIV
viral load is expected per occurrence of these relevant
mutations for a given baseline HIV viral load.

• ε is generated from a normal distribution with mean
0 and variance σ 2 chosen such that the
signal-to-noise ratio is fixed at 3 : 1.

Our primary goal was to compare competing methods
in terms of prediction accuracy. Consequently, we simu-
lated training and test datasets. The former were used to
estimate, the latter were used to evaluate the prediction
performance. We ensured that training and test datasets
contained roughly the same proportions of censoring. We
computed the mean squared error on test data as:

MSE = 1
ntest

ntest∑

i=1

(
Y test
i − Xtest

i β̂(λ̂)
)2

with β̂(λ̂) estimated on training data by stratified 5-
fold cross-validation using a given regression method
(Gold standard, Lasso-regularized Non-parametric and
Gaussian Buckley-James -with complete convergence and
1-step- and Lasso-regularized linear regression with sim-
ple imputation -by LOD and LOD/2-) and the corre-
sponding loss function in the cross-validation criterion.
The gold standard uses (14), the others replace the cen-
soring values according to their imputation strategy, and
the Gaussian Buckley-James also uses the loss function in
(15).

Results
Simulation results
Figure 2 shows the mean prediction error results. "OLS
on True Model" corresponds to ordinary least squares for
the linear model with uncensored data and only relevant
predictors (the so-called oracle estimator). Gold standard
(GoldS) corresponds to the Lasso estimation for the linear

0

2

4

6

OLS on True Model GoldS Gaussian BJ Gaussian BJ 1−Step NonParBJ LOD

M
S

E

0%
20%
50%
70%

Fig. 2 Mean Square Error (MSE) calculated on test data of size
ntest = 100 and 200 replications using gold standard method (GoldS),
Gaussian Buckley-James (Gaussian BJ) and 1-Step version (Gaussian BJ
1-Step), non-Parametric Buckley-James (NonParBJ) and simple
imputation by LOD (LOD). Data were generated to present different
censoring rates: 0% (uncensored), 20% (moderate), 50% (high), and
70% (severe), which are represented by different gray degrees

model with uncensored data. These results allow for refer-
ence prediction errors when the true model is known (the
first one) or due to censoring data (both).
The imputation by LOD/2 led to poorer results than

the imputation by LOD. Thus, for the simple imputation,
only LOD imputation (LOD) results are shown. For the
Gaussian Buckley-James algorithms (Gaussian BJ), the
error is calculated by using both cross-validation with
imputation and cross-validation with the loss function
indicated in (15), but only the best results are shown.
The Gaussian Buckley-James method presented an

oscillating behavior in 9.5% of the generated samples when
the convergence rate was 20%. This percentage rose to
82.5% and 95.0% when the convergence rates were 50%
and 70%, respectively. For the Gaussian Buckley-James
using the 1-step algorithm (Gaussian BJ 1-Step), results
using the two cross-validation approaches were almost
identical. Nevertheless, for the Gaussian Buckley-James
with complete convergence, a notable improvement was
obtained when applying (15).
The higher the rate of censoring, the less information

is available to train the models and, unsurprisingly, the
higher is the prediction error. For a moderate rate of
censoring (20%), all methods show a good performance
close to that of the gold standard GoldS. When the rate
of censoring is 50%, Gaussian BJ shows the lowest pre-
diction error, followed by Gaussian BJ 1-step, NonParBJ
and finally simple imputation, which shows more errors.
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The same patterns but more pronounced were observed
with a severe rate of censoring (70%). Taking the knowl-
edge about the distribution into account appears to have
only a slight impact. Simple imputation yields the poorest
results. In addition, it showed high variability with some
extreme errors.

Application to real data
The Lasso-regularized Buckley-James least square
algorithm that showed the best behavior in the simulation
study (with complete convergence and cross-validation
based on the loss function LG in (15)) was applied to real
data, as well as the Lasso-regularized non-parametric
Buckley-James method and simple imputation (by LOD
and LOD/2).
Regularization parameters were estimated by stratified

cross-validation in order to ensure that each fold had the
same proportion of censoring as in the corresponding
data set (26%). In addition, because some mutations were
relatively infrequent, we used 20-fold cross-validation.
Indeed, the higher the number of folds, the lower the
probability of randomly obtaining test sets with no subject
exposed to infrequent HIV drug resistance mutations.
Figure 3 shows two examples of the observed HIV

viral load at t0 and the observed and estimated HIV
viral load at t8. As in the low-dimensional case shown
in Fig. 1, simple imputation by LOD predicted the high-
est values of HIV viral load. Inversely, simple imputa-
tion by LOD/2 estimates the lowest values of HIV viral
load. The difference between the two estimates at 8
weeks is>0.5 log10 copies/mL, which is clinically relevant.
Lasso-regularized Buckley-James least square algorithms
(with/without Gaussian assumption), often gave a predic-
tion in between. This tendency was increased when the

censoring rate was high or when the sensitivity of the assay
was low.
When applying the Gaussian Buckley-James method to

real data, no oscillating behavior was observed.
Table 1 indicates the number of HIV genotypic muta-

tions selected from the list of mutations that may con-
tribute to a reduced virologic response known at the
time of the study [73, 74], according to each method
applied. The Lasso-regularized Gaussian Buckley-James
selected several HIV genotypic mutations suspected of
being associated with abacavir or multi-NRTI resistance.
Furthermore, it selected a high number of HIV geno-
typic mutations probably associated with PI resistance
and a few probably associated with NNRTI resistance.
This selection of a large number of candidate predic-
tors seems to be relevant because all patients received
an abacavir-containing regimen and a high percentage
of patients received regimens including a PI- and/or
NNRTI. The Lasso-regularized non-parametric Buckley-
James selected fewer mutations, and especially fewer
mutations in PG, probably due to PI resistance. Sim-
ple imputation of the LOD or LOD/2 selected few
mutations. In particular, only 1 of the 5 mutations in
RTG probably associated with abacavir resistance was
retained.

Discussion
Simple imputation of the detection limit or of half of
this limit is an ad hoc approach to address left-censored
outcome data. However, in standard (low-dimensional)
settings, it leads to biased estimates of parameters and
standard errors. In our high-dimensional simulation
study, simple imputation using Lasso-regularized least-
squares showed poor performance. As in low-dimensional

Fig. 3 Two examples of individual predicted values using Lasso regularization techniques (Gaussian Buckley-James, non-parametric Buckley-James,
simple imputation by LOD and LOD/2) and observed values. One example is censored (at left) and the other is uncensored (at right)



Soret et al. BMCMedical ResearchMethodology          (2018) 18:159 Page 10 of 13

Table 1 Distribution of 121 HIV genotypic mutations included in real data study according to knowledge at study time and reported in
[73, 74] and number of HIV genotypic mutations selected by Lasso regularized methods

Number of HIV genotypic mutations Gaussian BJ NonPar BJ LOD LOD/2
present in real data study

5 in RTG probably associated 3 (60%) 3 (60%) 1 (20%) 1 (20%)
with abacavir resistance

13 in RTG probably associated 7 (54%) 4 (31%) 4 (31%) 4 (31%)
with multi-NRTI resistance

6 in RTG probably associated 3 (50%) 2 (33%) 1 (17%) 1 (17%)
with NRTI resistance (other than abacavir)

30 in RTG probably associated 12 (40%) 11 (37%) 8 (27%) 7 (23%)
with NNRTI resistance

67 in PG probably associated 40 (60%) 22 (33%) 15 (22%) 14 (21%)
with PI resistance

121 Total 65 (54%) 42 (35%) 29 (24%) 27 (22%)

settings, approaches accounting for left-censoring outper-
formed simple imputation.
In this work, we propose a Lasso-regularized Gaussian

Buckley-James algorithm, according to the usual Gaussian
assumption of log-transformed HIV viral load. Because
of the well-known convergence problems of the itera-
tive Buckley-James procedure, we implemented two algo-
rithms, the first algorithm running until convergence and
the second one being stopped after one step [36, 64]. This
one-step algorithm showed similar results in the simula-
tion study. Other solutions have been proposed to deal
with convergence problems in low-dimensional settings
[39, 64] and could be investigated in future research.
As in other works [48], we implemented a cross-

validation criterion for the tuning parameter based on
imputing values to Yi in the test set from conditional
expectations estimated using the learning set. We also
proposed a cross-validation criterion based on a loss
function that accounts for the different contribution of
censored and uncensored values. Almost identical results
were obtained when applying the two cross-validation cri-
teria to the one-step algorithm. However, when running
the algorithm until convergence, better results were
obtained with the cross-validation criterion based on a
loss function that accounts for censored and uncensored
contributions.
On the other hand, we reversed the Lasso-regularized

non-parametric Buckley-James method previously
applied to right-censored survival data [36, 38, 40, 48] in
order to apply to left-censoring due to detection limits.
Foreseeably, in our homoscedastic Gaussian outcome
data scenario, the Gaussian Buckley-James showed better
behavior than the non-parametric algorithm. However,
accounting for the knowledge about the distribution
seems to have had a slight influence. When the Gaussian
assumption is violated, non-parametric imputation using
Kaplan Meier is perhaps the best option.

We provide a publicly available R code to compute
the methods introduced in this work (https://github.
com/psBiostat/left-censored-Lasso). It would be inter-
esting to compare the Lasso-regularized Buckley-James
least squares method to Lasso-regularized censored LAD
method. The Lasso extension of censored LAD has been
proposed in different works [41, 42, 56–62]. However, to
our knowledge, there is no publicly available implemen-
tation, and no simple implementation relying on existing
packages seem straightforward. Moreover, several works
have shown the superiority of maximum likelihood esti-
mation in low-dimensional settings when the Gaussian
assumption is valid [18, 20–22]. Nevertheless, optimiza-
tion strategies for complex likelihood functions (such as
that in Eq. 7) including penalties that are not smooth are
not obvious.
To illustrate the application of the methods on real data,

we consider a data set from the Standardization and Clin-
ical Relevance of HIV Drug Resistance Testing Project for
the Forum for Collaborative HIV Research. The data set
used to illustrate the initial data set is characterized by a
sample size-to-predictors ratio of around 1. There is no
gold standard to measure and compare predictive perfor-
mance of the different methods when using censored out-
come data. All patients were being treated with abacavir,
an NRTI, so we expected our methods to select a high
number of HIV genotypic mutations known to contribute
to abacavir and NRTI resistance. Furthermore, a high
number of patients were on PI- and/or NNRTI-containing
regimens, and a selection of several HIV genotypic muta-
tions reported to be probably associated with resistance to
any of these molecules was also expected [73, 74]. In that
sense, the Gaussian and non-parametric Buckley-James
methods showed more coherent results with the literature
compared to simple imputation.
Otherwise, the data presented a moderate censoring

rate of 26%, which is a realistic magnitude [18, 50] in

https://github.com/psBiostat/left-censored-Lasso
https://github.com/psBiostat/left-censored-Lasso
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studies measuring HIV viral load. However, high or even
severe censoring rates were found in older studies with
a high limit of detection (LOD) or particular populations
with a low treatment failure rate [18, 51, 52]. Further-
more, left-censoring due to the lower detection limit of
an assay is a problem in many fields such as biology,
immunology, chemistry, and the environmental sciences
in which high censoring rates may be frequent. Our sim-
ulation study shows that the difference in performance
between Lasso-regularized Buckley-James methods and
Lasso-regularized simple imputation methods increased
with the censoring rate.
In our simulations and real application, the detection

threshold was the same for all subjects. The detection
threshold may vary among subjects, for example, in mul-
ticentric studies. Our R code also supports multiple lower
limits of quantification. However, the findings should
be interpreted with caution: differences in technologi-
cal equipment could be a confounding factor that might
help explain the differences in patient response to HIV
treatment (in addition to HIV mutations). Adjusting or
stratifying for the hospital would then be necessary.
In this study we focused on the prediction performance

of Lasso-regularized methods. In clinical applications,
even when prediction accuracy is the main objective,
researchers aim to identify which predictors are more
strongly associated with outcome. Our proposal could
be easily extended or adapted to support other Lasso-
type penalties. When the primary goal is to infer the set
of truly relevant variables, the adaptive Lasso and the
bootstrap-enhanced Lasso could thus be considered.
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